TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 5, pp. 1733-1748, October 2012 This paper is available online at http://journal.taiwanmathsoc.org.tw

GROWTH PROPERTIES FOR THE SOLUTIONS OF THE STATIONARY SCHRÖDINGER EQUATION IN A CONE

Lei Qiao, Bai-Yun Su and Guan-Tie Deng

Abstract. Our aim in this paper is to deal with the growth properties at infinity for the solutions of the stationary Schrödinger equation in an n-dimensional cone. Meanwhile, the geometrical properties of the exceptional sets are also discussed.

1. INTRODUCTION AND RESULTS

Let \mathbf{R} and \mathbf{R}_+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^n (n \ge 2)$ the *n*-dimensional Euclidean space. A point in \mathbf{R}^n is denoted by $P = (X, x_n), X = (x_1, x_2, \dots, x_{n-1})$. The Euclidean distance between two points P and Q in \mathbf{R}^n is denoted by |P - Q|. Also |P - O| with the origin O of \mathbf{R}^n is simply denoted by |P|. The boundary and the closure of a set \mathbf{S} in \mathbf{R}^n are denoted by $\partial \mathbf{S}$ and $\overline{\mathbf{S}}$, respectively.

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_{n-1})$, in \mathbb{R}^n which are related to cartesian coordinates $(x_1, x_2, \dots, x_{n-1}, x_n)$ by $x_n = r \cos \theta_1$.

The unit sphere and the upper half unit sphere in \mathbb{R}^n are denoted by \mathbb{S}^{n-1} and \mathbb{S}^{n-1}_+ , respectively. For simplicity, a point $(1, \Theta)$ on \mathbb{S}^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$ for a set Ω , $\Omega \subset \mathbb{S}^{n-1}$, are often identified with Θ and Ω , respectively. For two sets $\Xi \subset \mathbb{R}_+$ and $\Omega \subset \mathbb{S}^{n-1}$, the set $\{(r, \Theta) \in \mathbb{R}^n; r \in \Xi, (1, \Theta) \in \Omega\}$ in \mathbb{R}^n is simply denoted by $\Xi \times \Omega$. In particular, the half space $\mathbb{R}_+ \times \mathbb{S}^{n-1}_+ = \{(X, x_n) \in \mathbb{R}^n; x_n > 0\}$ will be denoted by \mathbb{T}_n .

For $P \in \mathbf{R}^n$ and r > 0, let B(P, r) denote the open ball with center at P and radius r in \mathbf{R}^n . $S_r = \partial B(O, r)$. By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} . We call it a cone. Then T_n is a special cone obtained by putting $\Omega = \mathbf{S}^{n-1}_+$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by

Received March 13, 2010, accepted November 24, 2011.

Communicated by Alexander Vasiliev.

²⁰¹⁰ Mathematics Subject Classification: 35J10, 35J25.

Key words and phrases: Growth property, Stationary Schrödinger equation, Generalized harmonic function, Cone.

This work is supported by SRFDP (No. 20100003110004) and NSF of China (No. 11071020).

 $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega; r)$ we denote $C_n(\Omega) \cap S_r$. By $S_n(\Omega)$ we denote $S_n(\Omega; (0, +\infty))$ which is $\partial C_n(\Omega) - \{O\}$.

We shall say that a set $E \subset C_n(\Omega)$ has a covering $\{r_j, R_j\}$ if there exists a sequence of balls $\{B_j\}$ with centers in $C_n(\Omega)$ such that $E \subset \bigcup_{j=1}^{\infty} B_j$, where r_j is the radius of B_j and R_j is the distance between the origin and the center of B_j . Furthermore, we denote by dS_r the (n-1)-dimensional volume elements induced by the Euclidean metric on S_r and by dw the elements of the Euclidean volume in \mathbb{R}^n .

Let \mathcal{A}_a denote the class of nonnegative radial potentials a(P), i.e. $0 \le a(P) = a(r)$, $P = (r, \Theta) \in C_n(\Omega)$, such that $a \in L^b_{loc}(C_n(\Omega))$ with some b > n/2 if $n \ge 4$ and with b = 2 if n = 2 or n = 3.

This article is devoted to the stationary Schrödinger equation

$$Sch_a u(P) = -\Delta u(P) + a(P)u(P) = 0$$
 for $P \in C_n(\Omega)$,

where Δ is the Laplace operator and $a \in \mathcal{A}_a$. These solutions called *a*-harmonic functions or generalized harmonic functions associated with the operator Sch_a . Note that they are classical harmonic functions in the classical case a = 0. Under these assumptions the operator Sch_a can be extended in the usual way from the space $C_0^{\infty}(C_n(\Omega))$ to an essentially self-adjoint operator on $L^2(C_n(\Omega))$ (see [13]). We will denote it Sch_a as well. This last one has a Green's function $G(\Omega, a)(P, Q)$. Here $G(\Omega, a)(P, Q)$ is positive on $C_n(\Omega)$ and its inner normal derivative $\partial G(\Omega, a)(P, Q)/\partial n_Q \ge 0$. We denote this derivative by $\mathbb{P}(\Omega, a)(P, Q)$, which is called the Poisson *a*-kernel with respect to $C_n(\Omega)$. We remark that $G(\Omega, 0)(P, Q)$ and $\mathbb{P}(\Omega, 0)(P, Q)$ are the Green's function and Poisson kernel of the Laplacian in $C_n(\Omega)$ respectively.

Let Δ^* be a Laplace-Beltrami operator (spherical part of the Laplace) on $\Omega \subset \mathbf{S}^{n-1}$ and λ_j $(j = 1, 2, 3..., 0 < \lambda_1 < \lambda_2 \le \lambda_3 \le ...)$ be the eigenvalues of the eigenvalue problem for Δ^* on Ω (see, e.g., [14, p. 41])

$$\Delta^* \varphi(\Theta) + \lambda \varphi(\Theta) = 0 \text{ in } \Omega,$$
$$\varphi(\Theta) = 0 \text{ on } \partial \Omega$$

Corresponding eigenfunctions are denoted by φ_{jv} $(1 \le v \le v_j)$, where v_j is the multiplicity of λ_j . We set $\lambda_0 = 0$, norm the eigenfunctions in $L^2(\Omega)$ and $\varphi_1 = \varphi_{11} > 0$.

In order to ensure the existences of λ_j (j = 1, 2, 3...). We put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2,\alpha}$ -domain $(0 < \alpha < 1)$ on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, p. 88-89] for the definition of $C^{2,\alpha}$ -domain). Then $\varphi_{jv} \in C^2(\overline{\Omega})$ $(j = 1, 2, 3, ..., 1 \le v \le v_j)$ and $\partial \varphi_1 / \partial n > 0$ on $\partial \Omega$ (here and below, $\partial / \partial n$ denotes differentiation along the interior normal).

Hence well-known estimates (see, e.g., [12, p. 14]) imply the following inequality:

(1.1)
$$\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \frac{\partial \varphi_{jv}(\Phi)}{\partial n_{\Phi}} \le M(n) j^{2n-1},$$

where the symbol M(n) denotes a constant depending only on n.

Let $V_i(r)$ and $W_i(r)$ stand, respectively, for the increasing and non-increasing, as $r \to +\infty$, solutions of the equation

(1.2)
$$-Q''(r) - \frac{n-1}{r}Q'(r) + \left(\frac{\lambda_j}{r^2} + a(r)\right)Q(r) = 0, \quad 0 < r < \infty,$$

normalized under the condition $V_i(1) = W_i(1) = 1$.

We shall also consider the class \mathcal{B}_a , consisting of the potentials $a \in \mathcal{A}_a$ such that there exists a finite limit $\lim_{r\to\infty}r^2a(r)=k\in[0,\infty)$, moreover, $r^{-1}|r^2a(r)-k|\in$ $L(1,\infty)$. If $a \in \mathcal{B}_a$, then the g.h.f.s are continuous (see [16]).

In the rest of paper, we assume that $a \in \mathcal{B}_a$ and we shall suppress this assumption for simplicity. Further, we use the standard notations $u^+ = \max(u, 0)$, $u^{-} = -\min(u, 0), [d]$ is the integer part of d and $d = [d] + \{d\}$, where d is a positive real number.

Denote

$$\iota_{j,k}^{\pm} = \frac{2 - n \pm \sqrt{(n-2)^2 + 4(k+\lambda_j)}}{2} \ (j = 0, 1, 2, 3...).$$

It is known (see [6]) that in the case under consideration the solutions to the equation (1.2) have the asymptotics

(1.3)
$$V_j(r) \sim d_1 r^{\iota_{j,k}^+}, \ W_j(r) \sim d_2 r^{\iota_{j,k}^-}, \ \text{as } r \to \infty,$$

where d_1 and d_2 are some positive constants.

Remark 1. $\iota_{j,0}^+ = j \ (j = 0, 1, 2, 3, ...)$ in the case $\Omega = \mathbf{S}_+^{n-1}$. If $a \in \mathcal{A}_a$, it is known that the following expansion for the Green function $G(\Omega, a)(P, Q)$ (see [3, Ch. 11], [7])

(1.4)
$$G(\Omega, a)(P, Q) = \sum_{j=0}^{\infty} \frac{1}{\chi'(1)} V_j(\min(r, t)) W_j(\max(r, t)) \left(\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \varphi_{jv}(\Phi) \right),$$

where $P = (r, \Theta)$, $Q = (t, \Phi)$, $r \neq t$ and $\chi'(s) = w(W_1(r), V_1(r))|_{r=s}$ is their Wronskian. The series converges uniformly if either $r \leq st$ or $t \leq sr$ (0 < s < 1). In the case a = 0, this expansion coincides with the well-known result by J. Lelong-Ferrand (see [8]). The expansion (1.4) can also be rewritten in terms of the Gegenbauer polynomials.

For a nonnegative integer m and two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$, we put

$$K(\Omega, a, m)(P, Q) = \begin{cases} 0 & \text{if } 0 < t < 1, \\ \widetilde{K}(\Omega, a, m)(P, Q) & \text{if } 1 \le t < \infty, \end{cases}$$

where

$$\widetilde{K}(\Omega, a, m)(P, Q) = \sum_{j=0}^{m} \frac{1}{\chi'(1)} V_j(r) W_j(t) \left(\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \varphi_{jv}(\Phi) \right).$$

We use the following modified kernel function defined by

$$G(\Omega, a, m)(P, Q) = G(\Omega, a)(P, Q) - K(\Omega, a, m)(P, Q)$$

for two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$.

Put

$$U(\Omega, a, m; u)(P) = \int_{S_n(\Omega)} \mathbb{P}(\Omega, a, m)(P, Q)u(Q)d\sigma_Q,$$

where

$$\mathbb{P}(\Omega, a, m)(P, Q) = \frac{\partial G(\Omega, a, m)(P, Q)}{\partial n_Q}, \ \mathbb{P}(\Omega, a, 0)(P, Q) = \mathbb{P}(\Omega, a)(P, Q),$$

u(Q) is a continuous function on $\partial C_n(\Omega)$ and $d\sigma_Q$ is the surface area element on $S_n(\Omega)$.

Remark 2. The kernel function $P(\mathbf{S}^{n-1}_+, 0, m)(P, Q)$ coincides with ones in Finkelstein-Scheinberg [4] and Siegel-Talvila [15].

If γ is a real number and $\gamma \geq 0 \ (resp. ~\gamma < 0),$ we assume in addition that $1 \leq p < \infty,$

$$\iota^{+}_{[\gamma],k} + \{\gamma\} > (-\iota^{+}_{1,k} - n + 2)p + n - 1,$$

(resp. $-\iota^{+}_{[-\gamma],k} - \{-\gamma\} > (-\iota^{+}_{1,k} - n + 2)p + n - 1,$)

in case p > 1

$$\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} < \iota_{m+1,k}^+ < \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} + 1;$$

$$\left(\ resp. \quad \frac{-\iota_{[-\gamma],k}^{+} - \{-\gamma\} - n + 1}{p} < \iota_{m+1,k}^{+} < \frac{-\iota_{[-\gamma],k}^{+} - \{-\gamma\} - n + 1}{p} + 1; \ \right)$$

and in case p = 1

$$\iota_{[\gamma],k}^{+} + \{\gamma\} - n + 1 \le \iota_{m+1,k}^{+} < \iota_{[\gamma],k}^{+} + \{\gamma\} - n + 2.$$

$$\left(resp. -\iota_{[-\gamma],k}^{+} - \{-\gamma\} - n + 1 \le \iota_{m+1,k}^{+} < -\iota_{[-\gamma],k}^{+} - \{-\gamma\} - n + 2. \right)$$

If these conditions all hold, we write $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$).

Let $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$) and u be functions on $\partial C_n(\Omega)$ satisfying

(1.5)
$$\int_{S_n(\Omega)} \frac{|u(t,\Phi)|^p}{1+t^{\iota_{[\gamma],k}^++\{\gamma\}}} d\sigma_Q < \infty.$$
$$\left(resp. \int_{S_n(\Omega)} |u(t,\Phi)|^p (1+t^{\iota_{[-\gamma],k}^++\{-\gamma\}}) d\sigma_Q < \infty. \right)$$

For γ and u, we define the positive measure μ (resp. ν) on \mathbb{R}^n by

$$d\mu(Q) = \begin{cases} |u(t,\Phi)|^{p} t^{-\iota_{[\gamma],k}^{+} - \{\gamma\}} d\sigma_{Q} & Q = (t,\Phi) \in S_{n}(\Omega;(1,+\infty)), \\ 0 & Q \in \mathbf{R}^{n} - S_{n}(\Omega;(1,+\infty)). \end{cases}$$

$$(resp. \ d\nu(Q) = \begin{cases} |u(t,\Phi)|^{p} t^{\iota_{[-\gamma],k}^{+} + \{-\gamma\}} d\sigma_{Q} & Q = (t,\Phi) \in S_{n}(\Omega;(1,+\infty)), \\ 0 & Q \in \mathbf{R}^{n} - S_{n}(\Omega;(1,+\infty)). \end{cases}$$

We remark that the total mass of μ and ν are finite.

Let $\epsilon > 0$, $\xi \ge 0$ and μ be any positive measure on \mathbb{R}^n having finite mass. For each $P = (r, \Theta) \in \mathbb{R}^n - \{O\}$, as in [10], the maximal function is defined by

$$M(P; \mu, \xi) = \sup_{0 < \rho < \frac{r}{2}} \frac{\mu(B(P, \rho))}{\rho^{\xi}}$$

The set $(P = (r, \Theta) \in \mathbf{R}^n - \{O\}; M(P; \mu, \xi)r^{\xi} > \epsilon)$ is denoted by $E(\epsilon; \mu, \xi)$. Recently, Siegel-Talvila (cf. [15, Corollary 2.1]) proved the following result.

Theorem A. If u is a continuous function on ∂T_n satisfying

$$\int_{\partial T_n} \frac{|u(t,\Phi)|}{1+t^{n+m}} dQ < \infty,$$

then the function $U(\mathbf{S}^{n-1}_+, 0, m; u)(P)$ satisfies

$$\begin{split} U(\mathbf{S}_{+}^{n-1}, 0, m; u) &\in C^{2}(T_{n}) \cap C^{0}(\overline{T_{n}}), \\ \Delta U(\mathbf{S}_{+}^{n-1}, 0, m; u) &= 0 \text{ in } T_{n}, \\ U(\mathbf{S}_{+}^{n-1}, 0, m; u) &= u \text{ on } \partial T_{n}, \\ \lim_{r \to \infty, P = (r, \Theta) \in T_{n}} U(\mathbf{S}_{+}^{n-1}, 0, m; u)(P) &= o(r^{m+1} \cos^{1-n} \theta_{1}) \end{split}$$

Now we have

Theorem 1. If $\epsilon > 0$, $0 \le \zeta \le np$, $\gamma \in \mathbb{C}(k, p, m, n)$ (resp. $\gamma \in \mathbb{D}(k, p, m, n)$) and u is a measurable function on $\partial C_n(\Omega)$ satisfying (1.5), then there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \mu, np - \zeta)$ (resp. $E(\epsilon; \nu, np - \zeta)$) ($\subset C_n(\Omega)$) satisfying

$$\sum_{j=0}^{\infty} \left(\frac{r_j}{R_j}\right)^{(p-1)n+2-\zeta} V_j\left(\frac{R_j}{r_j}\right) W_j\left(\frac{R_j}{r_j}\right) < \infty$$

such that

$$\lim_{r \to \infty, P = (r,\Theta) \in C_n(\Omega) - E(\epsilon;\mu,np-\zeta)} r^{\frac{-\iota_{[\gamma],k}^+ - \{\gamma\} + n - 1}{p}} \varphi_1^{\frac{\zeta}{p} - 1}(\Theta) U(\Omega, a, m; u)(P) = 0.$$

$$\left(\text{resp.} \lim_{r \to \infty, P = (r,\Theta) \in C_n(\Omega) - E(\epsilon;\nu,np-\zeta)} r^{\frac{\iota_{[-\gamma],k}^+ + \{-\gamma\} + n - 1}{p}} \varphi_1^{\frac{\zeta}{p} - 1}(\Theta) U(\Omega, a, m; u)(P) = 0. \right)$$

$$\text{Let } 1 \le p < \infty, \ 0 \le \zeta \le np, \ \gamma > -(n-1)(p-1) \text{ and}$$

$$\frac{\gamma - n + 1}{p} - 1 < m < \frac{\gamma - n + 1}{p} \text{ in case } p > 1,$$

$$\gamma - n \le m < \gamma - n + 1 \text{ in case } p = 1;$$

We assume in addition that u is a measurable function on ∂T_n satisfying

$$\int_{\partial T_n} \frac{|u(t,\Phi)|^p}{1+t^{\gamma}} d\sigma_Q < \infty.$$

For this γ and u, we define

$$d\mu'(Q) = \begin{cases} |u(t,\Phi)|^p t^{-\gamma} d\sigma_Q & Q = (t,\Phi) \in S_n(\mathbf{S}^{n-1}_+; (1,+\infty)), \\ 0 & Q \in \mathbf{R}^n - S_n(\mathbf{S}^{n-1}_+; (1,+\infty)). \end{cases}$$

Obviously, the total mass of μ^\prime is also finite.

If we take $\Omega = \mathbf{S}_{+}^{n-1}$ and a = 0 in Theorem 1, then we immediately have the following growth property based on (1.3) and Remark 1.

Corollary 1. If p, ζ , γ , m and u are defined as above, then the function $U(\mathbf{S}^{n-1}_+, 0, m; u)(P)$ is a harmonic function on T_n and there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \mu', np - \zeta)$ ($\subset T_n$) satisfying

(1.6)
$$\sum_{j=0}^{\infty} \left(\frac{r_j}{R_j}\right)^{np-\zeta} < \infty$$

such that

(1.7)
$$\lim_{r \to \infty, P = (r,\Theta) \in T_n - E(\epsilon; \mu', np - \zeta)} r^{\frac{n - \gamma - 1}{p}} \cos^{\frac{\zeta}{p} - 1} \theta_1 U(\mathbf{S}^{n-1}_+, 0, m; u)(P) = 0.$$

Growth Properties for the Solutions of the Stationary Schrödinger Equation in a Cone 1739

Remark 3. In the case that p = 1, $\gamma = n + m$ and $\zeta = n$, then (1.6) is a finite sum, the set $E(\epsilon; \mu', 0)$ is a bounded set and (1.7) holds in T_n . This is just the result of Mizuta-Shimomura (see [11, Theorem 1 with $\lambda = n$]).

Remark 4. In the case $\zeta = (1-\beta)p$, we can easily show that $E(\epsilon; \mu', (n-1+\beta)p)$ is $(k_{\beta,\lambda}, p)$ -thin at infinity in the sense of [11, p. 335].

As an application of Theorem 1, we give the solutions of the Dirichlet problem for the Schrödinger operator on $C_n(\Omega)$.

Theorem 2. If u is a continuous function on $\partial C_n(\Omega)$ satisfying

(1.8)
$$\int_{S_n(\Omega)} \frac{|u(t,\Phi)|}{1+V_{m+1}(t)t^{n-1}} d\sigma_Q < \infty,$$

then the function $U(\Omega, a, m; u)(P)$ satisfies

$$U(\Omega, a, m; u) \in C^{2}(C_{n}(\Omega)) \cap C^{0}(C_{n}(\Omega)),$$

$$Sch_{a}U(\Omega, a, m; u) = 0 \text{ in } C_{n}(\Omega),$$

$$U(\Omega, a, m; u) = u \text{ on } \partial C_{n}(\Omega),$$

$$\lim_{r \to \infty, P = (r, \Theta) \in C_{n}(\Omega)} r^{-\iota_{m+1,k}^{+}} \varphi_{1}^{n-1}(\Theta)U(\Omega, a, m; u)(P) = 0$$

2. Lemmas

Throughout this paper, Let M denote various constants independent of the variables in questions, which may be different from line to line.

Lemma 1.

- (i) $\mathbb{P}(\Omega, a)(P, Q) \leq Mr^{\iota_{1,k}} t^{\iota_{1,k}^+ 1} \varphi_1(\Theta)$
- (ii) (resp. $\mathbb{P}(\Omega, a)(P, Q) \leq Mr^{\iota_{1,k}^+} t^{\iota_{1,k}^- 1} \varphi_1(\Theta)$) for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $0 < \frac{t}{r} \leq \frac{4}{5}$ (resp. $0 < \frac{r}{t} \leq \frac{4}{5}$);
- (iii) $\mathbb{P}(\Omega, 0)(P, Q) \leq M \frac{\varphi_1(\Theta)}{t^{n-1}} + M \frac{r\varphi_1(\Theta)}{|P-Q|^n}$ for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)).$

Proof. (i) and (ii) are obtained by A. Kheyfits (see [3, Ch. 11]). (iii) follows from V. S. Azarin (see [2, Lemma 4 and Remark]).

Lemma 2 (see [7]). For a non-negative integer m, we have

(2.1)
$$|\mathbb{P}(\Omega, a, m)(P, Q)| \le M(n, m, s) V_{m+1}(r) \frac{W_{m+1}(t)}{t} \varphi_1(\Theta) \frac{\partial \varphi_1(\Phi)}{\partial n_{\Phi}}$$

for any $P = (r, \Theta) \in C_n(\Omega)$ and $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $r \le st$ (0 < s < 1), where M(n, m, s) is a constant dependent of n, m and s.

The proof of the following Lemma is essentially based on Hayman (see [9, p. 109]) in \mathbb{R}^2 . We extend this result to $\mathbb{R}^n (n \ge 2)$ and give the proof here for the completeness.

Lemma 3. Let $\epsilon > 0$, $\xi \ge 0$ and μ be any positive measure on \mathbb{R}^n having finite total mass. Then $E(\epsilon; \mu, \xi)$ has a covering $\{r_j, R_j\}$ (j = 1, 2, ...) satisfying

$$\sum_{j=1}^{\infty} (\frac{r_j}{R_j})^{2-n+\xi} V_j(\frac{R_j}{r_j}) W_j(\frac{R_j}{r_j}) < \infty.$$

Proof. Set

$$E_j(\epsilon;\mu,\xi) = (P = (r,\Theta) \in E(\epsilon;\mu,\xi) : 2^j \le r < 2^{j+1}) \ (j = 2, 3, 4, \ldots).$$

If $P = (r, \Theta) \in E_j(\epsilon; \mu, \xi)$, then there exists a positive number $\rho(P)$ such that

$$\left(\frac{\rho(P)}{r}\right)^{2-n+\xi} V_j\left(\frac{r}{\rho(P)}\right) W_j\left(\frac{r}{\rho(P)}\right) \sim \left(\frac{\rho(P)}{r}\right)^{\xi} \leq \frac{\mu(B(P,\rho(P)))}{\epsilon}$$

Here $E_j(\epsilon; \mu, \xi)$ can be covered by the union of a family of balls $(B(P_{j,i}, \rho_{j,i}) : P_{j,i} \in E_j(\epsilon; \mu, \xi))$ $(\rho_{j,i} = \rho(P_{j,i}))$. By the Vitali Lemma (see [17]), there exists $\Lambda_j \subset E_j(\epsilon; \mu, \xi)$, which is at most countable, such that $(B(P_{j,i}, \rho_{j,i}) : P_{j,i} \in \Lambda_j)$ are disjoint and $E_j(\epsilon; \mu, \xi) \subset \bigcup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, 5\rho_{j,i})$.

So

$$\cup_{j=2}^{\infty} E_j(\epsilon; \mu, \xi) \subset \bigcup_{j=2}^{\infty} \cup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, 5\rho_{j,i}).$$

On the other hand, note that $\bigcup_{P_{j,i} \in \Lambda_j} B(P_{j,i}, \rho_{j,i}) \subset (P = (r, \Theta) : 2^{j-1} \leq r < 2^{j+2})$, so that

$$\sum_{P_{j,i} \in \Lambda_{j}} \left(\frac{5\rho_{j,i}}{|P_{j,i}|}\right)^{2-n+\xi} V_{j}\left(\frac{|P_{j,i}|}{5\rho_{j,i}}\right) W_{j}\left(\frac{|P_{j,i}|}{5\rho_{j,i}}\right) \sim \sum_{P_{j,i} \in \Lambda_{j}} \left(\frac{5\rho_{j,i}}{|P_{j,i}|}\right)^{\xi} \\ \leq 5^{\xi} \sum_{P_{j,i} \in \Lambda_{j}} \frac{\mu(B(P_{j,i}, \rho_{j,i}))}{\epsilon} \\ \leq \frac{5^{\xi}}{\epsilon} \mu(C_{n}(\Omega; [2^{j-1}, 2^{j+2}))).$$

Hence we obtain

1740

Growth Properties for the Solutions of the Stationary Schrödinger Equation in a Cone 1741

$$\sum_{j=1}^{\infty} \sum_{P_{j,i} \in \Lambda_j} \left(\frac{\rho_{j,i}}{|P_{j,i}|}\right)^{2-n+\xi} V_j\left(\frac{|P_{j,i}|}{\rho_{j,i}}\right) W_j\left(\frac{|P_{j,i}|}{\rho_{j,i}}\right) \sim \sum_{j=1}^{\infty} \sum_{P_{j,i} \in \Lambda_j} \left(\frac{\rho_{j,i}}{|P_{j,i}|}\right)^{\xi}$$
$$\leq \sum_{j=1}^{\infty} \frac{\mu(C_n(\Omega; [2^{j-1}, 2^{j+2})))}{\epsilon}$$
$$\leq \frac{3\mu(\mathbf{R}^n)}{\epsilon}.$$

Since $E(\epsilon; \mu, \xi) \cap \{P = (r, \Theta) \in \mathbb{R}^n; r \ge 4\} = \bigcup_{j=2}^{\infty} E_j(\epsilon; \mu, \xi)$. Then $E(\epsilon; \mu, \xi)$ is finally covered by a sequence of balls $(B(P_{j,i}, \rho_{j,i}), B(P_1, 6))$ $(j = 2, 3, \ldots; i = 1, 2, \ldots)$ satisfying

$$\sum_{j,i} (\frac{\rho_{j,i}}{|P_{j,i}|})^{2-n+\xi} V_j(\frac{|P_{j,i}|}{\rho_{j,i}}) W_j(\frac{|P_{j,i}|}{\rho_{j,i}}) \sim \sum_{j,i} (\frac{\rho_{j,i}}{|P_{j,i}|})^{\xi} \le \frac{3\mu(\mathbf{R}^n)}{\epsilon} + 6^{\xi} < +\infty,$$

where $B(P_1, 6)$ $(P_1 = (1, 0, ..., 0) \in \mathbf{R}^n)$ is the ball which covers $\{P = (r, \Theta) \in \mathbf{R}^n; r < 4\}$.

3. Proof of Theorem 1

We only prove the case p > 1 and $\gamma \ge 0$, the remaining cases can be proved similarly.

For any $\epsilon > 0$, there exists $R_{\epsilon} > 1$ such that

(3.1)
$$\int_{S_n(\Omega;(R_{\epsilon},\infty))} \frac{|u(Q)|^p}{1+t^{\iota_{[\gamma],k}^++\{\gamma\}}} d\sigma_Q < \epsilon.$$

The relation $G(\Omega, a)(P, Q) \leq G(\Omega, 0)(P, Q)$ implies this inequality (see [1])

(3.2)
$$\mathbb{P}(\Omega, a)(P, Q) \le \mathbb{P}(\Omega, 0)(P, Q).$$

For $0 < s < \frac{4}{5}$ and any fixed point $P = (r, \Theta) \in C_n(\Omega) - E(\epsilon; \mu, np - \zeta)$ satisfying $r > \frac{5}{4}R_{\epsilon}$, let $I_1 = S_n(\Omega; (0, 1))$, $I_2 = S_n(\Omega; [1, R_{\epsilon}])$, $I_3 = S_n(\Omega; (R_{\epsilon}, \frac{4}{5}r])$, $I_4 = S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r))$, $I_5 = S_n(\Omega; [\frac{5}{4}r, \frac{r}{s}))$, $I_6 = S_n(\Omega; [\frac{r}{s}, \infty))$ and $I_7 = S_n(\Omega; [1, \frac{r}{s}))$, we write

$$\begin{split} &U(\Omega, a, m; u)(P) \\ &= \sum_{i=1}^{6} \int_{I_{i}} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d\sigma_{Q} \\ &= \sum_{i=1}^{5} \int_{I_{i}} \mathbb{P}(\Omega, a)(P, Q) u(Q) d\sigma_{Q} - \int_{I_{7}} \frac{\partial \widetilde{K}(\Omega, a, m)(P, Q)}{\partial n_{Q}} u(Q) d\sigma_{Q} \\ &+ \int_{I_{6}} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d\sigma_{Q}, \end{split}$$

which yields that

$$U(\Omega, a, m; u)(P) \leq \sum_{i=1}^{7} U_i(P),$$

where

$$U_{i}(P) = \int_{I_{i}} |\mathbb{P}(\Omega, a)(P, Q)| |u(Q)| d\sigma_{Q} \ (i = 1, 2, 3, 4, 5),$$

$$U_{6}(P) = \int_{I_{6}} |\mathbb{P}(\Omega, a, m)(P, Q)| |u(Q)| d\sigma_{Q},$$

and

$$U_7(P) = \int_{I_7} \left| \frac{\partial \widetilde{K}(\Omega, a, m)(P, Q)}{\partial n_Q} \right| |u(Q)| d\sigma_Q.$$

If $\iota_{[\gamma],k}^+ + \{\gamma\} > (-\iota_{1,k}^+ - n + 2)p + n - 1$, then $(\iota_{1,k}^+ - 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 > 0$. By (1.5), (3.1), Lemma 1 (i) and Hölder's inequality, we have the following growth estimates

$$U_{2}(P) \leq Mr^{\iota_{1,k}^{-}}\varphi_{1}(\Theta) \int_{I_{2}} t^{\iota_{1,k}^{+}-1} |u(Q)| d\sigma_{Q}$$

$$\leq Mr^{\iota_{1,k}^{-}}\varphi_{1}(\Theta) \left(\int_{I_{2}} \frac{|u(Q)|^{p}}{t^{\iota_{\gamma}^{+}}, \kappa^{+}} d\sigma_{Q} \right)^{\frac{1}{p}} \left(\int_{I_{2}} t^{(\iota_{1,k}^{+}-1+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}}{p})q} d\sigma_{Q} \right)^{\frac{1}{q}}$$

$$(3.3) \leq Mr^{\iota_{1,k}^{-}} R_{\epsilon}^{\iota_{1,k}^{+}+n-2+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta).$$

(3.4)
$$U_1(P) \le M r^{\iota_{1,k}^-} \varphi_1(\Theta).$$

(3.5)
$$U_3(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^{\tau} + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

If $\iota_{m+1,k}^+ > \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}$, then $(\iota_{1,k}^- - 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 < 0$. We obtain by (3.1), Lemma 1 (ii) and Hölder's inequality

$$(3.6) \qquad U_{5}(P) \leq Mr^{\iota_{1,k}^{+}}\varphi_{1}(\Theta) \int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))} t^{\iota_{1,k}^{-}-1} |u(Q)| d\sigma_{Q}$$

$$\leq Mr^{\iota_{1,k}^{+}}\varphi_{1}(\Theta) \left(\int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))} \frac{|u(Q)|^{p}}{t^{\iota_{[\gamma],k}^{+}+\{\gamma\}}} d\sigma_{Q}\right)^{\frac{1}{p}}$$

$$\left(\int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))} t^{(\iota_{1,k}^{-}-1+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}}{p})q} d\sigma_{Q}\right)^{\frac{1}{q}}$$

$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta)$$

1742

By (3.2) and Lemma 1 (iii), we consider the inequality

$$U_4(P) \le U_4'(P) + U_4''(P),$$

where

$$U_{4}'(P) = M\varphi_{1}(\Theta) \int_{I_{4}} t^{1-n} |u(Q)| d\sigma_{Q}, \ U_{4}''(P) = Mr\varphi_{1}(\Theta) \int_{I_{4}} \frac{|u(Q)|}{|P-Q|^{n}} d\sigma_{Q}.$$

We first have

(3.7)
$$U_{4}'(P) = M\varphi_{1}(\Theta) \int_{I_{4}} t^{\iota_{1,k}^{+}+\iota_{1,k}^{-}-1} |u(Q)| d\sigma_{Q}$$
$$\leq Mr^{\iota_{1,k}^{+}}\varphi_{1}(\Theta) \int_{S_{n}(\Omega;(\frac{4}{5}r,\infty))} t^{\iota_{1,k}^{-}-1} |u(Q)| d\sigma_{Q}$$
$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta),$$

which is similar to the estimate of $U_5(P)$.

Next, we shall estimate $U_4''(P)$.

Take a sufficiently small positive number d_3 such that $I_4 \subset B(P, \frac{1}{2}r)$ for any $P = (r, \Theta) \in \Pi(d_3)$, where

$$\Pi(d_3) = \{ P = (r, \Theta) \in C_n(\Omega); \inf_{z \in \partial \Omega} | (1, \Theta) - (1, z) | < d_3, \ 0 < r < \infty \}.$$

and divide $C_n(\Omega)$ into two sets $\Pi(d_3)$ and $C_n(\Omega) - \Pi(d_3)$.

If $P = (r, \Theta) \in C_n(\Omega) - \Pi(d_3)$, then there exists a positive d'_3 such that $|P - Q| \ge d'_3 r$ for any $Q \in S_n(\Omega)$, and hence

(3.8)
$$U_{4}''(P) \leq M\varphi_{1}(\Theta) \int_{I_{4}} t^{1-n} |u(Q)| d\sigma_{Q}$$
$$\leq M \epsilon r^{\frac{\iota_{[\gamma],k}^{+} + \{\gamma\} - n+1}{p}} \varphi_{1}(\Theta),$$

which is similar to the estimate of $U'_4(P)$.

We shall consider the case $P = (r, \Theta) \in \Pi(d_3)$. Now put

$$H_i(P) = \{ Q \in I_4; \ 2^{i-1}\delta(P) \le |P - Q| < 2^i\delta(P) \},\$$

where $\delta(P) = \inf_{Q \in \partial C_n(\Omega)} |P - Q|.$ Since $S_n(\Omega) \cap \{Q \in \mathbf{R}^n : |P - Q| < \delta(P)\} = \emptyset$, we have

$$U_4''(P) = M \sum_{i=1}^{i(P)} \int_{H_i(P)} r\varphi_1(\Theta) \frac{|u(Q)|}{|P-Q|^n} d\sigma_Q,$$

where i(P) is a positive integer satisfying $2^{i(P)-1}\delta(P) \leq \frac{r}{2} < 2^{i(P)}\delta(P)$. Since $r\varphi_1(\Theta) \leq M\delta(P)$ $(P = (r, \Theta) \in C_n(\Omega))$, similar to the estimate of $U'_4(P)$, we obtain

$$\begin{split} &\int_{H_i(P)} r\varphi_1(\Theta) \frac{|u(Q)|}{|P-Q|^n} d\sigma_Q \\ &\leq 2^{(1-i)n} \varphi_1(\Theta) \delta(P)^{\frac{\zeta-np}{p}} \int_{H_i(P)} \delta(P)^{\frac{np-\zeta}{p}-n} |u(Q)| d\sigma_Q \\ &\leq M \varphi_1^{1-\frac{\zeta}{p}}(\Theta) \delta(P)^{\frac{\zeta-np}{p}} \int_{H_i(P)} r^{1-\frac{\zeta}{p}} |u(Q)| d\sigma_Q \\ &\leq M r^{n-\frac{\zeta}{p}} \varphi_1^{1-\frac{\zeta}{p}}(\Theta) \delta(P)^{\frac{\zeta-np}{p}} \int_{H_i(P)} t^{1-n} |u(Q)| d\sigma_Q \\ &\leq M \epsilon r^{\frac{\iota_{(\gamma),k}^+ + \{\gamma\} - n - \zeta + 1}{p} + n} \varphi_1^{1-\frac{\zeta}{p}}(\Theta) \left(\frac{\mu(H_i(P))}{(2^i \delta(P))^{np-\zeta}}\right)^{\frac{1}{p}} \end{split}$$

for $i = 0, 1, 2, \dots, i(P)$. Since $P = (r, \Theta) \notin E(\epsilon; \mu, np - \zeta)$, we have

$$\frac{\mu(H_i(P))}{(2^i\delta(P))^{np-\zeta}} \le \frac{\mu(B(P,2^i\delta(P)))}{(2^i\delta(P))^{np-\zeta}}$$
$$\le M(P;\mu,np-\zeta) \le \epsilon r^{\zeta-np} \ (i=0,1,2,\ldots,i(P)-1)$$

and

$$\frac{\mu(H_{i(P)}(P))}{(2^i\delta(P))^{np-\zeta}} \le \frac{\mu(B(P, \frac{r}{2}))}{(\frac{r}{2})^{np-\zeta}} \le \epsilon r^{\zeta-np}.$$

So

(3.9)
$$U_4''(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ \{\gamma\} - n + 1}{p}} \varphi_1^{1 - \frac{\zeta}{p}}(\Theta).$$

We only consider $U_7(P)$ in the case $m \ge 1$, since $U_7(P) \equiv 0$ for m = 0. By the definition of $\widetilde{K}(\Omega, a, m)$, (1.1) and Lemma 2, we see

$$U_7(P) \le \frac{M}{\chi'(1)} \sum_{j=0}^m j^{2n-1} q_j(r),$$

where

$$q_j(r) = V_j(r)\varphi_1(\Theta) \int_{I_7} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q.$$

To estimate $q_j(r)$, we write

$$q_j(r) \le q'_j(r) + q''_j(r),$$

where

$$q_j'(r) = V_j(r)\varphi_1(\Theta) \int_{I_2} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q, \ q_j''(r)$$
$$= V_j(r)\varphi_1(\Theta) \int_{S_n(\Omega;(R_\epsilon, \frac{r}{s}))} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q$$

If $\iota_{m+1,k}^+ < \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} + 1$, then $(-\iota_{m+1,k}^+ - n + 2 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 > 0$. Notice that

$$V_j(r)\frac{V_{m+1}(t)}{V_j(t)t} \le M \frac{V_{m+1}(r)}{r} \le M r^{t_{m+1,k}^+ - 1} \ (t \ge 1, R_{\epsilon} < \frac{r}{s}).$$

Thus, by (1.3), (1.5) and Hölder's inequality we conclude

$$\begin{aligned} q_{j}'(r) &= V_{j}(r)\varphi_{1}(\Theta) \int_{I_{2}} \frac{|u(Q)|}{V_{j}(t)t^{n-1}} d\sigma_{Q} \\ &\leq MV_{j}(r)\varphi_{1}(\Theta) \int_{I_{2}} \frac{V_{m+1}(t)}{t^{\iota_{m+1,k}^{+}}} \frac{|u(Q)|}{V_{j}(t)t^{n-1}} d\sigma_{Q} \\ &\leq r^{\iota_{m+1,k}^{+}-1}\varphi_{1}(\Theta) \left(\int_{I_{2}} \frac{|u(Q)|^{p}}{t^{\iota_{(\gamma),k}^{+}+\{\gamma\}}} d\sigma_{Q} \right)^{\frac{1}{p}} \left(\int_{I_{2}} t^{(-\iota_{m+1,k}^{+}-n+2+\frac{\iota_{(\gamma),k}^{+}+\{\gamma\}}{p})q} d\sigma_{Q} \right)^{\frac{1}{q}} \\ &\leq Mr^{\iota_{m+1,k}^{+}-1} R_{\epsilon}^{-\iota_{m+1,k}^{+}+1+\frac{\iota_{(\gamma),k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta). \end{aligned}$$

Analogous to the estimate of $q_j'(r)$, we have

$$q_j''(r) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

Thus we can conclude that

$$q_j(r) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ \{\gamma\} - n + 1}{p}} \varphi_1(\Theta),$$

which yields

(3.10)
$$U_7(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

If $\iota_{m+1,k}^+ > \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}$, then $(-\iota_{m+1,k}^+ - n + 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 < 0$. By (3.1), Lemma 2 and Hölder's inequality we have

Lei Qiao, Bai-Yun Su and Guan-Tie Deng

(3.11)

$$U_{6}(P) \leq MV_{m+1}(r)\varphi_{1}(\Theta) \int_{I_{6}} \frac{|u(Q)|}{V_{m+1}(t)t^{n-1}} d\sigma_{Q}$$

$$\leq MV_{m+1}(r)\varphi_{1}(\Theta) \left(\int_{I_{6}} \frac{|u(Q)|^{p}}{t^{\prime}[\gamma],k} + \{\gamma\}} d\sigma_{Q}\right)^{\frac{1}{p}}$$

$$\left(\int_{I_{6}} t^{(-\iota_{m+1,k}^{+} - n + 1 + \frac{\iota_{[\gamma],k}^{+} + \{\gamma\}}{p})q} d\sigma_{Q}\right)^{\frac{1}{q}}$$

$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^{+} + \{\gamma\} - n + 1}{p}} \varphi_{1}(\Theta).$$

Combining (3.3)-(3.11), we obtain that if R_{ϵ} is sufficiently large and ϵ is sufficiently small, then $U(\Omega, a, m; u)(P) = o(r^{\frac{\iota_{[\gamma],k}^{+} + \{\gamma\} - n + 1}{p}} \varphi_1^{1 - \frac{\zeta}{p}}(\Theta))$ as $r \to \infty$, where $P = (r, \Theta) \in C_n(\Omega; (R_{\epsilon}, +\infty)) - E(\epsilon; \mu, np - \zeta)$. Finally, there exists an additional finite ball B_0 covering $C_n(\Omega; (0, R_{\epsilon}])$, which together with Lemma 3, gives the conclusion of Theorem 1.

4. Proof of Theorem 2

For any fixed $P = (r, \Theta) \in C_n(\Omega)$, take a number satisfying $R > \max(1, \frac{r}{s})$ $(0 < s < \frac{4}{5})$.

By (1.8) and Lemma 2, we have

$$\int_{S_{n}(\Omega;(R,\infty))} |\mathbb{P}(\Omega, a, m)(P, Q)| |u(Q)| d\sigma_{Q}$$

$$\leq V_{m+1}(r)\varphi_{1}(\Theta) \int_{S_{n}(\Omega;(R,\infty))} \frac{|u(Q)|}{V_{m+1}(t)t^{n-1}} d\sigma_{Q}$$

$$\leq MV_{m+1}(r)\varphi_{1}(\Theta)$$

$$< \infty.$$

Then $U(\Omega, a, m; u)(P)$ is absolutely convergent and finite for any $P \in C_n(\Omega)$. Thus $U(\Omega, a, m; u)(P)$ is a generalized harmonic function on $C_n(\Omega)$.

Now we study the boundary behavior of $U(\Omega, a, m; u)(P)$. Let $Q' = (t', \Phi') \in \partial C_n(\Omega)$ be any fixed point and l be any positive number satisfying $l > \max(t'+1, \frac{4}{5}R)$.

Set $\chi_{S(l)}$ is the characteristic function of $S(l) = \{Q = (t, \Phi) \in \partial C_n(\Omega), t \leq l\}$ and write

$$U(\Omega, a, m; u)(P) = \left(\int_{S_n(\Omega; (0,1))} + \int_{S_n(\Omega; [1, \frac{5}{4}l])} + \int_{S_n(\Omega; (\frac{5}{4}l, \infty))} \right)$$
$$\mathbb{P}(\Omega, a, m)(P, Q)u(Q)d\sigma_Q$$
$$= U'(P) - U''(P) + U'''(P),$$

where

1746

Growth Properties for the Solutions of the Stationary Schrödinger Equation in a Cone 1747

$$U'(P) = \int_{S_n(\Omega; (0, \frac{5}{4}l))} \mathbb{P}(\Omega, a)(P, Q)u(Q)d\sigma_Q$$
$$U''(P) = \int_{S_n(\Omega; [1, \frac{5}{4}l])} \frac{\partial K(\Omega, a, m)(P, Q)}{\partial n_Q}u(Q)d\sigma_Q$$

and

$$U'''(P) = \int_{S_n(\Omega;(\frac{5}{4}l,\infty))} \mathbb{P}(\Omega, a, m)(P, Q)u(Q)d\sigma_Q.$$

Notice that U'(P) is the Poisson *a*-integral of $u(Q)\chi_{S(\frac{5}{4}l)}$, we have $\lim_{P \to Q', P \in C_n(\Omega)} U'(P) = u(Q')$. Since $\lim_{\Theta \to \Phi'} \varphi_{jv}(\Theta) = 0$ $(j = 1, 2, 3...; 1 \le v \le v_j)$ as $P = (r, \Theta) \to Q' = (t', \Phi') \in S_n(\Omega)$, we have $\lim_{P \to Q', P \in C_n(\Omega)} U''(P) = 0$ from the definition of the kernel function $K(\Omega, a, m)(P, Q)$. $U'''(P) = O(V_{m+1}(r)\varphi_1(\Theta))$ and therefore tends to zero.

So the function $U(\Omega, a, m; u)(P)$ can be continuously extended to $\overline{C_n(\Omega)}$ such that

$$\lim_{P \to Q', P \in C_n(\Omega)} U(\Omega, a, m; u)(P) = u(Q')$$

for any $Q' = (t', \Phi') \in \partial C_n(\Omega)$ from the arbitrariness of l, which with Theorem 1 gives the conclusion of Theorem 2.

REFERENCES

- 1. A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, *J. d'Anal. Math.*, **72** (1997), 45-92.
- 2. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an *m*-dimensional cone, *Amer. Math. Soc. Trans.*, **80(2)** (1969), 119-138.
- 3. A. Escassut, W. Tutschke and C. C. Yang, Some topics on value distribution and differentiability in complex and P-adic analysis, Science Press, Beijing, 2008.
- 4. M. Finkelstein and S. Scheinberg, Kernels for solving problems of Dirichlet typer in a half-plane, *Advances in Math.*, **18(1)** (1975), 108-113.
- 5. D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer Verlag, Berlin, 1977.
- 6. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
- 7. A. Kheyfits, Dirichlet problem for the Schrödinger operator in a half-space with boundary data of arbitrary growth at infinity, *Differential Integral Equations*, **10** (1997), 153-164.
- 8. J. Lelong-Ferrand, Etude des fonctions subharmoniques positives dans un cylindre ou dans un cone, C. R. Acad. Sci. Paris, Ser A., 229(5) (1949), 340-341.
- 9. B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1996.

- I. Miyamoto and H. Yoshida, On a covering property of rarefied sets at infinity in a cone. *Potential theory in Matsue*, 233-244, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006.
- 11. Y. Mizuta and T. Shimomura, Growth properties for modified Poisson integrals in a half space, *Pac. J. Math.*, **212(2)** (2003), 333-346.
- 12. C. Muller, Spherical harmonics (Lect. Notes in Math. 17), Springer Verlag, Berlin, 1966.
- 13. M. Reed and B. Simon, *Methods of modern mathematical physics*, Vol. 3, Acad Press, London-New York-San Francisco, 1970.
- 14. G. Rosenblum, M. Solomyak and M. Shubin, *Spectral theory of differential operators*, VINITI, Moscow, 1989.
- 15. D. Siegel and E. Talvila, Sharp growth estimates for modified Poisson integrals in a half space, *Potential Analysis*, **15** (2001), 333-360.
- 16. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
- 17. E. M. Stein, *Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, NJ, 1970.

Lei Qiao and Bai-Yun Su Department of Mathematics and Information Science Henan University of Economics and Law Zhengzhou 450002 P. R. China E-mail, qiaocqu@163.com subaiyun@126.com

Guan-Tie Deng School of Mathematical Science Beijing Normal University Laboratory of Mathematics and Complex Systems, MOE Beijing 100875 P. R. China denggt@bnu.edu.cn