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HALF INVERSE PROBLEMS FOR QUADRATIC PENCILS OF
STURM-LIOUVILLE OPERATORS

Chuan-Fu Yang and Anton Zettl

Abstract. Generally, the coefficients p(x) and q(x) of quadratic pencils of Sturm-
Liouville operators are uniquely determined by two spectra or one spectrum and
norming constants. In the present paper we show if p(x) and q(x) are known on
half of the domain interval, then one spectrum suffices to determine them uniquely
on the other half.

1. INTRODUCTION

One of the earliest results on half inverse problems for Sturm-Liouville operators
is due to Hochstadt and Lieberman [7]. They consider the problem

(1.1) −y′′(x) + q(x)y(x) = λ2y(x) on (0, π), q ∈ L2(0, π),

(1.2)
y(0) cosα − y′(0) sinα = 0, y(π) cosβ + y′(π) sinβ

= 0, α ∈ [0, π), β ∈ [0, π),

and prove that, for fixed β, if the complex valued function q(x) is known on (π/2, π),
then a single spectrum suffices to determine q(x) on (0, π/2] and α.
In this paper we study quadratic pencils L(y, λ) of Sturm-Liouville operators of

the form

(1.3) −y′′(x) + [q(x) + 2λp(x)] y(x) = λ2y(x) on (0, π),

with boundary conditions (1.2), where the complex valued functions q and p satisfy

q ∈ L2(0, π) and p ∈ W 1
2 (0, π).
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Definition 1. A complex number λ̂ is called an eigenvalue of the problem L(y, λ)
if the equation (1.3) with λ = λ̂ has a nontrivial solution y0(x) satisfying the boundary
condition (1.2); then y0(x) is called the eigenfunction of the problem L(y, λ) corre-
sponding to the eigenvalue λ̂. The number of linearly independent solutions of the
problem L(y, λ) for a given eigenvalue λ̂ is called the multiplicity of λ̂.

Let

σ(p, q, α, β) =

{ {λn(p, q, α, β) : n ∈ Z0 = Z \ {0}} for α = β = 0;

{λn(p, q, α, β) : n ∈ Z} for α, β ∈ (0, π)

denote the set of all eigenvalues of problem (1.3), (1.2).
In [9] Koyunbakan uses the Hochstadt’s method and proves that the functions p(x)

and q(x) can be determined from two spectra uniquely. Moreover, a similar Hochstadt’s
theorem which is related to the structure of difference for the potential functions is
obtained. In [18] the inverse problem of interior spectral data for a quadratic pencil of
Schrödinger operator is considered. In [18] authors give two uniqueness theorems from
some eigenvalues and information on eigenfunctions at some an internal point in the
interval, where p(x) and q(x) are unknown on the whole domain interval. However, in
the present paper we show if p(x) and q(x) are known on half of the domain interval,
then one spectrum suffices to determine them uniquely on the other half, and so the
results in [18] differ from those in the mentioned article. In [18] authors apply Liouville
Theorem to complete the proof of main theorem. In [19] we use the Hochstadt and
Lieberman’s method and Liouville Theorem to show that (a) if p(x) is prescribed on
the interval [π

2 , π] and q(x) is full given on [0, π], then a single spectrum suffices to
determine p(x) on [0, π

2 ]; (b) if q(x) is prescribed on the interval [π
2 , π] and p(x) is

full given on [0, π], then a single spectrum suffices to determine q(x) on [0, π
2 ].

In this work we prove the following two theorems, the first is on the asymptotic
form of the eigenvalues and the second on the half inverse problem. The proof goes
by developing an analogue of the theory of transformation operators with Goursat-type
problem and a Gelfand-Levitan type integral equation in vectorial form, which differ
from those in [19]. In addition, in [3, 9, 18, 19] the boundary conditions considered
don’t include the case α = 0 or β = 0. However, in this paper we consider four cases:
(I) α = β = 0; (II) α, β > 0; (III) α = 0 < β; (IV) β = 0 < α.

Theorem 1. Let σ(p, q, α, β) denote the set of all eigenvalues of problem (1.3),
(1.2). Then

(1) σ(p, q, α, β) is a countably infinite set.

(2) Each eigenvalue is isolated and geometrically simple.

(3) There are at most a finite number of eigenvalues with the same real part.
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(4) The eigenvalues λn can be ordered by the index set as follows: Order the real
parts as a nondecreasing sequence

· · · ≤ Re (λ−2) ≤ Re (λ−1) ≤ Re (λ1) ≤ Re (λ2) ≤ · · · , for α = β = 0

or
· · · ≤ Re (λ−2) ≤ Re (λ−1) ≤ Re (λ0) ≤ Re (λ1) ≤ Re (λ2)

≤ · · · , for α, β ∈ (0, π)

counting multiplicity, then for each real part with mulitiplicity greater than one,
order the (finite number by (2) and (3)) of eigenvalues with this real part by
ordering the imaginary parts in nondecreasing order.

(5) The eigenvalues, ordered according to (4), have the following asymptotic form:

(1.4)

λn(p, q, α, β)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+c0+
c1

n
+O

(
1
n2

)
, n∈Z0, for α=0, β=0;

n+
1
2
+c0+

c1+
cotβ

π
n

+O

(
1
n2

)
, n∈Z for α=0, β �=0;

n+
1
2
+c0+

c1+
cotα

π
n

+O

(
1
n2

)
, n∈Z for α �=0, β=0;

n+c0+
c1+

cotα+cotβ

π
n

+O

(
1
n2

)
, n∈Z for α �=0, β �=0,

where

c0 =
1
π

∫ π

0
p(x)dx, c1 =

1
2π

∫ π

0

[
q(x) + p2(x)

]
dx.

Remark 1. From asymptotic formulae (1.4) we see that the imaginary part of
λn(p, q, α, β) is bounded as |n| → ∞. Therefore, for |n| large enough, there exists a
δ > 0 such that λn(p, q, α, β) locates outside the sector argλ ∈ [δ, 2π − δ].

Theorem 2. Fix β ∈ [0, π). If

(1.5) σ(p, q, α, β) = σ(p1, q1, α1, β)

and

(1.6) p(x) = p1(x) on [π/2, π] and q(x) = q1(x) a.e. on (π/2, π),

then α = α1 and

(1.7) p(x) = p1(x) on [0, π] and q(x) = q1(x) a.e. on [0, π).
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Remark 2. Also note that there is an analogous theorem with (π/2, π) replaced
by (0, π/2), and with fixed β replaced by fixed α : just interchange α and β in (1.2)
and replace p(x) with p̃(x) = p(π − x) and q(x) with q̃(x) = q(π − x).

Hald [6] generalized a theorem in [7]. Gesztesy and Simon [4] and Malamud
[11] found new uniqueness results with partial information on the spectrum for SL
operators with scalar and matrix coefficients, respectively. They showed that more
information on the potential can compensate for less information about the spectrum.
Martinyuk and Pivovarchik [13] proposed a new method for reconstructing the potential
on half the interval. Sakhnovich [15] studied the existence of solutions of half inverse
problems. Singular potentials were studied by Hryniv and Mykytyuk [8]. Koyunbakan
and Panakhov [10] studied half inverse problems for diffusion operators where q(x) is
known on only half the interval but p(x) is known on the whole interval. Trooshin and
Yamamoto [16] obtained Hochstadt-Lieberman type theorems for nonsymmetric first
order systems. Buterin and Shieh [1] considered inverse nodal problem for differential
pencils, where reconstruction formulas were given for p and q using nodal data. These
references are certainly not intended to be comprehensive but are given to indicate the
wide interest in and variety of half inverse type problems.
The contents of the paper are as follows. In Section 2 we prove several lemmas

which may be of independent interest. Section 3 contains the proof of Theorem 2. The
proof of Theorem 2 is given only for the case α = 0 = β but the same method of
proof can be used to establish the other cases. In Appendix proofs of Theorem 1 and
Lemma 1 are given.

2. LEMMAS

In this section we establish several lemmas. Since the proofs are long and technical
and the lemmas may be of independent interest we state them before giving the proofs.
The first gives a representation of solutions of quadratic pencils of Sturm-Liouville
equations (1.3), whose proof is put in appendix; the others give a result on products of
solutions of initial value problems.

Lemma 1. For each λ ∈ C, λ �= 0, the solution of the initial value problem

(2.1) L(y, λ) = λ2 y(·, λ), y(0, λ) = 0 = y′(0, λ)− 1

is given, for x ∈ [0, π], by

(2.2) λ y(x, λ) = sin[λx− α(x)] +
∫ x

0
A(x, t) cos(λt)dt +

∫ x

0
B(x, t) sin(λt)dt,

where the kernels A(x, t), B(x, t) are the solution of the problem
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(2.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2A(x, t)
∂x2

− 2p(x)
∂B(x, t)

∂t
− q(x)A(x, t) =

∂2A(x, t)
∂t2

,

∂2B(x, t)
∂x2

+ 2p(x)
∂A(x, t)

∂t
− q(x)B(x, t) =

∂2B(x, t)
∂t2

,

A(0, 0) = p(0), B(x, 0) = 0,
∂A(x, t)

∂t
|t=0 = 0,

with α(x) =
∫ x
0 p(t)dt. Moreover, there holds

(2.4) A(x, x) sinα(x) + B(x, x) cosα(x) =
1
2

∫ x

0

[
q(x) + p2(x)

]
dx.

Next, in this section, we give a result for products of solutions of initial value
problems which is used in the proof of Theorem 2.
By Lemma 1 the solution y(x, λ) of (1.3) determined by the initial condition

y(0, λ) = 0 = y′(0, λ)− 1 is given by

(2.5) λy(x, λ)=sin[λx− α(x)]+
∫ x

0
A(x, t) cos(λt)dt+

∫ x

0
B(x, t) sin(λt)dt.

Similarly, the solution ỹ(x, λ) of equation

(2.6) −ỹ′′(x) + [q1(x) + 2λp1(x)]ỹ(x) = λ2ỹ(x)

determined by the same initial condition is given by:

(2.7) λỹ(x, λ)=sin[λx− α̃(x)]+
∫ x

0
Ã(x, t) cos(λt)dt+

∫ x

0
B̃(x, t) sin(λt)dt,

where kernels Ã(x, t) and B̃(x, t) have properties similar to those of A(x, t) and
B(x, t).
By (2.5) and (2.7), we obtain that

(2.8)

λ2y(x, λ)ỹ(x, λ) = sin[λx− α(x)] sin[λx − α̃(x)]

+
∫ x

0
A(x, t) cos(λt) sin[λx− α̃(x)]dt

+
∫ x

0

Ã(x, t) cos(λt) sin[λx− α(x)]dt

+
∫ x

0
B(x, t) sin(λt) sin[λx− α̃(x)]dt

+
∫ x

0
B̃(x, t) sin(λt) sin[λx− α(x)]dt
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+
∫ x

0
A(x, t) cos(λt)dt

∫ x

0
Ã(x, t) cos(λt)dt

+
∫ x

0
B(x, t) sin(λt)dt

∫ x

0
B̃(x, t) sin(λt)dt

+
∫ x

0
A(x, t) cos(λt)dt

∫ x

0
B̃(x, t) sin(λt)dt

+
∫ x

0

Ã(x, t) cos(λt)dt

∫ x

0

B(x, t) sin(λt)dt.

By extending the range of A(x, t), Ã(x, t) evenly with respect to the argument t
and B(x, t), B̃(x, t) oddly with respect to the argument t and some straightforward
calculations, for brevity denoting θ(t) = α(t) + α̃(t), we can rewrite () as

(2.9)

2λ2y(x, λ)ỹ(x, λ)= cos[α(x)− α̃(x)]− cos[2λx− θ(x)]

−
∫ x

0
Hc(x, t) cos[2λt− θ(t)]dt

+
∫ x

0

Hs(x, t) sin[2λt− θ(t)]dt,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hc(x, t)= −2A(x, x−2t) sin(θ(t) − α̃(x))−2Ã(x, x−2t) sin(θ(t) − α(x))

−2B(x, x−2t) cos(θ(t) − α̃(x))− 2B̃(x, x−2t) cos(θ(t) − α(x))

−A1(t) cos θ(t) − A2(t) cos θ(t) − B1(t) sin θ(t) − B2(t) sin θ(t),

Hs(x, t)= 2A(x, x−2t) cos(θ(t) − α̃(x))+2Ã(x, x−2t) cos(θ(t) − α(x))

−2B(x, x−2t) sin(θ(t) − α̃(x))− 2B̃(x, x−2t) sin(θ(t) − α(x))

−A1(t) sin θ(t) − A2(t) sin θ(t) + B1(t) cos θ(t) + B2(t) cos θ(t)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(t) =
∫ x

−x+2t
A(x, s)Ã(x, s−2t)ds+

∫ x−2t

−x
A(x, s)Ã(x, s + 2t)ds,

A2(t) = −
∫ x

−x+2t
B(x, s)B̃(x, s−2t)ds−

∫ x−2t

−x
B(x, s)B̃(x, s + 2t)ds,

B1(t) =
∫ x

−x+2t

A(x, s)B̃(x, s−2t)ds+
∫ x−2t

−x

A(x, s)B̃(x, s + 2t)ds,

B2(t) =
∫ x

−x+2t
B(x, s)Ã(x, s−2t)ds+

∫ x−2t

−x
B(x, s)Ã(x, s + 2t)ds.
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3. PROOF OF THEOREM 2

Proof of Theorem 2. Here we only give the proof for Dirichlet condition (i.e.,
α = β = 0). The other case is treated similarly.
If we multiply (2.5) by ỹ(x) and (2.6) by y(x) and subtract, after integrating on

[0, π], we obtain

(3.1) (ỹy′ − yỹ′) |π0 +
∫ π

0
[(q1 − q) + 2λ(p1 − p)]yỹdx = 0.

Together with the initial conditions at 0 and given assumption (q(x), p(x)) = (q1(x),
p1(x)) on [

π

2
, π], then it yields

(3.2) [ỹ(π, λ)y′(π, λ)− y(π, λ)ỹ′(π, λ)]+
∫ π

2
0

[(q1 − q) + 2λ(p1 − p)]yỹdx = 0.

Denote

(3.3) Q(x) = q1 − q, P (x) = p1 − p, H(λ) =
∫ π

2
0

[Q(x) + 2λP (x)]yỹdx.

For λ = λn
def
= λn(p, q, 0, 0), from the boundary conditions in (1.2), a direct calculation

implies that the first term in (3.2) vanishes and hence
(3.4) H(λn) = 0, n ∈ Z0.

Introduce

(3.5) H1(λ) =
∫ π

2
0

Q(x)yỹdx, H2(λ) =
∫ π

2
0

P (x)yỹdx,

then equation (3.4) can be written as
(3.6) H1(λn) + 2λnH2(λn) = 0, n ∈ Z0.

From (2.9) and (3.3), we find that for all complex λ

(3.7) |H(λ)| ≤ 1
|λ|2 (C1 + C2|λ|)eτπ

for some positive constants C1 and C2. Since σ(p, q, α, β) = σ(p1, q1, α1, β) we have
y(π, λ) = ỹ(π, λ) = ω(λ). Thus,

H(λ) =
∫ π

2
%

0
[Q(x) + 2λP (x)]yỹdx = ω(λ)[ỹ′(π, λ)− y′(π, λ)],

which implies that the multiplicity of zero of H(λ) is not less than the multiplicity of
zero of ω(λ). Define

(3.8) Φ(λ) =
H(λ)
ω(λ)

,
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which is an entire function from the above argument.
Using a similar method in [20], for fixed δ > 0, the following estimates are valid

in the sector argλ ∈ [δ, 2π − δ]:

(3.9) ω(λ) ≥ M

|λ|e
τπ, argλ ∈ [δ, 2π − δ].

It follows from (.12), (3.7) and (3.9) that

Φ(λ) = O(1), argλ ∈ [δ, 2π − δ]

for |λ| enough large. From this, using the Phragmen-Lindelöf theorem[20] and Liou-
ville’s theorem[2], we obtain for all λ

Φ(λ) = C,

where C is a constant.
Let us show that C = 0. We can rewrite the equation H(λ) = Cω(λ) in the form

λ

∫ π
2

0
[Q(x) + 2λP (x)]yỹdx = C sin[λπ − α(π)] + O

(
eτπ

λ

)
.

By use of the Riemann-Lebesgue Lemma, the limit of the left side of the above
equality exists as λ → ∞, λ ∈ R. Thus we obtain that C = 0. Thus,

(3.10) H(λ) = 0 for all λ.

Introduce

(3.11) Q1(t)=Q(t) +
∫ π

2

t
Q(x)Hc(x, t)dx, Q2(t)=

∫ π
2

t
Q(x)Hs(x, t)dx.

Taking (2.9) into account, we get

2λ2H1(λ) =
∫ π

2

0

Q(x) cos[α(x)− α̃(x)]dx−
∫ π

2

0

Q1(t) cos[2λt− θ(t)]dt

+
∫ π

2

0
Q2(t) sin[2λt− θ(t)]dt,

which, by changing the order of integration, can be rewritten as

(3.12)
2λ2H1(λ) =

∫ π
2

0

Q(x) cos[α(x)− α̃(x)]dx +
∫ π

2

0

R1(t)e2iλtdt

+
∫ π

2

0
R2(t)e−2iλtdt,
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where

R1(t) = −Q1(t) + iQ2(t)
2

e−iθ(t), R2(t) = −Q1(t) − iQ2(t)
2

eiθ(t).

Similarly, we have

(3.13)

2λ2H2(λ) =
∫ π

2

0
P (x) cos[α(x) − α̃(x)]dx +

∫ π
2

0
T1(t)e2iλtdt

+
∫ π

2

0
T2(t)e−2iλtdt,

=
∫ π

2

0
P (x) cos[α(x)−α̃(x)]dx+

P (π/2)
2λ

sin[λπ−θ(π/2)]

−P2(0)
2λ

+
i

2λ

∫ π
2

0

T ′
1(t)e

2iλtdt − i

2λ

∫ π
2

0

T ′
2(t)e

−2iλtdt,

where

T1(t) = −P1(t) + iP2(t)
2

e−iθ(t), T2(t) = −P1(t) − iP2(t)
2

eiθ(t)

with

(3.14) P1(t)=P (t) +
∫ π

2

t
P (x)Hc(x, t)dx, P2(t)=

∫ π
2

t
P (x)Hs(x, t)dx.

By (3.12) and (3.13) it follows that

(3.15)

∫ π
2

0

Q(x) cos[α(x)−α̃(x)]dx+
∫ π

2

0

R1(t)e2iλtdt+
∫ π

2

0

R2(t)e−2iλtdt

+2λ

∫ π
2

0
P (x) cos[α(x)− α̃(x)]dx + P (π/2) sin[λπ − θ(π/2)]

−P2(0) + i

∫ π
2

0
T ′

1(t)e
2iλtdt − i

∫ π
2

0
T ′

2(t)e
−2iλtdt = 0.

Letting λ → ∞ in (3.15) and using the Riemann-Lebesgue Lemma, then it yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ π
2

0
P (x) cos[α(x) − α̃(x)]dx = 0,

P (π/2) = 0,∫ π
2

0
Q(x) cos[α(x)− α̃(x)]dx = 0.

Using these assertions in (3.15), we have for all complex number λ∫ π
2

0
[R1(t) + iT ′

1(t)]e
2iλtdt +

∫ π
2

0
[R2(t) − iT ′

2(t)]e
−2iλtdt = 0.
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By the system {e±2iλt : λ ∈ R} is complete in L2(−π/2, π/2), consequently,

R1(t) + iT ′
1(t) = 0 = R2(t) − iT ′

2(t) on (0, π/2).

From the definitions of R1(t), R2(t), T1(t), T2(t) by (3.12) and (3.13), we can infer

[Q1(t) + P1(t)θ′(t) − P ′
2(t)] + i[Q2(t) + P2(t)θ′(t) + P ′

1(t)] = 0

and
[Q1(t) + P1(t)θ′(t) − P ′

2(t)]− i[Q2(t) + P2(t)θ′(t) + P ′
1(t)] = 0,

and this yields

(3.16) Q1(t) + P1(t)θ′(t)− P ′
2(t) = 0 = Q2(t) + P2(t)θ′(t) + P ′

1(t).

Substituting (3.11) and (3.14) into equation (3.16), together with P (π/2) = 0, it follows
that

(3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t) = −
∫ π/2

t

[Hc(x, t) +
∂

∂t
Hs(x, t)]Q(x)dx−

∫ π/2

t

Hc(x, t)θ′(t)P (x)dx

−(θ′(t) − Hs(t, t))P (t),

P ′(t) = −
∫ π/2

t

Hs(x, t)Q(x)dx−
∫ π/2

t

[Hs(x, t)θ′(t) +
∂

∂t
Hs(x, t)]P (x)dx

+Hc(t, t)P (t),

P (t) = −
∫ π/2

t

P ′(x)dx.

Introduce
F (t) = (Q(t), P (t), P ′(t))T

and

K(x, t)=

⎛⎜⎜⎜⎝
Hc(x, t)+

∂

∂t
Hs(x, t) Hc(x, t)θ′(t) −θ′(t)+Hs(t, t)

0 0 1

Hs(x, t) Hs(x, t)θ′(t)+
∂

∂t
Hs(x, t) Hc(t, t)

⎞⎟⎟⎟⎠ .

Equation (3.17) can readily be reduced to a vector form

F (t) +
∫ π/2

t
K(x, t)F (x)dx = 0 for 0 < t <

π

2
.

But this equation is a homogeneous Volterra integral equation and has only a zero
solution. Thus we have obtained

F (t) = 0 for 0 < t <
π

2
,
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which yields that
Q(t) = P (t) = 0 for 0 < t <

π

2
.

Therefore, we have proven

p(x) = p1(x) on [0, π] and q(x) = q1(x) a.e. on [0, π).

The proof of theorem is complete.

Remark 3. Although we give a detailed proof only for the case when α = 0 = β
our proof extends readily to the other values of α, β. For instance when α ∈ (0, π),
α1 ∈ [0, π) and we need to prove that α = α1. We proceed as follows: From (3.1) it
follows that

ỹ′(0, λ)y(0, λ)− ỹ(0, λ)y′(0, λ) = sin(α − α1),

where the solution y(x, λ) of (1.3) is determined by the initial condition y(0, λ) = sin α
and y′(0, λ) = cosα, and the solution ỹ(x, λ) of (2.6) is determined by the initial
condition ỹ(0, λ) = sinα1 and ỹ′(0, λ) = cosα1. Thus we have

H(λ) = sin(α − α1) +
∫ π

2

0
[Q(x) + 2λP (x)]yỹdx

and

H1(λ) = sin(α − α1) +
∫ π

2

0
Q(x)yỹdx.

Letting λn → ∞ and using the Riemann-Lebesgue Lemma, this yields

cot α1 − cotα +
∫ π

2

0
Q(x) cos[α(x)− α̃(x)]dx = 0.

After Q(x) = 0 is obtained, we get

α1 = α.

Appendix A: Proof of Lemma 1

The representation (2.2) can be established using the method introduced in [5] (see
also [12], [14], [21]) with kernels A(x, t), B(x, t) having continuous partial derivatives
up to order two with respect to x and t and with α(x) =

∫ x
0 p(t)dt. From (2.3) it follows

that the kernels A(x, t), B(x, t) are uniquely determined.
From (2.2) we get

(.1)

λ y′(x, λ)

= [λ − p(x)] cos[λx− α(x)] + A(x, x) cos(λx) + B(x, x) sin(λx)

+
∫ x

0

∂

∂x
A(x, t) cos(λt)dt +

∫ x

0

∂

∂x
B(x, t) sin(λt)dt
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and

(.2)

λy′′(x, λ)

=−λ2 sin[λx− α(x)]+2λp(x) sin[λx− α(x)]−λA(x, x) sin(λx)

+λB(x, x) cos(λx)−p2(x) sin[λx−α(x)]−p′(x) cos[λx−α(x)]

+
d

dx
A(x, x) cos(λx)+

∂

∂x
A(x, t)|t=x cos(λx)+

d

dx
B(x, x) sin(λx)

+
∂

∂x
B(x, t)|t=x sin(λx) +

∫ x

0

∂2

∂x2
A(x, t) cos(λt)dt

+
∫ x

0

∂2

∂x2
B(x, t) sin(λt)dt.

On the other hand, using integration by parts twice, we obtain

(.3)

λy(x, λ)

= sin[λx− α(x)] +
1
λ

[A(x, x) sin(λx)− B(x, x) cos(λx) + B(x, 0)]

−1
λ

∫ x

0

∂

∂t
A(x, t) sin(λt)dt +

1
λ

∫ x

0

∂

∂t
B(x, t) cos(λt)dt

= sin[λx− α(x)] +
1
λ

[A(x, x) sin(λx)− B(x, x) cos(λx) + B(x, 0)]

+
1
λ2

[
∂

∂t
A(x, t)|t=x cos(λx) +

∂

∂t
B(x, t)|t=x sin(λx)− ∂

∂t
A(x, t)|t=0]

− 1
λ2

∫ x

0

∂2

∂t2
A(x, t) cos(λt)dt − 1

λ2

∫ x

0

∂2

∂t2
B(x, t) sin(λt)dt.

From (.2) and (.3) we obtain

(.4)

[λ2 − 2λp(x) − q(x)]y(x, λ)

= [λ − 2p(x)] sin[λx−α(x)]+A(x, x) sin(λx)−B(x, x) cos(λx)+B(x, 0)

− 1
λ

[
∂

∂t
A(x, t)|t=0+2p(x)B(x, 0)+

∂

∂t
A(x, t)|t=x cos(λx)+

∂

∂t
B(x, t)|t=x sin(λx)]

− 1
λ

∫ x

0

∂2

∂t2
A(x, t) cos(λt)dt− 1

λ

∫ x

0

∂2

∂t2
B(x, t) sin(λt)dt

− 1
λ

[2p(x)A(x, x) sin(λx)−2p(x)B(x, x) cos(λx)]+
2p(x)

λ

∫ x

0

∂

∂t
A(x, t) sin(λt)dt

−2p(x)
λ

∫ x

0

∂

∂t
B(x, t) cos(λt)dt − q(x)

λ
sin[λx − α(x)]

−q(x)
λ

∫ x

0

A(x, t) cos(λt)dt − q(x)
λ

∫ x

0

B(x, t) sin(λt)dt.
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Let

(.5)

I(x, λ)

= [−(p2(x) + q(x)) cosα(x)−p′(x) sinα(x)+2
d

dx
B(x, x)−2p(x)A(x, x)]

× sin(λx) + [(p2(x) + q(x)) sinα(x) − p′(x) cosα(x) + 2
d

dx
A(x, x)

+2p(x)B(x, x)] cos(λx)− ∂

∂t
A(x, t)|t=0.

From (.3), (.4) and (.5) we obtain

(.6)

y′′(x, λ)+[λ2 − 2λp(x) − q(x)] y(x, λ)

=
1
λ

I(x, λ) + B(x, 0)

+
1
λ

∫ x

0

[
∂2

∂x2
A(x, t)− ∂2

∂t2
A(x, t)−2p(x)

∂

∂t
B(x, t)−q(x)A(x, t)] cos(λt)dt

+
1
λ

∫ x

0

[
∂2

∂x2
B(x, t)− ∂2

∂t2
B(x, t)+2p(x)

∂

∂t
A(x, t)−q(x)B(x, t)] sin(λt)dt

= 0.

By the Riemann-Lebesgue Lemma (.6) holds for all real λ �= 0 if and only if
B(x, 0) = 0, I(x, λ) = 0 and the following two equations are satisfied:

∂2

∂x2
A(x, t)− 2p(x)

∂

∂t
B(x, t)− q(x)A(x, t) =

∂2

∂t2
A(x, t),

∂2

∂x2
B(x, t) + 2p(x)

∂

∂t
A(x, t)− q(x)B(x, t) =

∂2

∂t2
B(x, t).

From I(x, λ) = 0 we obtain

(.7)
∂

∂t
A(x, t)|t=0 = 0

and

(.8) [p2(x) + q(x)] cosα(x) + p′(x) sinα(x) − 2
d

dx
B(x, x) + 2p(x)A(x, x) = 0,

(.9) [p2(x) + q(x)] sinα(x) − p′(x) cosα(x) + 2
d

dx
A(x, x) + 2p(x)B(x, x) = 0.

From (.8) and (.9) it follows that

(.10) p2(x) + q(x) = 2
d

dx
[A(x, x) sinα(x) + B(x, x) cosα(x)].

Integrating (.10) and taking into account that α(0) = 0 = B(0, 0) yields

(.11) A(x, x) sinα(x) + B(x, x) cosα(x) =
1
2

∫ x

0

[
q(x) + p2(x)

]
dx, x ∈ [0, π].

This completes the proof of Lemma 1.
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Appendix B: Proof of Theorem 1

Here we only give the proof for Dirichlet condition (i.e., α = β = 0). The other
case is treated similarly. It is well known that the eigenvalues are the zeros of the
characteristic function. Since this function is an entire function it follows that they are
isolated and at most countable. From the given asymptotic form it follows that there
are an infinite number of eigenvalues and hence they can be indexed by Z0 as indicated
[2]. Thus we only need to establish the indicated asymptotic form of the eigenvalues.
We start with establishing the formula (1.4) under an additional assumption c0 = 0

and then remove it.
Substituting the initial solution y(x, λ) into the boundary condition at the point π

in (1.2), we obtain characteristic equation for eigenvalues of problem (1.3), (1.2):

ω(λ)
def
=

sin(λπ)
λ

+
1
λ

∫ π

0
A(π, t) cos(λt)dt +

1
λ

∫ π

0
B(π, t) sin(λt)dt = 0.

By integration by parts the characteristic function ω(λ) can be expressed as

(.12) ω(λ) =
sin(λπ)

λ
+

A(π, π) sin(λπ)− B(π, π) cos(λπ)
λ2

+ O

(
eτπ

λ3

)
,

where τ = |Im λ|.
Let us introduce the auxiliary function

ω0(λ) =
sin(λπ)

λ
,(.13)

then we enumerate its zeros
{
λ

(0)
n

}
n∈Z0

in the following way:

λ
(0)
n = n, n ∈ Z0.(.14)

For convenience we denote λn
def
= λn(p, q, 0, 0). Let us denote by {λn}n∈Z0 the set

of zeros of ω(λ). We enumerate the zeros in the following way: 1) Reλn+1 ≥ Reλn,
2) the multiplicities are taken into account.
We claim that zeros of ω(λ) can be enumerated as follows

λn = λ(0)
n + o(1), for large |n|.(.15)

The main term of the asymptotics is determined by the term (.13). Suppose that there
exists a subsequence {λkm}∞m=1 of the sequence {λn, n ∈ Z0} such that Imλkm → +∞
as m → +∞. Using the equality

sin(λkmπ) = −ie−iλkmπ

2
+ O

(
e|Imλkm |π

|λkm|

)
,
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then (.12) implies

ω(λkm) +
ie−iλkmπ

2λkm

= O

(
e|Imλkm |π

|λkm|2
)

,

which contradicts the identity ω(λkm) ≡ 0. Hence there exists a number M1 > 0 such
that Imλkm ≤ M1. In the same way it can be proved that {Imλkm} is bounded below.
Hence, there exists a constant M > 0 such that |Imλkm| ≤ M .
Comparing (.12) with (.13) we conclude that there exists a constant C > 0 such

that
|ω(λ)− ω0(λ)| < C

|λ|2
for all λ ∈ Π, where Π = {λ : |Imλ| < M + ε} and ε is an arbitrary positive number.
Since the function λω0(λ) = sin(λπ) is periodic, for every R ∈ (0, ε) it is possible to
find d > 0 such that

|λω0(λ)| > d

for all λ ∈ Π \⋃n Cn, where Cn are disks of radii R with the centers at the points
λ

(0)
n . Taking R sufficiently small we obtain Cn

⋂
Cn+1 = ∅ for all n. Consequently,

for all λ ∈ {λ : λ ∈ Π \⋃n Cn, |λ| > C
d

}
, the following inequalities are valid

|ω0(λ)| > d

|λ| >
C

|λ|2 > |ω(λ)− ω0(λ)|.

Since R > 0 can be chosen arbitrary small, applying Rouché’s theorem we obtain the
assertion of (.15) and for |n| large enough the eigenvalue λn is simple algebraically.
It is easy to prove (see [17, 20]): Let Reλ = n + 1

4 , n ∈ Z; or |Imλ| ≥ 1, then

e|Imλ|π| sinλπ|−1 ≤ 4.

Take a rectangular contour γn with the four vertices at (n ± 1
4 ) ± i. As λ ∈ γn,

|n| → ∞:
ω(λ)
ω0(λ)

= 1 +
A(π, π)− B(π, π) cot(λπ)

λ
+ O

(
1
λ2

)
,(.16)

which implies that

log
ω(λ)
ω0(λ)

=
A(π, π)− B(π, π) cot(λπ)

λ
+ O

(
1
λ2

)
.(.17)

Here we take principal branch of the complex logarithm function.
Now we are interested in asymptotics of eigenvalues of problem (1.3), (1.2), i.e.,

in asymptotics of the zeros of function ω(λ).
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Since ω0(λ) has exactly a simple zero inside γn, ω(λ) has a unique zero inside
γn for sufficiently large |n| by Rouché’s theorem and the eigenvalues are algebraically
simple for large |n|. Therefore, the zero of ω(λ) inside γn is exactly λn for sufficiently
large |n|. Integrating by parts and resorting to log ω(λ)

ω0(λ) along γn and∮
γn

cot(λπ)
λ

dλ =
2i

n
,

∮
γn

O

(
1
λ2

)
dλ = O

(
1
n2

)
,

we have

λn − n=
1

2πi

∮
γn

λ

[
ω′(λ)
ω(λ)

− ω′
0(λ)

ω0(λ)

]
dλ

= − 1
2πi

∮
γn

log
ω(λ)
ω0(λ)

dλ

= − 1
2πi

∮
γn

[
A(π, π)− B(π, π) cot(λπ)

λ
+ O

(
1
λ2

)]
dλ

=
B(π, π)

nπ
+ O

(
1
n2

)
,

i.e.,

λn = n +
B(π, π)

nπ
+ O

(
1
n2

)
.(.18)

Since c0 = 0 implies α(π) = 0, from

A(x, x) sinα(x) + B(x, x) cosα(x) =
1
2

∫ x

0

[
q(x) + p2(x)

]
dx

we obtain that
B(π, π) =

1
2

∫ π

0

[
q(x) + p2(x)

]
dx.

Substituting the expression of B(π, π) into (.18), one has

λn = n +

∫ π

0

[
q(x) + p2(x)

]
dx

2nπ
+ O

(
1
n2

)
, n ∈ Z0.

Now we consider the case c0 �= 0. By a direct calculation we note that equation

−y′′(x) + [q(x) + 2λp(x)]y(x) = λ2y(x)

is equivalent to

(.19) −y′′(x)+[q(x)+2pc0 − c2
0+2 (λ − c0) (p(x)− c0)]y(x)=(λ − c0)2 y(x).

Let
λ̂n = λn − c0, q̂(x) = q(x) + 2pc0 − c2

0
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and
p̂(x) = p(x) − c0 = p(x) − 1

π

∫ π

0

p(x)dx,

then for the problem with the form (.19) we have
∫ π
0 p̂(x)dx = 0 and

ĉ1 =
1
2π

∫ π

0

[
q̂(x) + p̂2(x)

]
dx = c1.

Thus, we obtain that

λn = n + c0 +

∫ π

0

[
q(x) + p2(x)

]
dx

2nπ
+ O

(
1
n2

)
, n ∈ Z0,

the proof of the formula (1.4) is finished.
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