
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 5, pp. 1847-1863, October 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

CENTRALIZING GENERALIZED DERIVATIONS ON POLYNOMIALS
IN PRIME RINGS

Vincenzo De Filippis

Abstract. Let R be a prime ring, Z(R) its center, U its right Utumi quotient ring,
C its extended centroid,G a non-zero generalized derivation of R, f(x1 , . . . , xn) a
non-zero polynomial over C and I a non-zero right ideal of R. If f(x1 , . . . , xn)
is not central valued on R and [G(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C , for all
r1, . . . , rn ∈ I, then either there exist a ∈ U , α ∈ C such that G(x) = ax for all
x ∈ R, with (a − α)I = 0 or there exists an idempotent element e ∈ soc(RC)
such that IC = eRC and one of the following holds:
1. f(x1 , . . . , xn) is central valued in eRCe;
2. char(R) = 2 and eRCe satisfies the standard identity s4;
3. char(R) = 2 and f(x1, . . . , xn)2 is central valued in eRCe;
4. f(x1 , . . . , xn)2 is central valued in eRCe and there exist a, b ∈ U , α ∈ C
such that G(x) = ax + xb, for all x ∈ R, with (a − b + α)I = 0.

1. INTRODUCTION

Throughout this paper, R always denotes a prime ring with center Z(R) and
extended centroid C, U its right Utumi quotient ring. By a generalized deriva-
tion on R we mean an additive map G : R −→ R such that, for any x, y ∈ R,
G(xy) = G(x)y + xd(y), for some derivation d in R.
Several authors have studied generalized derivations in the context of prime and

semiprime rings (see [6], [10], [14] for references). Here we would like to continue on
this line of investigation, by studying some related problems concerning the relationship
between the behaviour of generalized derivations in a prime ring and the structure of
the ring.
A well known theorem of Posner established that a prime ring R must be com-

mutative if it admits a derivation d such that [d(x), x] ∈ Z(R), for all x ∈ R [17].
In [8] T.K. Lee generalized this result and proved that if R is a semiprime ring, I a
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nonzero left ideal, d a nonzero derivation on R and k, n positive integers such that
[d(xn), xn]k = 0 for all x ∈ I , then [I, R]d(R) = (0). In particular R must be
commutative in the case it is prime.
In [9] Lee studied an Engel condition with derivation d for a polynomial f(x1, . . . ,

xn) which is valued on a non-zero one-sided ideal of R.
He proved that if [d(f(r1, . . . , rn)), f(r1, . . . , rn)]k = 0, for all r1, . . . , rn ∈ L, a

non-zero left ideal of R, and k ≥ 1 a fixed integer, then there exists an idempotent
element e in the socle of RC, such that CL = RCe and one of the following holds: (i)
f(x1, . . . , xn) is central valued in eRCe unless C is finite or 0 < char(R) ≤ k + 1;
(ii) in case char(R) = p > 0, then f(x1, . . . , xn)ps is central valued in eRCe, for
some s ≥ 0, unless char(R) = 2 and eRCe satisfies the identity s4.
In a recent paper ([4]) we studied the case when the Engel condition is satisfied by

a generalized derivation on the evaluations of a multilinear polynomial, more precisely
we proved the following:

Theorem. Let R be a prime ring with extended centroid C, G a non-zero general-
ized derivation of R, f(x1, . . . , xn) a multilinear polynomial over C and I a non-zero
right ideal of R.
If [G(f(r1, . . . , rn), f(r1, . . . , rn)] = 0, for all r1, . . . , rn ∈ I , then either G(x) =

ax, with (a − γ)I = 0 and a suitable γ ∈ C or there exists an idempotent element
e ∈ soc(RC) such that IC = eRC and one of the following holds:
1. f(x1, . . . , xn) is central valued in eRCe;
2. G(x) = cx + xb , where (c − b + α)e = 0, for α ∈ C, and f(x1, . . . , xn)2 is
central valued in eRCe;

3. char(R) = 2 and s4(x1, x2, x3, x4) is an identity for eRCe.

Here we will extend the previous cited result and study what happens in case
an Engel-type condition is satisfied by a generalized derivation G which acts on a
polynomial, removing the assumption on its multilinearity. More precisely we show
the following:

Theorem 1. Let R be a prime ring, Z(R) its center, U its Utumi quotient ring, C its
extended centroid, G a non-zero generalized derivation of R, f(x1, . . . , xn) a non-zero
polynomial over C and I a non-zero right ideal of R. If f(x1, . . . , xn) is not central
valued on R and [G(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, for all r1, . . . , rn ∈ I , then
either there exist a ∈ U , α ∈ C such that G(x) = ax for all x ∈ R, with (a−α)I = 0
or there exists an idempotent element e ∈ soc(RC) such that IC = eRC and one of
the following holds:
1. f(x1, . . . , xn) is central valued in eRCe;
2. char(R) = 2 and eRCe satisfies the standard identity s4;
3. char(R) = 2 and f(x1, . . . , xn)2 is central valued in eRCe;
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4. f(x1, . . . , xn)2 is central valued in eRCe and there exist a, b ∈ U , α ∈ C such
that G(x) = ax + xb, for all x ∈ R, with (a − b + α)I = 0.

We also point out that in [10] Lee proves that every generalized derivation can be
uniquely extended to a generalized derivation of U and thus all generalized derivations
of R will be implicitly assumed to be defined on the whole U . In particular Lee proves
the following result:

Theorem 3. ([10]). Every generalized derivation g on a dense right ideal of R

can be uniquely extended to U and assumes the form g(x) = ax + d(x), for some
a ∈ U and a derivation d on U .

Remark 1. In order to investigate on general polynomials f(x1, . . . , xn), we need
to recall the well known process of linearization (see [9] and also [19], part I, §5): let
mi(x1, . . . , xn) =

∑
i μi(x1, . . . , xn) be the sum of all monomials of f which involve

the indeterminate xi. The xi appears in any μi with a specific degree hi. Consider
now the following tranformation in any monomial μi:

ϕi : xhi
i �−→

∑
ni+mi=hi−1

xni
i yix

mi
i

ϕi : xj �−→ xj, for all j �= i

and ϕi(mi) is a sum of monomials, one for each xi in mi replaced with yi. Thus any
polynomial gi(yi, x1, . . . , xn) = ϕi(mi) is linear with respect to the indeterminate yi.
We remark that

[x, f(x1, . . . , xn)] =
n∑

i=1

gi([x, xi], x1, . . . , xn).

Remark 2. Let d be any derivation of R. We will denote by fd(x1, . . . , xn)
the polynomial obtained from f(x1, . . . , xn) by replacing each coefficient α ∈ C of
f(x1, . . . , xn) with d(α).
Thus d(f(r1, . . . , rn)) = fd(r1, . . . , rn)+

∑
i g(d(ri), r1, . . . , rn), for all r1, r2, . . . ,

rn in R.

2. THE RESULTS

We begin with some preliminary results. The first one is contained in [9] (Theorem
11, p.21):

Lemma 1. Let R be a prime ring, f(x1, . . . , xn) a non-zero polynomial over
C, d a non-zero derivation of R. If [d(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, for all
r1, . . . , rn ∈ R, then one of the following holds:
1. f(x1, . . . , xn) has values in C;
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2. char(R) = 2 and R satisfies the standard identity s4;

3. char(R) = 2 and f(x1, . . . , xn)2 has values in C.

Now we consider a reduction of main Theorem in [9]:

Lemma 2. Let R be a prime ring, f(x1, . . . , xn) a non-zero polynomial over C and
I a non-zero right ideal of R. If [s1, f(r1, . . . , rn)]2 ∈ C, for all s1, r1, . . . , rn ∈ I ,
then there exists an idempotent e in the socle of RC such that IC = eRC and one of
the following holds:
1. f(x1, . . . , xn) is central valued in eRCe;

2. char(R) = 2 and eRCe satisfies the standard identity s4;

3. char(R) = 2 and f(x1, . . . , xn)2 is central valued in eRCe.

Proof. Since I satisfies the non-trivial polynomial identity [[x, f(x1, . . . , xn)]2, y],
then, by Proposition in [11], there exists an idempotent element e ∈ soc(RC), such
that IC = eRC. Therefore we have that eRCe satisfies the polynomial identity
[[x, f(x1, . . . , xn)]2, y]. Clearly we suppose that eRCe is not commutative (if not
f(x1, . . . , xn) is trivially central valued in eRCe) and so there exists an element s0 ∈
eRCe−Z(eRCe). Denote by δ(x) = [s0, x] the inner derivation of eRCe induced by
s0. Hence by our assumption we have that eRCe satisfies the identity

[
δ(f(x1, . . . , xn)), f(x1, . . . , xn)

] ∈ Z(eRCe).

In this situation, by Lemma 1, we get the required conclusions.

Lemma 3. Let R be a prime ring, a, b ∈ U and f(x1, . . . , xn) a non-zero poly-
nomial over C such that [af(r1, . . . , rn) + f(r1, . . . , rn)b, f(r1, . . . , rn)] ∈ C, for all
r1, . . . , rn ∈ R. Then either a, b ∈ C or one of the following conclusions holds:
1. f(x1, . . . , xn) has values in C;

2. char(R) = 2 and R satisfies the standard identity s4;

3. char(R) = 2 and f(x1, . . . , xn)2 has values in C;

4. f(x1, . . . , xn)2 has values in C and a − b ∈ C.

Proof. It is easy to see that we may rewrite the assumption

[af(x1, . . . , xn) + f(x1, . . . , xn)b, f(x1, . . . , xn)] ∈ C

as follows

[a, f(x1, . . . , xn)]f(x1, . . . , xn) + f(x1, . . . , xn)[b, f(x1, . . . , xn)] ∈ C.
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If denote by δ1 the inner derivation of R induced by the element a and by δ2 the inner
one induced by b, we also have

δ1(f(x1, . . . , xn))f(x1, . . . , xn) + f(x1, . . . , xn)δ2(f(x1, . . . , xn)) ∈ C.

In case δ1 = −δ2 = Δ, that is a + b ∈ C, we have that

[Δ(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, ∀r1, . . . , rn ∈ R

and we are finished by Lemma 1. In the other case, we use the main Theorem in [13]:
hence either char(R) = 2 and R satisfies s4; or δ1 = δ2 = 0, that is a, b ∈ C; or
f(x1, . . . , xn)2 is central valued on R and δ1 − δ2 = 0, that is a − b ∈ C.
An easy application of [13] is also the following:

Corollary 1. Let R be a prime ring, b ∈ U , f(x1, . . . , xn) a non-zero polynomial
over C such that [f(r1, . . . , rn)b, f(r1, . . . , rn)] ∈ C, for all r1, . . . , rn ∈ R. Then
either b ∈ C or one of the following conclusions holds:
1. f(x1, . . . , xn) has values in C;
2. char(R) = 2 and R satisfies the standard identity s4.

Proof. Here denote by δ the inner derivation of R induced by the element b. Thus
f(r1, . . . , rn)δ(f(r1, . . . , rn)) ∈ C, for all r1, . . . , rn ∈ R. Hence by Theorem 2 in
[13] we obtain the required conclusions.

Lemma 4. Let R be a prime ring, G a non-zero generalized derivation of R, I
a non-zero right ideal of R and f(x1, . . . , xn) a non-central polynomial over C such
that [G(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, for all r1, . . . , rn ∈ I . Then R satisfies a
non-trivial generalized polynomial identity, unless G(x) = ax, for a suitable a ∈ U

and there exists λ ∈ C such that (a − λ)I = 0.

Proof. Consider the generalized derivation G assuming the form

G(x) = ax + d(x)

for a derivation d of R. By our hypothesis, R satisfies the identity[
[af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)], xn+1

]
.

Let B be a basis of U over C and U ∗C C{x1, . . . , xn} be the free product of
the C-algebra U and the free C-algebra C{x1, . . . , xn}. Then any element of T =
U ∗C C{x1, . . . , xn} can be written in the form g =

∑
i αimi. In this decompo-

sition the coefficients αi are in C and the elements mi are B-monomials, that is
mi = q0y1 · · · ·yhqh, with qi ∈ B and yi ∈ {x1, . . . , xn}. In [1] it is shown that
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a generalized polynomial g =
∑

i αimi is the zero element of T if and only if any
αi is zero. As a consequence, let a1, . . . , ak ∈ U be linearly independent over C
and a1g1(x1, . . . , xn) + . . . + akgk(x1, . . . , xn) = 0 ∈ T , for some g1, . . . , gk ∈ T .
If, for any i, gi(x1, . . . , xn) =

∑n
j=1 xjhj(x1, . . . , xn) and hj(x1, . . . , xn) ∈ T , then

g1(x1, . . . , xn),. . . , gk(x1, . . . , xn) are the zero element of T . The same conclusion
holds if g1(x1, . . . , xn)a1 + . . . + gk(x1, . . . , xn)ak = 0 ∈ T , and gi(x1, . . . , xn) =∑n

j=1 hj(x1, . . . , xn)xj for some hj(x1, . . . , xn) ∈ T .
We assume that R does not satisfy any non-trivial generalized polynomial identity

and obtain a number of contradictions.
Suppose first that d = 0. Then I satisfies [af(x1, . . . , xn), f(x1, . . . , xn)] ∈ C. In

particular let x0 ∈ I , then R satisfies [af(x0x1, . . . , x0xn), f(x0x1, . . . , x0xn)] ∈ C,
which is a non-trivial generalized polynomial identity, unless ax0 and x0 are linearly
C-dependent. Since we assume that R does not satisfy any non-trivial generalized
polynomial identity, then for all x0 ∈ I there exists α0 ∈ C such that ax0 = α0x0.
In this case standard arguments show that there exists an unique α ∈ C such that
ax0 = αx0, for all x0 ∈ I , that is (a− α)I = 0.
Now consider the case d �= 0. Here we divide the proof into two cases:

Case 1. Suppose that the derivation d �= 0 is inner, induced by some element
q ∈ U − C, that is d(x) = [q, x]. Thus we have, for all r1, . . . , rn ∈ I

[af(r1, . . . , rn) + d(f(r1, . . . , rn)), f(r1, . . . , rn)]

= [(a + q)f(r1, . . . , rn) − f(r1, . . . , rn)q, f(r1, . . . , rn)] ∈ C

and denote a + q = c, so that

[cf(r1, . . . , rn)− f(r1, . . . , rn)q, f(r1, . . . , rn)] ∈ C.

Let u ∈ I such that cu and u are linearly C-independent.
By our assumption R satisfies

P (x1, . . . , xn) =
[
[cf(ux1, . . . , uxn) − f(ux1, . . . , uxn)q, f(ux1, . . . , uxn)], uy

]
=

[
cf(ux1, . . . , uxn)2 + f(ux1, . . . , uxn)2q

−f(ux1, . . . , uxn)(c + q)f(ux1, . . . , uxn), uy
]
= 0 ∈ T

since R is not a GPI-ring. In this representation consider two kinds of B-monomials:
those that have leading coefficient cu, and those that have leading coefficient u. Hence
we may write

P (x1, . . . , xn) = cuP1(x1, . . . , xn) + uP2(x1, . . . , xn) = 0 ∈ T

for P1(x1, . . . , xn) and P2(x1, . . . , xn) suitable polynomials. Since cu and u are lin-
early C-independent, we have that P1(x1, . . . , xn) = 0 ∈ T , and by calculations it
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means that R satisfies cf(ux1, . . . , uxn)2uy, which is a non trivial generalized poly-
nomial identity for R, a contradiction.
Suppose now that for any u ∈ I there exists α ∈ C such that cu = αu. Then

P (x1, . . . , xn) =
[
[cf(ux1, . . . , uxn) − f(ux1, . . . , uxn)q, f(ux1, . . . , uxn)], y

]
=

[
[αf(ux1, . . . , uxn) − f(ux1, . . . , uxn)q, f(ux1, . . . , uxn)], y

]
=

[
[−f(ux1, . . . , uxn)q, f(ux1, . . . , uxn)], y

]
= 0 ∈ T.

Since q /∈ C, we consider two kinds of B-monomials: those that have ending coefficient
q, and those that have ending coefficient 1. More precisely write

P (x1, . . . , xn) = M1(x1, . . . , xn)q + M2(x1, . . . , xn) = 0 ∈ T

for M1(x1, . . . , xn) and M2(x1, . . . , xn) suitable polynomials. Since q and 1 are
linearly C-independent, we have that M1(x1, . . . , xn) = 0 ∈ T , that is

−yf(ux1, . . . , uxn)2q = 0 ∈ T

which is a non trivial generalized polynomial identity for R, a contradiction again.

Case 2. Let now 0 �= d be an outer derivation. Since I satisfies

[af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)] ∈ C

we have that, for c ∈ I , U satisfies the identity
[
[af(cx1, . . . , cxn) + fd(cx1, . . . , cxn)

+
∑

i

gi(d(c)xi + cd(xi), cx1, . . . , cxn), f(cx1, . . . , cxn)], y
]
.

Since d �= 0 is an outer derivation, by Kharchenko’s theorem (Theorem 2 in [7] and
Theorem 1 in [12]), U satisfies the identity

[
[af(cx1, . . . , cxn) + fd(cx1, . . . , cxn)

+
∑

i

gi(d(c)xi + cyi, cx1, . . . , cxn), f(cx1, . . . , cxn)], y
]
.

In particular U satisfies

(1)

[[∑
i

gi(cyi, cx1, . . . , cxn), f(cx1, . . . , cxn)

]
, y

]
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Since (1) is a polynomial identity for the right ideal cU , by Proposition in [11], there
exists an idempotent element e ∈ soc(U), such that cU = eU . Therefore we have that
U satisfies the generalized identity[[ ∑

i

gi(eyi, ex1, . . . , exn), f(ex1, . . . , exn)
]
, y

]
.

For yi = [er, exi], with r ∈ U , we have that U satisfies[[ ∑
i

gi(e[er, exi], ex1, . . . , exn), f(ex1, . . . , exn)
]
, y

]

=

[[
[er, f(ex1, . . . , exn)], f(ex1, . . . , exn)

]
, y

]

that is [
[er, f(ex1, . . . , exn)]2, y

]
which is a non-trivial generalized polynomial identity for U as well for R, a contra-
diction.

Remark 3. In all that follows we will always assume that R satisfies some non-
trivial generalized polynomial identity. In fact, in the other case, by Lemma 4, we are
done with the conclusion G(x) = ax, for some a ∈ U such that (a − α)I = 0, for a
suitable α ∈ C.

We would like to point out that the first part of the paper (Lemmas 6 and 7) is
dedicated to analyse the case when G is an inner generalized derivation of R: more
precisely G(x) = ax + xb, for all x ∈ R and fixed elements a, b ∈ U . In this case the
right ideal I satisfies the generalized polynomial identity

(2)
[
[af(x1, . . . , xn) + f(x1, . . . , xn)b, f(x1, . . . , xn)], xn+1

]
.

Without loss of generality, in Lemmas 5 and 6 we will assume that R is simple and
equals to its own socle, IR = I . In fact R is GPI and so RC is a primitive ring,
having non-zero socle H with non-zero right ideal J = IH (Theorem 3 in [16]). Note
that H is simple and J = JH is a completely reducible right H-module since HH is.
It follows from Theorem 2 in [1] that (2) is a generalized polynomial identity for J ,
more generally J satisfies the same basic conditions as I . Now just replace R by H ,
I by J and we are done.
Since R = H is a regular ring, then for any a1, . . . , an ∈ I there exists h = h2 ∈ R

such that
∑n

i=1 aiR = hR. Then h ∈ IR = I and ai = hai for each i = 1, . . . , n.

Before proving Lemmas 6 and 7, we premit the following easy result:
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Lemma 5. Let R be a non-commutative prime ring and a ∈ R such that a[r1, r2]a ∈
Z(R), for any r1, r2 ∈ R. Then a = 0.

Proof. Suppose that 0 �= a /∈ Z(R). Hence

P (x1, x2, x3) =
[
a[x1, x2]a, x3

]

is a non-trivial generalized polynomial identity for R.
By Theorem 2 in [1], P (x1, x2, x3) is also a generalized identity for RC. By

Martindale’s result in [16] RC is a primitive ring with non-zero socle. There ex-
ists a vectorial space V over a division ring D such that RC is dense of D-linear
transformations over V .
Suppose that dimDV ≥ 2. Since a is not central, there exists v ∈ V such that

{v, va} are linearlyD-independent. By the density of RC, there exist r1, r2, r3 ∈ RC
such that

vr2 = v, vr3 = 0, (va)r1 = v, (va)r2 = 0, (va)r3 = v.

This leads to the contradiction

0 = v

[
a[r1, r2]a, r3

]
= v �= 0.

Thus we may assume dimDV = 1, that is RC is a division algebra which satisfies a
non-trivial generalized polynomial identity. By Theorem 2.3.29 in [18] RC ⊆ Mt(F ),
for a suitable field F , moreover Mt(F ) satisfies the same generalized identity of RC.
Hence a[r1, r2]a is central in Mt(F ), for any r1, r2 ∈ Mt(F ). If t ≥ 2, by the above
argument, we get a contradiction. On the other hand, if t = 1 then RC is commutative
as well as R, and this contradicts the hypothesis.
The previous argument says that a must be central in R. If a �= 0, by the main

assumption it follows [r1, r2] ∈ Z(R) for all r1, r2 ∈ R, and this means that R is a
commutative ring, a contradiction again.
Therefore a = 0 and we are done.

Lemma 6. Let b ∈ R, I a non-zero right ideal of R and f(x1, . . . , xn) a non-zero
polynomial over C.
If [f(r1, . . . , rn)b, f(r1, . . . , rn)] ∈ C for all r1, . . . , rn ∈ I , then either b ∈ C or

there exists an idempotent element e ∈ R such that I = eR and one of the following
holds:
1. f(x1, . . . , xn) is central valued in eRe;
2. f(x1, . . . , xn)2 is an identity for eRe and (b − β)e = 0, for a suitable β ∈ C.
3. char(R) = 2 and eRe satisfies the standard identity s4.

Proof. Suppose by contradiction that there exist w, v1, v2, c1, .., cn+7 ∈ I such that
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• bw and w are linearly C-independent;
• [b, v1]v2 �= 0;
• [f(c1, . . . , cn), cn+1]cn+2 �= 0;
• if char(R) = 2 then s4(cn+3, cn+4, cn+5, cn+6)cn+7 �= 0.

By Remark 3 there exists an idempotent element h ∈ I such that hR = bR + wR +
v1R + v2R +

∑n+7
i=1 ciR and b = hb, w = hw, v1 = hv1, v2 = hv2, ci = hci, for any

i = 1, . . . , n + 7. Since [[f(hx1h, . . . , hxnh)b, f(hx1h, . . . , hxnh)], hyh] is satisfied
by R = H , right multiplying by (1− h) we have that

hyhf(hx1h, . . . , hxnh)2b(1− h) = 0.

By Lemma 3 in [3] we have that either hb(1 − h) = 0 or f(hx1h, . . . , hxnh)2 is an
identity for R.
First we prove that in this last case we have a contradiction. In fact, since hRh

satisfies the polynomial f(x1, . . . , xn)2, then hRh is a finite-dimensional central simple
algebra over its center Ch. Moreover we remark that if hRh is a division algebra, then
f(x1, . . . , xn) is a polynomial identity for hRh, since f(x1, . . . , xn)2 is. But this
contradicts with f(c1, . . . , cn) �= 0.
Therefore hRh is a finite-dimensional central simple algebra containing non-trivial

idempotents.
Moreover we also have that f(x1, . . . , xn)(hbh)f(x1, . . . , xn) ∈ Ch is satisfied

by hRh. Let B = {c ∈ hRh : f(x1, . . . , xn)cf(x1, . . . , xn) ∈ Ch}. It is easy to
see that B is an additive subgroup of hRh which is invariant under the action of
all the automorphisms of hRh, and of course hbh ∈ B. Since hRh contains non-
trivial idempotent elements, we may apply the main result in [2]. More precisely,
since [f(c1, . . . , cn), cn+1]cn+2 �= 0 and s4(cn+3, cn+4, cn+5, cn+6)cn+7 �= 0 when
char(R) = 2, we have that either [hRh, hRh] ⊆ B, that is

f(x1, . . . , xn)[y1, y2]f(x1, . . . , xn) ∈ Ch

is satisfied by hRh, or hbh ∈ Ch.
Note that in the first case, by Lemma 5 we get the contradiction that f(x1, . . . , xn)

is an identity for hRh.
In the other case, since we know that b = hb, we have bh ∈ Ch, that is (b−β)h = 0

for a suitable β ∈ C. But this contradicts with 0 �= (b − β)w = (b − β)hw.
Then the conclusion is that hb = hbh.
Moreover, by the fact that hRh satisfies [f(x1, . . . , xn)(hbh), f(x1, . . . , xn)] ∈ C

and by applying Corollary 1, one obtains that either hbh = hb = b is central in hRh or
f(x1, . . . , xn) is central valued on hRh, unless when char(R) = 2 and hR satisfies
s4(x1, . . . , x4)x5. Again recall that we assumed [f(c1, . . . , cn), cn+1]cn+2 �= 0, and,
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in case char(R) = 2, s4(cn+3, cn+4, cn+5, cn+6)cn+7 �= 0. Then b ∈ hC, which
contradicts with [b, hv1]hv2 �= 0.
Thus we get a number of contradictions; hence one of the following conclusions

occurs:
• [b, I ]I = 0;
• [f(x1, . . . , xn), xn+1]xn+2 is an identity for I ;
• char(R) = 2 and s4(x1, x2, x3, x4)x5 is an identity for I .

To complete the proof of this Lemma, we have to analyse the case when [b, I ]I = 0.
We know that if [b, I ]I = 0, then there exists β ∈ C such that (b − β)I = 0 (for
instance see [5]). Denote b′ = b − β, then b′I = 0 and I satisfies[

f(x1, . . . , xn)b′, f(x1, . . . , xn)
]

= f(x1, . . . , xn)2b′.

Again from Lemma 3 in [3], either b′ = 0, that is b ∈ C, or f(x1, . . . , xn)2xn+1 = 0
in I . In particular in this case, since I satisfies a polynomial identity, there exists an
idempotent element e2 = e ∈ R, such that I = eR and f(x1, . . . , xn)2 is an identity
for the finite dimensional simple central algebra eRe.

Lemma 7. Let a, b ∈ R, I a non-zero right ideal of R and f(x1, . . . , xn) a
non-zero polynomial over C.
If [af(r1, . . . , rn) + f(r1, . . . , rn)b, f(r1, . . . , rn)] ∈ C, for any r1, . . . , rn ∈ I ,

then either there exists γ ∈ C such that (a − γ)I = 0 and b ∈ C or there exists an
idempotent element e ∈ R such that I = eR and one of the following holds:
1. f(x1, . . . , xn) is central valued in eRe;
2. char(R) = 2 and eRe satisfies the standard identity s4;
3. char(R) = 2 and f(x1, . . . , xn)2 is central valued in eRe;
4. f(x1, . . . , xn)2 is central valued in eRe and there exists α ∈ C such that

(a − b + α)I = 0.

Proof. Suppose by contradiction that there exist

w, v, c1, . . . , cn+2, b1, . . . , bn+7, t1, . . . , tn+2 ∈ I

such that
• v and av are linearly C-independent;
• [f(c1, . . . , cn), cn+1]cn+2 �= 0;
• either [f(b1, . . . , bn)2, bn+1]bn+2 �= 0 or (b−a)w andw are linearlyC-independent;

• if char(R) = 2, then [f(t1, . . . , tn), tn+1]tn+2 �= 0;
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• if char(R) = 2, then s4(bn+3, bn+4, bn+5, bn+6)bn+7 �= 0.

There exists an idempotent element h ∈ I such that

hR = aR + bR + wR + vR +
n+2∑
i=1

ciR +
n+7∑
j=1

bjR +
n+2∑
i=1

tiR

and a = ha, b = hb, w = hw, v = hv, ci = hci, bj = hbj , ti = hti for any
i = 1, . . . , n + 2, j = 1, . . . , n + 7. Since

(3) [[af(hx1h, . . . , hxnh) + f(hx1h, . . . , hxnh)b, f(hx1h, . . . , hxnh)], hyh]

is satisfied by R = H , left multiplying by (1 − h) we have that

(4) (1 − h)ahf(x1h, . . . , xnh)2yh = 0.

On the other hand, right multiplying the (2) by (1 − h) we also have

(5) hyhf(x1h, . . . , xnh)2b(1− h) = 0.

Applying Lemma 3 in [3] to (3) and (4), it follows that either f(x1, . . . , xn)2 is an
identity for hRh or (1 − h)ah = hb(1− h) = 0.
Suppose first that f(x1, . . . , xn)2 is an identity for hRh. Here we repeat the same

argument of Lemma 6, in order to obtain again a contradiction.
Since hRh satisfies the polynomial f(x1, . . . , xn)2, then hRh is a finite-dimensional

central simple algebra over its center Ch. Moreover hRh is not a division algebra, if
not f(x1, . . . , xn) is a polynomial identity for hRh, which contradicts with the choices
of c1, . . . , cn.
Therefore hRh is a finite-dimensional central simple algebra containing non-trivial

idempotents. Moreover, since f(x1, . . . , xn)2 is an identity for hRh, starting from (2)
we have that hRh satisfies f(x1, . . . , xn)h(b − a)hf(x1, . . . , xn) ∈ C.
Let B = {c ∈ hRh : f(x1, . . . , xn)cf(x1, . . . , xn) ∈ Ch}. It is easy to see

that B is an additive subgroup of hRh which is invariant under the action of all
the automorphisms of hRh, and of course h(b − a)h ∈ B. In light of [2], and
since [f(c1, . . . , cn), cn+1]cn+2 �= 0 and s4(cn+3, cn+4, cn+5, cn+6)cn+7 �= 0 when
char(R) = 2, we have that either [hRh, hRh] ⊆ B, that is

f(x1, . . . , xn)[y1, y2]f(x1, . . . , xn) ∈ Ch

is satisfied by hRh, or h(b − a)h ∈ Ch.
In the first case, by Lemma 5, we have the contradiction that f(x1, . . . , xn) is an

identity for hRh.
In the other case, since we know that a = ha and b = hb, we have bh− ah ∈ Ch,

that is (b − a + α)h = 0 for a suitable α ∈ C. But this contradicts with 0 �=
(b − a + α)w = (b − a + α)hw.
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This means that ah = hah = ha ∈ hRh and b = hb = hbh ∈ hRh. Therefore
hRh satisfies

[
[(hah)f(x1, . . . , xn) + f(x1, . . . , xn)(hbh), f(x1, . . . , xn)], y

]
.

By Lemma 3 we have that either hah = ah is central in hRh, or f(x1, . . . , xn) is
central in hRh, or f(x1, . . . , xn)2 is central in hRh and (b−a)h ∈ Ch; or char(R) = 2
and f(x1, . . . , xn)2 is central in hRh, unless when char(R) = 2 and hRh satisfies
s4. Because of our assumptions, the only one conclusion must be ah = hah ∈
Z(hRh) = Ch. Therefore we have ah = αh, for some α ∈ C which contradicts with
ahv = av �= αv = αhv.
All these contradictions say that one of the following holds:

1. (a − γ)I = 0 for a suitable γ ∈ C;

2. [f(x1, . . . , xn), xn+1]xn+2 is an identity for I ;

3. [f(x1, . . . , xn)2, xn+1]xn+2 is an identity for I and (b − a)I ⊆ CI ;

4. char(R) = 2 and [f(x1, . . . , xn)2, xn+1]xn+2 is an identity for I ;

5. char(R) = 2 and s4(x1, x2, x3, x4)x5 is an identity for I .

In case (a − γ)I = 0, the main hypothesis says that

[f(r1, . . . , rn)b, f(r1, . . . , rn)] ∈ C

for all r1, . . . , rn ∈ I , and we end up from Lemma 6.
In all the other cases we remark that, since I satisfies some polynomial identity,

there exists an idempotent element e2 = e ∈ R, such that I = eR.

Finally we are ready to prove the following:

Theorem 1. Let G be a non-zero generalized derivation of R, f(x1, . . . , xn) a
non-zero polynomial over C and I a non-zero right ideal of R. If f(x1, . . . , xn) is not
central valued on R and [G(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, for all r1, . . . , rn ∈ I ,
then either there exist a ∈ U , α ∈ C such that G(x) = ax for all x ∈ R, with
(a−α)I = 0 or there exists an idempotent element e ∈ soc(RC) such that IC = eRC
and one of the following holds:
1. f(x1, . . . , xn) is central valued in eRCe;

2. char(R) = 2 and eRCe satisfies the standard identity s4;

3. char(R) = 2 and f(x1, . . . , xn)2 is central valued in eRCe;

4. f(x1, . . . , xn)2 is central valued in eRCe and there exist a, b ∈ U , α ∈ C such
that G(x) = ax + xb, for all x ∈ R, with (a − b + α)I = 0.
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Proof. As we have already remarked, every generalized derivation G on a dense
right ideal of R can be uniquely extended toU and assumes the formG(x) = ax+d(x),
for some a ∈ U and a derivation d on U .
If d = 0 we conclude by Lemma 7 (in the special case when b = 0). Thus we

suppose that d �= 0.
For u ∈ I , U satisfies the following

[af(ux1, . . . , uxn) + d(f(ux1, . . . , uxn)), f(ux1, . . . , uxn)] ∈ C.

In light of Kharchenko’s theory ([7], [12]), we divide the proof into two cases:

Case 1. Let d the inner derivation induced by the element q ∈ U , that is d(x) =
[q, x], for all x ∈ U . Thus I satisfies

[af(x1, . . . , xn) + qf(x1, . . . , xn) − f(x1, . . . , xn)q, f(x1, . . . , xn)] =

[(a + q)f(x1, . . . , xn) + f(x1, . . . , xn)(−q), f(x1, . . . , xn)] ∈ C.

If denote −q = b and a + q = c, the generalized derivation δ is defined as G(x) =
cx + xb, and we get the conclusion thanks to Lemma 7.

Case 2. Let now d an outer derivation of U . Assume that there exist c1, . . . , cn+2,

b1, . . . , bn+7 ∈ I such that
• [f(c1, . . . , cn), cn+1]cn+2 �= 0;
• if char(R) = 2, [f(b1, . . . , bn)2, bn+1]bn+2 �= 0;
• if char(R) = 2, s4(bn+3, bn+4, bn+5, bn+6)bn+7 �= 0.

We want to show that these assumptions drive us to a contradiction. First we recall
that there exists an idempotent element h ∈ IH = IR such that hR =

∑n+2
i=1 ciR +∑n+7

j=1 bjR and ci = hci, bj = hbj , for any i = 1, .., n + 2, j = 1, .., n+ 7.
Since I satisfies[

af(x1, . . . , xn) + d(f(x1, . . . , xn)), f(x1, . . . , xn)
]
∈ C

then U satisfies[
af(hx1, . . . , hxn) + d(f(hx1, . . . , hxn)), f(hx1, . . . , hxn)

]
∈ C.

Thus U satisfies the following[
af(hx1, . . . , hxn) + fd(hx1, . . . , hxn)

+
∑

i

f(hx1, . . . , d(h)xi + hd(xi), . . . , hxn), f(hx1, . . . , hxn)
]
∈ C.
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Expansion of this yields that U satisfies[
af(hx1, . . . , hxn) + fd(hx1, . . . , hxn)

+
∑

i

gi(d(h)xi + hd(xi), hx1, . . . , hxn), f(hx1, . . . , hxn)
]
∈ C.

Since d is an outer derivation, by Kharchenko’s theorem (Theorem 2 in [7] and Theorem
1 in [12]), U satisfies[

af(hx1, . . . , hxn) + fd(hx1, . . . , hxn)

+
∑

i

gi(d(h)xi + hyi, hx1, . . . , hxn), f(hx1, . . . , hxn)
]
∈ C.

In particular, by analysing any blended component of the previous condition, U satisfies[∑
i

gi(hyi, hx1, . . . , hxn), f(hx1, . . . , hxn)

]
∈ C.

For yi = [hr, hxi], with r ∈ U , we have that U satisfies[∑
i

gi(h[hr, hxi], hx1, . . . , hxn), f(hx1, . . . , hxn)

]

=
[
[hr, f(hx1, . . . , hxn)], f(hx1, . . . , hxn)

]
∈ C

that is [
hr, f(hx1, . . . , hxn)

]
2
∈ C.

In this situation, the conclusions of Lemma 2 contradict with the choices of elements
c1, . . . , cn+2, b1, . . . , bn+7 ∈ I . This contradiction gives us the required conclusion.

We would like to conclude the paper by considering the special case when the
polynomial f(x1, . . . , xn) is multilinear. In fact in this case one of the conclusions in
Theorem 1 can be removed. More precisely, when there exists an idempotent element
e ∈ Soc(RC) such that f(x1, . . . , xn)2 is central valued in eRCe and char(R) = 2,
we will show that f(x1, . . . , xn) must be central valued on eRCe unless eRCe satisfies
the standard identity s4. In light of this we will obtain a complete generalization of the
result contained in [4]:

Theorem 2. Let R be a prime ring, Z(R) its center, U its Utumi quotient ring, C its
extended centroid, G a non-zero generalized derivation of R, f(x1, . . . , xn) a non-zero
multilinear polynomial over C, I a non-zero right ideal of R. If f(x1, . . . , xn) is not
central valued on R and [G(f(r1, . . . , rn)), f(r1, . . . , rn)] ∈ C, for all r1, . . . , rn ∈ I ,
then either there exist a ∈ U , α ∈ C such that G(x) = ax for all x ∈ R, with
(a−α)I = 0 or there exists an idempotent element e ∈ soc(RC) such that IC = eRC
and one of the following holds:
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1. f(x1, . . . , xn) is central valued in eRCe;
2. char(R) = 2 and eRCe satisfies the standard identity s4;
3. f(x1, . . . , xn)2 is central valued in eRCe and there exist a, b ∈ U , α ∈ C such
that G(x) = ax + xb, for all x ∈ R, with (a − b + α)I = 0.

Proof. By Theorem 1, we are always done, unless in the case there exists an
idempotent element e ∈ Soc(RC) such that f(x1, . . . , xn)2 is central valued in eRCe
and char(R) = 2. Recall that eRCe is a simple finite dimensional algebra over its
center. For the sake of clearness we denote A = eRCe and Ce = Z(eRCe) the center
of A. A is a PI-ring with Ce �= 0.
Let K be the algebraic closure of C if C is an infinite field and set K = C

otherwise. Then A ⊗C K ∼= Mt(K), for some t ≥ 1. Standard arguments show that
Mt(K) and A satisfies the same polynomial identities. In particular Mt(K) satisfies
[f(x1, . . . , xn)2, y]. If t = 1, then A is commutative and we are done. Consider then
t ≥ 2. Let (r1, . . . , rn) any even sequence in Mt(K) such that f(r1, . . . , rn) = u =∑t

i=1 λieii, with λi ∈ K, for all i (see [15] for more details). Denote It the identity
matrix in Mt(K). Since u2 ∈ K · It, then λ2

i = λ2
j , for all i �= j, which implies

λi = λj, because char(R) = 2. Thus, for any even sequence (r1, . . . , rn) in Mt(K),
we have f(r1, . . . , rn) = λIt and, by Lemma 9 in [15], this means that f(x1, . . . , xn)
is central valued in Mt(K), as well as in A = eRCe, unless when t = 2. In this last
case eRCe satisfies s4 and we are done again.
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