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GROWTH PROPERTIES FOR THE SOLUTIONS OF THE STATIONARY
SCHRÖDINGER EQUATION IN A CONE

Lei Qiao, Bai-Yun Su and Guan-Tie Deng

Abstract. Our aim in this paper is to deal with the growth properties at infinity
for the solutions of the stationary Schrödinger equation in an n-dimensional cone.
Meanwhile, the geometrical properties of the exceptional sets are also discussed.

1. INTRODUCTION AND RESULTS

LetR andR+ be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean space. A point
in Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean distance
between two points P and Q in Rn is denoted by |P − Q|. Also |P − O| with the
origin O of Rn is simply denoted by |P |. The boundary and the closure of a set S in
Rn are denoted by ∂S and S, respectively.
We introduce a system of spherical coordinates (r, Θ), Θ = (θ1, θ2, . . . , θn−1), in

Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, xn) by xn = r cos θ1.
The unit sphere and the upper half unit sphere in Rn are denoted by Sn−1 and

Sn−1
+ , respectively. For simplicity, a point (1, Θ) on Sn−1 and the set {Θ; (1, Θ) ∈ Ω}
for a set Ω, Ω ⊂ Sn−1, are often identified with Θ and Ω, respectively. For two sets
Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r, Θ) ∈ Rn; r ∈ Ξ, (1, Θ) ∈ Ω} in Rn is simply
denoted by Ξ×Ω. In particular, the half space R+×Sn−1

+ = {(X, xn) ∈ Rn; xn > 0}
will be denoted by Tn.
For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at P and

radius r in Rn. Sr = ∂B(O, r). By Cn(Ω), we denote the set R+ × Ω in Rn with
the domain Ω on Sn−1. We call it a cone. Then Tn is a special cone obtained by
putting Ω = Sn−1

+ . We denote the sets I × Ω and I × ∂Ω with an interval on R by
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Cn(Ω; I) and Sn(Ω; I). By Sn(Ω; r) we denote Cn(Ω) ∩ Sr. By Sn(Ω) we denote
Sn(Ω; (0, +∞)) which is ∂Cn(Ω)− {O}.
We shall say that a set E ⊂ Cn(Ω) has a covering {rj, Rj} if there exists a sequence

of balls {Bj} with centers in Cn(Ω) such that E ⊂ ∪∞
j=1Bj , where rj is the radius

of Bj and Rj is the distance between the origin and the center of Bj . Furthermore,
we denote by dSr the (n− 1)-dimensional volume elements induced by the Euclidean
metric on Sr and by dw the elements of the Euclidean volume in Rn.
Let Aa denote the class of nonnegative radial potentials a(P ), i.e. 0 ≤ a(P ) =

a(r), P = (r, Θ) ∈ Cn(Ω), such that a ∈ Lb
loc(Cn(Ω)) with some b > n/2 if n ≥ 4

and with b = 2 if n = 2 or n = 3.
This article is devoted to the stationary Schrödinger equation

Schau(P ) = −Δu(P ) + a(P )u(P ) = 0 for P ∈ Cn(Ω),

where Δ is the Laplace operator and a ∈ Aa. These solutions called a-harmonic func-
tions or generalized harmonic functions associated with the operator Scha. Note that
they are classical harmonic functions in the classical case a = 0. Under these assump-
tions the operator Scha can be extended in the usual way from the space C∞

0 (Cn(Ω))
to an essentially self-adjoint operator on L2(Cn(Ω)) (see [13]). We will denote it Scha

as well. This last one has a Green’s function G(Ω, a)(P, Q). Here G(Ω, a)(P, Q) is
positive on Cn(Ω) and its inner normal derivative ∂G(Ω, a)(P, Q)/∂nQ ≥ 0. We de-
note this derivative by P(Ω, a)(P, Q), which is called the Poisson a-kernel with respect
to Cn(Ω). We remark that G(Ω, 0)(P, Q) and P(Ω, 0)(P, Q) are the Green’s function
and Poisson kernel of the Laplacian in Cn(Ω) respectively.
LetΔ∗ be a Laplace-Beltrami operator (spherical part of the Laplace) on Ω ⊂ Sn−1

and λj (j = 1, 2, 3 . . . , 0 < λ1 < λ2 ≤ λ3 ≤ . . .) be the eigenvalues of the eigenvalue
problem for Δ∗ on Ω (see, e.g., [14, p. 41])

Δ∗ϕ(Θ) + λϕ(Θ) = 0 in Ω,

ϕ(Θ) = 0 on ∂Ω.

Corresponding eigenfunctions are denoted by ϕjv (1 ≤ v ≤ vj), where vj is the
multiplicity of λj . We set λ0 = 0, norm the eigenfunctions in L2(Ω) and ϕ1 = ϕ11 > 0.
In order to ensure the existences of λj (j = 1, 2, 3 . . .). We put a rather strong

assumption on Ω: if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) on Sn−1 surrounded
by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, p. 88-89] for
the definition of C2,α-domain). Then ϕjv ∈ C2(Ω) (j = 1, 2, 3, . . . , 1 ≤ v ≤ vj) and
∂ϕ1/∂n > 0 on ∂Ω (here and below, ∂/∂n denotes differentiation along the interior
normal).
Hence well-known estimates (see, e.g., [12, p. 14]) imply the following inequality:

(1.1)
vj∑

v=1

ϕjv(Θ)
∂ϕjv(Φ)

∂nΦ
≤ M(n)j2n−1,
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where the symbol M(n) denotes a constant depending only on n.
Let Vj(r) and Wj(r) stand, respectively, for the increasing and non-increasing, as

r → +∞, solutions of the equation

(1.2) −Q′′(r)− n − 1
r

Q′(r) +
(

λj

r2
+ a(r)

)
Q(r) = 0, 0 < r < ∞,

normalized under the condition Vj(1) = Wj(1) = 1.
We shall also consider the class Ba, consisting of the potentials a ∈ Aa such that

there exists a finite limit lim
r→∞ r2a(r) = k ∈ [0,∞), moreover, r−1|r2a(r) − k| ∈

L(1,∞). If a ∈ Ba, then the g.h.f.s are continuous (see [16]).
In the rest of paper, we assume that a ∈ Ba and we shall suppress this as-

sumption for simplicity. Further, we use the standard notations u+ = max(u, 0),
u− = −min(u, 0), [d] is the integer part of d and d = [d] + {d}, where d is a positive
real number.
Denote

ι±j,k =
2 − n ±√(n − 2)2 + 4(k + λj)

2
(j = 0, 1, 2, 3 . . .).

It is known (see [6]) that in the case under consideration the solutions to the equation
(1.2) have the asymptotics

(1.3) Vj(r) ∼ d1r
ι+j,k , Wj(r) ∼ d2r

ι−j,k , as r → ∞,

where d1 and d2 are some positive constants.

Remark 1. ι+j,0 = j (j = 0, 1, 2, 3, . . .) in the case Ω = Sn−1
+ .

If a ∈ Aa, it is known that the following expansion for the Green function
G(Ω, a)(P, Q) (see [3, Ch. 11], [7])

(1.4) G(Ω, a)(P, Q)=
∞∑
j=0

1
χ′(1)

Vj(min(r, t))Wj(max(r, t))

( vj∑
v=1

ϕjv(Θ)ϕjv(Φ)

)
,

where P = (r, Θ), Q = (t, Φ), r �= t and χ′(s) = w (W1(r), V1(r)) |r=s is their
Wronskian. The series converges uniformly if either r ≤ st or t ≤ sr (0 < s < 1).
In the case a = 0, this expansion coincides with the well-known result by J. Lelong-
Ferrand (see [8]). The expansion (1.4) can also be rewritten in terms of the Gegenbauer
polynomials.
For a nonnegative integer m and two points P = (r, Θ), Q = (t, Φ)∈Cn(Ω), we

put

K(Ω, a, m)(P, Q) =
{

0 if 0 < t < 1,

K̃(Ω, a, m)(P, Q) if 1 ≤ t < ∞,
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where

K̃(Ω, a, m)(P, Q) =
m∑

j=0

1
χ′(1)

Vj(r)Wj(t)

( vj∑
v=1

ϕjv(Θ)ϕjv(Φ)

)
.

We use the following modified kernel function defined by

G(Ω, a, m)(P, Q) = G(Ω, a)(P, Q)− K(Ω, a, m)(P, Q)

for two points P = (r, Θ), Q = (t, Φ) ∈ Cn(Ω).
Put

U(Ω, a, m; u)(P ) =
∫

Sn(Ω)
P(Ω, a, m)(P, Q)u(Q)dσQ,

where

P(Ω, a, m)(P, Q) =
∂G(Ω, a, m)(P,Q)

∂nQ
, P(Ω, a, 0)(P, Q) = P(Ω, a)(P, Q),

u(Q) is a continuous function on ∂Cn(Ω) and dσQ is the surface area element on
Sn(Ω).

Remark 2. The kernel function P (Sn−1
+ , 0, m)(P, Q) coincides with ones in

Finkelstein-Scheinberg [4] and Siegel-Talvila [15].
If γ is a real number and γ ≥ 0 (resp. γ < 0), we assume in addition that

1 ≤ p < ∞,
ι+[γ],k + {γ} > (−ι+1,k − n + 2)p + n − 1,

(resp. − ι+
[−γ],k

− {−γ} > (−ι+1,k − n + 2)p + n − 1, )

in case p > 1

ι+
[γ],k

+ {γ} − n + 1

p
< ι+m+1,k <

ι+
[γ],k

+ {γ} − n + 1

p
+ 1;

(
resp.

−ι+
[−γ],k

−{−γ}−n+1

p < ι+m+1,k <
−ι+

[−γ],k
−{−γ}−n+1

p + 1;
)

and in case p = 1

ι+[γ],k + {γ} − n + 1 ≤ ι+m+1,k < ι+[γ],k + {γ} − n + 2.

(
resp. − ι+

[−γ],k
− {−γ} − n + 1 ≤ ι+m+1,k < −ι+

[−γ],k
− {−γ} − n + 2.

)
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If these conditions all hold, we write γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n)).
Let γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n)) and u be functions on ∂Cn(Ω)

satisfying

(1.5)

∫
Sn(Ω)

|u(t, Φ)|p
1 + t

ι+
[γ],k

+{γ} dσQ < ∞.(
resp.

∫
Sn(Ω)

|u(t, Φ)|p(1 + t
ι+
[−γ],k

+{−γ})dσQ < ∞.

)

For γ and u, we define the positive measure μ (resp. ν) on Rn by

dμ(Q) =

⎧⎨⎩ |u(t, Φ)|pt−ι+
[γ],k

−{γ}
dσQ Q = (t, Φ) ∈ Sn(Ω; (1, +∞)),

0 Q ∈ Rn − Sn(Ω; (1, +∞)).⎛⎝resp. dν(Q) =

⎧⎨⎩ |u(t, Φ)|ptι
+
[−γ],k

+{−γ}
dσQ Q = (t, Φ) ∈ Sn(Ω; (1, +∞)),

0 Q ∈ Rn − Sn(Ω; (1, +∞)).

⎞⎠
We remark that the total mass of μ and ν are finite.
Let ε > 0, ξ ≥ 0 and μ be any positive measure on Rn having finite mass. For

each P = (r, Θ) ∈ Rn − {O}, as in [10], the maximal function is defined by

M(P ; μ, ξ) = sup
0<ρ< r

2

μ(B(P, ρ))
ρξ

.

The set (P = (r, Θ) ∈ Rn − {O}; M(P ; μ, ξ)rξ > ε) is denoted by E(ε; μ, ξ).
Recently, Siegel-Talvila (cf. [15, Corollary 2.1]) proved the following result.

Theorem A. If u is a continuous function on ∂Tn satisfying∫
∂Tn

|u(t, Φ)|
1 + tn+m

dQ < ∞,

then the function U(Sn−1
+ , 0, m; u)(P ) satisfies

U(Sn−1
+ , 0, m; u) ∈ C2(Tn) ∩ C0(Tn),

ΔU(Sn−1
+ , 0, m; u) = 0 in Tn,

U(Sn−1
+ , 0, m; u) = u on ∂Tn,

lim
r→∞,P=(r,Θ)∈Tn

U(Sn−1
+ , 0, m; u)(P ) = o(rm+1 cos1−n θ1).

Now we have
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Theorem 1. If ε > 0, 0 ≤ ζ ≤ np, γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n))
and u is a measurable function on ∂Cn(Ω) satisfying (1.5), then there exists a covering
{rj, Rj} of E(ε; μ, np− ζ) (resp. E(ε; ν, np− ζ)) (⊂ Cn(Ω)) satisfying

∞∑
j=0

(
rj

Rj
)(p−1)n+2−ζVj(

Rj

rj
)Wj(

Rj

rj
) < ∞

such that

lim
r→∞,P=(r,Θ)∈Cn(Ω)−E(ε;μ,np−ζ)

r
−ι+

[γ],k
−{γ}+n−1

p ϕ
ζ
p
−1

1 (Θ)U(Ω, a, m;u)(P ) = 0.

(
resp. lim

r→∞,P=(r,Θ)∈Cn(Ω)−E(ε;ν,np−ζ)
r

ι+
[−γ],k

+{−γ}+n−1

p ϕ
ζ
p
−1

1 (Θ)U(Ω, a, m; u)(P )=0.

)
Let 1 ≤ p < ∞, 0 ≤ ζ ≤ np, γ > −(n − 1)(p − 1) and

γ − n + 1
p

− 1 < m <
γ − n + 1

p
in case p > 1,

γ − n ≤ m < γ − n + 1 in case p = 1;

We assume in addition that u is a measurable function on ∂Tn satisfying∫
∂Tn

|u(t, Φ)|p
1 + tγ

dσQ < ∞.

For this γ and u, we define

dμ′(Q) =

{ |u(t, Φ)|pt−γdσQ Q = (t, Φ) ∈ Sn(Sn−1
+ ; (1, +∞)),

0 Q ∈ Rn − Sn(Sn−1
+ ; (1, +∞)).

Obviously, the total mass of μ′ is also finite.
If we take Ω = Sn−1

+ and a = 0 in Theorem 1, then we immediately have the
following growth property based on (1.3) and Remark 1.

Corollary 1. If p, ζ, γ , m and u are defined as above, then the function
U(Sn−1

+ , 0, m; u)(P ) is a harmonic function on Tn and there exists a covering {rj, Rj}
of E(ε; μ′, np− ζ) (⊂ Tn) satisfying

(1.6)
∞∑

j=0

(
rj

Rj
)np−ζ < ∞

such that

(1.7) lim
r→∞,P=(r,Θ)∈Tn−E(ε;μ′,np−ζ)

r
n−γ−1

p cos
ζ
p
−1 θ1U(Sn−1

+ , 0, m; u)(P ) = 0.
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Remark 3. In the case that p = 1, γ = n + m and ζ = n, then (1.6) is a finite
sum, the set E(ε; μ′, 0) is a bounded set and (1.7) holds in Tn. This is just the result
of Mizuta-Shimomura (see [11, Theorem 1 with λ = n]).

Remark 4. In the case ζ = (1−β)p, we can easily show that E(ε; μ′, (n−1+β)p)
is (kβ,λ, p)-thin at infinity in the sense of [11, p. 335].
As an application of Theorem 1, we give the solutions of the Dirichlet problem for

the Schrödinger operator on Cn(Ω).

Theorem 2. If u is a continuous function on ∂Cn(Ω) satisfying

(1.8)
∫

Sn(Ω)

|u(t, Φ)|
1 + Vm+1(t)tn−1

dσQ < ∞,

then the function U(Ω, a, m; u)(P ) satisfies

U(Ω, a, m; u) ∈ C2(Cn(Ω)) ∩ C0(Cn(Ω)),

SchaU(Ω, a, m; u) = 0 in Cn(Ω),

U(Ω, a, m; u) = u on ∂Cn(Ω),

lim
r→∞,P=(r,Θ)∈Cn(Ω)

r−ι+m+1,kϕn−1
1 (Θ)U(Ω, a, m; u)(P ) = 0.

2. LEMMAS

Throughout this paper, LetM denote various constants independent of the variables
in questions, which may be different from line to line.

Lemma 1.

(i) P(Ω, a)(P, Q) ≤ Mrι−1,k tι
+
1,k−1ϕ1(Θ)

(ii) (resp. P(Ω, a)(P, Q) ≤ Mrι+1,k tι
−
1,k−1ϕ1(Θ)) for any P = (r, Θ) ∈ Cn(Ω) and

any Q = (t, Φ) ∈ Sn(Ω) satisfying 0 < t
r ≤ 4

5 (resp. 0 < r
t ≤ 4

5);

(iii) P(Ω, 0)(P, Q) ≤ M
ϕ1(Θ)
tn−1 + M

rϕ1(Θ)
|P−Q|n for any P = (r, Θ) ∈ Cn(Ω) and any

Q = (t, Φ) ∈ Sn(Ω; ( 4
5r,

5
4r)).

Proof. (i) and (ii) are obtained by A. Kheyfits (see [3, Ch. 11]). (iii) follows from
V. S. Azarin (see [2, Lemma 4 and Remark]).

Lemma 2 (see [7]). For a non-negative integer m, we have

(2.1) |P(Ω, a, m)(P,Q)| ≤ M(n, m, s)Vm+1(r)
Wm+1(t)

t
ϕ1(Θ)

∂ϕ1(Φ)
∂nΦ
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for any P = (r, Θ) ∈ Cn(Ω) and Q = (t, Φ) ∈ Sn(Ω) satisfying r ≤ st (0 < s < 1),
where M(n, m, s) is a constant dependent of n, m and s.

The proof of the following Lemma is essentially based on Hayman (see [9, p.
109]) in R2. We extend this result to Rn(n ≥ 2) and give the proof here for the
completeness.

Lemma 3. Let ε > 0, ξ ≥ 0 and μ be any positive measure on Rn having finite
total mass. Then E(ε; μ, ξ) has a covering {rj, Rj} (j = 1, 2, . . .) satisfying

∞∑
j=1

(
rj

Rj
)2−n+ξVj(

Rj

rj
)Wj(

Rj

rj
) < ∞.

Proof. Set

Ej(ε; μ, ξ) = (P = (r, Θ) ∈ E(ε; μ, ξ) : 2j ≤ r < 2j+1) (j = 2, 3, 4, . . .).

If P = (r, Θ) ∈ Ej(ε; μ, ξ), then there exists a positive number ρ(P ) such that

(
ρ(P )

r
)2−n+ξVj(

r

ρ(P )
)Wj(

r

ρ(P )
) ∼ (

ρ(P )
r

)ξ ≤ μ(B(P, ρ(P )))
ε

.

Here Ej(ε; μ, ξ) can be covered by the union of a family of balls (B(Pj,i, ρj,i) :
Pj,i ∈ Ej(ε; μ, ξ)) (ρj,i = ρ(Pj,i)). By the Vitali Lemma (see [17]), there exists
Λj ⊂ Ej(ε; μ, ξ), which is at most countable, such that (B(Pj,i, ρj,i) : Pj,i ∈ Λj) are
disjoint and Ej(ε; μ, ξ) ⊂ ∪Pj,i∈ΛjB(Pj,i, 5ρj,i).
So

∪∞
j=2Ej(ε; μ, ξ) ⊂ ∪∞

j=2 ∪Pj,i∈Λj B(Pj,i, 5ρj,i).

On the other hand, note that ∪Pj,i∈Λj B(Pj,i, ρj,i) ⊂ (P = (r, Θ) : 2j−1 ≤ r <
2j+2), so that

∑
Pj,i∈Λj

(
5ρj,i

|Pj,i|)
2−n+ξVj(

|Pj,i|
5ρj,i

)Wj(
|Pj,i|
5ρj,i

) ∼
∑

Pj,i∈Λj

(
5ρj,i

|Pj,i| )
ξ

≤ 5ξ
∑

Pj,i∈Λj

μ(B(Pj,i, ρj,i))
ε

≤ 5ξ

ε
μ(Cn(Ω; [2j−1, 2j+2))).

Hence we obtain
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∞∑
j=1

∑
Pj,i∈Λj

(
ρj,i

|Pj,i|)
2−n+ξVj(

|Pj,i|
ρj,i

)Wj(
|Pj,i|
ρj,i

) ∼
∞∑

j=1

∑
Pj,i∈Λj

(
ρj,i

|Pj,i| )
ξ

≤
∞∑

j=1

μ(Cn(Ω; [2j−1, 2j+2)))
ε

≤ 3μ(Rn)
ε

.

Since E(ε; μ, ξ) ∩ {P = (r, Θ) ∈ Rn; r ≥ 4} = ∪∞
j=2Ej(ε; μ, ξ). Then E(ε; μ, ξ)

is finally covered by a sequence of balls (B(Pj,i, ρj,i), B(P1, 6)) (j = 2, 3, . . . ; i =
1, 2, . . .) satisfying∑

j,i

(
ρj,i

|Pj,i|)
2−n+ξVj(

|Pj,i|
ρj,i

)Wj(
|Pj,i|
ρj,i

) ∼
∑
j,i

(
ρj,i

|Pj,i| )
ξ ≤ 3μ(Rn)

ε
+ 6ξ < +∞,

where B(P1, 6) (P1 = (1, 0, . . . , 0) ∈ Rn) is the ball which covers {P = (r, Θ) ∈
Rn; r < 4}.

3. PROOF OF THEOREM 1

We only prove the case p > 1 and γ ≥ 0, the remaining cases can be proved
similarly.
For any ε > 0, there exists Rε > 1 such that

(3.1)
∫

Sn(Ω;(Rε,∞))

|u(Q)|p
1 + t

ι+
[γ],k

+{γ} dσQ < ε.

The relation G(Ω, a)(P, Q) ≤ G(Ω, 0)(P, Q) implies this inequality (see [1])

(3.2) P(Ω, a)(P, Q) ≤ P(Ω, 0)(P, Q).

For 0 < s < 4
5 and any fixed point P = (r, Θ) ∈ Cn(Ω)−E(ε; μ, np−ζ) satisfying

r > 5
4Rε, let I1 = Sn(Ω; (0, 1)), I2 = Sn(Ω; [1, Rε]), I3 = Sn(Ω; (Rε,

4
5r]), I4 =

Sn(Ω; ( 4
5r,

5
4r)), I5 = Sn(Ω; [ 54r,

r
s )), I6 = Sn(Ω; [ r

s,∞)) and I7 = Sn(Ω; [1, r
s )), we

write

U(Ω, a, m; u)(P )

=
6∑

i=1

∫
Ii

P(Ω, a, m)(P, Q)u(Q)dσQ

=
5∑

i=1

∫
Ii

P(Ω, a)(P, Q)u(Q)dσQ −
∫

I7

∂K̃(Ω, a, m)(P, Q)
∂nQ

u(Q)dσQ

+
∫

I6

P(Ω, a, m)(P, Q)u(Q)dσQ,
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which yields that

U(Ω, a, m; u)(P ) ≤
7∑

i=1

Ui(P ),

where
Ui(P ) =

∫
Ii

|P(Ω, a)(P, Q)||u(Q)|dσQ (i = 1, 2, 3, 4, 5),

U6(P ) =
∫

I6

|P(Ω, a, m)(P, Q)||u(Q)|dσQ,

and

U7(P ) =
∫

I7

|∂K̃(Ω, a, m)(P, Q)
∂nQ

||u(Q)|dσQ.

If ι+
[γ],k

+{γ} > (−ι+1,k −n+2)p+n−1, then (ι+1,k −1+
ι+
[γ],k

+{γ}
p )q +n−1 > 0.

By (1.5), (3.1), Lemma 1 (i) and Hölder’s inequality, we have the following growth
estimates

U2(P ) ≤ Mrι−1,kϕ1(Θ)
∫

I2

tι
+
1,k−1|u(Q)|dσQ

≤ Mrι−1,kϕ1(Θ)
(∫

I2

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

)1
p
(∫

I2

t
(ι+1,k−1+

ι+
[γ],k

+{γ}
p

)q
dσQ

) 1
q

(3.3) ≤ Mrι−1,kR
ι+1,k+n−2+

ι+
[γ],k

+{γ}−n+1

p
ε ϕ1(Θ).

(3.4) U1(P ) ≤ Mrι−1,kϕ1(Θ).

(3.5) U3(P ) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

If ι+m+1,k >
ι+
[γ],k

+{γ}−n+1

p , then (ι−1,k − 1 +
ι+
[γ],k

+{γ}
p )q + n − 1 < 0. We obtain

by (3.1), Lemma 1 (ii) and Hölder’s inequality

(3.6)

U5(P ) ≤ Mrι+1,kϕ1(Θ)
∫

Sn(Ω;[ 5
4
r,∞))

tι
−
1,k−1|u(Q)|dσQ

≤ Mrι+1,kϕ1(Θ)
(∫

Sn(Ω;[ 5
4
r,∞))

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

) 1
p

(∫
Sn(Ω;[ 5

4
r,∞))

t
(ι−1,k−1+

ι+
[γ],k

+{γ}
p

)q
dσQ

)1
q

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ
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By (3.2) and Lemma 1 (iii), we consider the inequality

U4(P ) ≤ U ′
4(P ) + U ′′

4 (P ),

where

U ′
4(P ) = Mϕ1(Θ)

∫
I4

t1−n|u(Q)|dσQ, U ′′
4 (P ) = Mrϕ1(Θ)

∫
I4

|u(Q)|
|P − Q|n dσQ.

We first have

(3.7)

U ′
4(P ) = Mϕ1(Θ)

∫
I4

tι
+
1,k+ι−1,k−1|u(Q)|dσQ

≤ Mrι+1,k ϕ1(Θ)
∫

Sn(Ω;( 4
5
r,∞))

tι
−
1,k−1|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which is similar to the estimate of U5(P ).
Next, we shall estimate U ′′

4 (P ).
Take a sufficiently small positive number d3 such that I4 ⊂ B(P, 1

2r) for any
P = (r, Θ) ∈ Π(d3), where

Π(d3) = {P = (r, Θ) ∈ Cn(Ω); inf
z∈∂Ω

|(1, Θ)− (1, z)| < d3, 0 < r < ∞}.

and divide Cn(Ω) into two sets Π(d3) and Cn(Ω)− Π(d3).
If P = (r, Θ) ∈ Cn(Ω)−Π(d3), then there exists a positive d′3 such that |P −Q| ≥

d′3r for any Q ∈ Sn(Ω), and hence

(3.8)
U ′′

4 (P ) ≤ Mϕ1(Θ)
∫

I4

t1−n|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which is similar to the estimate of U ′
4(P ).

We shall consider the case P = (r, Θ) ∈ Π(d3). Now put

Hi(P ) = {Q ∈ I4; 2i−1δ(P ) ≤ |P − Q| < 2iδ(P )},
where δ(P ) = inf

Q∈∂Cn(Ω)
|P − Q|.

Since Sn(Ω) ∩ {Q ∈ Rn : |P − Q| < δ(P )} = ∅, we have

U ′′
4 (P ) = M

i(P )∑
i=1

∫
Hi(P )

rϕ1(Θ)
|u(Q)|

|P − Q|n dσQ,



1744 Lei Qiao, Bai-Yun Su and Guan-Tie Deng

where i(P ) is a positive integer satisfying 2i(P )−1δ(P ) ≤ r
2 < 2i(P )δ(P ).

Since rϕ1(Θ) ≤ Mδ(P ) (P = (r, Θ) ∈ Cn(Ω)), similar to the estimate of U ′
4(P ),

we obtain ∫
Hi(P )

rϕ1(Θ)
|u(Q)|

|P − Q|n dσQ

≤ 2(1−i)nϕ1(Θ)δ(P )
ζ−np

p

∫
Hi(P )

δ(P )
np−ζ

p
−n|u(Q)|dσQ

≤ Mϕ
1− ζ

p

1 (Θ)δ(P )
ζ−np

p

∫
Hi(P )

r
1− ζ

p |u(Q)|dσQ

≤ Mr
n− ζ

p ϕ
1− ζ

p

1 (Θ)δ(P )
ζ−np

p

∫
Hi(P )

t1−n|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n−ζ+1

p
+nϕ

1− ζ
p

1 (Θ)
(

μ(Hi(P ))
(2iδ(P ))np−ζ

)1
p

for i = 0, 1, 2, . . . , i(P ).
Since P = (r, Θ) /∈ E(ε; μ, np− ζ), we have

μ(Hi(P ))
(2iδ(P ))np−ζ

≤ μ(B(P, 2iδ(P )))
(2iδ(P ))np−ζ

≤ M(P ; μ, np − ζ) ≤ εrζ−np (i = 0, 1, 2, . . . , i(P )− 1)

and
μ(Hi(P )(P ))
(2iδ(P ))np−ζ

≤ μ(B(P, r
2 ))

( r
2)np−ζ

≤ εrζ−np.

So

(3.9) U ′′
4 (P ) ≤ Mεr

ι+
[γ],k

+{γ}−n+1

p ϕ
1− ζ

p

1 (Θ).

We only consider U7(P ) in the case m ≥ 1, since U7(P ) ≡ 0 for m = 0. By the
definition of K̃(Ω, a, m), (1.1) and Lemma 2, we see

U7(P ) ≤ M

χ′(1)

m∑
j=0

j2n−1qj(r),

where
qj(r) = Vj(r)ϕ1(Θ)

∫
I7

Wj(t)|u(Q)|
t

dσQ.

To estimate qj(r), we write

qj(r) ≤ q′j(r) + q′′j (r),
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where

q′j(r) = Vj(r)ϕ1(Θ)
∫

I2

Wj(t)|u(Q)|
t

dσQ, q′′j (r)

= Vj(r)ϕ1(Θ)
∫

Sn(Ω;(Rε,
r
s
))

Wj(t)|u(Q)|
t

dσQ.

If ι+m+1,k <
ι+
[γ],k

+{γ}−n+1

p + 1, then (−ι+m+1,k − n + 2+
ι+
[γ],k

+{γ}
p )q + n− 1 > 0.

Notice that

Vj(r)
Vm+1(t)
Vj(t)t

≤ M
Vm+1(r)

r
≤ Mrι+m+1,k−1 (t ≥ 1, Rε <

r

s
).

Thus, by (1.3), (1.5) and Hölder’s inequality we conclude

q′j(r) = Vj(r)ϕ1(Θ)
∫

I2

|u(Q)|
Vj(t)tn−1

dσQ

≤ MVj(r)ϕ1(Θ)
∫

I2

Vm+1(t)

tι
+
m+1,k

|u(Q)|
Vj(t)tn−1

dσQ

≤ rι+m+1,k−1ϕ1(Θ)
(∫

I2

|u(Q)|p
t
ι+
[γ],k

+{γ}dσQ

) 1
p
(∫

I2

t
(−ι+m+1,k−n+2+

ι+
[γ],k

+{γ}
p

)q
dσQ

)1
q

≤ Mrι+m+1,k−1R
−ι+m+1,k+1+

ι+
[γ],k

+{γ}−n+1

p
ε ϕ1(Θ).

Analogous to the estimate of q′j(r), we have

q′′j (r) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

Thus we can conclude that

qj(r) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which yields

(3.10) U7(P ) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

If ι+m+1,k >
ι+
[γ],k

+{γ}−n+1

p , then (−ι+m+1,k − n + 1 +
ι+
[γ],k

+{γ}
p )q + n− 1 < 0. By

(3.1), Lemma 2 and Hölder’s inequality we have
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(3.11)

U6(P ) ≤ MVm+1(r)ϕ1(Θ)
∫

I6

|u(Q)|
Vm+1(t)tn−1

dσQ

≤ MVm+1(r)ϕ1(Θ)
(∫

I6

|u(Q)|p
t
ι+
[γ],k

+{γ}dσQ

) 1
p

(∫
I6

t(−ι+m+1,k−n+1+
ι+
[γ],k

+{γ}
p

)qdσQ

)1
q

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

Combining (3.3)-(3.11), we obtain that if Rε is sufficiently large and ε is sufficiently

small, then U(Ω, a, m; u)(P ) = o(r
ι+
[γ],k

+{γ}−n+1

p ϕ
1− ζ

p

1 (Θ)) as r → ∞, where P =
(r, Θ) ∈ Cn(Ω; (Rε, +∞))− E(ε; μ, np− ζ). Finally, there exists an additional finite
ball B0 covering Cn(Ω; (0, Rε]), which together with Lemma 3, gives the conclusion
of Theorem 1.

4. PROOF OF THEOREM 2

For any fixed P = (r, Θ) ∈ Cn(Ω), take a number satisfying R > max(1, r
s ) (0 <

s < 4
5).
By (1.8) and Lemma 2, we have∫

Sn(Ω;(R,∞))
|P(Ω, a, m)(P, Q)||u(Q)|dσQ

≤ Vm+1(r)ϕ1(Θ)
∫

Sn(Ω;(R,∞))

|u(Q)|
Vm+1(t)tn−1

dσQ

≤ MVm+1(r)ϕ1(Θ)
< ∞.

Then U(Ω, a, m; u)(P ) is absolutely convergent and finite for any P ∈ Cn(Ω).
Thus U(Ω, a, m; u)(P ) is a generalized harmonic function on Cn(Ω).
Now we study the boundary behavior of U(Ω, a, m; u)(P ). Let Q′ = (t′, Φ′) ∈

∂Cn(Ω) be any fixed point and l be any positive number satisfying l > max(t′+1, 4
5R).

Set χS(l) is the characteristic function of S(l) = {Q = (t, Φ) ∈ ∂Cn(Ω), t ≤ l}
and write

U(Ω, a, m; u)(P ) =
(∫

Sn(Ω;(0,1)
+
∫

Sn(Ω;[1, 5
4
l])

+
∫

Sn(Ω;( 5
4
l,∞))

)
P(Ω, a, m)(P, Q)u(Q)dσQ

= U ′(P ) − U ′′(P ) + U ′′′(P ),

where
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U ′(P ) =
∫

Sn(Ω;(0, 5
4
l])

P(Ω, a)(P, Q)u(Q)dσQ

U ′′(P ) =
∫

Sn(Ω;[1, 5
4
l])

∂K(Ω, a, m)(P, Q)
∂nQ

u(Q)dσQ

and
U ′′′(P ) =

∫
Sn(Ω;( 5

4
l,∞))

P(Ω, a, m)(P, Q)u(Q)dσQ.

Notice that U ′(P ) is the Poisson a-integral of u(Q)χS( 5
4
l), we have lim

P→Q′,P∈Cn(Ω)

U ′(P ) = u(Q′). Since lim
Θ→Φ′ ϕjv(Θ) = 0 (j = 1, 2, 3 . . . ; 1 ≤ v ≤ vj) as P =

(r, Θ) → Q′ = (t′, Φ′) ∈ Sn(Ω), we have lim
P→Q′,P∈Cn(Ω)

U ′′(P ) = 0 from the def-

inition of the kernel function K(Ω, a, m)(P, Q). U ′′′(P ) = O(Vm+1(r)ϕ1(Θ)) and
therefore tends to zero.
So the function U(Ω, a, m; u)(P ) can be continuously extended to Cn(Ω) such that

lim
P→Q′,P∈Cn(Ω)

U(Ω, a, m; u)(P ) = u(Q′)

for any Q′ = (t′, Φ′) ∈ ∂Cn(Ω) from the arbitrariness of l, which with Theorem 1
gives the conclusion of Theorem 2.
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