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ATTRACTIVE POINT THEOREMS AND ERGODIC THEOREMS FOR
NONLINEAR MAPPINGS IN HILBERT SPACES

Lai-Jiu Lin and Wataru Takahashi

Abstract. In this paper, using Banach limits, we study attractive points and
fixed points of nonlinear mappings in Hilbert spaces. Then we obtain attractive
point theorems and fixed point theorems for nonlinear mappings in Hilbert spaces.
Using these results, we finally prove a nonlinear ergodic theorem for 2-generalized
hybrid mappings in Hilbert spaces.

1. INTRODUCTION

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space and let C be a nonempty subset of
H . Let T be a mapping of C into H . Then we denote by F (T ) the set of fixed points
of T and by A(T ) the set of attractive points [19] of T , i.e.,

(i) F (T ) = {z ∈ C : Tz = z};

(ii) A(T ) = {z ∈ H : ‖Tx − z‖ ≤ ‖x− z‖, ∀x ∈ C}.

We know from [19] that A(T ) is closed and convex. This property is important. A
mapping T : C → H is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x− y‖ for all
x, y ∈ C. We know that if C is a bounded, closed and convex subset of H and
T : C → C is nonexpansive, then F (T ) is nonempty. Furthermore, from Baillon [1]
we know the first nonlinear ergodic theorem in a Hilbert space. Let C be a bounded,
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closed and convex subset of H and let T : C → C be nonexpansive. Then for any
x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ). An important example of nonexpansive
mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping F : C → H
is said to be firmly nonexpansive if

‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉

for all x, y ∈ C; see, for instance, Browder [2] and Goebel and Kirk [3]. Recently,
Kocourek, Takahashi and Yao [7] defined a broad class of generalized hybrid mappings
containing the classes of nonexpansive mappings, nonspreading mappings [8, 9] and
hybrid mappings [18] in a Hilbert space. A mapping T : C → H is called generalized
hybrid [7] if there exist α, β ∈ R such that

α‖Tx − Ty‖2 + (1 − α)‖x − Ty‖2 ≤ β‖Tx − y‖2 + (1 − β)‖x − y‖2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid mapping. Then
Kocourek, Takahashi and Yao [7] proved a fixed point theorem for such mappings in
a Hilbert space. Furthermore, they proved a nonlinear mean convergence theorem of
Baillon’s type [1] in a Hilbert space. Maruyama, Takahashi and Yao [10] also defined
a more broad class of nonlinear mappings called 2-generalized hybrid containing the
class of generalized hybrid mappings. Very recently, Takahashi and Takeuchi [19]
proved the following fixed point and mean convergence theorem without convexity in
a Hilbert space.

Theorem 1.1. Let H be a real Hilbert space and let C be a nonempty subset of
H . Let T be a generalized hybrid mapping from C into itself. Let {vn} and {bn} be
sequences defined by

v1 ∈ C, vn+1 = Tvn, bn = 1
n

n∑
k=1

vk

for all n ∈ N. If {vn} is bounded, then the following hold:
(1) A(T ) is nonempty, closed and convex;
(2) {bn} converges weakly to u0 ∈ A(T ), where u0 = limn→∞ PA(T )vn and PA(T )

is the metric projection of H onto A(T ).

In this paper, using Banach limits, we study attractive points and fixed points of
nonlinear mappings in Hilbert spaces. Then we obtain attractive point theorems and



Attractive Point Theorems and Ergodic Theorems 1765

fixed point theorems for nonlinear mappings in Hilbert spaces. Using these results, we
finally prove a nonlinear ergodic theorem for 2-generalized hybrid mappings in Hilbert
spaces.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈 · · 〉 and norm ‖ · ‖. We denote
the strong convergence and the weak convergence of {xn} to x ∈ H by xn → x and
xn ⇀ x, respectively. Let A be a nonempty subset of H . We denote by coA the
closure of the convex hull of A. In a Hilbert space, it is known that

(2.1) ‖αx + (1− α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2

for all x, y ∈ H and α ∈ R; see [17]. Furthermore, in a Hilbert space, we have that

(2.2) 2〈x− y, z − w〉 = ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2

for all x, y, z, w ∈ H . Indeed, we have that

2〈x− y, z − w〉 = 2〈x, z〉 − 2〈x, w〉 − 2〈y, z〉+ 2〈y, w〉
= (−‖x‖2 + 2〈x, z〉 − ‖z‖2) + (‖x‖2 − 2〈x, w〉+ ‖w‖2)

+ (‖y‖2 − 2〈y, z〉+ ‖z‖2) + (−‖y‖2 + 2〈y, w〉 − ‖w‖2)

= ‖x − w‖2 + ‖y − z‖2 − ‖x − z‖2 − ‖y − w‖2.

From (2.2), we have that

(2.3) 〈(x − y) + (x − w), y − w〉 = ‖x − w‖2 − ‖x − y‖2

for all x, y, w ∈ H . Let C be a nonempty subset of H and let T be a mapping
of C into H . A mapping T : C → C is 2-generalized hybrid [10] if there exist
α1, α2, β1, β2 ∈ R such that

α1‖T 2x−Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2(2.4)
≤ β1‖T 2x − y‖2 + β2‖Tx − y‖2 + (1 − β1 − β2)‖x− y‖2

for all x, y ∈ C. We call such a mapping an (α1, α2, β1, β2)-generalized hybrid
mapping. We know that the class of the mappings above covers classes of well-known
mappings. For example, the class of (0, α2, 0, β2)-generalized hybrid mappings is the
class of (α2, β2)-generalized hybrid mappings in the sense of Kocourek, Takahashi and
Yao [7]. If x = Tx in (2.4), then for any y ∈ C,

α1‖x−Ty‖2 + α2‖x − Ty‖2 + (1 − α1 − α2)‖x − Ty‖2

≤ β1‖x − y‖2 + β2‖x − y‖2 + (1− β1 − β2)‖x− y‖2.
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Hence we have that

(2.5) ‖x − Ty‖ ≤ ‖x − y‖, ∀x ∈ F (T ), y ∈ C.

This means that a 2-generalized hybrid mapping with a nonempty fixed point set is
quasi-nonexpansive. The following lemma is in [15].

Lemma 2.1. Let D be a nonempty, closed and convex subset of H and let f :
D → (−∞,∞] be a proper, convex and lower semicontinuous function such that
f(zm) → ∞ as ‖zm‖ → ∞. Then there exists an element z0 ∈ D such that

f(z0) = min{f(z) : z ∈ D}.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let μ
be an element of (l∞)∗ (the dual space of l∞). Then, we denote by μ(f) the value
of μ at f = (x1, x2, x3, . . . ) ∈ l∞. Sometimes, we denote by μn(xn) the value
μ(f). A linear functional μ on l∞ is called a mean if μ(e) = ‖μ‖ = 1, where
e = (1, 1, 1, . . .). A mean μ is called a Banach limit on l∞ if μn(xn+1) = μn(xn).
We know that there exists a Banach limit on l∞. If μ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . . ) ∈ l∞,

lim inf
n→∞ xn ≤ μn(xn) ≤ lim sup

n→∞
xn.

In particular, if f = (x1, x2, x3, . . . ) ∈ l∞ and xn → a ∈ R, then we have μ(f) =
μn(xn) = a. For the proof of existence of a Banach limit and its other elementary
properties, see [15]. Using Banach limits, Takahashi and Yao [21] proved the following
fixed point theorem.

Theorem 2.2. Let H be a Hilbert space, let C be a nonempty, closed and convex
subset of H and let T be a mapping of C into itself. Suppose that there exists an
element x ∈ C such that {T nx} is bounded and

μn‖T nx − Ty‖2 ≤ μn‖T nx − y‖2, ∀y ∈ C

for some Banach limit μ. Then F (T ) is nonempty.

For proving our main results in this paper, we also need the following lemma proved
by Takahashi and Toyoda [20].

Lemma 2.3. Let D be a nonempty, closed and convex subset of H . Let P be the
metric projection from H onto D. Let {un} be a sequence in H . If ‖un+1 − u‖ ≤
‖un −u‖ for any u ∈ D and n ∈ N, then {Pun} converges strongly to some u0 ∈ D.

The following result proved by Takahashi and Takeuchi [19] is important.
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Lemma 2.4. Let H be a real Hilbert space, let C be a nonempty subset of H and
let T be a mapping from C into H . Then A(T ) is a closed and convex subset of H .

3. ATTRACTIVE POINT THEOREMS

In this section, we prove an attractive point theorem for nonlinear mappings in a
Hilbert space. Before proving the theorem, we show the following lemma.

Lemma 3.1. Let H be a Hilbert space, let {xn} be a bounded sequence in H and
let μ be a mean on l∞. Then there exists a unique point z0 ∈ co{xn : n ∈ N} such
that

(3.1) μn〈xn, y〉 = 〈z0, y〉, ∀y ∈ H.

Proof. Since {xn} is bounded, we have that for any y ∈ H , {〈xn, y〉} is in l∞.
Since μ is a mean on l∞, we can define a real valued function g as follows:

g(y) = μn〈xn, y〉, ∀y ∈ H.

We have that for any y, z ∈ H and α, β ∈ R,

g(αy + βz) = μn〈xn, αy + βz〉
= αμn〈xn, y〉+ βμn〈xn, z〉
= αg(y) + βg(z).

Then g is a linear functional of H into R. Furthermore, we have that for any y ∈ H ,

|g(y)| = |μn〈xn, y〉|
≤ ‖μn‖ sup

n∈N

|〈xn, y〉|

≤ ‖μn‖ sup
n∈N

‖xn‖ ‖y‖

= (sup
n∈N

‖xn‖) ‖y‖.

Put K = supn∈N ‖xn‖. We have that
|g(y)| ≤ K‖y‖, ∀y ∈ H.

Then g is bounded. By the Riesz theorem, there exists z0 ∈ H such that

(3.2) g(y) = 〈z0, y〉, ∀y ∈ H.

It is obvious that such z0 ∈ H is unique. Furthermore, we have z0 ∈ co{xn : n ∈ N}.
In fact, if z0 /∈ co{xn : n ∈ N}, then there exists y0 ∈ H from the separation theorem
such that

〈z0, y0〉 < inf
{〈z, y0〉 : z ∈ co{xn : n ∈ N}}.
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Using the property of a mean, we have that

〈z0, y0〉 < inf
{〈z, y0〉 : z ∈ co{xn : n ∈ N}}

≤ inf{〈xn, y0〉 : n ∈ N}
≤ μn〈xn, y0〉
= 〈z0, y0〉.

This is a contradiction. Thus we have z0 ∈ co{xn : n ∈ N}. This completes the
proof.
We call a unique z0 ∈ H such that

μn〈xn, y〉 = 〈z0, y〉, ∀y ∈ H

the mean vector of {xn} for μ.

Lemma 3.2. Let D be a nonempty, closed and convex subset of a Hilbert space
H , let {xn} be a bounded sequence in D and let μ be a mean on l∞. If g : D → R

is defined by
g(z) = μn‖xn − z‖2, ∀z ∈ D,

then g is continuous and there exists a unique z0 ∈ D such that

g(z0) = min{g(z) : z ∈ D}.
Furthermore, such z0 is the mean vector of {xn} for μ.

Proof. For a bounded sequence {xn} ⊂ D and a mean μ on l∞, we know from
[15] that a function g : D → R defined by

g(z) = μn‖xn − z‖2, ∀z ∈ D

is continuous. We also know from Lemma 3.1 that there exists the mean vector z0 of
{xn} for μ, that is, there exists z0 ∈ co{xn : n ∈ N} such that

μn〈xn, y〉 = 〈z0, y〉, ∀y ∈ H.

Since D is closed and convex and {xn} ⊂ D, we have z0 ∈ D. Furthermore, we have
that for any z ∈ D,

g(z)− g(z0) = μn‖xn − z‖2 − μn‖xn − z0‖2

= μn(‖xn − z‖2 − ‖xn − z0‖2)

= μn

(‖xn‖2 − 2〈xn, z〉+ ‖z‖2 − (‖xn‖2 − 2〈xn, z0〉 + ‖z0‖2)
)

= μn(−2〈xn, z〉+ ‖z‖2 + 2〈xn, z0〉 − ‖z0‖2)

= −2〈z0, z〉+ ‖z‖2 + 2〈z0, z0〉 − ‖z0‖2

= −2〈z0, z〉+ ‖z‖2 + ‖z0‖2

= ‖z − z0‖2.
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Then we have that
g(z) = g(z0) + ‖z − z0‖2, ∀z ∈ D.

This implies that z0 is a unique point in D such that

g(z0) = min{g(z) : z ∈ D}.
This completes the proof.

Now, we prove the first attractive point theorem for nonlinear mappings in a Hilbert
space.

Theorem 3.3. Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a mapping of C into itself. Suppose that there exists an element x ∈ C such
that {T nx} is bounded and

μn‖T nx − Ty‖2 ≤ μn‖T nx − y‖2, ∀y ∈ C

for some mean μ on l∞. Then A(T ) is nonempty. In particular, the mean vector
z0 ∈ H of {T nx} for μ is an element of A(T ). Additionally, if C is closed and
convex, then F (T ) is nonempty.

Proof. Since {T nx} is bounded, we have from Lemma 3.1 that there exists a
unique point z0 ∈ co{T nx : n ∈ N} such that
(3.3) μn〈T nx, y〉 = 〈z0, y〉, ∀y ∈ H.

Using this z0, we have from (2.3) and the assumption of T that for any v ∈ C,

〈(z0 − v) + (z0 − Tv), v − Tv〉
= μn〈(T nx − v) + (T nx − Tv), v − Tv〉
= μn(‖T nx − Tv‖2 − ‖T nx − v‖2)

= μn‖T nx − Tv‖2 − μn‖T nx − v‖2

≤ 0.

Using (2.3) again, we have that

〈(z0 − v) + (z0 − Tv), v − Tv〉 = ‖z0 − Tv‖2 − ‖z0 − v‖2.

Thus we have that

‖z0 − Tv‖2 − ‖z0 − v‖2 ≤ 0, ∀v ∈ C

and hence
‖z0 − Tv‖ ≤ ‖z0 − v‖, ∀v ∈ C.
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Therefore, we have z0 ∈ A(T ). Additionally, if C is closed and convex, we have from
{T nx} ⊂ C that

z0 ∈ co{T nx : n ∈ N} ⊂ C.

Since z0 ∈ A(T ) and z0 ⊂ C, we have that

‖Tz0 − z0‖ ≤ ‖z0 − z0‖ = 0

and hence z0 ∈ F (T ). This completes the proof.

Using Theorem 3.3, we can prove an attractive point theorem for 2-generalized
hybrid mappings in a Hilbert space.

Theorem 3.4. Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a 2-generalized hybrid mapping of C into itself. Suppose that there exists an
element z ∈ C such that {T nz} is bounded. Then A(T ) is nonempty. Additionally, if
C is closed and convex, then F (T ) is nonempty.

Proof. Since a mapping T is 2-generalized hybrid, there exist α1, α2, β1, β2 ∈ R

such that

α1‖T 2x−Ty‖2 + α2‖Tx − Ty‖2 + (1 − α1 − α2)‖x − Ty‖2

≤ β1‖T 2x − y‖2 + β2‖Tx − y‖2 + (1− β1 − β2)‖x − y‖2

for all x, y ∈ C. Take z ∈ C such that {T nz} is bounded. Then for any y ∈ C and
n ∈ N ∪ {0}, we have

α1‖T n+2z−Ty‖2 + α2‖T n+1z − Ty‖2 + (1 − α1 − α2)‖T nz − Ty‖2

≤ β1‖T n+2z − y‖2 + β2‖T n+1z − y‖2 + (1 − β1 − β2)‖T nz − y‖2

for any y ∈ C. Since {T nz} is bounded, we can apply a Banach limit μ to both sides
of the inequality. Then we have

μn(α1‖T n+2z − Ty‖2 + α2‖T n+1z − Ty‖2 + (1− α1 − α2)‖T nz − Ty‖2)

≤ μn(β1‖T n+2z − y‖2 + β2‖T n+1z − y‖2 + (1 − β1 − β2)‖T nz − y‖2).

So we obtain

α1μn‖T n+2z − Ty‖2 + α2μn‖T n+1z − Ty‖2 + (1− α1 − α2)μn‖T nz − Ty‖2

≤ β1μn‖T n+2z − y‖2 + β2μn‖T n+1z − y‖2 + (1− β1 − β2)μn‖T nz − y‖2

and hence

α1μn‖T nz − Ty‖2 + α2μn‖T nz − Ty‖2 + (1 − α1 − α2)μn‖T nz − Ty‖2

≤ β1μn‖T nz − y‖2 + β2μn‖T nz − y‖2 + (1 − β1 − β2)μn‖T nz − y‖2.
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This implies
μn‖T nz − Ty‖2 ≤ μn‖T nz − y‖2

for all y ∈ C. By Theorem 2.2, we have that A(T ) is nonempty. Additionally, if C

is closed and convex, then we have from Theorem 2.2 that F (T ) is nonempty. This
completes the proof.

As a direct consequence of Theorem 3.5, we have the attractive point theorem for
generalized hybrid mappings in a Hilbert space which was proved by Takahashi and
Takeuchi [19].

Theorem 3.5. Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a generalized hybrid mapping of C into itself. Suppose that there exists an
element z ∈ C such that {T nz} is bounded. Then A(T ) is nonempty.
Additionally, if C is closed and convex, then F (T ) is nonempty.

Proof. A generalized hybrid mapping T of C into itself is a 2-generalized hybrid
mapping. That is, an (α, β)-generalized hybrid mapping is a (0, α, 0, β)-generalized
hybrid mapping. Thus, we have the desired result from Theorem 3.5.

4. NONLINEAR ERDODIC THEOREMS

In this section, we prove a nonlinear ergodic theorem for 2-generalized hybrid
mappings without convexity in a Hilbert space. Before proving it, we obtain the
following theorem.

Theorem 4.1. Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a mapping of C into itself. Suppose that there exists an element x ∈ C such
that {T nx} is bounded and

μn‖T nx − Ty‖2 ≤ μn‖T nx − y‖2, ∀y ∈ C

for some Banach limit μ on l∞. Then ∩∞
k=1co{T k+nx : n ∈ N}∩A(T ) consists of one

point z0. Furthermore, z0 = limn→∞ PA(T )T
nx, where PA(T ) is the metric projection

of H onto A(T ). Additionally, if C is closed and convex, then ∩∞
k=1co{T k+nx : n ∈

N} ∩ F (T ) consists of one point z0.

Proof. From Lemma 3.2, a unique point z0 ∈ H such that

μn‖T nx − z0‖2 = min{μn‖T nx − y‖2 : y ∈ H}

is the mean vector of {T nx} for the Banach limit μ, that is, a unique point z0 ∈ H
such that

μn〈T nx, y〉 = 〈z0, y〉, ∀y ∈ H.
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We have also from Theorem 3.3 that z0 ∈ A(T ). Furthermore, we have that

μn‖T nx − z0‖2 = min{μn‖T nx − y‖2 : y ∈ A(T )}.

Let us show that z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N}. If not, there exists some k ∈ N such

that z0 /∈ co{T k+nx : n ∈ N}. By the separation theorem, there exists y0 ∈ H such
that

〈z0, y0〉 < inf
{〈z, y0〉 : z ∈ co{T k+nx : n ∈ N}}.

Using the property of a Banach limit, we have that

〈z0, y0〉 < inf
{〈z, y0〉 : z ∈ co{T k+nx : n ∈ N}}

≤ inf{〈T k+nx, y0〉 : n ∈ N}
≤ μn〈T k+nx, y0〉
= μn〈T nx, y0〉
= 〈z0, y0〉.

This is a contradiction. Thus, we have that z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N}. Next, we

show that ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ) consists of one point z0. Assume that

z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ). Since z1 ∈ A(T ), we have that

‖T n+1x − z1‖2 ≤ ‖T nx − z1‖2, ∀n ∈ N.

Then limn→∞ ‖T nx − z1‖2 exists. In general, since limn→∞ ‖T nx − z‖2 exists for
every z ∈ A(T ), we define a function g : A(T ) → R as follows:

g(z) = lim
n→∞ ‖T nx − z‖2, ∀z ∈ A(T ).

Since

‖z0 − z1‖2 = ‖T nx − z1‖2 − ‖T nx − z0‖2 − 2〈z0 − z1, T
nx − z0〉

for every n ∈ N, we have

‖z0 − z1‖2 + 2 lim
n→∞〈z0 − z1, T

nx − z0〉
= lim

n→∞ ‖T nx − z1‖2 − lim
n→∞ ‖T nx − z0‖2

≥ 0.

Let ε > 0. Then we have

2 lim
n→∞〈z0 − z1, T

nx − z0〉 > −‖z0 − z1‖2 − ε.
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Hence, there exists n0 ∈ N such that

2〈z0 − z1, T
nx − z0〉 > −‖z0 − z1‖2 − ε

for every n ∈ N with n ≥ n0. Since z1 ∈ ∩∞
k=1co{T k+nx : n ∈ N}, we have

2〈z0 − z1, z1 − z0〉 ≥ −‖z0 − z1‖2 − ε.

This inequality implies that ‖z0 − z1‖2 ≤ ε. Since ε > 0 is arbitrary, we have z0 = z1.
Therefore,

{z0} = ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ).

We show that z0 = limn→∞ PA(T )T
nx, where PA(T ) is the metric projection of H

onto A(T ). Since

‖T n+1x − z‖ ≤ ‖T nx − z‖, ∀n ∈ N, z ∈ A(T ),

we have from Lemma 2.3 that {PA(T )T
nx} converges strongly to some u ∈ A(T ).

Since PA(T )T
nx ∈ A(T ) for all n ∈ N, we have

‖PA(T )T
mx − T nx‖ ≤ ‖PA(T )T

mx − Tmx‖

for all n, m ∈ N with n ≥ m. Furthermore, we have from the property of PA(T ) that

‖PA(T )T
mx − Tmx‖ ≤ ‖z − Tmx‖

for all z ∈ A(T ). Thus,

‖PA(T )T
mx − T nx‖2 ≤ ‖PA(T )T

mx − Tmx‖2 ≤ ‖z − Tmx‖2

for all n, m ∈ N with n ≥ m and z ∈ A(T ). Then we have that

g(PA(T )T
mx) = lim

n→∞ ‖PA(T )T
mx − T nx‖2

≤ ‖PA(T )T
mx − Tmx‖2

≤ ‖z − Tmx‖2.

Since g is continuous and PA(T )T
mx → u ∈ A(T ), we have that

g(u) ≤ lim
m→∞ ‖z − Tmx‖2 = g(z), ∀z ∈ A(T ).

Since z0 is a unique minimizer of g in A(T ), we have u = z0. Therefore,

z0 = lim
n→∞ PA(T )T

nx.
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Additionally, if C is closed and convex, then we know that

z0 ∈ ∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ).

Since ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ) consists of one point z0, we have

∩∞
k=1co{T k+nx : n ∈ N} ∩ F (T ) = {z0}.

This completes the proof.

Lemma 4.2. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a mapping of C into itself. Suppose that there exists an element x ∈ C such that
{T nx} is bounded and

μn‖T nx − Ty‖2 ≤ μn‖T nx − y‖2, ∀y ∈ C

for some Banach limit μ on l∞. Define

Snx =
1
n

n−1∑
k=0

T kx, ∀n ∈ N.

Suppose that if a subsequence {Snix} of {Snx} converges weakly to v ∈ H , then v ∈
A(T ). Then {Snx} converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T

nx.
Additionally, if C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ).

Proof. From Theorem 4.1, we know that ∩∞
k=1co{T k+nx : n ∈ N}∩A(T ) consists

of one point z0 and z0 = limn→∞ PA(T )T
nx. To complete the proof, it is sufficient to

show that if Snix ⇀ v, then v = z0. Since PA(T )T
nx ∈ A(T ) for all n ∈ N, we have

‖PA(T )T
nx − T nx‖ ≤ ‖PA(T )T

n−1x − T nx‖
≤ ‖PA(T )T

n−1x − T n−1x‖.

This implies that {‖PA(T )T
nx − T nx‖} is nonincreasing. We have also that

〈T kx − PA(T )T
kx, PA(T )T

kx − u〉 ≥ 0

for all k ∈ N and u ∈ A(T ). Since {‖T kx − PA(T )T
kx‖} is nonincreasing, we have

〈u− z0, T
kx − PA(T )T

kx〉 ≤ 〈PA(T )T
kx − z0, T

kx − PA(T )T
kx〉

≤ ‖PA(T )T
kx − z0‖ · ‖T kx − PA(T )T

kx‖
≤ ‖PA(T )T

kx − z0‖ · ‖x − PA(T )x‖.
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Adding these inequalities from k = 0 to k = n − 1 and dividing n, we have
〈

u − z0, Snx − 1
n

n−1∑
k=0

PA(T )T
kx

〉
≤ ‖x − PA(T )x‖

n

n−1∑
k=0

‖PA(T )T
kx − z0‖.

Since Snix ⇀ v and PA(T )T
kx → z0, we have

〈u − z0, v − z0〉 ≤ 0.

By the assumption, we know v ∈ A(T ). Putting u = v, we have 〈v − z0, v − z0〉 ≤ 0
and hence ‖v − z0‖2 ≤ 0. Thus, we obtain v = z0. Therefore, {Snx} converges
weakly to z0 ∈ A(T ). Additionally, if C is closed and convex, then we know from
Theorem 4.1 that z0 is a fixed point. This completes the proof.

Now, we can prove the following nonlinear ergodic theorem for 2-generalized hybrid
mappings in a Hilbert space.

Theorem 4.3. Let H be a Hilbert space, let C be a nonempty subset of H and
let T be a 2-generalized hybrid mapping of C into itself such that A(T ) is nonempty.
Then for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T
nx. Additionally, if

C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ), where z0 =
limn→∞ PF (T )T

nx.

Proof. Since T : C → C is 2-generalized hybrid, there exist α1, α2, β1, β2 ∈ R

such that

(4.1)
α1‖T 2x −Ty‖2 + α2‖Tx− Ty‖2 + (1− α1 − α2)‖x− Ty‖2

≤ β1‖T 2x − y‖2 + β2‖Tx − y‖2 + (1 − β1 − β2)‖x− y‖2

for all x, y ∈ C. Since A(T ) is nonempty, {T nx} is bounded for any x ∈ C. We
know from the proof of Theorem 3.5 that for any Banach limits μ on l∞,

μn‖T nx − Ty‖2 ≤ μn‖T nx − y‖2, ∀y ∈ C.

Thus we have from Theorem 4.1 that ∩∞
k=1co{T k+nx : n ∈ N} ∩ A(T ) consists of

one point z0 and z0 = limn→∞ PA(T )T
nx, where PA(T ) is the metric projection of H

onto A(T ). To prove Snx ⇀ z0 ∈ A(T ), it is sufficient to show from Lemma 4.2 that
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if Snix ⇀ v, then v ∈ A(T ). Assume Snix ⇀ v. We have from (4.1) that for any
y ∈ C and k ∈ N ∪ {0}

0 ≤ β1‖T k+2x − y‖2 + β2‖T k+1x − y‖2 + (1− β1 − β2)‖T kx − y‖2

− α1‖T k+2x − Ty‖2 − α2‖T k+1x − Ty‖2 − (1− α1 − α2)‖T kx − Ty‖2

= β1(‖T k+2x − Ty‖2 + 2〈T k+2x − Ty, Ty − y〉 + ‖Ty − y‖2)

+ β2(‖T k+1x − Ty‖2 + 2〈T k+1x − Ty, Ty − y〉 + ‖Ty − y‖2)

+ (1 − β1 − β2)(‖T kx − Ty‖2 + 2〈T kx − Ty, Ty − y〉 + ‖Ty − y‖2)

− α1‖T k+2x − Ty‖2 − α2‖T k+1x − Ty‖2 − (1− α1 − α2)‖T kx − Ty‖2

= ‖Ty − y‖2 + 2〈β1T
k+2x + β2T

k+1x + (1− β1 − β2)T kx − Ty, Ty − y〉
+ (β1 − α1)(‖T k+2x − Ty‖2 − ‖T kx − Ty‖2)

+ (β2 − α2)(‖T k+1x − Ty‖2 − ‖T kx − Ty‖2).

Summing up these inequalities with respect to k = 0, 1, . . . , n− 1,

0 ≤ n‖Ty − y‖2

+ 2
〈 n−1∑

k=0

T kx + β1(T n+1x + T nx − x − Tx) + β2(T nx − x) − nTy, Ty − y
〉

+ (β1 − α1)(‖T n+1x − Ty‖2 + ‖T nx − Ty‖2 − ‖x − Ty‖2 − ‖Tx − Ty‖2)

+ (β2 − α2)(‖T nx − Ty‖2 − ‖x − Ty‖2).

Deviding this inequality by n, we have

0 ≤ ‖Ty − y‖2

+ 2
〈
Snx +

1
n

β1(T n+1x + T nx − x − Tx) +
1
n

β2(T nx − x) − Ty, Ty − y
〉

+
1
n

(β1 − α1)(‖T n+1x − Ty‖2 + ‖T nx − Ty‖2 − ‖x − Ty‖2 − ‖Tx − Ty‖2)

+
1
n

(β2 − α2)(‖T nx − Ty‖2 − ‖x− Ty‖2).

Replacing n by ni and letting ni → ∞, we obtain from Snix ⇀ v that

0 ≤ ‖Ty − y‖2 + 2 〈v − Ty, Ty − y〉 .

Using (2.2), we have that

0 ≤ ‖Ty − y‖2 + 2 〈v − Ty, Ty − y〉
= ‖Ty − y‖2 + ‖v − y‖2 − ‖v − Ty‖2 − ‖Ty − y‖2

= ‖v − y‖2 − ‖v − Ty‖2.
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Thus we have that
‖v − Ty‖ ≤ ‖v − y‖, ∀y ∈ C

and hence v ∈ A(T ). Therefore Snx ⇀ z0 ∈ A(T ). Assume that C is closed and
convex. Since T is 2-generalized hybrid, T is quasi-nonexpansive from (2.5). Then we
have that F (T ) is closed and convex; see Ito and Takahashi [6]. Thus we can define
the metric projection PF (T ) of H onto F (T ). Since C is closed and convex, {Snx}
converges weakly to z0 ∈ F (T ). To show z0 = limn→∞ PF (T )T

nx, we may follow
the proof of Theorem 4.1. This completes the proof.

As a direct consequence of Theorem 4.3, we have the nonlinear ergodic theorem
by Takahashi and Takeuchi [19].

Theorem 4.4. Let H be a Hilbert space, let C be a nonempty subset of H and let
T be a generalized hybrid mapping of C into itself such that A(T ) is nonempty. Then
for any x ∈ C,

Snx =
1
n

n−1∑
k=0

T kx

converges weakly to z0 ∈ A(T ), where z0 = limn→∞ PA(T )T
nx. Additionally, if

C is closed and convex, then {Snx} converges weakly to z0 ∈ F (T ), where z0 =
limn→∞ PF (T )T

nx.
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