SHEPHARD TYPE PROBLEMS FOR GENERAL L_{p}-PROJECTION BODIES

Wang Weidong and Wan Xiaoyan

Abstract

Lutwak, Yang and Zhang introduced L_{p}-projection bodies and Ludwig defined general L_{p}-projection bodies. In this paper, a solution to the Shephard problem for general L_{p}-projection bodies is established.

1. Introduction

For the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean space \mathbb{R}^{n}, we write \mathcal{K}^{n}. The set of convex bodies containing the origin in their interiors in \mathbb{R}^{n} we write \mathcal{K}_{o}^{n}. Denote by \mathcal{S}_{o}^{n} the set of star bodies (about the origin) in \mathbb{R}^{n}. Let S^{n-1} denote the unit sphere in $\mathbb{R}^{n}, V(K)$ the n-dimensional volume of body K and $\omega_{n}=V(B)$ the volume of the standard unit ball B in \mathbb{R}^{n}.

If $K \in \mathcal{K}^{n}$, then its support function h_{K} is defined by [3]:

$$
h_{K}(x)=h(K, x)=\max \{x \cdot y: y \in K\}, \quad x \in \mathbb{R}^{n}
$$

where $x \cdot y$ denotes the standard inner product of x and y.
The classical projection body was introduced by Minkowski [3, 18] at the turn of the previous century. For each $K \in \mathcal{K}^{n}$, the classical projection body, ΠK, of K is the origin-symmetric convex body whose support function is given by

$$
\begin{equation*}
h_{\Pi K}(u)=\frac{1}{2} \int_{S^{n-1}}|u \cdot v| d S(K, v) \tag{1.1}
\end{equation*}
$$

for all $u \in S^{n-1}$. Here $S(K, \cdot)$ denotes the surface area measure of K. The classical projection body is a very important object for study in the Brunn-Mnkowski theory. In particular, Shephard in [19] asked the following question:

[^0]Question 1. Suppose $K, L \in \mathcal{K}^{n}$. If

$$
\Pi K \subseteq \Pi L
$$

is it true that

$$
V(K) \leq V(L) ?
$$

Question 1 is called the Shephard problem. Since $h_{\Pi K}(u)$ is just the $(n-1)$ dimensional volume of the image of the projection of K on the subspace orthogonal to u, it asks whether convex bodies with smaller projections in all directions must have smaller volume. For centrally symmetric convex bodies K and L, Question 1 was solved independently by Petty [15] and Schneider [17], who showed that the answer is affirmative if $n \leq 2$ and negative if $n \geq 3$. They also proved that the Shephard problem has an affirmative answer if L is the projection body of some convex bodies.

The notion of L_{p}-projection body was introduced by Lutwak, Yang and Zhang [12]. For each $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, the L_{p}-projection body, $\Pi_{p} K$, of K is the origin-symmetric convex body whose support function is given by

$$
\begin{equation*}
h_{\Pi_{p} K}^{p}(u)=\frac{1}{n \omega_{n} c_{n-2, p}} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}(K, v), \tag{1.2}
\end{equation*}
$$

for all $u \in S^{n-1}$, and

$$
\begin{equation*}
c_{n, p}=\omega_{n+p} / \omega_{2} \omega_{n} \omega_{p-1} . \tag{1.3}
\end{equation*}
$$

Here $S_{p}(K, \cdot)$ denotes the L_{p}-surface area measure of $K \in \mathcal{K}_{o}^{n}$. Lutwak [10] showed that the measure $S_{p}(K, \cdot)$ is absolutely continuous with respect to the classical surface area measure $S(K, \cdot)$ of K, and has Radon-Nikodym derivative

$$
\begin{equation*}
\frac{d S_{p}(K, \cdot)}{d S(K, \cdot)}=h_{K}^{1-p} . \tag{1.4}
\end{equation*}
$$

The unusual normalization of definition (1.2) is chosen so that for the unit ball, B, we have $\Pi_{p} B=B$. In particular, for $p=1$, the convex body $\Pi_{1} K$ is a dilate of the classical projection body ΠK of K and $\Pi_{1} B=B$.

Whereas classical projection bodies are notion of the Brunn-Minkowski theory, L_{p}-projection bodies belong to the L_{p}-Brunn-Minkowski theory and have attracted a lot of attention (see $[8,9,12,13,14,16,20,22,23,24]$). In particular, Ryabogin and Zvavitch in [16] considered the following Shephard problem for the L_{p}-projection bodies:

Question 2. Suppose $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. If

$$
\Pi_{p} K \subseteq \Pi_{p} L
$$

is it true that

$$
V(K) \leq V(L), \text { for } 1 \leq p<n
$$

and

$$
V(K) \geq V(L), \text { for } p>n ?
$$

For $p=1$, Question 2 is equivalent to Question 1. For $p>1$ and $n \geq 2$, it was proved in [16] that the answer is negative. If $K, L \in \mathcal{K}_{o}^{n}$ and L is the L_{p}-projection body of some convex body, Ryabogin and Zvavitch [16] proved that Question 2 has an affirmative answer [16]. Recently, Ma and Wang [14] studied a L_{p}-affine surface area form of the Shephard problem for the L_{p}-projection bodies.

Recall that Ludwig [8] (see also [6]) introduced asymmetric L_{p}-projection bodies. For $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, the asymmetric L_{p}-projection body, $\Pi_{p}^{+} K$, of K is defined by

$$
\begin{equation*}
h_{\Pi_{p}^{+} K}^{p}(u)=\alpha_{n, p} \int_{S^{n-1}}(u \cdot v)_{+}^{p} d S_{p}(K, v) \tag{1.5}
\end{equation*}
$$

where $(u \cdot v)_{+}=\max \{u \cdot v, 0\}$ and

$$
\begin{equation*}
\alpha_{n, p}=\frac{1}{n \omega_{n} c_{n-2, p}} \tag{1.6}
\end{equation*}
$$

From (1.6) and (1.5), we see $\Pi_{p}^{+} B=B$. In [6] they also defined

$$
\begin{equation*}
\Pi_{p}^{-} K=\Pi_{p}^{+}(-K) \tag{1.7}
\end{equation*}
$$

Further, authors in $[6,8]$ introduced a function $\varphi_{\tau}: \mathbb{R} \longrightarrow[0,+\infty)$ by

$$
\begin{equation*}
\varphi_{\tau}(t)=|t|+\tau t \tag{1.8}
\end{equation*}
$$

for $\tau \in[-1,1]$, and for $K \in \mathcal{K}_{o}^{n}, p \geq 1$, let $\Pi_{p}^{\tau} K \in \mathcal{K}_{o}^{n}$ be the convex body with support function

$$
\begin{equation*}
h_{\Pi_{p}^{\tau} K}^{p}(u)=\alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p}(K, v) \tag{1.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{n, p}(\tau)=\frac{\alpha_{n, p}}{(1+\tau)^{p}+(1-\tau)^{p}} \tag{1.10}
\end{equation*}
$$

The normalization is chosen such that $\Pi_{p}^{\tau} B=B$ for every $\tau \in[-1,1]$. Here $\Pi_{p}^{\tau} K$ may be called general L_{p}-projection body. Obviously, if $\tau=0$ then $\Pi_{p}^{\tau} K=\Pi_{p} K$.

From (1.5), (1.7) and (1.9), Haberl and Schuster in [6] showed that for $K \in \mathcal{K}_{o}^{n}$, $p \geq 1$ and $\tau \in[-1,1]$,

$$
\Pi_{p}^{\tau} K=f_{1}(\tau) \cdot \Pi_{p}^{+} K+{ }_{p} f_{2}(\tau) \cdot \Pi_{p}^{-} K
$$

where

$$
f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \quad f_{2}(\tau)=\frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}},
$$

and " $+{ }_{p}$ " denotes the Firey L_{p}-combination of convex bodies.
Associating with asymmetric L_{p}-projection bodies, Haberl and Schuster in [6] established general L_{p}-Petty projection inequalities and gave the extremum values of volume for the polar of asymmetric L_{p}-projection bodies.

In this article, we study the following Shephard type problem for general $L_{p^{-}}$ projection bodies:

Question 3. Suppose $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If

$$
\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L
$$

is it true that

$$
V(K) \leq V(L), \text { for } 1 \leq p<n,
$$

and

$$
V(K) \geq V(L), \text { for } p>n ?
$$

Associated with Question 3, we first give the following affirmative answer:
Theorem 1.1. Let $K \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $L \in \mathcal{Z}_{p}^{\tau, n}$ and $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then for $n>p \geq 1$,

$$
V(K) \leq V(L) ;
$$

for $n<p$,

$$
V(K) \geq V(L) .
$$

In each case equality holds for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Here $\mathcal{Z}_{p}^{\tau, n}$ denotes the set of general L_{p}-projection bodies of a parameter τ, that is, the set of convex bodies K such that there is a convex body L with $K=\Pi_{p}^{\tau} L$.

The original Shephard problem is in a certain sense dual to the famous BusemannPetty problem (see [3, 7] for the definition and the solution). The (symmetric) L_{p} version of the Busemann-Petty problem was solved in [4, 26]. General L_{p}-intersection bodies were introduced in [5]. Theorem 1.1 corresponds to the solution of the general L_{p} Busemann-Petty problem by Haberl [4].

Let \mathcal{F}_{o}^{n} denote the set of convex bodies in \mathcal{K}_{o}^{n} with positive continuous curvature function. Further, we get a L_{p}-affine surface area form of the Shephard type problem for general L_{p}-projection bodies.

Theorem 1.2. Let $K \in \mathcal{F}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $L \in \mathcal{W}_{p}^{\tau, n}$ and $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then

$$
\Omega_{p}(K) \leq \Omega_{p}(L)
$$

with equality for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Here

$$
\mathcal{W}_{p}^{\tau, n}=\left\{Q \in \mathcal{F}_{o}^{n}: \text { there exists } Z \in \mathcal{Z}_{p}^{\tau, n} \text { with } f_{p}(Q, \cdot)=h(Z, \cdot)^{-(n+p)}\right\}
$$

and where $f_{p}(Q, \cdot)$ is the L_{p}-curvature function of Q (see Section 2.5).
In Section 3, we shall prove general forms of Theorems 1.1-1.2, respectively.

2. Basic Notions

2.1. Radial Function and Polar Body

If K is a compact star-shaped (about the origin) set in \mathbb{R}^{n}, its radial function, $\rho_{K}=\rho(K, \cdot): \mathbb{R}^{n} \backslash\{0\} \longrightarrow[0,+\infty)$, is defined

$$
\rho(K, x)=\max \{\lambda \geq 0: \lambda x \in K\}, \quad x \in \mathbb{R}^{n} \backslash\{0\}
$$

If ρ_{K} is positive and continuous, K will be called a star body (about the origin). Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.

If K is nonempty in \mathbb{R}^{n}, the polar set of K, K^{*}, is defined by [3]

$$
K^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1, y \in K\right\}
$$

2.2. Firey L_{p}-Combination and L_{p}-Harmonic Radial Combination

For $K, L \in \mathcal{K}^{n}$, and $\lambda, \mu \geq 0$ (not both zero), the Minkowski linear combination, $\lambda K+\mu L \in \mathcal{K}^{n}$, of K and L is defined by

$$
h(\lambda K+\mu L, \cdot)=\lambda h(K, \cdot)+\mu h(L, \cdot),
$$

where $\lambda K=\{\lambda x: x \in K\}$.
For $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the Firey L_{p}-combination, $\lambda \cdot K+{ }_{p} \mu \cdot L \in \mathcal{K}_{o}^{n}$, of K and L is defined in [2] by

$$
\begin{equation*}
h\left(\lambda \cdot K+{ }_{p} \mu \cdot L, \cdot\right)^{p}=\lambda h(K, \cdot)^{p}+\mu h(L, \cdot)^{p} \tag{2.1}
\end{equation*}
$$

where " $\cdot "$ in $\lambda \cdot K$ denotes the Firey scalar multiplication.
For $K, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_{p}-harmonic radial combination, $\lambda \star K+_{-p} \mu \star L \in \mathcal{S}_{o}^{n}$, of K and L is defined in [11] by

$$
\begin{equation*}
\rho\left(\lambda \star K+_{-p} \mu \star L, \cdot\right)^{-p}=\lambda \rho(K, \cdot)^{-p}+\mu \rho(L, \cdot)^{-p} . \tag{2.2}
\end{equation*}
$$

Note that for convex bodies, the L_{p}-harmonic radial combination was investigated by Firey in [1].

2.3. L_{p}-Mixed Volume

Associated with Firey L_{p}-combination (2.1), Lutwak in [10] introduced the following: For $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, the L_{p}-mixed volume, $V_{p}(K, L)$, of K and L can be defined by

$$
\frac{n}{p} V_{p}(K, L)=\lim _{\varepsilon \longrightarrow 0^{+}} \frac{V\left(K+{ }_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} .
$$

Corresponding to each $K \in \mathcal{K}_{o}^{n}$, Lutwak ([10]) proved that there is a positive Borel measure, $S_{p}(K, \cdot)$, on S^{n-1} such that

$$
\begin{equation*}
V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}^{p}(v) d S_{p}(K, v) . \tag{2.3}
\end{equation*}
$$

for each $L \in \mathcal{K}_{o}^{n}$. The measure $S_{p}(K, \cdot)$ is just the L_{p}-surface area measure of K.
From formulas (2.3) and (1.4), it follows immediately that for each $K \in \mathcal{K}_{o}^{n}$,

$$
\begin{equation*}
V_{p}(K, K)=V(K)=\frac{1}{n} \int_{S^{n-1}} h_{K}(v) d S(K, v) . \tag{2.4}
\end{equation*}
$$

The Minkowski inequality for the L_{p}-mixed volume is called L_{p}-Minkowski inequality. The L_{p}-Minkowski inequality may be stated:

Theorem 2.A. If $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$, then

$$
\begin{equation*}
V_{p}(K, L) \geq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}}, \tag{2.5}
\end{equation*}
$$

with equality for $p=1$ if and only if K and L are homothetic, for $p>1$ if and only if K and L are dilates.

A simple consequence of Theorem 2.A was established in [11]:
Theorem 2.B. Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. For all $Q \in \mathcal{K}_{o}^{n}$,

$$
V_{p}(K, Q)=V_{p}(L, Q) \quad \text { or } \quad V_{p}(Q, K)=V_{p}(Q, L)
$$

if and only if K is translation of L for $p=1$, or $K=L$ for $p>1$.

2.4. L_{p}-Dual Mixed Volume

Using the L_{p}-harmonic radial combination (2.2), Lutwak [11] introduced the notion of L_{p}-dual mixed volume. For $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$, the L_{p}-dual mixed volume, $\tilde{V}_{-p}(K, L)$, of K and L is defined by

$$
\frac{n}{-p} \widetilde{V}_{-p}(K, L)=\lim _{\varepsilon \longrightarrow 0^{+}} \frac{V\left(K+{ }_{-p} \varepsilon \star L\right)-V(K)}{\varepsilon}
$$

The definition above and the polar coordinate formula for volume give the following integral representation of the L_{p}-dual mixed volume:

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(v) \rho_{L}^{-p}(v) d S(v) \tag{2.6}
\end{equation*}
$$

where the integration is with respect to spherical Lebesgue measure S on S^{n-1}.
From (2.6), it follows that for each $K \in \mathcal{S}_{o}^{n}$ and $p \geq 1$,

$$
\begin{equation*}
\widetilde{V}_{-p}(K, K)=V(K)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n}(v) d S(v) \tag{2.7}
\end{equation*}
$$

Lutwak [11] established the L_{p}-dual Minkowski inequality:
Theorem 2.C. If $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$, then

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L) \geq V(K)^{\frac{n+p}{n}} V(L)^{-\frac{p}{n}} \tag{2.8}
\end{equation*}
$$

with equality if and only if K and L are dilates.
A simple consequence of Theorem 2.C was established in [25]:
Theorem 2.D. Let $K, L \in \mathcal{S}_{o}^{n}$ and $p \geq 1$, For all $Q \in \mathcal{S}_{o}^{n}$,

$$
\tilde{V}_{-p}(K, Q)=\tilde{V}_{-p}(L, Q) \quad \text { or } \quad \tilde{V}_{-p}(Q, K)=\tilde{V}_{-p}(Q, L)
$$

if and only if $K=L$.

2.5. L_{p}-Affine Surface Area

The notion of L_{p}-affine surface area was introduced by Lutwak in [11].
A convex body $K \in \mathcal{K}_{o}^{n}$ is said to have a $L_{p^{-}}$curvature function [11] $f_{p}(K, \cdot)$: $S^{n-1} \longrightarrow \mathbb{R}$, if its L_{p}-surface area measure $S_{p}(K, \cdot)$ is absolutely continuous with respect to spherical Lebesgue measure S, and

$$
\begin{equation*}
\frac{d S_{p}(K, \cdot)}{d S}=f_{p}(K, \cdot) \tag{2.9}
\end{equation*}
$$

In [11], Lutwak proved that if $K \in \mathcal{F}_{o}^{n}$ and $p \geq 1$, then the L_{p}-affine surface area of K have the integral representation

$$
\begin{equation*}
\Omega_{p}(K)=\int_{S^{n-1}} f_{p}(K, u)^{\frac{n}{n+p}} d S(u) \tag{2.10}
\end{equation*}
$$

Wang and Leng in [21] defined the i th L_{p}-mixed affine surface area as follows: For $K, L \in \mathcal{F}_{o}^{n}, p \geq 1$ and real i, the i th L_{p}-mixed affine surface area, $\Omega_{p, i}(K, L)$, of K and L is defined by

$$
\begin{equation*}
\Omega_{p, i}(K, L)=\int_{S^{n-1}} f_{p}(K, u)^{\frac{n-i}{n+p}} f_{p}(L, u)^{\frac{i}{n+p}} d S(u) . \tag{2.11}
\end{equation*}
$$

In the case $i=-p$, we write $\Omega_{p,-p}(K, L)=\Omega_{-p}(K, L)$ and see by (2.11) that

$$
\begin{equation*}
\Omega_{-p}(K, L)=\int_{S^{n-1}} f_{p}(K, u) f_{p}(L, u)^{-\frac{p}{n+p}} d S(u) . \tag{2.12}
\end{equation*}
$$

If $p=1$, then $\Omega_{1,-1}(K, L)$ is just $\Omega_{-1}(K, L)$ (see [9]). Obviously,

$$
\begin{equation*}
\Omega_{-p}(K, K)=\Omega_{p}(K) . \tag{2.13}
\end{equation*}
$$

For the i th L_{p}-mixed affine surface area, Wang and Leng in [21] proved the following Minkowski inequality.

Theorem 2.E. If $K, L \in \mathcal{F}_{o}^{n}, p \geq 1, i \in \mathbb{R}$, then for $i<0$ or $i>n$,

$$
\begin{equation*}
\Omega_{p, i}(K, L)^{n} \geq \Omega_{p}(K)^{n-i} \Omega_{p}(L)^{i} ; \tag{2.14}
\end{equation*}
$$

for $0<i<n$, inequality (2.14) is reversed. In every case, equality holds for $p=1$ if and only if K and L are homothetic, for $n \neq p>1$ if and only if K and L are dilates. For $i=0$ or $i=n,(2.14)$ is an identity.

For $i=-p$ in (2.14), we get that if $K, L \in \mathcal{F}_{o}^{n}, p \geq 1$, then

$$
\begin{equation*}
\Omega_{-p}(K, L)^{n} \geq \Omega_{p}(K)^{n+p} \Omega_{p}(L)^{-p} \tag{2.15}
\end{equation*}
$$

with equality for $p=1$ if and only if K and L are homothetic, for $n \neq p>1$ if and only if K and L are dilates.

From (2.15), we easily obtain that
Theorem 2.F. Let $K, L \in \mathcal{F}_{o}^{n}$ and $p \geq 1$. For all $Q \in \mathcal{F}_{o}^{n}$,

$$
\Omega_{-p}(K, Q)=\Omega_{-p}(L, Q)
$$

if and only if K is translation of L for $p=1$, or if and only if $K=L$ for $p>1$.

2.6. General L_{p}-Moment Bodies

Ludwig in [8] (also see [6]) introduced the notion of general L_{p}-moment body as follows: For $K \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, the general L_{p}-moment body, $M_{p}^{\tau} K$, of K is the convex body whose support function is given by

$$
\begin{equation*}
h_{M_{p}^{\tau} K}^{p}(u)=(n+p) \alpha_{n, p}(\tau) \int_{K} \varphi_{\tau}(u \cdot x)^{p} d x \tag{2.16}
\end{equation*}
$$

for all $u \in S^{n-1}$. Here $\varphi_{\tau}(u \cdot v)$ and $\alpha_{n, p}(\tau)$ satisfy (1.8) and (1.10), respectively.
Using definitions (1.9) and (2.16), Haberl and Schuster ([6]) proved the following result:

Theorem 2.G. If $K \in \mathcal{K}_{o}^{n}, L \in \mathcal{S}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
V_{p}\left(K, M_{p}^{\tau} L\right)=\widetilde{V}_{-p}\left(L, \Pi_{p}^{\tau, *} K\right) . \tag{2.17}
\end{equation*}
$$

3. Shephard Type Problems

In the section, we will study Shephard type problems for general L_{p}-projection bodies. We first give a general version of Theorem 1.1. It may be regarded as an extension of the Shephard type problem to general L_{p}-projection bodies.

Theorem 3.1. Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then for every $Q \in \mathcal{Z}_{p}^{\tau, n}$,

$$
\begin{equation*}
V_{p}(K, Q) \leq V_{p}(L, Q), \tag{3.1}
\end{equation*}
$$

with equality for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Lemma 3.1. If $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$, then

$$
\begin{equation*}
V_{p}\left(K, \Pi_{p}^{\tau} L\right)=V_{p}\left(L, \Pi_{p}^{\tau} K\right) . \tag{3.2}
\end{equation*}
$$

Proof. From (1.8) and (2.3), we easily obtain

$$
\begin{aligned}
V_{p}\left(L, \Pi_{p}^{\tau} K\right) & =\frac{1}{n} \int_{S^{n-1}} h_{\Pi_{p}^{\tau} K}^{p}(u) d S_{p}(L, u) \\
& =\frac{1}{n} \int_{S^{n-1}} \alpha_{n, p}(\tau) \int_{S^{n-1}} \varphi_{\tau}(u \cdot v)^{p} d S_{p}(K, v) d S_{p}(L, u) \\
& =\frac{1}{n} \int_{S^{n-1}} h_{\Pi_{p}^{\tau} L}^{p}(v) d S_{p}(K, v) \\
& =V_{p}\left(K, \Pi_{p}^{\tau} L\right) .
\end{aligned}
$$

Proof of Theorem 3.1. Since $Q \in \mathcal{Z}_{p}^{\tau, n}$, there exists $M \in \mathcal{K}_{o}^{n}$ such that $Q=\Pi_{p}^{\tau} M$. Thus by (3.2) and (2.3) we get

$$
\frac{V_{p}(L, Q)}{V_{p}(K, Q)}=\frac{V_{p}\left(L, \Pi_{p}^{\tau} M\right)}{V_{p}\left(K, \Pi_{p}^{\tau} M\right)}=\frac{V_{p}\left(M, \Pi_{p}^{\tau} L\right)}{V_{p}\left(M, \Pi_{p}^{\tau} K\right)}
$$

$$
=\frac{\int_{S^{n-1}} h\left(\Pi_{p}^{\tau} L, u\right)^{p} d S_{p}(M, u)}{\int_{S^{n-1}} h\left(\Pi_{p}^{\tau} K, u\right)^{p} d S_{p}(M, u)} .
$$

If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, this implies (3.1).
According to Theorem 2.B, we know equality holds in (3.1) for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$. Obviously, above the condition of equality implies $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.

Proof of Theorem 1.1. Since $L \in \mathcal{Z}_{p}^{\tau, n}$, taking $Q=L$ in Theorem 3.1, and combining with (2.4) and inequality (2.5), we get

$$
V(L) \geq V_{p}(K, L) \geq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}} .
$$

Hence, for $n>p \geq 1, V(K) \leq V(L)$; for $n<p, V(K) \geq V(L)$.
Now, associated with the L_{p}-affine surface area, we give a general form of Theorem 1.2.

Theorem 3.2. Let $K, L \in \mathcal{F}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, then for every $Q \in \mathcal{W}_{p}^{\tau, n}$,

$$
\begin{equation*}
\Omega_{-p}(K, Q) \leq \Omega_{-p}(L, Q), \tag{3.3}
\end{equation*}
$$

with equality for $p=1$ if and only if K is a translate of L, and for $n \neq p>1$ if and only if $K=L$.

Proof. Since $Q \in \mathcal{W}_{p}^{\tau, n}$, there exists $Z \in \mathcal{Z}_{p}^{\tau, n}$ such that

$$
f_{p}(Q, \cdot)^{-\frac{p}{n+p}}=h(Z, \cdot)^{p} .
$$

Moreover, for $Z \in \mathcal{Z}_{p}^{\tau, n}$, let $Z=\Pi_{p}^{\tau} M$ for $M \in \mathcal{K}_{o}^{n}$. Hence, using (2.9), (2.12), (2.3) and (3.2), we have

$$
\begin{aligned}
\frac{\Omega_{-p}(L, Q)}{\Omega_{-p}(K, Q)} & =\frac{\int_{S^{n-1}} f_{p}(Q, u)^{-\frac{p}{n+p}} d S_{p}(L, u)}{\int_{S^{n-1}} f_{p}(Q, u)^{-\frac{p}{n+p}} d S_{p}(K, u)} \\
& =\frac{\int_{S^{n-1}} h(Z, u)^{p} d S_{p}(L, u)}{\int_{S^{n-1}} h(Z, u)^{p} d S_{p}(K, u)} \\
& =\frac{V_{p}(L, Z)}{V_{p}(K, Z)}=\frac{V_{p}\left(L, \Pi_{p}^{\tau} M\right)}{V_{p}\left(K, \Pi_{p}^{\tau} M\right)}=\frac{V_{p}\left(M, \Pi_{p}^{\tau} L\right)}{V_{p}\left(M, \Pi_{p}^{\tau} K\right)} \\
& =\frac{\int_{S^{n-1}} h\left(\Pi_{p}^{\tau} L, u\right)^{p} d S_{p}(M, u)}{\int_{S^{n-1}} h\left(\Pi_{p}^{\tau} K, u\right)^{p} d S_{p}(M, u)} .
\end{aligned}
$$

If $\Pi_{p}^{\tau} K \subseteq \Pi_{p}^{\tau} L$, this implies (3.3).
According to Theorem 2.F, we know that equality holds in (3.3) for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$. Obviously, above the condition of equality implies $\Pi_{p}^{\tau} K=\Pi_{p}^{\tau} L$.

Note that the case $\tau=0$ of Theorem 3.1 and Theorem 3.2 can be found in [13].
Proof of Theorem 1.2. Since $L \in \mathcal{W}_{p}^{\tau, n}$, taking $Q=L$ in Theorem 3.2, and together with (2.13) and inequality (2.15), we get

$$
\Omega_{p}(L) \geq \Omega_{-p}(K, L) \geq \Omega_{p}(K)^{\frac{n+p}{n}} \Omega_{p}(L)^{-\frac{p}{n}}
$$

i.e.,

$$
\Omega_{p}(K) \leq \Omega_{p}(L)
$$

4. Monotonicity Inequalities

Regarding Theorem 3.1, we can prove the following monotonicity inequalities for the general L_{p}-projection bodies.

Theorem 4.1. Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If

$$
\begin{equation*}
V_{p}(K, Q) \leq V_{p}(L, Q) \tag{4.1}
\end{equation*}
$$

then for every $Q \in \mathcal{Z}_{p}^{\tau, n}$,

$$
\begin{equation*}
V\left(\Pi_{p}^{\tau} K\right) \leq V\left(\Pi_{p}^{\tau} L\right) . \tag{4.2}
\end{equation*}
$$

In every inequality equality holds for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Proof of Theorem 4.1. Since $Q \in \mathcal{Z}_{p}^{\tau, n}$, we take $Q=\Pi_{p}^{\tau} M$ for $M \in \mathcal{K}_{o}^{n}$. From this, (4.1) can be written as

$$
V_{p}\left(K, \Pi_{p}^{\tau} M\right) \leq V_{p}\left(L, \Pi_{p}^{\tau} M\right)
$$

Together with (3.2), we get

$$
V_{p}\left(M, \Pi_{p}^{\tau} K\right) \leq V_{p}\left(M, \Pi_{p}^{\tau} L\right)
$$

Letting $M=\Pi_{p}^{\tau} L$, and using (2.4) and inequality (2.5), we have

$$
V\left(\Pi_{p}^{\tau} L\right) \geq V_{p}\left(\Pi_{p}^{\tau} L, \Pi_{p}^{\tau} K\right) \geq V\left(\Pi_{p}^{\tau} L\right)^{\frac{n-p}{n}} V\left(\Pi_{p}^{\tau} K\right)^{\frac{p}{n}}
$$

i.e., (4.2) is obtained.

According to Theorem 2.B, we see that the equality condition of (4.1) implies $V\left(\Pi_{p}^{\tau} K\right)=V\left(\Pi_{p}^{\tau} L\right)$. Therefore, we know that equalities hold in (4.1) and (4.2) for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Theorem 4.2. Let $K, L \in \mathcal{K}_{o}^{n}, p \geq 1$ and $\tau \in[-1,1]$. If for every general L_{p}-moment body Q

$$
\begin{equation*}
V_{p}(K, Q) \leq V_{p}(L, Q), \tag{4.3}
\end{equation*}
$$

then

$$
\begin{equation*}
V\left(\Pi_{p}^{\tau, *} K\right) \geq V\left(\Pi_{p}^{\tau, *} L\right) . \tag{4.4}
\end{equation*}
$$

In every inequality equality holds for $p=1$ if and only if K is a translate of L, and for $p>1$ if and only if $K=L$.

Proof. Since Q is an general L_{p}-moment body, we take $Q=M_{p}^{\tau} N$ for $N \in \mathcal{S}_{o}^{n}$, inequality (4.3) can be written as

$$
V_{p}\left(K, M_{p}^{\tau} N\right) \leq V_{p}\left(L, M_{p}^{\tau} N\right) .
$$

This together with (2.17) gives

$$
\widetilde{V}_{-p}\left(N, \Pi_{p}^{\tau, *} K\right) \leq \widetilde{V}_{-p}\left(N, \Pi_{p}^{\tau, *} L\right)
$$

Taking $N=\Pi_{p}^{\tau, *} L$, using (2.7) and inequality (2.8), we get

$$
V\left(\Pi_{p}^{\tau, *} L\right) \geq \widetilde{V}_{-p}\left(\Pi_{p}^{\tau, *} L, \Pi_{p}^{\tau, *} K\right) \geq V\left(\Pi_{p}^{\tau, *} L\right)^{\frac{n+p}{n}} V\left(\Pi_{p}^{\tau, *} K\right)^{-\frac{p}{n}}
$$

This yields (4.4).
According to Theorem 2.D, we see that the equality condition of (4.3) implies $V\left(\Pi_{p}^{\tau, *} K\right)=V\left(\Pi_{p}^{\tau, *} L\right)$. Therefore, we know that equality hold in (4.3) and (4.4) if and only if $K=L$.

Acknowledgment

The authors are most grateful to the referees for the extraordinary attention they gave to our paper.

References

1. W. J. Firey, Mean cross-section measures of harmonic means of convex bodies, Pacific J. Math., 11 (1961), 1263-1266.
2. W. J. Firey, p-means of convex bodies, Math. Scand., 10 (1962), 17-24.
3. R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, UK, 2nd ed., 2006.
4. C. Haberl, L_{p} intersection bodies, Adv. Math., 217(6) (2008), 2599-2624.
5. C. Haberl and M. Ludwig, A characterization of L_{p} intersection bodies, International Mathematics Research Notices, Art ID 10548, 2006.
6. C. Haberl and F. Schuster, General L_{p} affine isoperimetric inequalities, J. Differential Geom., 83(1) (2009), 1-26.
7. A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, 116, American Mathematical Society, Providence, RI, 2005.
8. M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc., 357 (2005), 4191-4213.
9. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365-391.
10. E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
11. E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
12. E. Lutwak, D. Yang and G. Y. Zhang, L_{p} affine isoperimetric inequalities, J. Differential Geom., 56 (2000), 111-132.
13. S. J. Lv and G. S. Leng, The L_{p}-curvature images of convex bodies and L_{p}-projection bodies, Proc. Indian Acad. Sci. Math. Sci., 118 (2008), 413-424.
14. T. Y. Ma and W. D. Wang, On the Analog of Shephard problem for the L_{p}-projection body, Math. Inequal. Appl., 14(1) (2011), 181-192.
15. C. M. Petty, Projection bodies, Proc. Coll. Convexity, Copenhagen, 1965, K ϕ benhavns Univ. Math. Inst., 1967, pp. 234-241.
16. D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. Journal, 53 (2004), 667-682.
17. R. Schneider, Zu einem Problem von Shephard über Projectionen konvexer Körper, Math. Z., 101 (1967), 71-82.
18. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.
19. G. C. Shephard, Shadow systems of convex bodies, Israel J. Math., 2 (1964), 229-236.
20. W. D. Wang, F. H. Lu and G. S. Leng, A type of monotonicity on the L_{p} centroid body and L_{p} projection body, Math. Inequal. Appl., 8(4) (2005), 735-742.
21. W. D. Wang and G. S. Leng, L_{p}-mixed affine surface area, J. Math. Anal. Appl., 335(1) (2007), 341-354.
22. W. D. Wang and G. S. Leng, The Petty projection inequality for L_{p}-mixed projection bodies, Acta Math. Sinica (English Series), 23(8) (2007), 1485-1494.
23. W. D. Wang and G. S. Leng, On the L_{p}-versions of the Petty's conjectured projection inequality and applications, Taiwan J. Math., 12(5) (2008), 1067-1086.
24. W. D. Wang and G. S. Leng, Some affine isoperimetric inequalities associated with L_{p}-affine surface area, Houston J. Math., 34(2) (2008), 443-453.
25. W. D. Wang, D. J. Wei and Y. Xiang, Some inequalities for the L_{p}-curvature image, J. Inequal. Appl., (2010), 1-12.
26. J. Yuan and W. S. Cheung, L_{p}-intersection bodies, J. Math. Anal. Appl., 339(2) (2008), 1431-1439.

Wang Weidong and Wan Xiaoyan
Department of Mathematics
China Three Gorges University
Yichang 443002
P. R. China
E-mail: wdwxh722@163.com

[^0]: Received September 1, 2011, accepted November 30, 2011.
 Communicated by Sun-Yung Alice Chang.
 2010 Mathematics Subject Classification: 52A40, 52A20.
 Key words and phrases: General L_{p}-projection body, Shephard problem, L_{p}-affine surface area.
 Research is supported in part by the Natural Science Foundation of China (Grant No. 10671117) and Science Foundation of China Three Gorges University.

