CENTRALIZING GENERALIZED DERIVATIONS ON POLYNOMIALS IN PRIME RINGS

Vincenzo De Filippis

Abstract

Let R be a prime ring, $Z(R)$ its center, U its right Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C and I a non-zero right ideal of R. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R and $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in I$, then either there exist $a \in U, \alpha \in C$ such that $G(x)=a x$ for all $x \in R$, with $(a-\alpha) I=0$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and one of the following holds: 1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$; 2. $\operatorname{char}(R)=2$ and $e R C e$ satisfies the standard identity s_{4}; 3. $\operatorname{char}(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$; 4. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$ and there exist $a, b \in U, \alpha \in C$ such that $G(x)=a x+x b$, for all $x \in R$, with $(a-b+\alpha) I=0$.

1. Introduction

Throughout this paper, R always denotes a prime ring with center $Z(R)$ and extended centroid C, U its right Utumi quotient ring. By a generalized derivation on R we mean an additive map $G: R \longrightarrow R$ such that, for any $x, y \in R$, $G(x y)=G(x) y+x d(y)$, for some derivation d in R.

Several authors have studied generalized derivations in the context of prime and semiprime rings (see [6], [10], [14] for references). Here we would like to continue on this line of investigation, by studying some related problems concerning the relationship between the behaviour of generalized derivations in a prime ring and the structure of the ring.

A well known theorem of Posner established that a prime ring R must be commutative if it admits a derivation d such that $[d(x), x] \in Z(R)$, for all $x \in R$ [17]. In [8] T.K. Lee generalized this result and proved that if R is a semiprime ring, I a

[^0]nonzero left ideal, d a nonzero derivation on R and k, n positive integers such that $\left[d\left(x^{n}\right), x^{n}\right]_{k}=0$ for all $x \in I$, then $[I, R] d(R)=(0)$. In particular R must be commutative in the case it is prime.

In [9] Lee studied an Engel condition with derivation d for a polynomial $f\left(x_{1}, \ldots\right.$, x_{n}) which is valued on a non-zero one-sided ideal of R.

He proved that if $\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right]_{k}=0$, for all $r_{1}, \ldots, r_{n} \in L$, a non-zero left ideal of R, and $k \geq 1$ a fixed integer, then there exists an idempotent element e in the socle of $R C$, such that $C L=R C e$ and one of the following holds: (i) $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$ unless C is finite or $0<\operatorname{char}(R) \leq k+1$; (ii) in case $\operatorname{char}(R)=p>0$, then $f\left(x_{1}, \ldots, x_{n}\right)^{p^{s}}$ is central valued in $e R C e$, for some $s \geq 0$, unless $\operatorname{char}(R)=2$ and $e R C e$ satisfies the identity s_{4}.

In a recent paper ([4]) we studied the case when the Engel condition is satisfied by a generalized derivation on the evaluations of a multilinear polynomial, more precisely we proved the following:

Theorem. Let R be a prime ring with extended centroid C, G a non-zero generalized derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C and I a non-zero right ideal of R.

If $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right), f\left(r_{1}, \ldots, r_{n}\right)\right]=0\right.$, for all $r_{1}, \ldots, r_{n} \in I$, then either $G(x)=$ ax, with $(a-\gamma) I=0$ and a suitable $\gamma \in C$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$;
2. $G(x)=c x+x b$, where $(c-b+\alpha) e=0$, for $\alpha \in C$, and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in eRCe;
3. $\operatorname{char}(R)=2$ and $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is an identity for $e R C e$.

Here we will extend the previous cited result and study what happens in case an Engel-type condition is satisfied by a generalized derivation G which acts on a polynomial, removing the assumption on its multilinearity. More precisely we show the following:

Theorem 1. Let R be a prime ring, $Z(R)$ its center, U its Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C and I a non-zero right ideal of R. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R and $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in I$, then either there exist $a \in U, \alpha \in C$ such that $G(x)=a x$ for all $x \in R$, with $(a-\alpha) I=0$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$;
2. $\operatorname{char}(R)=2$ and eRCe satisfies the standard identity s_{4};
3. char $(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$;
4. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$ and there exist $a, b \in U, \alpha \in C$ such that $G(x)=a x+x b$, for all $x \in R$, with $(a-b+\alpha) I=0$.

We also point out that in [10] Lee proves that every generalized derivation can be uniquely extended to a generalized derivation of U and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U. In particular Lee proves the following result:

Theorem 3. ([10]). Every generalized derivation g on a dense right ideal of R can be uniquely extended to U and assumes the form $g(x)=a x+d(x)$, for some $a \in U$ and a derivation d on U.

Remark 1. In order to investigate on general polynomials $f\left(x_{1}, \ldots, x_{n}\right)$, we need to recall the well known process of linearization (see [9] and also [19], part I, §5): let $m_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} \mu_{i}\left(x_{1}, \ldots, x_{n}\right)$ be the sum of all monomials of f which involve the indeterminate x_{i}. The x_{i} appears in any μ_{i} with a specific degree h_{i}. Consider now the following tranformation in any monomial μ_{i} :

$$
\begin{gathered}
\varphi_{i}: x_{i}^{h_{i}} \longmapsto \sum_{n_{i}+m_{i}=h_{i}-1} x_{i}^{n_{i}} y_{i} x_{i}^{m_{i}} \\
\varphi_{i}: x_{j} \longmapsto x_{j}, \quad \text { for all } j \neq i
\end{gathered}
$$

and $\varphi_{i}\left(m_{i}\right)$ is a sum of monomials, one for each x_{i} in m_{i} replaced with y_{i}. Thus any polynomial $g_{i}\left(y_{i}, x_{1}, \ldots, x_{n}\right)=\varphi_{i}\left(m_{i}\right)$ is linear with respect to the indeterminate y_{i}.

We remark that

$$
\left[x, f\left(x_{1}, \ldots, x_{n}\right)\right]=\sum_{i=1}^{n} g_{i}\left(\left[x, x_{i}\right], x_{1}, \ldots, x_{n}\right)
$$

Remark 2. Let d be any derivation of R. We will denote by $f^{d}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient $\alpha \in C$ of $f\left(x_{1}, \ldots, x_{n}\right)$ with $d(\alpha)$.

Thus $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=f^{d}\left(r_{1}, \ldots, r_{n}\right)+\sum_{i} g\left(d\left(r_{i}\right), r_{1}, \ldots, r_{n}\right)$, for all r_{1}, r_{2}, \ldots, r_{n} in R.

2. The Results

We begin with some preliminary results. The first one is contained in [9] (Theorem 11, p.21):

Lemma 1. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C, d a non-zero derivation of R. If $\left[d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in R$, then one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ has values in C;
2. char $(R)=2$ and R satisfies the standard identity s_{4};
3. $\operatorname{char}(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ has values in C.

Now we consider a reduction of main Theorem in [9]:
Lemma 2. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C and I a non-zero right ideal of R. If $\left[s_{1}, f\left(r_{1}, \ldots, r_{n}\right)\right]_{2} \in C$, for all $s_{1}, r_{1}, \ldots, r_{n} \in I$, then there exists an idempotent e in the socle of $R C$ such that $I C=e R C$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$;
2. char $(R)=2$ and eRCe satisfies the standard identity s_{4};
3. char $(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$.

Proof. Since I satisfies the non-trivial polynomial identity $\left[\left[x, f\left(x_{1}, \ldots, x_{n}\right)\right]_{2}, y\right]$, then, by Proposition in [11], there exists an idempotent element $e \in \operatorname{soc}(R C)$, such that $I C=e R C$. Therefore we have that $e R C e$ satisfies the polynomial identity $\left[\left[x, f\left(x_{1}, \ldots, x_{n}\right)\right]_{2}, y\right]$. Clearly we suppose that $e R C e$ is not commutative (if not $f\left(x_{1}, \ldots, x_{n}\right)$ is trivially central valued in $\left.e R C e\right)$ and so there exists an element $s_{0} \in$ $e R C e-Z(e R C e)$. Denote by $\delta(x)=\left[s_{0}, x\right]$ the inner derivation of $e R C e$ induced by s_{0}. Hence by our assumption we have that $e R C e$ satisfies the identity

$$
\left[\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in Z(e R C e)
$$

In this situation, by Lemma 1, we get the required conclusions.
Lemma 3. Let R be a prime ring, $a, b \in U$ and $f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C such that $\left[a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in R$. Then either $a, b \in C$ or one of the following conclusions holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ has values in C;
2. char $(R)=2$ and R satisfies the standard identity s_{4};
3. $\operatorname{char}(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ has values in C;
4. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ has values in C and $a-b \in C$.

Proof. It is easy to see that we may rewrite the assumption

$$
\left[a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b, f\left(x_{1}, \ldots, x_{n}\right)\right] \in C
$$

as follows

$$
\left[a, f\left(x_{1}, \ldots, x_{n}\right)\right] f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right)\left[b, f\left(x_{1}, \ldots, x_{n}\right)\right] \in C
$$

If denote by δ_{1} the inner derivation of R induced by the element a and by δ_{2} the inner one induced by b, we also have

$$
\delta_{1}\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) \delta_{2}\left(f\left(x_{1}, \ldots, x_{n}\right)\right) \in C .
$$

In case $\delta_{1}=-\delta_{2}=\Delta$, that is $a+b \in C$, we have that

$$
\left[\Delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C, \forall r_{1}, \ldots, r_{n} \in R
$$

and we are finished by Lemma 1. In the other case, we use the main Theorem in [13]: hence either $\operatorname{char}(R)=2$ and R satisfies s_{4}; or $\delta_{1}=\delta_{2}=0$, that is $a, b \in C$; or $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R and $\delta_{1}-\delta_{2}=0$, that is $a-b \in C$.

An easy application of [13] is also the following:
Corollary 1. Let R be a prime ring, $b \in U, f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C such that $\left[f\left(r_{1}, \ldots, r_{n}\right) b, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in R$. Then either $b \in C$ or one of the following conclusions holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ has values in C;
2. $\operatorname{char}(R)=2$ and R satisfies the standard identity s_{4}.

Proof. Here denote by δ the inner derivation of R induced by the element b. Thus $f\left(r_{1}, \ldots, r_{n}\right) \delta\left(f\left(r_{1}, \ldots, r_{n}\right)\right) \in C$, for all $r_{1}, \ldots, r_{n} \in R$. Hence by Theorem 2 in [13] we obtain the required conclusions.

Lemma 4. Let R be a prime ring, G a non-zero generalized derivation of R, I a non-zero right ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central polynomial over C such that $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in I$. Then R satisfies a non-trivial generalized polynomial identity, unless $G(x)=a x$, for a suitable $a \in U$ and there exists $\lambda \in C$ such that $(a-\lambda) I=0$.

Proof. Consider the generalized derivation G assuming the form

$$
G(x)=a x+d(x)
$$

for a derivation d of R. By our hypothesis, R satisfies the identity

$$
\left[\left[a f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right], x_{n+1}\right] .
$$

Let B be a basis of U over C and $U *_{C} C\left\{x_{1}, \ldots, x_{n}\right\}$ be the free product of the C-algebra U and the free C -algebra $C\left\{x_{1}, \ldots, x_{n}\right\}$. Then any element of $T=$ $U *_{C} C\left\{x_{1}, \ldots, x_{n}\right\}$ can be written in the form $g=\sum_{i} \alpha_{i} m_{i}$. In this decomposition the coefficients α_{i} are in C and the elements m_{i} are B -monomials, that is $m_{i}=q_{0} y_{1} \cdots y_{h} q_{h}$, with $q_{i} \in B$ and $y_{i} \in\left\{x_{1}, \ldots, x_{n}\right\}$. In [1] it is shown that
a generalized polynomial $g=\sum_{i} \alpha_{i} m_{i}$ is the zero element of T if and only if any α_{i} is zero. As a consequence, let $a_{1}, \ldots, a_{k} \in U$ be linearly independent over C and $a_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+\ldots+a_{k} g_{k}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, for some $g_{1}, \ldots, g_{k} \in T$. If, for any $i, g_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j} h_{j}\left(x_{1}, \ldots, x_{n}\right)$ and $h_{j}\left(x_{1}, \ldots, x_{n}\right) \in T$, then $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right)$ are the zero element of T. The same conclusion holds if $g_{1}\left(x_{1}, \ldots, x_{n}\right) a_{1}+\ldots+g_{k}\left(x_{1}, \ldots, x_{n}\right) a_{k}=0 \in T$, and $g_{i}\left(x_{1}, \ldots, x_{n}\right)=$ $\sum_{j=1}^{n} h_{j}\left(x_{1}, \ldots, x_{n}\right) x_{j}$ for some $h_{j}\left(x_{1}, \ldots, x_{n}\right) \in T$.

We assume that R does not satisfy any non-trivial generalized polynomial identity and obtain a number of contradictions.

Suppose first that $d=0$. Then I satisfies $\left[a f\left(x_{1}, \ldots, x_{n}\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in C$. In particular let $x_{0} \in I$, then R satisfies $\left[a f\left(x_{0} x_{1}, \ldots, x_{0} x_{n}\right), f\left(x_{0} x_{1}, \ldots, x_{0} x_{n}\right)\right] \in C$, which is a non-trivial generalized polynomial identity, unless $a x_{0}$ and x_{0} are linearly C-dependent. Since we assume that R does not satisfy any non-trivial generalized polynomial identity, then for all $x_{0} \in I$ there exists $\alpha_{0} \in C$ such that $a x_{0}=\alpha_{0} x_{0}$. In this case standard arguments show that there exists an unique $\alpha \in C$ such that $a x_{0}=\alpha x_{0}$, for all $x_{0} \in I$, that is $(a-\alpha) I=0$.

Now consider the case $d \neq 0$. Here we divide the proof into two cases:
Case 1. Suppose that the derivation $d \neq 0$ is inner, induced by some element $q \in U-C$, that is $d(x)=[q, x]$. Thus we have, for all $r_{1}, \ldots, r_{n} \in I$

$$
\begin{aligned}
& {\left[a f\left(r_{1}, \ldots, r_{n}\right)+d\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] } \\
= & {\left[(a+q) f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) q, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C }
\end{aligned}
$$

and denote $a+q=c$, so that

$$
\left[c f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) q, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C
$$

Let $u \in I$ such that $c u$ and u are linearly C-independent.
By our assumption R satisfies

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right)= & {\left[\left[c f\left(u x_{1}, \ldots, u x_{n}\right)-f\left(u x_{1}, \ldots, u x_{n}\right) q, f\left(u x_{1}, \ldots, u x_{n}\right)\right], u y\right] } \\
= & {\left[c f\left(u x_{1}, \ldots, u x_{n}\right)^{2}+f\left(u x_{1}, \ldots, u x_{n}\right)^{2} q\right.} \\
& \left.-f\left(u x_{1}, \ldots, u x_{n}\right)(c+q) f\left(u x_{1}, \ldots, u x_{n}\right), u y\right]=0 \in T
\end{aligned}
$$

since R is not a GPI-ring. In this representation consider two kinds of B-monomials: those that have leading coefficient $c u$, and those that have leading coefficient u. Hence we may write

$$
P\left(x_{1}, \ldots, x_{n}\right)=c u P_{1}\left(x_{1}, \ldots, x_{n}\right)+u P_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \in T
$$

for $P_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $P_{2}\left(x_{1}, \ldots, x_{n}\right)$ suitable polynomials. Since $c u$ and u are linearly C-independent, we have that $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, and by calculations it
means that R satisfies $c f\left(u x_{1}, \ldots, u x_{n}\right)^{2} u y$, which is a non trivial generalized polynomial identity for R, a contradiction.

Suppose now that for any $u \in I$ there exists $\alpha \in C$ such that $c u=\alpha u$. Then

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =\left[\left[c f\left(u x_{1}, \ldots, u x_{n}\right)-f\left(u x_{1}, \ldots, u x_{n}\right) q, f\left(u x_{1}, \ldots, u x_{n}\right)\right], y\right] \\
& =\left[\left[\alpha f\left(u x_{1}, \ldots, u x_{n}\right)-f\left(u x_{1}, \ldots, u x_{n}\right) q, f\left(u x_{1}, \ldots, u x_{n}\right)\right], y\right] \\
& =\left[\left[-f\left(u x_{1}, \ldots, u x_{n}\right) q, f\left(u x_{1}, \ldots, u x_{n}\right)\right], y\right]=0 \in T .
\end{aligned}
$$

Since $q \notin C$, we consider two kinds of B-monomials: those that have ending coefficient q, and those that have ending coefficient 1 . More precisely write

$$
P\left(x_{1}, \ldots, x_{n}\right)=M_{1}\left(x_{1}, \ldots, x_{n}\right) q+M_{2}\left(x_{1}, \ldots, x_{n}\right)=0 \in T
$$

for $M_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $M_{2}\left(x_{1}, \ldots, x_{n}\right)$ suitable polynomials. Since q and 1 are linearly C-independent, we have that $M_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \in T$, that is

$$
-y f\left(u x_{1}, \ldots, u x_{n}\right)^{2} q=0 \in T
$$

which is a non trivial generalized polynomial identity for R, a contradiction again.
Case 2. Let now $0 \neq d$ be an outer derivation. Since I satisfies

$$
\left[a f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in C
$$

we have that, for $c \in I, U$ satisfies the identity

$$
\begin{aligned}
& {\left[\left[a f\left(c x_{1}, \ldots, c x_{n}\right)+f^{d}\left(c x_{1}, \ldots, c x_{n}\right)\right.\right.} \\
& \left.\left.\quad+\sum_{i} g_{i}\left(d(c) x_{i}+c d\left(x_{i}\right), c x_{1}, \ldots, c x_{n}\right), f\left(c x_{1}, \ldots, c x_{n}\right)\right], y\right]
\end{aligned}
$$

Since $d \neq 0$ is an outer derivation, by Kharchenko's theorem (Theorem 2 in [7] and Theorem 1 in [12]), U satisfies the identity

$$
\begin{aligned}
& {\left[\left[a f\left(c x_{1}, \ldots, c x_{n}\right)+f^{d}\left(c x_{1}, \ldots, c x_{n}\right)\right.\right.} \\
& \left.\left.\quad+\sum_{i} g_{i}\left(d(c) x_{i}+c y_{i}, c x_{1}, \ldots, c x_{n}\right), f\left(c x_{1}, \ldots, c x_{n}\right)\right], y\right]
\end{aligned}
$$

In particular U satisfies

$$
\begin{equation*}
\left[\left[\sum_{i} g_{i}\left(c y_{i}, c x_{1}, \ldots, c x_{n}\right), f\left(c x_{1}, \ldots, c x_{n}\right)\right], y\right] \tag{1}
\end{equation*}
$$

Since (1) is a polynomial identity for the right ideal $c U$, by Proposition in [11], there exists an idempotent element $e \in \operatorname{soc}(U)$, such that $c U=e U$. Therefore we have that U satisfies the generalized identity

$$
\left[\left[\sum_{i} g_{i}\left(e y_{i}, e x_{1}, \ldots, e x_{n}\right), f\left(e x_{1}, \ldots, e x_{n}\right)\right], y\right]
$$

For $y_{i}=\left[e r, e x_{i}\right]$, with $r \in U$, we have that U satisfies

$$
\begin{aligned}
& {\left[\left[\sum_{i} g_{i}\left(e\left[e r, e x_{i}\right], e x_{1}, \ldots, e x_{n}\right), f\left(e x_{1}, \ldots, e x_{n}\right)\right], y\right] } \\
= & {\left[\left[\left[e r, f\left(e x_{1}, \ldots, e x_{n}\right)\right], f\left(e x_{1}, \ldots, e x_{n}\right)\right], y\right] }
\end{aligned}
$$

that is

$$
\left[\left[e r, f\left(e x_{1}, \ldots, e x_{n}\right)\right]_{2}, y\right]
$$

which is a non-trivial generalized polynomial identity for U as well for R, a contradiction.

Remark 3. In all that follows we will always assume that R satisfies some nontrivial generalized polynomial identity. In fact, in the other case, by Lemma 4, we are done with the conclusion $G(x)=a x$, for some $a \in U$ such that $(a-\alpha) I=0$, for a suitable $\alpha \in C$.

We would like to point out that the first part of the paper (Lemmas 6 and 7) is dedicated to analyse the case when G is an inner generalized derivation of R : more precisely $G(x)=a x+x b$, for all $x \in R$ and fixed elements $a, b \in U$. In this case the right ideal I satisfies the generalized polynomial identity

$$
\begin{equation*}
\left[\left[a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b, f\left(x_{1}, \ldots, x_{n}\right)\right], x_{n+1}\right] \tag{2}
\end{equation*}
$$

Without loss of generality, in Lemmas 5 and 6 we will assume that R is simple and equals to its own socle, $I R=I$. In fact R is GPI and so $R C$ is a primitive ring, having non-zero socle H with non-zero right ideal $J=I H$ (Theorem 3 in [16]). Note that H is simple and $J=J H$ is a completely reducible right H-module since H_{H} is. It follows from Theorem 2 in [1] that (2) is a generalized polynomial identity for J, more generally J satisfies the same basic conditions as I. Now just replace R by H, I by J and we are done.

Since $R=H$ is a regular ring, then for any $a_{1}, \ldots, a_{n} \in I$ there exists $h=h^{2} \in R$ such that $\sum_{i=1}^{n} a_{i} R=h R$. Then $h \in I R=I$ and $a_{i}=h a_{i}$ for each $i=1, \ldots, n$.

Before proving Lemmas 6 and 7, we premit the following easy result:

Lemma 5. Let R be a non-commutative prime ring and $a \in R$ such that $a\left[r_{1}, r_{2}\right] a \in$ $Z(R)$, for any $r_{1}, r_{2} \in R$. Then $a=0$.

Proof. Suppose that $0 \neq a \notin Z(R)$. Hence

$$
P\left(x_{1}, x_{2}, x_{3}\right)=\left[a\left[x_{1}, x_{2}\right] a, x_{3}\right]
$$

is a non-trivial generalized polynomial identity for R.
By Theorem 2 in [1], $P\left(x_{1}, x_{2}, x_{3}\right)$ is also a generalized identity for $R C$. By Martindale's result in [16] $R C$ is a primitive ring with non-zero socle. There exists a vectorial space V over a division ring D such that $R C$ is dense of D-linear transformations over V.

Suppose that $\operatorname{dim}_{D} V \geq 2$. Since a is not central, there exists $v \in V$ such that $\{v, v a\}$ are linearly D-independent. By the density of $R C$, there exist $r_{1}, r_{2}, r_{3} \in R C$ such that

$$
v r_{2}=v, \quad v r_{3}=0, \quad(v a) r_{1}=v, \quad(v a) r_{2}=0, \quad(v a) r_{3}=v
$$

This leads to the contradiction

$$
0=v\left[a\left[r_{1}, r_{2}\right] a, r_{3}\right]=v \neq 0
$$

Thus we may assume $\operatorname{dim}_{D} V=1$, that is $R C$ is a division algebra which satisfies a non-trivial generalized polynomial identity. By Theorem 2.3.29 in [18] $R C \subseteq M_{t}(F)$, for a suitable field F, moreover $M_{t}(F)$ satisfies the same generalized identity of $R C$. Hence $a\left[r_{1}, r_{2}\right] a$ is central in $M_{t}(F)$, for any $r_{1}, r_{2} \in M_{t}(F)$. If $t \geq 2$, by the above argument, we get a contradiction. On the other hand, if $t=1$ then $R C$ is commutative as well as R, and this contradicts the hypothesis.

The previous argument says that a must be central in R. If $a \neq 0$, by the main assumption it follows $\left[r_{1}, r_{2}\right] \in Z(R)$ for all $r_{1}, r_{2} \in R$, and this means that R is a commutative ring, a contradiction again.

Therefore $a=0$ and we are done.
Lemma 6. Let $b \in R, I$ a non-zero right ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C.

If $\left[f\left(r_{1}, \ldots, r_{n}\right) b, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$ for all $r_{1}, \ldots, r_{n} \in I$, then either $b \in C$ or there exists an idempotent element $e \in R$ such that $I=e R$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in eRe;
2. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is an identity for eRe and $(b-\beta) e=0$, for a suitable $\beta \in C$.
3. char $(R)=2$ and eRe satisfies the standard identity s_{4}.

Proof. Suppose by contradiction that there exist $w, v_{1}, v_{2}, c_{1}, \ldots, c_{n+7} \in I$ such that

- $b w$ and w are linearly C-independent;
- $\left[b, v_{1}\right] v_{2} \neq 0$;
- $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$;
- if $\operatorname{char}(R)=2$ then $s_{4}\left(c_{n+3}, c_{n+4}, c_{n+5}, c_{n+6}\right) c_{n+7} \neq 0$.

By Remark 3 there exists an idempotent element $h \in I$ such that $h R=b R+w R+$ $v_{1} R+v_{2} R+\sum_{i=1}^{n+7} c_{i} R$ and $b=h b, w=h w, v_{1}=h v_{1}, v_{2}=h v_{2}, c_{i}=h c_{i}$, for any $i=1, \ldots, n+7$. Since $\left[\left[f\left(h x_{1} h, \ldots, h x_{n} h\right) b, f\left(h x_{1} h, \ldots, h x_{n} h\right)\right], h y h\right]$ is satisfied by $R=H$, right multiplying by $(1-h)$ we have that

$$
h y h f\left(h x_{1} h, \ldots, h x_{n} h\right)^{2} b(1-h)=0 .
$$

By Lemma 3 in [3] we have that either $h b(1-h)=0$ or $f\left(h x_{1} h, \ldots, h x_{n} h\right)^{2}$ is an identity for R.

First we prove that in this last case we have a contradiction. In fact, since $h R h$ satisfies the polynomial $f\left(x_{1}, \ldots, x_{n}\right)^{2}$, then $h R h$ is a finite-dimensional central simple algebra over its center $C h$. Moreover we remark that if $h R h$ is a division algebra, then $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial identity for $h R h$, since $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is. But this contradicts with $f\left(c_{1}, \ldots, c_{n}\right) \neq 0$.

Therefore $h R h$ is a finite-dimensional central simple algebra containing non-trivial idempotents.

Moreover we also have that $f\left(x_{1}, \ldots, x_{n}\right)(h b h) f\left(x_{1}, \ldots, x_{n}\right) \in C h$ is satisfied by $h R h$. Let $B=\left\{c \in h R h: f\left(x_{1}, \ldots, x_{n}\right) c f\left(x_{1}, \ldots, x_{n}\right) \in C h\right\}$. It is easy to see that B is an additive subgroup of $h R h$ which is invariant under the action of all the automorphisms of $h R h$, and of course $h b h \in B$. Since $h R h$ contains nontrivial idempotent elements, we may apply the main result in [2]. More precisely, since $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$ and $s_{4}\left(c_{n+3}, c_{n+4}, c_{n+5}, c_{n+6}\right) c_{n+7} \neq 0$ when $\operatorname{char}(R)=2$, we have that either $[h R h, h R h] \subseteq B$, that is

$$
f\left(x_{1}, \ldots, x_{n}\right)\left[y_{1}, y_{2}\right] f\left(x_{1}, \ldots, x_{n}\right) \in C h
$$

is satisfied by $h R h$, or $h b h \in C h$.
Note that in the first case, by Lemma 5 we get the contradiction that $f\left(x_{1}, \ldots, x_{n}\right)$ is an identity for $h R h$.

In the other case, since we know that $b=h b$, we have $b h \in C h$, that is $(b-\beta) h=0$ for a suitable $\beta \in C$. But this contradicts with $0 \neq(b-\beta) w=(b-\beta) h w$.

Then the conclusion is that $h b=h b h$.
Moreover, by the fact that $h R h$ satisfies $\left[f\left(x_{1}, \ldots, x_{n}\right)(h b h), f\left(x_{1}, \ldots, x_{n}\right)\right] \in C$ and by applying Corollary 1, one obtains that either $h b h=h b=b$ is central in $h R h$ or $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $h R h$, unless when $\operatorname{char}(R)=2$ and $h R$ satisfies $s_{4}\left(x_{1}, \ldots, x_{4}\right) x_{5}$. Again recall that we assumed $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$, and,
in case $\operatorname{char}(R)=2, s_{4}\left(c_{n+3}, c_{n+4}, c_{n+5}, c_{n+6}\right) c_{n+7} \neq 0$. Then $b \in h C$, which contradicts with $\left[b, h v_{1}\right] h v_{2} \neq 0$.

Thus we get a number of contradictions; hence one of the following conclusions occurs:

- $[b, I] I=0$;
- $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I;
- $\operatorname{char}(R)=2$ and $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) x_{5}$ is an identity for I.

To complete the proof of this Lemma, we have to analyse the case when $[b, I] I=0$. We know that if $[b, I] I=0$, then there exists $\beta \in C$ such that $(b-\beta) I=0$ (for instance see [5]). Denote $b^{\prime}=b-\beta$, then $b^{\prime} I=0$ and I satisfies

$$
\left[f\left(x_{1}, \ldots, x_{n}\right) b^{\prime}, f\left(x_{1}, \ldots, x_{n}\right)\right]=f\left(x_{1}, \ldots, x_{n}\right)^{2} b^{\prime}
$$

Again from Lemma 3 in [3], either $b^{\prime}=0$, that is $b \in C$, or $f\left(x_{1}, \ldots, x_{n}\right)^{2} x_{n+1}=0$ in I. In particular in this case, since I satisfies a polynomial identity, there exists an idempotent element $e^{2}=e \in R$, such that $I=e R$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is an identity for the finite dimensional simple central algebra $e R e$.

Lemma 7. Let $a, b \in R, I$ a non-zero right ideal of R and $f\left(x_{1}, \ldots, x_{n}\right) a$ non-zero polynomial over C.

If $\left[a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for any $r_{1}, \ldots, r_{n} \in I$, then either there exists $\gamma \in C$ such that $(a-\gamma) I=0$ and $b \in C$ or there exists an idempotent element $e \in R$ such that $I=e R$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R e$;
2. $\operatorname{char}(R)=2$ and eRe satisfies the standard identity s_{4};
3. char $(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R e$;
4. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R e$ and there exists $\alpha \in C$ such that $(a-b+\alpha) I=0$.

Proof. Suppose by contradiction that there exist

$$
w, v, c_{1}, \ldots, c_{n+2}, b_{1}, \ldots, b_{n+7}, t_{1}, \ldots, t_{n+2} \in I
$$

such that

- v and $a v$ are linearly C-independent;
- $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$;
- either $\left[f\left(b_{1}, \ldots, b_{n}\right)^{2}, b_{n+1}\right] b_{n+2} \neq 0$ or $(b-a) w$ and w are linearly C-independent;
- if $\operatorname{char}(R)=2$, then $\left[f\left(t_{1}, \ldots, t_{n}\right), t_{n+1}\right] t_{n+2} \neq 0$;
- if $\operatorname{char}(R)=2$, then $s_{4}\left(b_{n+3}, b_{n+4}, b_{n+5}, b_{n+6}\right) b_{n+7} \neq 0$.

There exists an idempotent element $h \in I$ such that

$$
h R=a R+b R+w R+v R+\sum_{i=1}^{n+2} c_{i} R+\sum_{j=1}^{n+7} b_{j} R+\sum_{i=1}^{n+2} t_{i} R
$$

and $a=h a, b=h b, w=h w, v=h v, c_{i}=h c_{i}, b_{j}=h b_{j}, t_{i}=h t_{i}$ for any $i=1, \ldots, n+2, j=1, \ldots, n+7$. Since
(3) $\left[\left[a f\left(h x_{1} h, \ldots, h x_{n} h\right)+f\left(h x_{1} h, \ldots, h x_{n} h\right) b, f\left(h x_{1} h, \ldots, h x_{n} h\right)\right], h y h\right]$
is satisfied by $R=H$, left multiplying by $(1-h)$ we have that

$$
\begin{equation*}
(1-h) a h f\left(x_{1} h, \ldots, x_{n} h\right)^{2} y h=0 . \tag{4}
\end{equation*}
$$

On the other hand, right multiplying the (2) by $(1-h)$ we also have

$$
\begin{equation*}
h y h f\left(x_{1} h, \ldots, x_{n} h\right)^{2} b(1-h)=0 \tag{5}
\end{equation*}
$$

Applying Lemma 3 in [3] to (3) and (4), it follows that either $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is an identity for $h R h$ or $(1-h) a h=h b(1-h)=0$.

Suppose first that $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is an identity for $h R h$. Here we repeat the same argument of Lemma 6, in order to obtain again a contradiction.

Since $h R h$ satisfies the polynomial $f\left(x_{1}, \ldots, x_{n}\right)^{2}$, then $h R h$ is a finite-dimensional central simple algebra over its center $C h$. Moreover $h R h$ is not a division algebra, if not $f\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial identity for $h R h$, which contradicts with the choices of c_{1}, \ldots, c_{n}.

Therefore $h R h$ is a finite-dimensional central simple algebra containing non-trivial idempotents. Moreover, since $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is an identity for $h R h$, starting from (2) we have that $h R h$ satisfies $f\left(x_{1}, \ldots, x_{n}\right) h(b-a) h f\left(x_{1}, \ldots, x_{n}\right) \in C$.

Let $B=\left\{c \in h R h: f\left(x_{1}, \ldots, x_{n}\right) c f\left(x_{1}, \ldots, x_{n}\right) \in C h\right\}$. It is easy to see that B is an additive subgroup of $h R h$ which is invariant under the action of all the automorphisms of $h R h$, and of course $h(b-a) h \in B$. In light of [2], and since $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$ and $s_{4}\left(c_{n+3}, c_{n+4}, c_{n+5}, c_{n+6}\right) c_{n+7} \neq 0$ when $\operatorname{char}(R)=2$, we have that either $[h R h, h R h] \subseteq B$, that is

$$
f\left(x_{1}, \ldots, x_{n}\right)\left[y_{1}, y_{2}\right] f\left(x_{1}, \ldots, x_{n}\right) \in C h
$$

is satisfied by $h R h$, or $h(b-a) h \in C h$.
In the first case, by Lemma 5, we have the contradiction that $f\left(x_{1}, \ldots, x_{n}\right)$ is an identity for $h R h$.

In the other case, since we know that $a=h a$ and $b=h b$, we have $b h-a h \in C h$, that is $(b-a+\alpha) h=0$ for a suitable $\alpha \in C$. But this contradicts with $0 \neq$ $(b-a+\alpha) w=(b-a+\alpha) h w$.

This means that $a h=h a h=h a \in h R h$ and $b=h b=h b h \in h R h$. Therefore $h R h$ satisfies

$$
\left[\left[(h a h) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right)(h b h), f\left(x_{1}, \ldots, x_{n}\right)\right], y\right]
$$

By Lemma 3 we have that either $h a h=a h$ is central in $h R h$, or $f\left(x_{1}, \ldots, x_{n}\right)$ is central in $h R h$, or $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central in $h R h$ and $(b-a) h \in C h$; or $\operatorname{char}(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central in $h R h$, unless when $\operatorname{char}(R)=2$ and $h R h$ satisfies s_{4}. Because of our assumptions, the only one conclusion must be $a h=h a h \in$ $Z(h R h)=C h$. Therefore we have $a h=\alpha h$, for some $\alpha \in C$ which contradicts with $a h v=a v \neq \alpha v=\alpha h v$.

All these contradictions say that one of the following holds:

1. $(a-\gamma) I=0$ for a suitable $\gamma \in C$;
2. $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I;
3. $\left[f\left(x_{1}, \ldots, x_{n}\right)^{2}, x_{n+1}\right] x_{n+2}$ is an identity for I and $(b-a) I \subseteq C I$;
4. $\operatorname{char}(R)=2$ and $\left[f\left(x_{1}, \ldots, x_{n}\right)^{2}, x_{n+1}\right] x_{n+2}$ is an identity for I;
5. $\operatorname{char}(R)=2$ and $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) x_{5}$ is an identity for I.

In case $(a-\gamma) I=0$, the main hypothesis says that

$$
\left[f\left(r_{1}, \ldots, r_{n}\right) b, f\left(r_{1}, \ldots, r_{n}\right)\right] \in C
$$

for all $r_{1}, \ldots, r_{n} \in I$, and we end up from Lemma 6.
In all the other cases we remark that, since I satisfies some polynomial identity, there exists an idempotent element $e^{2}=e \in R$, such that $I=e R$.

Finally we are ready to prove the following:
Theorem 1. Let G be a non-zero generalized derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero polynomial over C and I a non-zero right ideal of R. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R and $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in I$, then either there exist $a \in U, \alpha \in C$ such that $G(x)=$ ax for all $x \in R$, with $(a-\alpha) I=0$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$;
2. char $(R)=2$ and $e R C e$ satisfies the standard identity s_{4};
3. char $(R)=2$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$;
4. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$ and there exist $a, b \in U, \alpha \in C$ such that $G(x)=a x+x b$, for all $x \in R$, with $(a-b+\alpha) I=0$.

Proof. As we have already remarked, every generalized derivation G on a dense right ideal of R can be uniquely extended to U and assumes the form $G(x)=a x+d(x)$, for some $a \in U$ and a derivation d on U.

If $d=0$ we conclude by Lemma 7 (in the special case when $b=0$). Thus we suppose that $d \neq 0$.

For $u \in I, U$ satisfies the following

$$
\left[a f\left(u x_{1}, \ldots, u x_{n}\right)+d\left(f\left(u x_{1}, \ldots, u x_{n}\right)\right), f\left(u x_{1}, \ldots, u x_{n}\right)\right] \in C .
$$

In light of Kharchenko's theory ([7], [12]), we divide the proof into two cases:
Case 1. Let d the inner derivation induced by the element $q \in U$, that is $d(x)=$ $[q, x]$, for all $x \in U$. Thus I satisfies

$$
\begin{gathered}
{\left[a f\left(x_{1}, \ldots, x_{n}\right)+q f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) q, f\left(x_{1}, \ldots, x_{n}\right)\right]=} \\
{\left[(a+q) f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right)(-q), f\left(x_{1}, \ldots, x_{n}\right)\right] \in C .}
\end{gathered}
$$

If denote $-q=b$ and $a+q=c$, the generalized derivation δ is defined as $G(x)=$ $c x+x b$, and we get the conclusion thanks to Lemma 7 .

Case 2. Let now d an outer derivation of U. Assume that there exist c_{1}, \ldots, c_{n+2}, $b_{1}, \ldots, b_{n+7} \in I$ such that

- $\left[f\left(c_{1}, \ldots, c_{n}\right), c_{n+1}\right] c_{n+2} \neq 0$;
- if $\operatorname{char}(R)=2,\left[f\left(b_{1}, \ldots, b_{n}\right)^{2}, b_{n+1}\right] b_{n+2} \neq 0$;
- if $\operatorname{char}(R)=2, s_{4}\left(b_{n+3}, b_{n+4}, b_{n+5}, b_{n+6}\right) b_{n+7} \neq 0$.

We want to show that these assumptions drive us to a contradiction. First we recall that there exists an idempotent element $h \in I H=I R$ such that $h R=\sum_{i=1}^{n+2} c_{i} R+$ $\sum_{j=1}^{n+7} b_{j} R$ and $c_{i}=h c_{i}, b_{j}=h b_{j}$, for any $i=1, . ., n+2, j=1, . ., n+7$.

Since I satisfies

$$
\left[a f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right] \in C
$$

then U satisfies

$$
\left[a f\left(h x_{1}, \ldots, h x_{n}\right)+d\left(f\left(h x_{1}, \ldots, h x_{n}\right)\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C .
$$

Thus U satisfies the following

$$
\begin{aligned}
& {\left[a f\left(h x_{1}, \ldots, h x_{n}\right)+f^{d}\left(h x_{1}, \ldots, h x_{n}\right)\right.} \\
& \left.\quad+\sum_{i} f\left(h x_{1}, \ldots, d(h) x_{i}+h d\left(x_{i}\right), \ldots, h x_{n}\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C .
\end{aligned}
$$

Expansion of this yields that U satisfies

$$
\begin{aligned}
& {\left[a f\left(h x_{1}, \ldots, h x_{n}\right)+f^{d}\left(h x_{1}, \ldots, h x_{n}\right)\right.} \\
& \left.\quad+\sum_{i} g_{i}\left(d(h) x_{i}+h d\left(x_{i}\right), h x_{1}, \ldots, h x_{n}\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C .
\end{aligned}
$$

Since d is an outer derivation, by Kharchenko's theorem (Theorem 2 in [7] and Theorem 1 in [12]), U satisfies

$$
\begin{aligned}
& {\left[a f\left(h x_{1}, \ldots, h x_{n}\right)+f^{d}\left(h x_{1}, \ldots, h x_{n}\right)\right.} \\
& \left.\quad+\sum_{i} g_{i}\left(d(h) x_{i}+h y_{i}, h x_{1}, \ldots, h x_{n}\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C .
\end{aligned}
$$

In particular, by analysing any blended component of the previous condition, U satisfies

$$
\left[\sum_{i} g_{i}\left(h y_{i}, h x_{1}, \ldots, h x_{n}\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C .
$$

For $y_{i}=\left[h r, h x_{i}\right]$, with $r \in U$, we have that U satisfies

$$
\begin{aligned}
& {\left[\sum_{i} g_{i}\left(h\left[h r, h x_{i}\right], h x_{1}, \ldots, h x_{n}\right), f\left(h x_{1}, \ldots, h x_{n}\right)\right] } \\
= & {\left[\left[h r, f\left(h x_{1}, \ldots, h x_{n}\right)\right], f\left(h x_{1}, \ldots, h x_{n}\right)\right] \in C }
\end{aligned}
$$

that is

$$
\left[h r, f\left(h x_{1}, \ldots, h x_{n}\right)\right]_{2} \in C
$$

In this situation, the conclusions of Lemma 2 contradict with the choices of elements $c_{1}, \ldots, c_{n+2}, b_{1}, \ldots, b_{n+7} \in I$. This contradiction gives us the required conclusion.

We would like to conclude the paper by considering the special case when the polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is multilinear. In fact in this case one of the conclusions in Theorem 1 can be removed. More precisely, when there exists an idempotent element $e \in \operatorname{Soc}(R C)$ such that $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$ and $\operatorname{char}(R)=2$, we will show that $f\left(x_{1}, \ldots, x_{n}\right)$ must be central valued on $e R C e$ unless $e R C e$ satisfies the standard identity s_{4}. In light of this we will obtain a complete generalization of the result contained in [4]:

Theorem 2. Let R be a prime ring, $Z(R)$ its center, U its Utumi quotient ring, C its extended centroid, G a non-zero generalized derivation of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a non-zero multilinear polynomial over C, I a non-zero right ideal of R. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R and $\left[G\left(f\left(r_{1}, \ldots, r_{n}\right)\right), f\left(r_{1}, \ldots, r_{n}\right)\right] \in C$, for all $r_{1}, \ldots, r_{n} \in I$, then either there exist $a \in U, \alpha \in C$ such that $G(x)=$ ax for all $x \in R$, with $(a-\alpha) I=0$ or there exists an idempotent element $e \in \operatorname{soc}(R C)$ such that $I C=e R C$ and one of the following holds:

1. $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $e R C e$;
2. $\operatorname{char}(R)=2$ and eRCe satisfies the standard identity s_{4};
3. $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in eRCe and there exist $a, b \in U, \alpha \in C$ such that $G(x)=a x+x b$, for all $x \in R$, with $(a-b+\alpha) I=0$.

Proof. By Theorem 1, we are always done, unless in the case there exists an idempotent element $e \in \operatorname{Soc}(R C)$ such that $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued in $e R C e$ and $\operatorname{char}(R)=2$. Recall that $e R C e$ is a simple finite dimensional algebra over its center. For the sake of clearness we denote $A=e R C e$ and $C e=Z(e R C e)$ the center of $A . A$ is a PI-ring with $C e \neq 0$.

Let K be the algebraic closure of C if C is an infinite field and set $K=C$ otherwise. Then $A \otimes_{C} K \cong M_{t}(K)$, for some $t \geq 1$. Standard arguments show that $M_{t}(K)$ and A satisfies the same polynomial identities. In particular $M_{t}(K)$ satisfies [$f\left(x_{1}, \ldots, x_{n}\right)^{2}, y$]. If $t=1$, then A is commutative and we are done. Consider then $t \geq 2$. Let $\left(r_{1}, \ldots, r_{n}\right)$ any even sequence in $M_{t}(K)$ such that $f\left(r_{1}, \ldots, r_{n}\right)=u=$ $\sum_{i=1}^{t} \lambda_{i} e_{i i}$, with $\lambda_{i} \in K$, for all i (see [15] for more details). Denote I_{t} the identity matrix in $M_{t}(K)$. Since $u^{2} \in K \cdot I_{t}$, then $\lambda_{i}^{2}=\lambda_{j}^{2}$, for all $i \neq j$, which implies $\lambda_{i}=\lambda_{j}$, because $\operatorname{char}(R)=2$. Thus, for any even sequence $\left(r_{1}, \ldots, r_{n}\right)$ in $M_{t}(K)$, we have $f\left(r_{1}, \ldots, r_{n}\right)=\lambda I_{t}$ and, by Lemma 9 in [15], this means that $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued in $M_{t}(K)$, as well as in $A=e R C e$, unless when $t=2$. In this last case $e R C e$ satisfies s_{4} and we are done again.

References

1. C. L. Chuang, GPIs' having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103(3) (1988), 723-728.
2. C. L. Chuang, On invariant additive subgroups, Israel J. Math., 57 (1987), 116-128.
3. C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24(2) (1996), 177-185.
4. V. De Filippis, An Engel condition with generalized derivations on multilinear polynomials, Israel J. Math., (162) (2007), 93-108.
5. I. N. Herstein, A condition that a derivation be inner, Rend. Circ. Mat. Palermo, 37(1) (1988), 5-7.
6. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26(4) (1998), 1147-1166.
7. V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), 155-168.
8. T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull., 38(4) (1995), 445-449.
9. T. K. Lee, Derivations with Engel conditions on polynomials, Algebra Coll., 5(1) (1998), 13-24.
10. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27(8) (1999), 4057-4073.
11. T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Coll., 3 (1996), 19-24.
12. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 20(1) (1992), 27-38.
13. T. K. Lee and W. K. Shiue, Derivations cocentralizing polynomials, Taiwanese J. Math., 2(4) (1998), 457-467.
14. T. K. Lee and W. K. Shiue, Identities with generalized derivations, Comm. Algebra, 29(10) (2001), 4437-4450.
15. U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 202 (1975), 97-103.
16. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
17. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
18. L. Rowen, Polynomial identities in ring theory, Pure and Applied Math., 1980.
19. K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative, Academic Press, New York, 1982.

Vincenzo De Filippis
DI.S.I.A., Faculty of Engineering
University of Messina
98166 Messina
Italy
E-mail: defilippis@unime.it

[^0]: Received June 12, 2011, accepted November 7, 2011.
 Communicated by Bernd Ulrich.
 2010 Mathematics Subject Classification: 16N60, 16W25.
 Key words and phrases: Prime rings, Differential identities, Generalized derivations.

