GROWTH PROPERTIES FOR THE SOLUTIONS OF THE STATIONARY SCHRÖDINGER EQUATION IN A CONE

Lei Qiao, Bai-Yun Su and Guan-Tie Deng

Abstract

Our aim in this paper is to deal with the growth properties at infinity for the solutions of the stationary Schrödinger equation in an n-dimensional cone. Meanwhile, the geometrical properties of the exceptional sets are also discussed.

1. Introduction and Results

Let \mathbf{R} and \mathbf{R}_{+}be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^{n}(n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbf{R}^{n} is denoted by $P=\left(X, x_{n}\right), X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. The Euclidean distance between two points P and Q in \mathbf{R}^{n} is denoted by $|P-Q|$. Also $|P-O|$ with the origin O of \mathbf{R}^{n} is simply denoted by $|P|$. The boundary and the closure of a set \mathbf{S} in \mathbf{R}^{n} are denoted by $\partial \mathbf{S}$ and $\overline{\mathbf{S}}$, respectively.

We introduce a system of spherical coordinates $(r, \Theta), \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in \mathbf{R}^{n} which are related to cartesian coordinates $\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$ by $x_{n}=r \cos \theta_{1}$.

The unit sphere and the upper half unit sphere in \mathbf{R}^{n} are denoted by \mathbf{S}^{n-1} and \mathbf{S}_{+}^{n-1}, respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Xi \subset \mathbf{R}_{+}$and $\Omega \subset \mathbf{S}^{n-1}$, the set $\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Xi,(1, \Theta) \in \Omega\right\}$ in \mathbf{R}^{n} is simply denoted by $\Xi \times \Omega$. In particular, the half space $\mathbf{R}_{+} \times \mathbf{S}_{+}^{n-1}=\left\{\left(X, x_{n}\right) \in \mathbf{R}^{n} ; x_{n}>0\right\}$ will be denoted by \mathbf{T}_{n}.

For $P \in \mathbf{R}^{n}$ and $r>0$, let $B(P, r)$ denote the open ball with center at P and radius r in \mathbf{R}^{n}. $S_{r}=\partial B(O, r)$. By $C_{n}(\Omega)$, we denote the set $\mathbf{R}_{+} \times \Omega$ in \mathbf{R}^{n} with the domain Ω on \mathbf{S}^{n-1}. We call it a cone. Then T_{n} is a special cone obtained by putting $\Omega=\mathbf{S}_{+}^{n-1}$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by

[^0]$C_{n}(\Omega ; I)$ and $S_{n}(\Omega ; I)$. By $S_{n}(\Omega ; r)$ we denote $C_{n}(\Omega) \cap S_{r}$. By $S_{n}(\Omega)$ we denote $S_{n}(\Omega ;(0,+\infty))$ which is $\partial C_{n}(\Omega)-\{O\}$.

We shall say that a set $E \subset C_{n}(\Omega)$ has a covering $\left\{r_{j}, R_{j}\right\}$ if there exists a sequence of balls $\left\{B_{j}\right\}$ with centers in $C_{n}(\Omega)$ such that $E \subset \cup_{j=1}^{\infty} B_{j}$, where r_{j} is the radius of B_{j} and R_{j} is the distance between the origin and the center of B_{j}. Furthermore, we denote by $d S_{r}$ the $(n-1)$-dimensional volume elements induced by the Euclidean metric on S_{r} and by $d w$ the elements of the Euclidean volume in \mathbf{R}^{n}.

Let \mathcal{A}_{a} denote the class of nonnegative radial potentials $a(P)$, i.e. $0 \leq a(P)=$ $a(r), P=(r, \Theta) \in C_{n}(\Omega)$, such that $a \in L_{l o c}^{b}\left(C_{n}(\Omega)\right)$ with some $b>n / 2$ if $n \geq 4$ and with $b=2$ if $n=2$ or $n=3$.

This article is devoted to the stationary Schrödinger equation

$$
\operatorname{Sch}_{a} u(P)=-\Delta u(P)+a(P) u(P)=0 \quad \text { for } \quad P \in C_{n}(\Omega)
$$

where Δ is the Laplace operator and $a \in \mathcal{A}_{a}$. These solutions called a-harmonic functions or generalized harmonic functions associated with the operator $S c h_{a}$. Note that they are classical harmonic functions in the classical case $a=0$. Under these assumptions the operator $S c h_{a}$ can be extended in the usual way from the space $C_{0}^{\infty}\left(C_{n}(\Omega)\right)$ to an essentially self-adjoint operator on $L^{2}\left(C_{n}(\Omega)\right)$ (see [13]). We will denote it $S c h_{a}$ as well. This last one has a Green's function $G(\Omega, a)(P, Q)$. Here $G(\Omega, a)(P, Q)$ is positive on $C_{n}(\Omega)$ and its inner normal derivative $\partial G(\Omega, a)(P, Q) / \partial n_{Q} \geq 0$. We denote this derivative by $\mathbb{P}(\Omega, a)(P, Q)$, which is called the Poisson a-kernel with respect to $C_{n}(\Omega)$. We remark that $G(\Omega, 0)(P, Q)$ and $\mathbb{P}(\Omega, 0)(P, Q)$ are the Green's function and Poisson kernel of the Laplacian in $C_{n}(\Omega)$ respectively.

Let Δ^{*} be a Laplace-Beltrami operator (spherical part of the Laplace) on $\Omega \subset \mathbf{S}^{n-1}$ and $\lambda_{j}\left(j=1,2,3 \ldots, 0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots\right)$ be the eigenvalues of the eigenvalue problem for Δ^{*} on Ω (see, e.g., [14, p. 41])

$$
\begin{aligned}
\Delta^{*} \varphi(\Theta)+\lambda \varphi(\Theta) & =0 \text { in } \Omega \\
\varphi(\Theta) & =0 \text { on } \partial \Omega
\end{aligned}
$$

Corresponding eigenfunctions are denoted by $\varphi_{j v}\left(1 \leq v \leq v_{j}\right)$, where v_{j} is the multiplicity of λ_{j}. We set $\lambda_{0}=0$, norm the eigenfunctions in $L^{2}(\Omega)$ and $\varphi_{1}=\varphi_{11}>0$.

In order to ensure the existences of $\lambda_{j}(j=1,2,3 \ldots)$. We put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g. see [5, p. 88-89] for the definition of $C^{2, \alpha}$-domain). Then $\varphi_{j v} \in C^{2}(\bar{\Omega})\left(j=1,2,3, \ldots, 1 \leq v \leq v_{j}\right)$ and $\partial \varphi_{1} / \partial n>0$ on $\partial \Omega$ (here and below, $\partial / \partial n$ denotes differentiation along the interior normal).

Hence well-known estimates (see, e.g., [12, p. 14]) imply the following inequality:

$$
\begin{equation*}
\sum_{v=1}^{v_{j}} \varphi_{j v}(\Theta) \frac{\partial \varphi_{j v}(\Phi)}{\partial n_{\Phi}} \leq M(n) j^{2 n-1} \tag{1.1}
\end{equation*}
$$

where the symbol $M(n)$ denotes a constant depending only on n.
Let $V_{j}(r)$ and $W_{j}(r)$ stand, respectively, for the increasing and non-increasing, as $r \rightarrow+\infty$, solutions of the equation

$$
\begin{equation*}
-Q^{\prime \prime}(r)-\frac{n-1}{r} Q^{\prime}(r)+\left(\frac{\lambda_{j}}{r^{2}}+a(r)\right) Q(r)=0, \quad 0<r<\infty, \tag{1.2}
\end{equation*}
$$

normalized under the condition $V_{j}(1)=W_{j}(1)=1$.
We shall also consider the class \mathcal{B}_{a}, consisting of the potentials $a \in \mathcal{A}_{a}$ such that there exists a finite limit $\lim _{r \rightarrow \infty} r^{2} a(r)=k \in[0, \infty)$, moreover, $r^{-1}\left|r^{2} a(r)-k\right| \in$ $L(1, \infty)$. If $a \in \mathcal{B}_{a}$, then the g.h.f.s are continuous (see [16]).

In the rest of paper, we assume that $a \in \mathcal{B}_{a}$ and we shall suppress this assumption for simplicity. Further, we use the standard notations $u^{+}=\max (u, 0)$, $u^{-}=-\min (u, 0),[d]$ is the integer part of d and $d=[d]+\{d\}$, where d is a positive real number.

Denote

$$
\iota_{j, k}^{ \pm}=\frac{2-n \pm \sqrt{(n-2)^{2}+4\left(k+\lambda_{j}\right)}}{2}(j=0,1,2,3 \ldots) .
$$

It is known (see [6]) that in the case under consideration the solutions to the equation (1.2) have the asymptotics

$$
\begin{equation*}
V_{j}(r) \sim d_{1} r^{l_{j, k}^{+}}, W_{j}(r) \sim d_{2} r^{l_{j, k}^{-}}, \text {as } r \rightarrow \infty, \tag{1.3}
\end{equation*}
$$

where d_{1} and d_{2} are some positive constants.
Remark 1. $\iota_{j, 0}^{+}=j(j=0,1,2,3, \ldots)$ in the case $\Omega=\mathbf{S}_{+}^{n-1}$.
If $a \in \mathcal{A}_{a}$, it is known that the following expansion for the Green function $G(\Omega, a)(P, Q)$ (see [3, Ch. 11], [7])

$$
\begin{equation*}
G(\Omega, a)(P, Q)=\sum_{j=0}^{\infty} \frac{1}{\chi^{\prime}(1)} V_{j}(\min (r, t)) W_{j}(\max (r, t))\left(\sum_{v=1}^{v_{j}} \varphi_{j v}(\Theta) \varphi_{j v}(\Phi)\right), \tag{1.4}
\end{equation*}
$$

where $P=(r, \Theta), Q=(t, \Phi), r \neq t$ and $\chi^{\prime}(s)=\left.w\left(W_{1}(r), V_{1}(r)\right)\right|_{r=s}$ is their Wronskian. The series converges uniformly if either $r \leq s t$ or $t \leq s r(0<s<1)$. In the case $a=0$, this expansion coincides with the well-known result by J. LelongFerrand (see [8]). The expansion (1.4) can also be rewritten in terms of the Gegenbauer polynomials.

For a nonnegative integer m and two points $P=(r, \Theta), Q=(t, \Phi) \in C_{n}(\Omega)$, we put

$$
K(\Omega, a, m)(P, Q)= \begin{cases}0 & \text { if } \quad 0<t<1, \\ \widetilde{K}(\Omega, a, m)(P, Q) & \text { if } \quad 1 \leq t<\infty,\end{cases}
$$

where

$$
\widetilde{K}(\Omega, a, m)(P, Q)=\sum_{j=0}^{m} \frac{1}{\chi^{\prime}(1)} V_{j}(r) W_{j}(t)\left(\sum_{v=1}^{v_{j}} \varphi_{j v}(\Theta) \varphi_{j v}(\Phi)\right) .
$$

We use the following modified kernel function defined by

$$
G(\Omega, a, m)(P, Q)=G(\Omega, a)(P, Q)-K(\Omega, a, m)(P, Q)
$$

for two points $P=(r, \Theta), Q=(t, \Phi) \in C_{n}(\Omega)$.
Put

$$
U(\Omega, a, m ; u)(P)=\int_{S_{n}(\Omega)} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d \sigma_{Q},
$$

where

$$
\mathbb{P}(\Omega, a, m)(P, Q)=\frac{\partial G(\Omega, a, m)(P, Q)}{\partial n_{Q}}, \mathbb{P}(\Omega, a, 0)(P, Q)=\mathbb{P}(\Omega, a)(P, Q)
$$

$u(Q)$ is a continuous function on $\partial C_{n}(\Omega)$ and $d \sigma_{Q}$ is the surface area element on $S_{n}(\Omega)$.

Remark 2. The kernel function $P\left(\mathbf{S}_{+}^{n-1}, 0, m\right)(P, Q)$ coincides with ones in Finkelstein-Scheinberg [4] and Siegel-Talvila [15].

If γ is a real number and $\gamma \geq 0$ (resp. $\gamma<0$), we assume in addition that $1 \leq p<\infty$,

$$
\begin{gathered}
\iota_{[\gamma], k}^{+}+\{\gamma\}>\left(-\iota_{1, k}^{+}-n+2\right) p+n-1, \\
\left(\text { resp. }-\iota_{[-\gamma], k}^{+}-\{-\gamma\}>\left(-\iota_{1, k}^{+}-n+2\right) p+n-1,\right)
\end{gathered}
$$

in case $p>1$

$$
\begin{array}{r}
\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}<\iota_{m+1, k}^{+}<\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}+1 ; \\
\left(\text { resp. } \quad \frac{-\iota_{[-\gamma], k}^{+}-\{-\gamma\}-n+1}{p}<\iota_{m+1, k}^{+}<\frac{-\iota_{[-\gamma], k}^{+}-\{-\gamma\}-n+1}{p}+1 ;\right)
\end{array}
$$

and in case $p=1$

$$
\begin{gathered}
\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1 \leq \iota_{m+1, k}^{+}<\iota_{[\gamma], k}^{+}+\{\gamma\}-n+2 . \\
\left(\text { resp. }-\iota_{[-\gamma], k}^{+}-\{-\gamma\}-n+1 \leq \iota_{m+1, k}^{+}<-\iota_{[-\gamma], k}^{+}-\{-\gamma\}-n+2 .\right)
\end{gathered}
$$

If these conditions all hold, we write $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$).
Let $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$) and u be functions on $\partial C_{n}(\Omega)$ satisfying

$$
\begin{align*}
& \int_{S_{n}(\Omega)} \frac{|u(t, \Phi)|^{p}}{1+t^{t_{[\gamma], k}+\{\gamma\}}} d \sigma_{Q}<\infty . \\
& \quad\left(\text { resp. } \int_{S_{n}(\Omega)}|u(t, \Phi)|^{p}\left(1+t^{t_{\mid-\gamma], k}^{+}+\{-\gamma\}}\right) d \sigma_{Q}<\infty .\right) \tag{1.5}
\end{align*}
$$

For γ and u, we define the positive measure μ (resp. ν) on \mathbf{R}^{n} by

$$
\begin{gathered}
d \mu(Q)= \begin{cases}|u(t, \Phi)|^{p} t^{-\iota_{[\gamma], k}^{+}-\{\gamma\}} d \sigma_{Q} & Q=(t, \Phi) \in S_{n}(\Omega ;(1,+\infty)), \\
0 & Q \in \mathbf{R}^{n}-S_{n}(\Omega ;(1,+\infty)) .\end{cases} \\
\left(\operatorname{resp.} d \nu(Q)=\left\{\begin{array}{ll}
|u(t, \Phi)|^{p} t^{L_{[-\gamma], k}^{+}+\{-\gamma\}} d \sigma_{Q} & Q=(t, \Phi) \in S_{n}(\Omega ;(1,+\infty)), \\
0 & Q \in \mathbf{R}^{n}-S_{n}(\Omega ;(1,+\infty)) .
\end{array}\right)\right.
\end{gathered}
$$

We remark that the total mass of μ and ν are finite.
Let $\epsilon>0, \xi \geq 0$ and μ be any positive measure on \mathbf{R}^{n} having finite mass. For each $P=(r, \Theta) \in \mathbf{R}^{n}-\{O\}$, as in [10], the maximal function is defined by

$$
M(P ; \mu, \xi)=\sup _{0<\rho<\frac{r}{2}} \frac{\mu(B(P, \rho))}{\rho^{\xi}} .
$$

The set $\left(P=(r, \Theta) \in \mathbf{R}^{n}-\{O\} ; M(P ; \mu, \xi) r^{\xi}>\epsilon\right)$ is denoted by $E(\epsilon ; \mu, \xi)$.
Recently, Siegel-Talvila (cf. [15, Corollary 2.1]) proved the following result.
Theorem A. If u is a continuous function on ∂T_{n} satisfying

$$
\int_{\partial T_{n}} \frac{|u(t, \Phi)|}{1+t^{n+m}} d Q<\infty
$$

then the function $U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)(P)$ satisfies

$$
\begin{gathered}
U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right) \in C^{2}\left(T_{n}\right) \cap C^{0}\left(\overline{T_{n}}\right), \\
\Delta U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)=0 \text { in } T_{n}, \\
U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)=u \text { on } \partial T_{n}, \\
\lim _{r \rightarrow \infty, P=(r, \Theta) \in T_{n}} U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)(P)=o\left(r^{m+1} \cos ^{1-n} \theta_{1}\right) .
\end{gathered}
$$

Now we have

Theorem 1. If $\epsilon>0,0 \leq \zeta \leq n p, \gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n))$ and u is a measurable function on $\partial C_{n}(\Omega)$ satisfying (1.5), then there exists a covering $\left\{r_{j}, R_{j}\right\}$ of $E(\epsilon ; \mu, n p-\zeta)($ resp. $E(\epsilon ; \nu, n p-\zeta))\left(\subset C_{n}(\Omega)\right)$ satisfying

$$
\sum_{j=0}^{\infty}\left(\frac{r_{j}}{R_{j}}\right)^{(p-1) n+2-\zeta} V_{j}\left(\frac{R_{j}}{r_{j}}\right) W_{j}\left(\frac{R_{j}}{r_{j}}\right)<\infty
$$

such that

$$
\lim _{r \rightarrow \infty, P=(r, \Theta) \in C_{n}(\Omega)-E(\epsilon ; \mu, n p-\zeta)} r^{\frac{-\iota_{[\gamma], k}^{+}-\{\gamma\}+n-1}{p}} \varphi_{1}^{\frac{\zeta}{p}-1}(\Theta) U(\Omega, a, m ; u)(P)=0
$$

$$
\left(\text { resp. } \lim _{r \rightarrow \infty, P=(r, \Theta) \in C_{n}(\Omega)-E(\epsilon ; \nu, n p-\zeta)} r^{\frac{\iota_{[-\gamma], k}^{+}+\{-\gamma\}+n-1}{p}} \varphi_{1}^{\frac{\zeta}{p}-1}(\Theta) U(\Omega, a, m ; u)(P)=0 .\right)
$$

Let $1 \leq p<\infty, 0 \leq \zeta \leq n p, \gamma>-(n-1)(p-1)$ and

$$
\begin{gathered}
\frac{\gamma-n+1}{p}-1<m<\frac{\gamma-n+1}{p} \text { in case } p>1 \\
\gamma-n \leq m<\gamma-n+1 \text { in case } p=1
\end{gathered}
$$

We assume in addition that u is a measurable function on ∂T_{n} satisfying

$$
\int_{\partial T_{n}} \frac{|u(t, \Phi)|^{p}}{1+t^{\gamma}} d \sigma_{Q}<\infty
$$

For this γ and u, we define

$$
d \mu^{\prime}(Q)= \begin{cases}|u(t, \Phi)|^{p} t^{-\gamma} d \sigma_{Q} & Q=(t, \Phi) \in S_{n}\left(\mathbf{S}_{+}^{n-1} ;(1,+\infty)\right) \\ 0 & Q \in \mathbf{R}^{n}-S_{n}\left(\mathbf{S}_{+}^{n-1} ;(1,+\infty)\right)\end{cases}
$$

Obviously, the total mass of μ^{\prime} is also finite.
If we take $\Omega=\mathbf{S}_{+}^{n-1}$ and $a=0$ in Theorem 1 , then we immediately have the following growth property based on (1.3) and Remark 1.

Corollary 1. If p, ζ, γ, m and u are defined as above, then the function $U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)(P)$ is a harmonic function on T_{n} and there exists a covering $\left\{r_{j}, R_{j}\right\}$ of $E\left(\epsilon ; \mu^{\prime}, n p-\zeta\right)\left(\subset T_{n}\right)$ satisfying

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left(\frac{r_{j}}{R_{j}}\right)^{n p-\zeta}<\infty \tag{1.6}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty, P=(r, \Theta) \in T_{n}-E\left(\epsilon ; \mu^{\prime}, n p-\zeta\right)} r^{\frac{n-\gamma-1}{p}} \cos ^{\frac{\varsigma}{p}-1} \theta_{1} U\left(\mathbf{S}_{+}^{n-1}, 0, m ; u\right)(P)=0 . \tag{1.7}
\end{equation*}
$$

Remark 3. In the case that $p=1, \gamma=n+m$ and $\zeta=n$, then (1.6) is a finite sum, the set $E\left(\epsilon ; \mu^{\prime}, 0\right)$ is a bounded set and (1.7) holds in T_{n}. This is just the result of Mizuta-Shimomura (see [11, Theorem 1 with $\lambda=n$]).

Remark 4. In the case $\zeta=(1-\beta) p$, we can easily show that $E\left(\epsilon ; \mu^{\prime},(n-1+\beta) p\right)$ is $\left(k_{\beta, \lambda}, p\right)$-thin at infinity in the sense of [11, p. 335].

As an application of Theorem 1, we give the solutions of the Dirichlet problem for the Schrödinger operator on $C_{n}(\Omega)$.

Theorem 2. If u is a continuous function on $\partial C_{n}(\Omega)$ satisfying

$$
\begin{equation*}
\int_{S_{n}(\Omega)} \frac{|u(t, \Phi)|}{1+V_{m+1}(t) t^{n-1}} d \sigma_{Q}<\infty \tag{1.8}
\end{equation*}
$$

then the function $U(\Omega, a, m ; u)(P)$ satisfies

$$
\begin{gathered}
U(\Omega, a, m ; u) \in C^{2}\left(C_{n}(\Omega)\right) \cap C^{0}\left(\overline{C_{n}(\Omega)}\right), \\
S_{c h} U(\Omega, a, m ; u)=0 \text { in } C_{n}(\Omega), \\
U(\Omega, a, m ; u)=u \text { on } \partial C_{n}(\Omega), \\
\lim _{r \rightarrow \infty, P=(r, \Theta) \in C_{n}(\Omega)} r^{-\iota_{m+1, k}^{+} \varphi_{1}^{n-1}(\Theta) U(\Omega, a, m ; u)(P)=0 .}
\end{gathered}
$$

2. Lemmas

Throughout this paper, Let M denote various constants independent of the variables in questions, which may be different from line to line.

Lemma 1.

(i) $\mathbb{P}(\Omega, a)(P, Q) \leq M r^{t_{1, k}^{-}} t^{t_{1, k}^{+}-1} \varphi_{1}(\Theta)$
(ii) (resp. $\mathbb{P}(\Omega, a)(P, Q) \leq M r^{l_{1, k}^{+}} t^{l_{1, k}^{-}}-1 . \varphi_{1}(\Theta)$) for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in S_{n}(\Omega)$ satisfying $0<\frac{t}{r} \leq \frac{4}{5}$ (resp. $0<\frac{r}{t} \leq \frac{4}{5}$);
(iii) $\mathbb{P}(\Omega, 0)(P, Q) \leq M \frac{\varphi_{1}(\Theta)}{t^{n-1}}+M \frac{r \varphi_{1}(\Theta)}{P-\left.Q\right|^{n}}$ for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in S_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right)$.

Proof. (i) and (ii) are obtained by A. Kheyfits (see [3, Ch. 11]). (iii) follows from V. S. Azarin (see [2, Lemma 4 and Remark]).

Lemma 2 (see [7]). For a non-negative integer m, we have

$$
\begin{equation*}
|\mathbb{P}(\Omega, a, m)(P, Q)| \leq M(n, m, s) V_{m+1}(r) \frac{W_{m+1}(t)}{t} \varphi_{1}(\Theta) \frac{\partial \varphi_{1}(\Phi)}{\partial n_{\Phi}} \tag{2.1}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and $Q=(t, \Phi) \in S_{n}(\Omega)$ satisfying $r \leq$ st $(0<s<1)$, where $M(n, m, s)$ is a constant dependent of n, m and s.

The proof of the following Lemma is essentially based on Hayman (see [9, p. 109]) in \mathbf{R}^{2}. We extend this result to $\mathbf{R}^{n}(n \geq 2)$ and give the proof here for the completeness.

Lemma 3. Let $\epsilon>0, \xi \geq 0$ and μ be any positive measure on \mathbf{R}^{n} having finite total mass. Then $E(\epsilon ; \mu, \xi)$ has a covering $\left\{r_{j}, R_{j}\right\}(j=1,2, \ldots)$ satisfying

$$
\sum_{j=1}^{\infty}\left(\frac{r_{j}}{R_{j}}\right)^{2-n+\xi} V_{j}\left(\frac{R_{j}}{r_{j}}\right) W_{j}\left(\frac{R_{j}}{r_{j}}\right)<\infty
$$

Proof. Set

$$
E_{j}(\epsilon ; \mu, \xi)=\left(P=(r, \Theta) \in E(\epsilon ; \mu, \xi): 2^{j} \leq r<2^{j+1}\right)(j=2,3,4, \ldots)
$$

If $P=(r, \Theta) \in E_{j}(\epsilon ; \mu, \xi)$, then there exists a positive number $\rho(P)$ such that

$$
\left(\frac{\rho(P)}{r}\right)^{2-n+\xi} V_{j}\left(\frac{r}{\rho(P)}\right) W_{j}\left(\frac{r}{\rho(P)}\right) \sim\left(\frac{\rho(P)}{r}\right)^{\xi} \leq \frac{\mu(B(P, \rho(P)))}{\epsilon}
$$

Here $E_{j}(\epsilon ; \mu, \xi)$ can be covered by the union of a family of balls $\left(B\left(P_{j, i}, \rho_{j, i}\right)\right.$: $\left.P_{j, i} \in E_{j}(\epsilon ; \mu, \xi)\right)\left(\rho_{j, i}=\rho\left(P_{j, i}\right)\right)$. By the Vitali Lemma (see [17]), there exists $\Lambda_{j} \subset E_{j}(\epsilon ; \mu, \xi)$, which is at most countable, such that $\left(B\left(P_{j, i}, \rho_{j, i}\right): P_{j, i} \in \Lambda_{j}\right)$ are disjoint and $E_{j}(\epsilon ; \mu, \xi) \subset \cup_{P_{j, i} \in \Lambda_{j}} B\left(P_{j, i}, 5 \rho_{j, i}\right)$.

So

$$
\cup_{j=2}^{\infty} E_{j}(\epsilon ; \mu, \xi) \subset \cup_{j=2}^{\infty} \cup_{P_{j, i} \in \Lambda_{j}} B\left(P_{j, i}, 5 \rho_{j, i}\right)
$$

On the other hand, note that $\cup_{P_{j, i} \in \Lambda_{j}} B\left(P_{j, i}, \rho_{j, i}\right) \subset\left(P=(r, \Theta): 2^{j-1} \leq r<\right.$ 2^{j+2}), so that

$$
\begin{aligned}
\sum_{P_{j, i} \in \Lambda_{j}}\left(\frac{5 \rho_{j, i}}{\left|P_{j, i}\right|}\right)^{2-n+\xi} V_{j}\left(\frac{\left|P_{j, i}\right|}{5 \rho_{j, i}}\right) W_{j}\left(\frac{\left|P_{j, i}\right|}{5 \rho_{j, i}}\right) & \sim \sum_{P_{j, i} \in \Lambda_{j}}\left(\frac{5 \rho_{j, i}}{\left|P_{j, i}\right|}\right)^{\xi} \\
& \leq 5^{\xi} \sum_{P_{j, i} \in \Lambda_{j}} \frac{\mu\left(B\left(P_{j, i}, \rho_{j, i}\right)\right)}{\epsilon} \\
& \leq \frac{5^{\xi}}{\epsilon} \mu\left(C_{n}\left(\Omega ;\left[2^{j-1}, 2^{j+2}\right)\right)\right)
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
\sum_{j=1}^{\infty} \sum_{P_{j, i} \in \Lambda_{j}}\left(\frac{\rho_{j, i}}{\left|P_{j, i}\right|}\right)^{2-n+\xi} V_{j}\left(\frac{\left|P_{j, i}\right|}{\rho_{j, i}}\right) W_{j}\left(\frac{\left|P_{j, i}\right|}{\rho_{j, i}}\right) & \sim \sum_{j=1}^{\infty} \sum_{P_{j, i} \in \Lambda_{j}}\left(\frac{\rho_{j, i}}{\mid P_{j, i}}\right)^{\xi} \\
& \leq \sum_{j=1}^{\infty} \frac{\mu\left(C_{n}\left(\Omega ;\left[2^{j-1}, 2^{j+2}\right)\right)\right)}{\epsilon} \\
& \leq \frac{3 \mu\left(\mathbf{R}^{n}\right)}{\epsilon} .
\end{aligned}
$$

Since $E(\epsilon ; \mu, \xi) \cap\left\{P=(r, \Theta) \in \mathbf{R}^{n} ; r \geq 4\right\}=\cup_{j=2}^{\infty} E_{j}(\epsilon ; \mu, \xi)$. Then $E(\epsilon ; \mu, \xi)$ is finally covered by a sequence of balls $\left(B\left(P_{j, i}, \rho_{j, i}\right), B\left(P_{1}, 6\right)\right)(j=2,3, \ldots ; i=$ $1,2, \ldots$) satisfying

$$
\sum_{j, i}\left(\frac{\rho_{j, i}}{\left|P_{j, i}\right|}\right)^{2-n+\xi} V_{j}\left(\frac{\left|P_{j, i}\right|}{\rho_{j, i}}\right) W_{j}\left(\frac{\left|P_{j, i}\right|}{\rho_{j, i}}\right) \sim \sum_{j, i}\left(\frac{\rho_{j, i}}{\left|P_{j, i}\right|}\right)^{\xi} \leq \frac{3 \mu\left(\mathbf{R}^{n}\right)}{\epsilon}+6^{\xi}<+\infty,
$$

where $B\left(P_{1}, 6\right)\left(P_{1}=(1,0, \ldots, 0) \in \mathbf{R}^{n}\right)$ is the ball which covers $\{P=(r, \Theta) \in$ $\left.\mathbf{R}^{n} ; r<4\right\}$.

3. Proof of Theorem 1

We only prove the case $p>1$ and $\gamma \geq 0$, the remaining cases can be proved similarly.

For any $\epsilon>0$, there exists $R_{\epsilon}>1$ such that

$$
\begin{equation*}
\int_{S_{n}\left(\Omega ;\left(R_{\epsilon}, \infty\right)\right)} \frac{|u(Q)|^{p}}{1+t^{t_{[\gamma], k}^{+}+\{\gamma\}}} d \sigma_{Q}<\epsilon \tag{3.1}
\end{equation*}
$$

The relation $G(\Omega, a)(P, Q) \leq G(\Omega, 0)(P, Q)$ implies this inequality (see [1])

$$
\begin{equation*}
\mathbb{P}(\Omega, a)(P, Q) \leq \mathbb{P}(\Omega, 0)(P, Q) \tag{3.2}
\end{equation*}
$$

For $0<s<\frac{4}{5}$ and any fixed point $P=(r, \Theta) \in C_{n}(\Omega)-E(\epsilon ; \mu, n p-\zeta)$ satisfying $r>\frac{5}{4} R_{\epsilon}$, let $I_{1}=S_{n}(\Omega ;(0,1)), I_{2}=S_{n}\left(\Omega ;\left[1, R_{\epsilon}\right]\right), I_{3}=S_{n}\left(\Omega ;\left(R_{\epsilon}, \frac{4}{5} r\right]\right), I_{4}=$ $S_{n}\left(\Omega ;\left(\frac{4}{5} r, \frac{5}{4} r\right)\right), I_{5}=S_{n}\left(\Omega ;\left[\frac{5}{4} r, \frac{r}{s}\right)\right), I_{6}=S_{n}\left(\Omega ;\left[\frac{r}{s}, \infty\right)\right)$ and $I_{7}=S_{n}\left(\Omega ;\left[1, \frac{r}{s}\right)\right)$, we write

$$
\begin{aligned}
& U(\Omega, a, m ; u)(P) \\
= & \sum_{i=1}^{6} \int_{I_{i}} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d \sigma_{Q} \\
= & \sum_{i=1}^{5} \int_{I_{i}} \mathbb{P}(\Omega, a)(P, Q) u(Q) d \sigma_{Q}-\int_{I_{7}} \frac{\partial \widetilde{K}(\Omega, a, m)(P, Q)}{\partial n_{Q}} u(Q) d \sigma_{Q} \\
& +\int_{I_{6}} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d \sigma_{Q},
\end{aligned}
$$

which yields that

$$
U(\Omega, a, m ; u)(P) \leq \sum_{i=1}^{7} U_{i}(P)
$$

where

$$
\begin{aligned}
U_{i}(P) & =\int_{I_{i}}|\mathbb{P}(\Omega, a)(P, Q) \| u(Q)| d \sigma_{Q}(i=1,2,3,4,5) \\
U_{6}(P) & =\int_{I_{6}}|\mathbb{P}(\Omega, a, m)(P, Q) \| u(Q)| d \sigma_{Q}
\end{aligned}
$$

and

$$
U_{7}(P)=\int_{I_{7}}\left|\frac{\partial \widetilde{K}(\Omega, a, m)(P, Q)}{\partial n_{Q}} \| u(Q)\right| d \sigma_{Q}
$$

If $\iota_{[\gamma], k}^{+}+\{\gamma\}>\left(-\iota_{1, k}^{+}-n+2\right) p+n-1$, then $\left(\iota_{1, k}^{+}-1+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right) q+n-1>0$. By (1.5), (3.1), Lemma 1 (i) and Hölder's inequality, we have the following growth estimates

$$
\begin{aligned}
& U_{2}(P) \leq M r^{\iota_{1, k}^{-}} \varphi_{1}(\Theta) \int_{I_{2}} t^{\iota_{1, k}^{+}-1}|u(Q)| d \sigma_{Q} \\
& \left.\leq M r^{\iota_{1, k}^{-}} \varphi_{1}(\Theta)\left(\int_{I_{2}} \frac{|u(Q)|^{p}}{t^{\iota_{[\gamma], k}^{+}+\{\gamma\}}} d \sigma_{Q}\right)^{\frac{1}{p}}\left(\int_{I_{2}} t^{\left(\iota_{1, k}^{+}-1+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right.}\right) q \quad d \sigma_{Q}\right)^{\frac{1}{q}} \\
& \leq M r^{\iota_{1, k}^{-}} R_{\epsilon}^{\iota_{1, k}^{+}+n-2+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{+}} \varphi_{1}(\Theta) \text {. }
\end{aligned}
$$

$$
\begin{gather*}
U_{1}(P) \leq M r^{\iota_{1, k}^{-}} \varphi_{1}(\Theta) \tag{3.4}\\
U_{3}(P) \leq M \epsilon r^{\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta) \tag{3.5}
\end{gather*}
$$

If $\iota_{m+1, k}^{+}>\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}$, then $\left(\iota_{1, k}^{-}-1+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right) q+n-1<0$. We obtain by (3.1), Lemma 1 (ii) and Hölder's inequality

$$
\begin{align*}
U_{5}(P) \leq & M r^{\iota_{1, k}^{+}} \varphi_{1}(\Theta) \int_{S_{n}\left(\Omega ;\left[\frac{5}{4} r, \infty\right)\right)} t^{\iota_{1, k}^{-}-1}|u(Q)| d \sigma_{Q} \\
\leq & M r^{\iota_{1, k}^{+}} \varphi_{1}(\Theta)\left(\int_{S_{n}\left(\Omega ;\left[\frac{5}{4} r, \infty\right)\right)} \frac{|u(Q)|^{p}}{t^{\iota_{[\gamma], k}^{+}+\{\gamma\}}} d \sigma_{Q}\right)^{\frac{1}{p}} \tag{3.6}\\
& \left(\int_{S_{n}\left(\Omega ;\left[\frac{5}{4} r, \infty\right)\right)} t^{\left(\iota_{1, k}^{-}-1+\frac{\iota_{\lfloor\gamma], k}^{+}+\{\gamma\}}{p}\right) q} d \sigma_{Q}\right)^{\frac{1}{q}} \\
\leq & M \epsilon r^{\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta
\end{align*}
$$

By (3.2) and Lemma 1 (iii), we consider the inequality

$$
U_{4}(P) \leq U_{4}^{\prime}(P)+U_{4}^{\prime \prime}(P),
$$

where

$$
U_{4}^{\prime}(P)=M \varphi_{1}(\Theta) \int_{I_{4}} t^{1-n}|u(Q)| d \sigma_{Q}, U_{4}^{\prime \prime}(P)=M r \varphi_{1}(\Theta) \int_{I_{4}} \frac{|u(Q)|}{|P-Q|^{n}} d \sigma_{Q}
$$

We first have

$$
\begin{align*}
U_{4}^{\prime}(P) & =M \varphi_{1}(\Theta) \int_{I_{4}} t^{t_{1, k}^{+}+\iota_{1, k}^{-}-1}|u(Q)| d \sigma_{Q} \\
& \leq M r^{\iota_{1, k}^{+}} \varphi_{1}(\Theta) \int_{S_{n}\left(\Omega ;\left(\frac{4}{5} r, \infty\right)\right)} t^{t_{1, k}^{-}-1}|u(Q)| d \sigma_{Q} \tag{3.7}\\
& \leq M \epsilon r^{\frac{l_{[l, k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta),
\end{align*}
$$

which is similar to the estimate of $U_{5}(P)$.
Next, we shall estimate $U_{4}^{\prime \prime}(P)$.
Take a sufficiently small positive number d_{3} such that $I_{4} \subset B\left(P, \frac{1}{2} r\right)$ for any $P=(r, \Theta) \in \Pi\left(d_{3}\right)$, where

$$
\Pi\left(d_{3}\right)=\left\{P=(r, \Theta) \in C_{n}(\Omega) ; \inf _{z \in \partial \Omega}|(1, \Theta)-(1, z)|<d_{3}, 0<r<\infty\right\} .
$$

and divide $C_{n}(\Omega)$ into two sets $\Pi\left(d_{3}\right)$ and $C_{n}(\Omega)-\Pi\left(d_{3}\right)$.
If $P=(r, \Theta) \in C_{n}(\Omega)-\Pi\left(d_{3}\right)$, then there exists a positive d_{3}^{\prime} such that $|P-Q| \geq$ $d_{3}^{\prime} r$ for any $Q \in S_{n}(\Omega)$, and hence

$$
\begin{align*}
U_{4}^{\prime \prime}(P) & \leq M \varphi_{1}(\Theta) \int_{I_{4}} t^{1-n}|u(Q)| d \sigma_{Q} \\
& \leq M \epsilon r^{\frac{v_{d \gamma l, k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta), \tag{3.8}
\end{align*}
$$

which is similar to the estimate of $U_{4}^{\prime}(P)$.
We shall consider the case $P=(r, \Theta) \in \Pi\left(d_{3}\right)$. Now put

$$
H_{i}(P)=\left\{Q \in I_{4} ; 2^{i-1} \delta(P) \leq|P-Q|<2^{i} \delta(P)\right\}
$$

where $\delta(P)=\inf _{Q \in \partial C_{n}(\Omega)}|P-Q|$.
Since $S_{n}(\Omega) \cap\left\{Q \in \mathbf{R}^{n}:|P-Q|<\delta(P)\right\}=\varnothing$, we have

$$
U_{4}^{\prime \prime}(P)=M \sum_{i=1}^{i(P)} \int_{H_{i}(P)} r \varphi_{1}(\Theta) \frac{|u(Q)|}{|P-Q|^{n}} d \sigma_{Q},
$$

where $i(P)$ is a positive integer satisfying $2^{i(P)-1} \delta(P) \leq \frac{r}{2}<2^{i(P)} \delta(P)$.
Since $r \varphi_{1}(\Theta) \leq M \delta(P)\left(P=(r, \Theta) \in C_{n}(\Omega)\right)$, similar to the estimate of $U_{4}^{\prime}(P)$, we obtain

$$
\begin{aligned}
& \int_{H_{i}(P)} r \varphi_{1}(\Theta) \frac{|u(Q)|}{|P-Q|^{n}} d \sigma_{Q} \\
& \leq 2^{(1-i) n} \varphi_{1}(\Theta) \delta(P)^{\frac{\zeta-n p}{p}} \int_{H_{i}(P)} \delta(P)^{\frac{n p-\zeta}{p}-n}|u(Q)| d \sigma_{Q} \\
& \leq M \varphi_{1}^{1-\frac{\zeta}{p}}(\Theta) \delta(P)^{\frac{\zeta-n p}{p}} \int_{H_{i}(P)} r^{1-\frac{\zeta}{p}}|u(Q)| d \sigma_{Q} \\
& \leq M r^{n-\frac{\zeta}{p}} \varphi_{1}^{1-\frac{\zeta}{p}}(\Theta) \delta(P)^{\frac{\zeta-n p}{p}} \int_{H_{i}(P)} t^{1-n}|u(Q)| d \sigma_{Q} \\
& \leq M \epsilon r \frac{\stackrel{l}{l \gamma], k}_{+}^{+\{\gamma\}-n-\zeta+1}}{p}+n \\
& \varphi_{1}^{1-\frac{\zeta}{p}}(\Theta)\left(\frac{\mu\left(H_{i}(P)\right)}{\left(2^{i} \delta(P)\right)^{n p-\zeta}}\right)^{\frac{1}{p}}
\end{aligned}
$$

for $i=0,1,2, \ldots, i(P)$.
Since $P=(r, \Theta) \notin E(\epsilon ; \mu, n p-\zeta)$, we have

$$
\begin{aligned}
& \frac{\mu\left(H_{i}(P)\right)}{\left(2^{i} \delta(P)\right)^{n p-\zeta}} \leq \frac{\mu\left(B\left(P, 2^{i} \delta(P)\right)\right)}{\left(2^{i} \delta(P)\right)^{n p-\zeta}} \\
\leq & M(P ; \mu, n p-\zeta) \leq \epsilon r^{\zeta-n p}(i=0,1,2, \ldots, i(P)-1)
\end{aligned}
$$

and

$$
\frac{\mu\left(H_{i(P)}(P)\right)}{\left(2^{i} \delta(P)\right)^{n p-\zeta}} \leq \frac{\mu\left(B\left(P, \frac{r}{2}\right)\right)}{\left(\frac{r}{2}\right)^{n p-\zeta}} \leq \epsilon r^{\zeta-n p}
$$

So

$$
\begin{equation*}
U_{4}^{\prime \prime}(P) \leq M \epsilon r^{\frac{\stackrel{L}{[\gamma], k}_{+}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}^{1-\frac{\zeta}{p}}(\Theta) \tag{3.9}
\end{equation*}
$$

We only consider $U_{7}(P)$ in the case $m \geq 1$, since $U_{7}(P) \equiv 0$ for $m=0$. By the definition of $\widetilde{K}(\Omega, a, m),(1.1)$ and Lemma 2, we see

$$
U_{7}(P) \leq \frac{M}{\chi^{\prime}(1)} \sum_{j=0}^{m} j^{2 n-1} q_{j}(r)
$$

where

$$
q_{j}(r)=V_{j}(r) \varphi_{1}(\Theta) \int_{I_{7}} \frac{W_{j}(t)|u(Q)|}{t} d \sigma_{Q}
$$

To estimate $q_{j}(r)$, we write

$$
q_{j}(r) \leq q_{j}^{\prime}(r)+q_{j}^{\prime \prime}(r)
$$

where

$$
\begin{gathered}
\qquad \begin{array}{c}
q_{j}^{\prime}(r)=V_{j}(r) \varphi_{1}(\Theta) \int_{I_{2}} \frac{W_{j}(t)|u(Q)|}{t} d \sigma_{Q}, q_{j}^{\prime \prime}(r) \\
=V_{j}(r) \varphi_{1}(\Theta) \int_{S_{n}\left(\Omega ;\left(R_{\epsilon}, \frac{r}{s}\right)\right)} \frac{W_{j}(t)|u(Q)|}{t} d \sigma_{Q} \\
\text { If } \iota_{m+1, k}^{+}<\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}+1, \text { then }\left(-\iota_{m+1, k}^{+}-n+2+\frac{\iota_{\lfloor\gamma], k}^{+}+\{\gamma\}}{p}\right) q+n-1>0 .
\end{array}
\end{gathered}
$$ Notice that

$$
V_{j}(r) \frac{V_{m+1}(t)}{V_{j}(t) t} \leq M \frac{V_{m+1}(r)}{r} \leq M r^{\iota_{m+1, k}^{+}-1}\left(t \geq 1, R_{\epsilon}<\frac{r}{s}\right)
$$

Thus, by (1.3), (1.5) and Hölder's inequality we conclude

$$
\left.\begin{array}{rl}
q_{j}^{\prime}(r) & =V_{j}(r) \varphi_{1}(\Theta) \int_{I_{2}} \frac{|u(Q)|}{V_{j}(t) t^{n-1}} d \sigma_{Q} \\
& \leq M V_{j}(r) \varphi_{1}(\Theta) \int_{I_{2}} \frac{V_{m+1}(t)}{t^{\iota_{m+1, k}^{+}}} \frac{|u(Q)|}{V_{j}(t) t^{n-1}} d \sigma_{Q} \\
& \leq r^{\iota_{m+1, k}^{+}-1} \varphi_{1}(\Theta)\left(\int_{I_{2}} \frac{|u(Q)|^{p}}{t^{\iota_{[\gamma], k}^{+}+\{\gamma\}}} d \sigma_{Q}\right)^{\frac{1}{p}}\left(\int_{I_{2}} t^{\left(-\iota_{m+1, k}^{+}-n+2+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right.}\right) q \\
\iota^{+} \\
\sigma_{Q}
\end{array}\right)^{\frac{1}{q}}{ }^{+} \varphi_{1}(\Theta) .
$$

Analogous to the estimate of $q_{j}^{\prime}(r)$, we have

$$
q_{j}^{\prime \prime}(r) \leq M \epsilon r^{\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta)
$$

Thus we can conclude that

$$
q_{j}(r) \leq M \epsilon r^{\frac{\iota_{\stackrel{\sim}{+}, k}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta),
$$

which yields

$$
\begin{equation*}
U_{7}(P) \leq M \epsilon r^{\frac{\stackrel{\iota}{[\gamma], k}_{+}^{+}+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta) \tag{3.10}
\end{equation*}
$$

If $\iota_{m+1, k}^{+}>\frac{\iota_{\iota \gamma], k}^{+}+\{\gamma\}-n+1}{p}$, then $\left(-\iota_{m+1, k}^{+}-n+1+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right) q+n-1<0$. By (3.1), Lemma 2 and Hölder's inequality we have

$$
\begin{align*}
& U_{6}(P) \leq M V_{m+1}(r) \varphi_{1}(\Theta) \int_{I_{6}} \frac{|u(Q)|}{V_{m+1}(t) t^{n-1}} d \sigma_{Q} \\
& \leq M V_{m+1}(r) \varphi_{1}(\Theta)\left(\int_{I_{6}} \frac{|u(Q)|^{p}}{t^{t^{+}}+, k+\{\gamma\}} d \sigma_{Q}\right)^{\frac{1}{p}} \tag{3.11}\\
& \left(\int_{I_{6}} t^{\left(-\iota_{m+1, k}^{+}-n+1+\frac{\iota_{[\gamma], k}^{+}+\{\gamma\}}{p}\right) q} d \sigma_{Q}\right)^{\frac{1}{q}} \\
& \leq M \epsilon r \frac{{ }_{[\gamma], k}^{+}+\{\gamma\}-n+1}{p} \varphi_{1}(\Theta) \text {. }
\end{align*}
$$

Combining (3.3)-(3.11), we obtain that if R_{ϵ} is sufficiently large and ϵ is sufficiently small, then $U(\Omega, a, m ; u)(P)=o\left(r \frac{\stackrel{\iota^{+}}{\frac{+\gamma], k}{}+\{\gamma\}-n+1}}{p} \varphi_{1}^{1-\frac{\zeta}{p}}(\Theta)\right)$ as $r \rightarrow \infty$, where $P=$ $(r, \Theta) \in C_{n}\left(\Omega ;\left(R_{\epsilon},+\infty\right)\right)-E(\epsilon ; \mu, n p-\zeta)$. Finally, there exists an additional finite ball B_{0} covering $C_{n}\left(\Omega ;\left(0, R_{\epsilon}\right]\right)$, which together with Lemma 3, gives the conclusion of Theorem 1 .

4. Proof of Theorem 2

For any fixed $P=(r, \Theta) \in C_{n}(\Omega)$, take a number satisfying $R>\max \left(1, \frac{r}{s}\right)(0<$ $s<\frac{4}{5}$).

By (1.8) and Lemma 2, we have

$$
\begin{aligned}
& \int_{S_{n}(\Omega ;(R, \infty))}|\mathbb{P}(\Omega, a, m)(P, Q)||u(Q)| d \sigma_{Q} \\
\leq & V_{m+1}(r) \varphi_{1}(\Theta) \int_{S_{n}(\Omega ;(R, \infty))} \frac{|u(Q)|}{V_{m+1}(t) t^{n-1}} d \sigma_{Q} \\
\leq & M V_{m+1}(r) \varphi_{1}(\Theta) \\
< & \infty
\end{aligned}
$$

Then $U(\Omega, a, m ; u)(P)$ is absolutely convergent and finite for any $P \in C_{n}(\Omega)$. Thus $U(\Omega, a, m ; u)(P)$ is a generalized harmonic function on $C_{n}(\Omega)$.

Now we study the boundary behavior of $U(\Omega, a, m ; u)(P)$. Let $Q^{\prime}=\left(t^{\prime}, \Phi^{\prime}\right) \in$ $\partial C_{n}(\Omega)$ be any fixed point and l be any positive number satisfying $l>\max \left(t^{\prime}+1, \frac{4}{5} R\right)$.

Set $\chi_{S(l)}$ is the characteristic function of $S(l)=\left\{Q=(t, \Phi) \in \partial C_{n}(\Omega), t \leq l\right\}$ and write

$$
\begin{aligned}
U(\Omega, a, m ; u)(P)= & \left(\int_{S_{n}(\Omega ;(0,1)}+\int_{S_{n}\left(\Omega ;\left[1, \frac{5}{4} l\right]\right)}+\int_{S_{n}\left(\Omega ;\left(\frac{5}{4} l, \infty\right)\right)}\right) \\
& \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d \sigma_{Q} \\
= & U^{\prime}(P)-U^{\prime \prime}(P)+U^{\prime \prime \prime}(P)
\end{aligned}
$$

where

$$
\begin{aligned}
U^{\prime}(P) & =\int_{S_{n}\left(\Omega ;\left(0, \frac{5}{4} l\right]\right)} \mathbb{P}(\Omega, a)(P, Q) u(Q) d \sigma_{Q} \\
U^{\prime \prime}(P) & =\int_{S_{n}\left(\Omega ;\left[1, \frac{5}{4}[]\right)\right.} \frac{\partial K(\Omega, a, m)(P, Q)}{\partial n_{Q}} u(Q) d \sigma_{Q}
\end{aligned}
$$

and

$$
U^{\prime \prime \prime}(P)=\int_{S_{n}\left(\Omega ;\left(\frac{5}{4} l, \infty\right)\right)} \mathbb{P}(\Omega, a, m)(P, Q) u(Q) d \sigma_{Q}
$$

Notice that $U^{\prime}(P)$ is the Poisson a-integral of $u(Q) \chi_{S\left(\frac{5}{4} l\right)}$, we have $\lim _{P \rightarrow Q^{\prime}, P \in C_{n}(\Omega)}$ $U^{\prime}(P)=u\left(Q^{\prime}\right)$. Since $\lim _{\Theta \rightarrow \Phi^{\prime}} \varphi_{j v}(\Theta)=0\left(j=1,2,3 \ldots ; 1 \leq v \leq v_{j}\right)$ as $P=$ $(r, \Theta) \rightarrow Q^{\prime}=\left(t^{\prime}, \Phi^{\prime}\right) \in S_{n}(\Omega)$, we have $\lim _{P \rightarrow Q^{\prime}, P \in C_{n}(\Omega)} U^{\prime \prime}(P)=0$ from the definition of the kernel function $K(\Omega, a, m)(P, Q) . U^{\prime \prime \prime}(P)=O\left(V_{m+1}(r) \varphi_{1}(\Theta)\right)$ and therefore tends to zero.

So the function $U(\Omega, a, m ; u)(P)$ can be continuously extended to $\overline{C_{n}(\Omega)}$ such that

$$
\lim _{P \rightarrow Q^{\prime}, P \in C_{n}(\Omega)} U(\Omega, a, m ; u)(P)=u\left(Q^{\prime}\right)
$$

for any $Q^{\prime}=\left(t^{\prime}, \Phi^{\prime}\right) \in \partial C_{n}(\Omega)$ from the arbitrariness of l, which with Theorem 1 gives the conclusion of Theorem 2.

References

1. A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, J. d'Anal. Math., 72 (1997), 45-92.
2. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Amer. Math. Soc. Trans., 80(2) (1969), 119-138.
3. A. Escassut, W. Tutschke and C. C. Yang, Some topics on value distribution and differentiability in complex and P-adic analysis, Science Press, Beijing, 2008.
4. M. Finkelstein and S. Scheinberg, Kernels for solving problems of Dirichlet typer in a half-plane, Advances in Math., 18(1) (1975), 108-113.
5. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1977.
6. P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
7. A. Kheyfits, Dirichlet problem for the Schrödinger operator in a half-space with boundary data of arbitrary growth at infinity, Differential Integral Equations, 10 (1997), 153-164.
8. J. Lelong-Ferrand, Etude des fonctions subharmoniques positives dans un cylindre ou dans un cone, C. R. Acad. Sci. Paris, Ser A., 229(5) (1949), 340-341.
9. B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1996.
10. I. Miyamoto and H. Yoshida, On a covering property of rarefied sets at infinity in a cone. Potential theory in Matsue, 233-244, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006.
11. Y. Mizuta and T. Shimomura, Growth properties for modified Poisson integrals in a half space, Pac. J. Math., 212(2) (2003), 333-346.
12. C. Muller, Spherical harmonics (Lect. Notes in Math. 17), Springer Verlag, Berlin, 1966.
13. M. Reed and B. Simon, Methods of modern mathematical physics, Vol. 3, Acad Press, London-New York-San Francisco, 1970.
14. G. Rosenblum, M. Solomyak and M. Shubin, Spectral theory of differential operators, VINITI, Moscow, 1989.
15. D. Siegel and E. Talvila, Sharp growth estimates for modified Poisson integrals in a half space, Potential Analysis, 15 (2001), 333-360.
16. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
17. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970.

Lei Qiao and Bai-Yun Su
Department of Mathematics and Information Science
Henan University of Economics and Law
Zhengzhou 450002
P. R. China

E-mail, qiaocqu@163.com subaiyun@126.com

Guan-Tie Deng
School of Mathematical Science
Beijing Normal University
Laboratory of Mathematics and Complex Systems, MOE
Beijing 100875
P. R. China
denggt@bnu.edu.cn

[^0]: Received March 13, 2010, accepted November 24, 2011.
 Communicated by Alexander Vasiliev.
 2010 Mathematics Subject Classification: 35J10, 35J25.
 Key words and phrases: Growth property, Stationary Schrödinger equation, Generalized harmonic function, Cone.
 This work is supported by SRFDP (No. 20100003110004) and NSF of China (No. 11071020).

