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HYBRID METHOD FOR DESIGNING EXPLICIT HIERARCHICAL FIXED
POINT APPROACH TO MONOTONE VARIATIONAL INEQUALITIES

Lu-Chuan Ceng1, Yen-Cherng Lin2 and Adrian Petruşel3

Abstract. Let C be a nonempty closed convex subset of a real Hilbert space H .
Assume that F : C → H is a κ-Lipschitzian and η-strongly monotone operator
with constants κ, η > 0, f : C → H is L-Lipschitzian with constant L ≥ 0 and
T, V : C → C are nonexpansive mappings with Fix(T ) �= ∅. Let 0 < µ < 2η/κ2

and 0 ≤ γL < τ , where τ = 1 − √
1 − µ(2η − µκ2). Consider the hierarchical

monotone variational inequality problem (in short, HMVIP):
VI (a): finding z∗ ∈ Fix(T ) such that 〈(I−V )z∗, z−z∗〉 ≥ 0, ∀z ∈ Fix(T );
VI (b): finding x∗ ∈ S such that 〈(µF − γf)x∗, x − x∗〉 ≥ 0, ∀z ∈ S.

Here S denotes the nonempty solution set of the VI (a). This paper combines
hybrid steepest-descent method, viscosity method and projection method to design
an explicit algorithm, that can be used to find the unique solution of the HMVIP.
Strong convergence of the algorithm is proved under very mild conditions. Ap-
plications in hierarchical minimization problems are also included.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and C be
a nonempty closed convex subset of H . The so-called classical variational inequality
(VI) means to find an element x∗ ∈ C such that

(1.1) 〈Ax∗, x − x∗〉 ≤ 0, ∀x ∈ C,
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where A : C → H is a nonlinear mapping. If A is a monotone operator, then the VI
(1.1) is also known as a monotone variational inequality. It is well-known that the VI
(1.1) is equivalent to the fixed point equation

(1.2) x∗ = PC(x∗ − νAx∗),

where ν > 0 and PC is the metric projection of H onto C; which assigns, to each
x ∈ H , the unique point in C, denoted by PCx, such that

‖x − PCx‖ = inf{‖x− y‖ : y ∈ C}.
Therefore, fixed point algorithms can be applied to solve VIs. As a matter of fact, if A is
Lipschitzian and strongly monotone (i.e., 〈Ax−Ay, x−y〉 ≥ α‖x−y‖2, ∀x, y ∈ C, for
some α > 0), the for small enough ν > 0, the mapping PC(I−νA) is a contraction on
C and so the sequence {xn} of Picard iterates, given by xn = PC(I−νA)xn−1 (n ≥ 1),
converges strongly to the unique solution of the VI (1.1). Furthermore, whenever A is
inverse-strongly monotone (i.e., there is a constant ζ > 0, such that 〈Ax−Ay, x−y〉 ≥
ζ‖Ax−Ay‖2, ∀x, y ∈ C), the mapping PC(I−νA) is an averaged mapping (i.e., there
are β ∈ (0, 1) and a nonexpansive mapping T , such that PC(I−νA) = (1−β)I+βT )
and the sequence of Picard iterates, {(PC(I−νA))nx0}, converges weakly to a solution
of the VI (1.1) (if such solutions exist). Recall here that a mapping T : C → C is
nonexpansive iff ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Very recently, Marino and Xu [10] investigated a special form of the VI (1.1),
where the constraint set is the set of fixed points of a nonexpansive mapping T and A
is the complement of another nonexpansive mapping V ; that is, their VI is of the form

(1.3) x∗ ∈ Fix(T ) : 〈(I − V )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ),

where T, V : C → C are nonexpansive mappings, such that Fix(T ) �= ∅ with C being
a nonempty closed convex subset of a real Hilbert space H . It is not difficult to observe
that x∗ solves the VI (1.3) if and only if it is a fixed point of the nonexpansive mapping
PFix(T )V .

Throughout this paper, we use S to denote the solution set of the VI (1.3) (or
S = Fix(PFix(T )V )) and always assume that S �= ∅. Variational inequalities have
extensively been investigated; see the monographs [1-5], and also the articles [23-31]
(and the references therein). Extensions to vector variational inequalities have recently
been made extensively; see [20] and the survey article [21].

Variational inequalities of form (1.3) cover several topics recently investigated in the
literature, including monotone inclusions, convex optimization, quadratic minimization
over fixed point sets; see [11, 14, 17-19, 22], and the references therein. The hierar-
chical fixed point approach was however introduced recently (see [7, 15]) and Marino
and Xu [10] further studied hierarchical fixed point approach to monotone VIs of form
(1.3).

A couple of particular cases of the VI (1.3) have been studied in the literature:
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(a) V is a constant mapping on C : V x ≡ u for some u ∈ C and all x ∈ C;
(b) V is a contraction with coefficient ρ ∈ [0, 1); i.e., ‖V x − V y‖ ≤ ρ‖x −

y‖, ∀x, y ∈ C.

Case (a) is actually the VI:

(1.4) find x∗ ∈ Fix(T ) such that 〈x∗ − u, x− x∗〉 ≥ 0, ∀x ∈ Fix(T )

and is equivalent to finding the fixed point of T closest to u; that is,

x∗ := PFix(T )u = argminx∈Fix(T )‖u − x‖.

This problem has extensively been investigated; see [14, 32-42].
Case (b) corresponds to the VI

(1.5) x∗ ∈ Fix(T ) : 〈(I − f)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ),

where f is a contraction on H . This VI has been studied recently; see [17, 18].
There are two approaches to the VI (1.3): One implicit and one explicit. The

implicit approach generates a net {xs,t}0<s,t<1 satisfying the fixed point equation:

(1.6) xs,t = sf(xs,t) + (1− s)[tV xs,t + (1− t)Txs,t],

where f is a given contraction on H . The behavior of the net {xs,t} has recently been
studied in [15, 16]. Essentially these papers prove that, under appropriate conditions,
{xs,t} converges in norm repeatedly as s → 0 and t → 0 (in this order), respectively.

Very recently, Marino and Xu [10] gave an explicit approach, which generates a
sequence {xn} recursively by the iterative scheme:

(1.7) xn+1 := λnf(xn) + (1 − λn)(αnV xn + (1− αn)Txn), ∀n ≥ 0,

where {αn} and {λn} are sequences in (0, 1) satisfying certain conditions. They proved
that {xn}, under certain assumptions, converges in norm to a solution, which solves
another variational inequality.

On the other hand, let F : H → H be a κ-Lipschitzian and η-strongly monotone
operator with constants κ, η > 0, and let T : H → H be a nonexpansive mapping
such that Fix(T ) �= ∅. In 2001, Yamada [11] introduced the so-called hybrid steepest-
descent method for solving the variational inequality problem: finding x̃ ∈ Fix(T )
such that

〈Fx̃, x − x̃〉 ≥ 0, ∀x ∈ Fix(T ).

This method generates a sequence {xn} via the following iterative scheme:

(1.8) xn+1 = Txn − λn+1µF (Txn), ∀n ≥ 0,
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where 0 < µ < 2η/κ2, the initial guess x0 ∈ H is arbitrary and the sequence {λn} in
(0, 1) satisfies the conditions:

λn → 0,

∞∑

n=0

λn = ∞ and
∞∑

n=0

|λn+1 − λn| < ∞.

A key fact in Yamada’s argument is that, for small enough λ > 0, the mapping

T λx := Tx − λµF (Tx), ∀x ∈ H

is a contraction, due to the κ-Lipschitz continuity and η-strong monotonicity of F .
In this paper, let C be a nonempty closed convex subset of a real Hilbert space

H . Assume that F : C → H is a κ-Lipschitzian and η-strongly monotone operator
with constants κ, η > 0, f : C → H is L-Lipschitzian with constant L ≥ 0 and
T, V : C → C are nonexpansive mappings with Fix(T ) �= ∅. Let 0 < µ < 2η/κ2 and
0 ≤ γL < τ , where τ = 1 −√

1 − µ(2η − µκ2). Consider the hierarchical monotone
variational inequality problem (in short, HMVIP):

VI (a) finding z∗ ∈ Fix(T ) such that 〈(I − V )z∗, z − z∗〉 ≥ 0, ∀z ∈ Fix(T );
VI (b) finding x∗ ∈ S such that 〈(µF − γf)x∗, x− x∗〉 ≥ 0, ∀z ∈ S. Here S denotes

the nonempty solution set of the VI (a).

Combining hybrid steepest-descent method, viscosity method and projection method,
we design an explicit approach, which generates a sequence {xn} recursively by the
formula:

(1.9) xn+1 := PC [λnγf(xn) + (I − λnµF )(αnV xn + (1 − αn)Txn)], ∀n ≥ 0,

where {αn} and {λn} are sequences in (0, 1) satisfying certain conditions to be made
precisely in Sect. 3. We will prove that {xn}, under certain assumptions, converges
in norm to a solution of the HMVIP. In particular, if we put µ = 1, F = I and
γ = τ = 1 and let f be a contractive self-mapping on C with coefficient ρ ∈ [0, 1),
then our results (including our algorithm (1.9) and its strong convergence) reduce to
those in Marino and Xu [10]. There is no doubt that our results improve and extend
the corresponding results in [10].

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H . Recall that a
L-Lipschitzian mapping f : C → H is the mapping on C such that ‖f(x)− f(y)‖ ≤
L‖x− y‖, ∀x, y ∈ C, where L ∈ [0,∞) is a constant. In particular, if L ∈ [0, 1) then
f is called a contraction on C; if L = 1 then f is called a nonexpansive mapping on C.
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Below we gather some basic facts that are needed in the argument of the subsequent
section.

The following lemma plays a key role in proving strong convergence of our method.

Lemma 2.1. (see [9, Lemma 3.1] and also [11]). Let λ be a number in (0, 1] and let
µ > 0. Let F : C → H be an operator on C such that, for some constants κ, η > 0, F
is κ-Lipschitzian and η-strongly monotone. We sssociate with a nonexpansive mapping
T : C → C the mapping T λ : C → H defined by

T λx := Tx − λµF (Tx), ∀x ∈ C.

Then T λ is a contraction provided µ < 2η/κ2, that is,

‖T λx − T λy‖ ≤ (1− λτ)‖x− y‖, ∀x, y ∈ C,

where τ = 1− √
1 − µ(2η − µκ2) ∈ (0, 1].

Remark 2.1. Put F = I , where I is the identity operator of H . Then κ = η = 1
and hence µ < 2η/κ2 = 2. Also, put µ = 1. Then it is easy to see that

τ = 1 −
√

1 − µ(2η − µκ2) = 1.

In particular, whenever λ > 0, we have T λx := Tx − λµF (Tx) = (1 − λ)Tx.

It is not difficult to prove the following lemma.

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space
H, f : C → H a L-Lipschitzian mapping with constant L ∈ [0,∞), and F : C → H
a κ-Lipschitzian and η-strongly monotone operator with constants κ, η > 0. Then for
0 ≤ γL < µη,

〈(µF − γf)x− (µF − γf)y, x− y〉 ≥ (µη − γL)‖x− y‖2, ∀x, y ∈ C.

That is, µF − γf is strongly monotone with constant µη − γL > 0.

Lemma 2.3. (see [12, Demiclosedness Principle]). Let C be a nonempty closed
convex subset of a real Hilbert space H and let T : C → C be a nonexpansive
mapping with Fix(T ) �= ∅. If {xn} is a sequence in C weakly converging to x and if
{(I − T )xn} converges strongly to y, then (I − T )x = y; in particular, if y = 0, then
x ∈ Fix(T ).

Recall that the metric (or nearest point) projection from H onto K is the mapping
PK : H → K which assigns to each x ∈ H the unique point PKx ∈ K satisfying the
property

‖x− PKx‖ = inf
y∈K

‖x − y‖ =: d(x, K),
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where K is a nonempty closed convex subset of a real Hilbert space H .

Lemma 2.4. (see [13]). Let x ∈ H and z ∈ K . Then:
(i) z = PKx if and only if there holds the relation

〈x − z, y − z〉 ≤ 0, ∀y ∈ K.

(ii) z = PKx if and only if there holds the relation

‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, ∀y ∈ K.

(iii) There holds the relation

〈PKx − PKy, x− y〉 ≥ ‖PKx − PKy‖2, ∀x, y ∈ H.

Consequently, PK is nonexpansive and monotone.

Lemma 2.5. (see [14]). Assume that {an} is a sequence of nonnegative real
numbers such that

an+1 ≤ (1− γn)an + γnδn + βn, ∀n ≥ 0,

where {γn} and {βn} are sequences in (0, 1) and {δn} is a sequence in R, such that
(i)

∑∞
n=0 γn = ∞;

(ii) either lim supn→∞ δn ≤ 0 or
∑∞

n=0 γn|δn| < ∞;
(iii)

∑∞
n=0 βn < ∞.

Then limn→∞ an = 0.

It is easy to see that the following straightforward inequality holds.

Lemma 2.6. There holds the following inequality in an inner product space X:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ X.

Notation. Let {xn} be a sequence and x be a point in a normed space X . Then we
use xn → x and xn ⇀ x to denote strong and weak convergence to x of the sequence
{xn}, respectively.

3. STRONG CONVERGENCE OF EXPLICIT SCHEME

Let C be a nonempty closed convex subset of a real Hilbert space H . Assume
that F : C → H is a κ-Lipschitzian and η-strongly monotone operator with constants
κ, η > 0, f : C → H is L-Lipschitzian with constant L ≥ 0 and T, V : C → C are
nonexpansive mappings with Fix(T ) �= ∅. Let 0 < µ < 2η/κ2 and 0 ≤ γL < τ ,
where τ = 1 − √

1 − µ(2η − µκ2).



Designing Explicit Hierarchical Fixed Point Approach to Monotone Variational Inequalities 1537

Consider the variational inequality of finding a point x∗ with the property

(3.1) x∗ ∈ Fix(T ) : 〈(I − V )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ).

The purpose of this section is to propose an iterative algorithm and prove the strong
convergence of the suggested algorithm to a solution of the VI (3.1), i.e., the VI (a) in
Sect 1. Meantime, it is also a solution of the VI (b). Thus, there is no doubt that we
prove the strong convergence of the suggested algorithm to a solution of the HMVIP.
Our algorithm generates a sequence {xn} through the recursive formula

(3.2) xn+1 := PC [λnγf(xn) + (I − λnµF )(αnV xn + (1 − αn)Txn)], ∀n ≥ 0,

where the initial guess x0 ∈ C is arbitrary and {λn} and {αn} are sequences in (0, 1).
Introducing the mapping Wn = αnV + (1 − αn)T , we can rewrite (3.2) as

(3.3) xn+1 = PC [λnγf(xn) + (I − λnµF )Wnxn]. ∀n ≥ 0.

We will see that the strong convergence of the algorithm (3.2) depends on the choice of
the sequences of parameters, {λn} and {αn}. Therefore, for the sake of convenience,
we list the following possible assumptions:

(A1) αn ≤ νλn for all n and some constant ν.

(A2) limn→∞ αn/λn =: σ ∈ [0,∞].

(A3) λn → 0 (as n → ∞) and
∑∞

n=0 λn = ∞.

(A4)
∑∞

n=0 |λn+1 − λn| < ∞.

(A5)
∑∞

n=0 |αn+1 − αn| < ∞.

(A6) |λn+1 − λn|/λn+1 → 0; i.e., λn/λn+1 → 1.

(A7) |αn+1 − αn|/αn+1 → 0; i.e., αn/αn+1 → 1.

(A8) (|λn+1 − λn| + |αn+1 − αn|)/(λn+1αn+1) → 0.

(A9) There exists a constant K such that K ≥ 1
λn

| 1
αn

− 1
αn−1

| for all n ≥ 1.

Note that (A8) implies both (A6) and (A7).

Throughout this section, {xn} always stands for the sequence generated by the
algorithm (3.2). We first discuss some properties of {xn}.

Lemma 3.1. Assume (A1). Then {xn} is bounded.

Proof. Take a point z ∈ Fix(T ) (⊂ C) arbitrarily. Utilizing Lemma 2.1 and (A1),
we deduce that
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‖xn+1 − z‖ = ‖PC [λnγf(xn) + (I − λnµF )Wnxn] − PCz‖
≤ ‖λnγf(xn) + (I − λnµF )Wnxn − z‖
= ‖λnγ(f(xn)− f(z)) + λn(γf(z)− µFWnz)

+(I − λnµF )Wnxn − (I − λnµF )Wnz + Wnz − z‖
≤ λnγ‖f(xn) − f(z)‖ + λn‖γf(z)− µFWnz‖

+‖(I − λnµF )Wnxn − (I − λnµF )Wnz‖ + ‖Wnz − z‖
≤ λnγL‖xn − z‖ + λn(γ‖f(z)‖+ µ‖FWnz‖)

+(1 − λnτ)‖xn − z‖ + αn‖V z − z‖
≤ [1− λn(τ − γL)]‖xn − z‖ + λn(γ‖f(z)‖+ ν‖V z − z‖ + µ‖FWnz‖)
= [1− λn(τ − γL)]‖xn − z‖ + λn(τ − γL)

·γ‖f(z)‖+ ν‖V z − z‖ + µ‖FWnz‖
τ − γL

,

where τ = 1 − √
1 − µ(2η − µκ2) ∈ (0, 1]. Noticing αn ∈ (0, 1) and the κ-

Lipschitzian property of F , we have

‖FWnz‖ ≤ ‖FWnz − Fz‖ + ‖Fz‖ ≤ κ‖Wnz − z‖ + ‖Fz‖ ≤ κ‖V z − z‖ + ‖Fz‖,
and so

‖xn+1 − z‖ ≤ [1− λn(τ − γL)]‖xn − z‖ + λn(τ − γL)

·γ‖f(z)‖+ (µκ + ν)‖V z − z‖ + µ‖Fz‖
τ − γL

.

Since λn ∈ (0, 1) and 0 ≤ γL < τ , by induction we obtain

‖xn − z‖ ≤ max{‖x0 − z‖, γ‖f(z)‖+ (µκ + ν)‖V z − z‖ + µ‖Fz‖
τ − γL

}, ∀n ≥ 0.

Hence, {xn} is bounded.

Lemma 3.2. Assume (A1) and (A3). Also, assume either “(A4) and A5” or “(A6)
and A7”. Then

(a) limn→∞ ‖xn+1 − xn‖ = 0;

(b) limn→∞ ‖xn − Txn‖ = 0;

(c) ωw(xn) ⊂ Fix(T ).

Proof. Utilizing (3.3) and Lemma 2.1, we have
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(3.4)

‖xn+1 − xn‖
= ‖PC [λnγf(xn) + (I − λnµF )Wnxn]

−PC [λn−1γf(xn−1) + (I − λn−1µF )Wn−1xn−1]‖
≤ ‖[λnγf(xn) + (I − λnµF )Wnxn]

−[λn−1γf(xn−1) + (I − λn−1µF )Wn−1xn−1]‖
= ‖λn(γf(xn)− γf(xn−1)) + (λn − λn−1)γf(xn−1)

+(I − λnµF )Wnxn − (I − λnµF )Wnxn−1

+(I − λnµF )Wnxn−1 − (I − λn−1µF )Wn−1xn−1‖
≤ ‖λn(γf(xn)− γf(xn−1)) + (λn − λn−1)γf(xn−1)‖

+‖(I − λnµF )Wnxn − (I − λnµF )Wnxn−1‖
+‖(I − λnµF )Wnxn−1 − (I − λn−1µF )Wn−1xn−1‖

≤ λnγL‖xn−xn−1‖+γ|λn−λn−1|‖f(xn−1)‖+(1− λnτ)‖xn−xn−1‖
+‖(I − λnµF )Wnxn−1 − (I − λn−1µF )Wn−1xn−1‖

= [1− λn(τ − γL)]‖xn − xn−1‖+ γ|λn − λn−1|‖f(xn−1)‖
+‖(I − λnµF )Wnxn−1 − (I − λn−1µF )Wn−1xn−1‖.

Again, utilizing Lemma 2.1, we get

(3.5)

‖(I − λnµF )Wnxn−1 − (I − λn−1µF )Wn−1xn−1‖
= ‖(I − λnµF )Wnxn−1 − (I − λnµF )Wn−1xn−1

+(I − λnµF )Wn−1xn−1 − (I − λn−1µF )Wn−1xn−1‖
≤ ‖(I − λnµF )Wnxn−1 − (I − λnµF )Wn−1xn−1‖

+‖(I − λnµF )Wn−1xn−1 − (I − λn−1µF )Wn−1xn−1‖
≤ (1− λnτ)‖Wnxn−1 − Wn−1xn−1‖+ µ|λn − λn−1|‖FWn−1xn−1‖
≤ ‖αnV xn−1 + (1− αn)Txn−1 − [αn−1V xn−1

+(1 − αn−1)Txn−1]‖+ µ|λn − λn−1|‖FWn−1xn−1‖
≤ |αn − αn−1|(‖V xn−1‖ + ‖Txn−1‖) + µ|λn − λn−1|‖FWn−1xn−1‖.

Combining (3.4) and (3.5), we derive

‖xn+1 − xn‖ ≤ [1 − λn(τ − γL)]‖xn − xn−1‖ + γ|λn − λn−1|‖f(xn−1)‖
+|αn − αn−1|(‖V xn−1‖ + ‖Txn−1‖) + µ|λn − λn−1|‖FWn−1xn−1‖
= [1 − λn(τ − γL)]‖xn − xn−1‖

+|λn − λn−1|(γ‖f(xn−1)‖+ µ‖FWn−1xn−1‖)
+|αn − αn−1|(‖V xn−1‖ + ‖Txn−1‖).
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Since V and T are nonexpansive mappings, and f and F are Lipschitzian mappings
with constants L ≥ 0 and κ > 0, respectively, and also since {xn} is bounded (Lemma
3.1), we can find a constant M > 0 big enough so that

(3.6)

‖xn+1 − xn‖
≤ [1− λn(τ − γL)]‖xn − xn−1‖+ |λn − λn−1|M + |αn − αn−1|M
= [1− λn(τ − γL)]‖xn − xn−1‖+ (|λn − λn−1| + |αn − αn−1|)M

= [1− λn(τ − γL)]‖xn − xn−1‖+ (
|λn − λn−1|

λn
+

|αn − αn−1|
λn

)λnM

≤ [1− λn(τ − γL)]‖xn − xn−1‖+ (
|λn − λn−1|

λn
+ ν

|αn − αn−1|
αn

)λnM.

Using the assumptions (A4) and (A5) or (A6) and (A7) and applying Lemma 2.5 to
(3.6) we obtain that ‖xn+1 − xn‖ → 0, which together with the following estimate
(noticing αn → 0 and λn → 0)

‖xn+1 − Txn‖ = ‖PC [λnγf(xn) + (I − λnµF )Wnxn]− PCTxn‖
≤ ‖λnγf(xn) + (I − λnµF )Wnxn − Txn‖
≤ λnγ‖f(xn)‖+ ‖Wnxn − Txn‖ + λnµ‖FWnxn‖
= λnγ‖f(xn)‖+ αn‖V xn − Txn‖ + λnµ‖FWnxn‖ → 0

immediately implies part (b). Part (c) follows from part (b) and Lemma 2.3.

We will see that the convergence of the sequence {xn} depends on the limit of the
ratio in (A2); i.e., on σ = limn→∞ αn/λn. Our first result treats the case where σ = 0.

Theorem 3.1. Assume (A2) with σ = 0 and (A3). Also, assume either “(A4)
and (A5)” or “(A6) and (A7)”. Then {xn} converges in norm to the fixed point q of
the contraction PFix(T )(I − µF + γf), q = PFix(T )(I − µF + γf)q, i.e., the unique
solution of the variational inequality

(3.7) q ∈ Fix(T ) : 〈(µF − γf)q, x− q〉 ≥ 0, ∀x ∈ Fix(T ).

Proof. It is easy to obtain the uniqueness of a solution of the VI (3.7). Indeed,
note that 0 ≤ γL < τ and

µη ≥ τ ⇔ µη ≥ 1 −
√

1 − µ(2η − µκ2)

⇔
√

1 − µ(2η − µκ2) ≥ 1 − µη

⇔ 1− 2µη + µ2κ2 ≥ 1 − 2µη + µ2η2

⇔ κ2 ≥ η2

⇔ κ ≥ η.
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It is clear that
〈(µF − γf)x− (µF − γf)y, x− y〉 ≥ (µη − γL)‖x− y‖2, ∀x, y ∈ C.

Hence it follows from 0 ≤ γL < τ ≤ µη that µF − γf is strongly monotone. Since
µF − γf is Lipschitzian, the VI (3.7) has only one solution. Let q be the unique
solution of the VI (3.7). Then the VI (3.7) can be rewritten as

q ∈ Fix(T ) : 〈q − (I − µF + γf)q, x− q〉 ≥ 0, ∀x ∈ Fix(T ).
According to Lemma 2.4 (i) we conclude that

q = PFix(T )(I − µF + γf)q.
By assumption (A2) with σ = 0, we can write αn = εnλn, where limn→∞ εn = 0

(thus we may assume 0 ≤ εn ≤ 1 for all n ≥ 0). Since {xn} is bounded, we can take
a subsequence {xnj} of {xn} such that
(3.8) lim sup

n→∞
〈(γf − µF )q, xn − q〉 = lim

j→∞
〈(γf − µF )q, xnj − q〉

Without loss of generality, we may assume xnj ⇀ x′ ∈ Fix(T ) (Lemma 3.2 (c)). Now
from (3.8) and (3.7) it follows that
(3.9) lim sup

n→∞
〈(γf − µF )q, xn − q〉 = 〈(γf − µF )q, x′ − q〉 ≤ 0.

Let us show that xn → q as n → ∞. Indeed, set
yn = λnγf(xn) + (I − λnµF )Wnxn, ∀n ≥ 0.

We then have xn+1 = PCyn, and
(3.10)
xn+1 − q = PCyn − yn + yn − q

= PCyn − yn + λn(γf(xn) − µFq) + (I − λnµF )Wnxn − (I − λnµF )q.

Since PC is the metric projection from H onto C, we have
〈PCyn − yn, PCyn − q〉 ≤ 0.

Utilizing Lemma 2.1, we deduce from (3.10) that

(3.11)

‖xn+1 − q‖2

= 〈PCyn − yn, PCyn − q〉 + 〈(I − λnµF )Wnxn

−(I − λnµF )q, xn+1 − q〉 + λn〈γf(xn)− µFq, xn+1 − q〉
≤ 〈(I − λnµF )Wnxn − (I − λnµF )q, xn+1 − q〉

+λn〈γf(xn) − µFq, xn+1 − q〉
= 〈(I − λnµF )Wnxn − (I − λnµF )Wnq, xn+1 − q〉

+〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉
+λn〈γf(xn) − µFq, xn+1 − q〉

≤ ‖(I − λnµF )Wnxn − (I − λnµF )Wnq‖‖xn+1 − q‖
+〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉



1542 Lu-Chuan Ceng, Yen-Cherng Lin and Adrian Petruşel

+λn〈γf(xn) − µFq, xn+1 − q〉
≤ (1 − λnτ)‖xn − q‖‖xn+1 − q‖ + 〈(I − λnµF )Wnq

−(I − λnµF )q, xn+1 − q〉
+λn〈γf(xn) − γf(q), xn+1 − q〉 + λn〈(γf − µF )q, xn+1 − q〉

≤ (1 − λnτ)‖xn − q‖‖xn+1 − q‖ + λnγL‖xn − q‖‖xn+1 − q‖
+λn〈(γf − µF )q, xn+1 − q〉 + 〈(I − λnµF )Wnq

−(I − λnµF )q, xn+1 − q〉
= [1 − λn(τ − γL)]‖xn − q‖‖xn+1 − q‖ + λn[〈(γf − µF )q, xn+1 − q〉

+
1
λn

〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉]
≤ [1 − λn(τ − γL)](

1
2
‖xn − q‖2 +

1
2
‖xn+1 − q‖2)

+λn[〈(γf − µF )q, xn+1 − q〉
+

1
λn

〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉]
≤ 1

2
[1− λn(τ − γL)]‖xn − q‖2 +

1
2
‖xn+1 − q‖2

+λn[〈(γf − µF )q, xn+1 − q〉
+

1
λn

(1− λnτ)αn‖V q − q‖‖xn+1 − q‖]
≤ 1

2
[1− λn(τ − γL)]‖xn − q‖2 +

1
2
‖xn+1 − q‖2

+λn[〈(γf − µF )q, xn+1 − q〉
+εn‖V q − q‖‖xn+1 − q‖].

This implies that

‖xn+1 − q‖2L)]‖xn − q‖2 + 2λn[〈(γf − µF )q, xn+1 − q〉
≤ [1 − λn(τ − γ + εn‖V q − q‖‖xn+1 − q‖].

Setting an = ‖xn − q‖2, γn = λn(τ − γL), and

δn =
2

τ − γL
[εn‖V q − q‖‖xn+1 − q‖+ 〈(γf − µF )q, xn+1 − q〉],

we then have

(3.12) an+1 ≤ (1− γn)an + γnδn.

In terms of (3.9) and the fact that εn → 0, we have lim supn→∞ δn ≤ 0. Therefore,
by Lemma 2.5, we conclude that an → 0; hence xn → q in norm. This completes the
proof.
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Remark 3.1. By Lemma 2.5, assumption (A3) and the estimate (3.11), we find
that the following two conditions are sufficient to guarantee the strong convergence of
{xn}:

(3.13) lim sup
n→∞

〈(γf − µF )q, xn − q〉 ≤ 0

and

(3.14) lim sup
n→∞

1
λn

〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉 ≤ 0.

Condition (3.13), proved in (3.9), is easily seen to satisfy due to the fact that q is
the fixed point of the contraction PS(I − µF + γf) together with the demiclosedness
of nonexpansive mappings (Lemma 2.3). Condition (3.14), is however hard to verify
unless an additional condition relating the growth of the displacement ‖x − Tx‖ of
the nonexpansive mapping T to its fixed point set Fix(T ) is given (see Theorem 3.3
below).

We also see that under the assumptions of Theorem 3.1, the limit q of {xn} solves
the VI (3.7), instead of (3.1). This is due to the fact that σ = 0 makes {αn} tend to
0 ‘much′ faster than {λn} do. Consequently, the term ‘λnf(xn)′ dominates while the
term ‘αnV xn

′ looks ‘negligible′. However, if we assume σ ∈ (0,∞], the situations
differ, as shown below.

Theorem 3.2. Assume (A2) with σ ∈ (0,∞), (A3), (A8) and (A9). Then {xn}
converges strongly to the unique solution x̃ of the variational inequality

(3.15) x̃ ∈ Fix(T ) : 〈 1
σ

(µF − γf)x̃ + (I − V )x̃, x̃ − x′〉 ≤ 0, ∀x′ ∈ Fix(T ).

Proof. Since (A2) with σ ∈ (0,∞) implies (A1) and since (A8) implies both (A6)
and (A7), we still know that {xn} is bounded and the conclusions (a)-(c) in Lemma
3.2 hold.

As proven in Theorem 3.1, µF − γf is strongly monotone with constant µη − γL
and is also Lipschitzian (because F and f are Lipschitzian). Since V is nonexpansive,
I − V is monotone and Lipschitzian. Thus, the mapping 1

σ (µF − γf) + (I − V ) is
strongly monotone with constant (µη − γL)/σ due to the fact that

〈[ 1
σ

(µF − γf) + (I − V )]x− [
1
σ

(µF − γf) + (I − V )]y, x− y〉
=

1
σ
〈(µF − γf)x− (µF − γf)y, x− y〉 + 〈(I − V )x − (I − V )y, x− y〉

≥ (µη − γL)/σ.

Meantime, it is clear that the mapping 1
σ (µF − γf) + (I − V ) is Lipschitzian. Con-

sequently, the VI (3.15) has only one solution. Let x̃ be the unique solution of the VI
(3.15).
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Let us show that xn → x̃ as n → ∞. Indeed, we still write Wn = αnV +(1−αn)T ;
then xn+1 = PCyn where

yn = λnγf(xn) + (I − λnµF )Wnxn, ∀n ≥ 0.

Now take a point z ∈ Fix(T ) arbitrarily. Since PC is the metric projection from H

onto C, utilizing Lemma 2.4 (i) we have

〈PCyn − yn, PCyn − z〉 ≤ 0.

Also, observe that

(3.16)

yn − z = λnγf(xn) + (I − λnµF )Wnxn − z

= λn(γf(xn) − µFWnz) + (I − λnµF )Wnxn

−(I − λnµF )Wnz + Wnz − z

= λnγ(f(xn) − f(z)) + λn(γf(z)− µFWnz)

+(I − λnµF )Wnxn − (I − λnµF )Wnz + αn(V − I)z.

Utilizing Lemma 2.1, we obtain from (3.2)

‖xn+1 − z‖2

= 〈PCyn − yn, PCyn − z〉 + 〈yn − z, xn+1 − z〉
≤ 〈yn − z, xn+1 − z〉
= λnγ〈f(xn) − f(z), xn+1 − z〉 + λn〈γf(z)− µFWnz, xn+1−z〉

+〈(I − λnµF )Wnxn − (I − λnµF )Wnz, xn+1 − z〉 + αn〈(V −I)z, xn+1−z〉
≤ λnγ‖f(xn) − f(z)‖‖xn+1 − z‖ + λn〈γf(z)− µFWnz, xn+1 − z〉

+‖(I − λnµF )Wnxn − (I − λnµF )Wnz‖‖xn+1 − z‖ + αn〈(V −I)z, xn+1−z〉
≤ λnγL‖xn − z‖‖xn+1 − z‖ + λn〈γf(z)− µFWnz, xn+1 − z〉

+(1− λnτ)‖xn − z‖‖xn+1 − z‖ + αn〈(V − I)z, xn+1 − z〉
= [1 − λn(τ − γL)]‖xn − z‖‖xn+1 − z‖ + λn[〈γf(z)− µFWnz, xn+1 − z〉

+
αn

λn
〈(V − I)z, xn+1 − z〉]

≤ 1
2
[1− λn(τ − γL)]‖xn − z‖2 +

1
2
‖xn+1 − z‖2

+λn〈γf(z)− µFWnz +
αn

λn
(V − I)z, xn+1 − z〉,

which hence implies that

(3.17)
‖xn+1 − z‖2 ≤ [1 − λn(τ − γL)]‖xn − z‖2

+2λn〈γf(z)− µFWnz +
αn

λn
(V − I)z, xn+1 − z〉.



Designing Explicit Hierarchical Fixed Point Approach to Monotone Variational Inequalities 1545

In particular, whenever z = x̃, we have

‖xn+1 − x̃‖2

≤ [1 − λn(τ − γL)]‖xn − x̃‖2 + 2λn〈γf(x̃)− µFWnx̃ +
αn

λn
(V − I)x̃, xn+1 − x̃〉.

Since {xn} is bounded, we can take a subsequence {xnj} of {xn} such that

(3.18)
lim sup

n→∞
〈γf(x̃)− µFWnx̃ +

αn

λn
(V − I)x̃, xn+1 − x̃〉

= lim
j→∞

〈γf(x̃) − µFWnj x̃ +
αnj

λnj

(V − I)x̃, xnj+1 − x̃〉.

Without loss of generality, we may assume that xnj ⇀ x′ ∈ Fix(T ) (Lemma 3.2 (c)).
Observe that

|〈γf(x̃)− µFWnj x̃, xnj+1 − x̃〉 − 〈γf(x̃) − µFx̃, x′ − x̃〉|
≤ |〈γf(x̃) − µFWnj x̃ − (γf(x̃) − µFx̃), xnj+1 − x̃〉|

+|〈γf(x̃) − µFx̃, xnj+1 − x̃ − (x′ − x̃)〉|
= µ|〈FWnj x̃ − Fx̃, xnj+1 − x̃〉| + |〈γf(x̃) − µFx̃, xnj+1 − x′〉|
≤ µκαnj‖V x̃ − x̃‖‖xnj+1 − x̃‖ + ‖γf(x̃) − µFx̃‖‖xnj+1 − xnj‖

+|〈γf(x̃) − µFx̃, xnj − x′〉| → 0 as j → ∞,

and

|αnj

λnj
〈(V − I)x̃, xnj+1 − x̃〉 − σ〈(V − I)x̃, x′ − x̃〉|

≤ |αnj

λnj
− σ||〈(V − I)x̃, xnj+1 − x̃〉|+ σ|〈(V − I)x̃, xnj+1 − x′〉|

≤ |αnj

λnj
− σ||〈(V − I)x̃, xnj+1 − x̃〉|+ σ|〈(V − I)x̃, xnj+1 − xnj 〉|

+σ|〈(V − I)x̃, xnj − x′〉|
≤ |αnj

λnj
− σ|‖(V − I)x̃‖‖xnj+1 − x̃‖ + σ‖(V − I)x̃‖‖xnj+1 − xnj‖

+σ|〈(V − I)x̃, xnj − x′〉| → 0 as j → ∞.

Therefore, by virtue of the fact that x̃ is the unique solution of the VI (3.15), we
conclude from (3.18) that

(3.19)
lim sup

n→∞
〈γf(x̃) − µFWnx̃ +

αn

λn
(V − I)x̃, xn+1 − x̃〉

= 〈(γf − µF )x̃ + σ(V − I)x̃, x′ − x̃〉 ≤ 0.

Setting an = ‖xn − x̃‖2, γn = λn(τ − γL), and

δn =
2

τ − γL
〈γf(x̃) − µFWnx̃ +

αn

λn
(V − I)x̃, xn+1 − x̃〉,
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we then have
an+1 ≤ (1− γn)an + γnδn.

By means of (3.19) we have lim supn→∞ δn ≤ 0. Therefore, by Lemma 2.5, we deduce
that an → 0; hence xn → x̃ in norm. This completes the proof.

Finally we consider the case where σ = ∞. This case is more delicate.

Theorem 3.3. Assume (A2) with σ = ∞ (i.e., λn/αn → 0), (A3), (A8) and (A9).
Assume also that {xn} is bounded. Then every weak limit point of {xn} is a solution
of the VI (3.1). If, in addition, there are constants ξ > 0 and θ > 0 such that

(A10) ‖x − Tx‖ ≤ ξ[dist(x, Fix(T ))]θ for all x ∈ C,

(A11) α
1+1/θ
n
λn

→ 0,

then {xn} converges strongly to a solution q of the VI (3.1), which is also the unique
fixed point of the contraction PFix(T )(I − µF + γf), or the unique solution of the VI
(3.7).

Proof. Observe first that the boundedness of {xn} and (A8) together ensure that
the conclusions of Lemma 3.2 still hold. Now let us show that

(3.20) lim
n→∞ ‖xn+1 − xn‖/αn = 0.

Indeed, utilizing (3.6) and (A9) we have

(3.21)

‖xn+1 − xn‖
αn

≤ [1− λn(τ − γL)]
‖xn − xn−1‖

αn
+

|λn − λn−1| + |αn − αn−1|
αn

M

≤ [1− λn(τ − γL)]
‖xn − xn−1‖

αn−1
+

1
λn

| 1
αn

− 1
αn−1

|(λn‖xn − xn−1‖)

+
|λn − λn−1|+ |αn − αn−1|

αn
M

≤ [1− λn(τ − γL)]
‖xn − xn−1‖

αn−1
+ λnK‖xn − xn−1‖

+
|λn − λn−1|+ |αn − αn−1|

αn
M

= [1− λn(τ − γL)]
‖xn − xn−1‖

αn−1

+λn(K‖xn − xn−1‖+
|λn − λn−1| + |αn − αn−1|

λnαn
M).

Using Lemma 2.5, Lemma 3.2 (a) and assumption (A8), we deduce that (3.20) is valid.
Furthermore, utilizing (3.17) we have for all z ∈ Fix(T )
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〈(I − V )z, xn+1 − z〉

≤ ‖xn − z‖2 − ‖xn+1 − z‖2

2αn
+

λn

αn
〈γf(z)− µFWnz, xn+1 − z〉

≤ ‖xn − xn+1‖(‖xn − z‖ + ‖xn+1 − z‖)
2αn

+
λn

αn
‖γf(z)− µFWnz‖‖xn+1 − z‖.

Since ‖xn+1 − xn‖/αn → 0 and λn
αn

→ 0 as n → ∞, we arrive at

lim sup
n→∞

〈(I − V )z, xn − z〉 ≤ 0, ∀z ∈ Fix(T ),

which implies that, for any x̂ ∈ ωw(xn) ⊂ Fix(T ),

〈(I − V )z, x̂− z〉 ≤ 0, ∀z ∈ Fix(T )

which, in turns, implies that, for t ∈ (0, 1) and x ∈ Fix(T ),

〈(I − V )(x̂ + t(x − x̂)), x̂− x〉 ≤ 0, ∀x ∈ Fix(T ).

Upon letting t → 0+, we immediately find that x̂ solves the variational inequality

x̂ ∈ Fix(T ) : 〈(I − V )x̂, x̂− x〉 ≤ 0, ∀x ∈ Fix(T ).

This is the VI (3.1).
Finally, we prove that, under the additional conditions (A10) and (A11), the full

sequence {xn} converges in norm to q, the unique fixed point of the contraction PS(I−
µF + γf). We have already seen that the relation (3.13) holds and so, according to
Remark 3.1, we need to verify the relation (3.14). To see this, we use the fact that
q ∈ S solves the VI (3.1) to get

〈V q − q, PFix(T )xn+1 − q〉 ≤ 0.

This implies that

(3.22)

〈V q − q, xn+1 − q〉
= 〈V q − q, xn+1 − PFix(T )xn+1〉 + 〈V q − q, PFix(T )xn+1 − q〉
≤ 〈V q − q, xn+1 − PFix(T )xn+1〉
≤ ‖V q − q‖dist(xn+1, Fix(T ))

≤ ‖V q − q‖(1
ξ
‖xn+1 − Txn+1‖)1/θ.

However, it is easy to see that there holds, for an appropriate constant ξ1 > 0,

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − Txn‖ + ‖xn+1 − xn‖ ≤ ξ1(αn + λn) + ‖xn+1 − xn‖.
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It follows from (3.22) that we have another appropriate constant ξ2 > 0 such that

〈V q − q, xn+1 − q〉 ≤ ξ2(αn + λn + ‖xn+1 − xn‖)1/θ.

Hence

αn

λn
〈V q − q, xn+1 − q〉 ≤ ξ2 · α

1+1/θ
n

λn
(1 +

λn

αn
+

‖xn+1 − xn‖
αn

)1/θ.

Now by conditions (A2) with σ = ∞ and (A11) and (3.20), we derive

lim sup
n→∞

αn

λn
〈V q − q, xn+1 − q〉 ≤ 0.

Further, we get

lim sup
n→∞

1
λn

〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉

= lim sup
n→∞

[
1
λn

〈Wnq − q, xn+1 − q〉 − µ〈FWnq − Fq, xn+1 − q〉]
≤ lim sup

n→∞
[
αn

λn
〈V q − q, xn+1 − q〉 + µ‖FWnq − Fq‖‖xn+1 − q‖]

≤ lim sup
n→∞

[
αn

λn
〈V q − q, xn+1 − q〉 + µκαn‖V q − q‖‖xn+1 − q‖]

≤ lim sup
n→∞

αn

λn
〈V q − q, xn+1 − q〉 + µκ‖V q − q‖ · lim sup

n→∞
αn‖xn+1 − q‖

≤ 0.

That is, (3.14) is fulfilled.
Notice that we still have the inequality (3.11) and hence from (3.11) we obtain

(3.23)

‖xn+1 − q‖2

≤ [1− λn(τ − γL)]‖xn − q‖2 + 2λn[〈(γf − µF )q, xn+1 − q〉

+
1
λn

〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉].

So setting βn = λn(τ − γL) and

γn =
2〈(γf − µF )q, xn+1 − q〉+ 2

λn
〈(I − λnµF )Wnq − (I − λnµF )q, xn+1 − q〉

τ − γL
,

we can rewrite (3.23) as

(3.24) ‖xn+1 − q‖2 ≤ (1 − βn)‖xn − q‖2 + βnγn.

Noticing (3.9) and (3.14), we can apply Lemma 2.5 to conclude that ‖xn − q‖2 → 0;
namely, xn → q in norm. This completes the proof.
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Remark 3.2. As given out in [10, Remark 3.2], the sequences {αn} and {λn} can
be appropriately chosen such that they satisfy the requirements of Theorems 3.1-3.3,
respectively.

Remark 3.3. Recently, Mainge and Moudafi [7] also obtained a strong convergence
result of Marino and Xu [10, Theorem 3.3] type under some stronger assumptions than
those in [10, Theorem 3.3]. For instance, the following assumption in [7]

(P3) |αn − αn−1|/(α2
nλn) → 0 and |λn − λn−1|/(αnλn) → 0

is slightly strongly than (A9).
Meantime, Marino and Xu [10, Theorem 3.3] completely removed the condition

Fix(T ) ∩ intC �= ∅ in [7] and they did not use any graph convergence (see [8])
argument.

4. APPLICATIONS IN HIERARCHICAL MINIMIZATION

Let H be a real Hilbert space and let ϕ0, ϕ1 : H → R be lower semicontinuous
convex functions. Consider the following hierarchical minimization

(4.1) min
x∈H

ϕ0(x), min
x∈S0

ϕ1(x),

where S0 := argminx∈Hϕ0(x) �= ∅.
Let S1 := argminx∈S0

ϕ1(x) �= ∅. Suppose that ϕ0 and ϕ1 are differentiable and
their gradients are Lipschitz continuous:

‖∇ϕ0(x)−∇ϕ0(y)‖ ≤ L0‖x−y‖ and ‖∇ϕ1(x)−∇ϕ1(y)‖ ≤ L1‖x−y‖, ∀x, y ∈ H,

where L0 and L1 are constants. Let

(4.2) T = I − γ0∇ϕ0, V = I − γ1∇ϕ1,

where γ0 > 0 and γ1 > 0.
It is easily seen that S0 = Fix(T ). It is also known that T and V are both

nonexpansive, if 0 < γ0 < 2/L0 and 0 < γ1 < 2/L1 (we always restrict γ0 and γ1

to such ranges). To see this, we need a result of [6], which says that the Lipschitz
continuity of ∇ϕ0 implies that it is inverse strongly monotone; that is, the following
inequality holds:

〈x − y,∇ϕ0(x)−∇ϕ0(y)〉 ≥ 1
L0

‖∇ϕ0(x) −∇ϕ0(y)‖2, ∀x, y ∈ H.

Now it follows that
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‖Tx− Ty‖2 = ‖(x− y) − γ0(∇ϕ0(x) −∇ϕ0(y))‖2

= ‖x − y‖2 − 2γ0〈x − y,∇ϕ0(x)

−∇ϕ0(y)〉+ γ2
0‖∇ϕ0(x) −∇ϕ0(y)‖2

≤ ‖x − y‖2 − γ0(
2
L0

− γ0)‖∇ϕ0(x) −∇ϕ0(y)‖2

≤ ‖x − y‖2.

Hence, T is nonexpansive. Similarly, V is nonexpansive.
The optimality condition for x∗ ∈ S0 to be a solution of the hierarchical minimiza-

tion (4.1) is

(4.3) x∗ ∈ S0 : 〈∇ϕ1(x∗), x− x∗〉 ≥ 0, ∀x ∈ S0;

equivalently, the variational inequality

(4.4) x∗ ∈ Fix(T ) : 〈(I − V )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ).

Therefore, our results obtained in Sect. 3 apply. In particular, for any fixed point
u ∈ H , taking the Lipschitzian mapping f to be the constant mapping f(x) ≡ u for all
x ∈ H , we have the following results (see [10, Theorems 4.1-4.3] for γ = 1, µ = 1
and F = I).

Theorem 4.1. Initializing with x0 ∈ H , we define a sequence {xn} by the recursive
algorithm:

(4.5)
xn+1 = λnγu + (I − λnµF )(xn − γ0(1 − αn)∇ϕ0(xn)

−γ1αn∇ϕ1(xn)), ∀n ≥ 0.

Assume that the sequences {αn} and {λn} satisfy the assumptions (A2) with τ = 0,
(A3), and either “(A4) and A5” or “(A6) and A7”. Then {xn} converges in norm to
the fixed point x∗ of the contraction PS0(I −µF + γu), x∗ = PS0(x

∗−µFx∗ + γu),
i.e., the unique solution of the variational inequality

x∗ ∈ S0 : 〈µF (x∗) − γu, x̂− x∗〉 ≥ 0, ∀x̂ ∈ S0.

In particular, if we additionally restrict γ = µ = 1 and F = I , then {x n} converges
in norm to the u-minimal norm solution x ∗ of the hierarchical minimization (4.1);
namely, x∗ ∈ S1 satisfies the property: ‖u − x∗‖ ≤ ‖u − x̂‖ for all x̂ ∈ S1. In
other words, x∗ is the (nearest point) projection of u onto the solution set S 1 of the
hierarchical minimization (4.1).

Proof. Let C = H, f(x) ≡ u and T, V be given by (4.2). Then L = 0 and so
0 ≤ γL < τ for all γ > 0 where τ = 1− √

1 − µ(2η − µκ2), 0 < µ < 2η/κ2. Thus



Designing Explicit Hierarchical Fixed Point Approach to Monotone Variational Inequalities 1551

it is found that the algorithm (3.2) generates a sequence {xn} given by

xn+1

= PC [λnγf(xn) + (I − λnµF )(αnV xn + (1− αn)Txn)]

= λnγu + (I − λnµF )[αn(xn − γ1∇ϕ1(xn)) + (1 − αn)(xn − γ0∇ϕ0(xn))]

= λnγu + (I − λnµF )(xn − γ0(1− αn)∇ϕ0(xn) − γ1αn∇ϕ1(xn)).

Consequently, we can apply Theorem 3.1 to conclude that the sequence {xn} converges
in norm to the unique solution x∗ of the variational inequality:

(4.6) x∗ ∈ S0 : 〈µF (x∗) − γu, x̂− x∗〉 ≥ 0, ∀x̂ ∈ S0

which is equivalent to the fact that x∗ = PS0(x
∗ − µFx∗ + γu).

Theorem 4.2. Initializing with x0 ∈ H , we define a sequence {xn} by the recursive
algorithm:

(4.7)
xn+1 = αnγu + (I − αnµF )(xn − γ0(1− αn)∇ϕ0(xn)

−γ1αn∇ϕ1(xn)), ∀n ≥ 0.

where the sequence {αn} satisfies the assumptions:
(i) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞;

(ii) limn→∞ |αn+1 − αn|/α2
n+1 = 0;

(iii) there exists a constant K > 0 such that 1
αn+1

| 1
αn+1

− 1
αn

| ≤ K for all n ≥ 0.
Then {xn} converges in norm to a solution x ∗ of the hierarchical minimization
(4.1) which is also the solution of the variational inequality:

(4.8) x∗ ∈ S0 : 〈µF (x∗) + γ1∇ϕ1(x∗) − γu, x̂− x∗〉 ≥ 0, ∀x̂ ∈ S0.

In particular, if we additionally restrict γ = µ = 1 and F = I , then {x n}
converges in norm to a solution x ∗ of the hierarchical minimization (4.1) which
is also the solution of the variational inequality:

x∗ ∈ S0 : 〈x∗ + γ1∇ϕ1(x∗) − u, x̂ − x∗〉 ≥ 0, ∀x̂ ∈ S0.

Proof. Taking λn = αn for all n ≥ 0, we find that algorithm (4.5) reduces to
algorithm (4.7). By virtue of the assumptions (i)-(iii), we can apply Theorem 3.2 to
conclude that the sequence {xn} converges in norm to a solution x∗ of the hierarchical
minimization (4.1) which is also the solution of the variational inequality (see (3.15)
with σ = 1 and f ≡ u):

(4.9) x∗ ∈ S0 : 〈µF (x∗) − γu + (I − V )x∗, x̂− x∗〉 ≥ 0, ∀x̂ ∈ S0.
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Since V = I − γ1∇ϕ1, we see that the variational inequality (4.9) reduces to (4.8).

Theorem 4.3. Let {xn} be generated by the algorithm (4.5). Assume that the
sequences {αn} and {λn} satisfy the assumptions (A 2) with σ = ∞, (A3), (A8), and
(A9). Assume also limn→∞ α2

n/λn = 0. Then {xn} converges in norm to a solution
x∗ of the hierarchical minimization (4.1) which solves the VI (4.6). In particular, if
we additionally restrict γ = µ = 1 and F = I , then {xn} converges in norm to the
u-minimal norm solution x ∗ of the hierarchical minimization (4.1).

Proof. Observe that assumption (A10) of Theorem 3.3 holds with ξ = γ0L0 and
θ = 1. As a matter of fact, for any x ∈ H and x̂ ∈ S0 (hence ∇ϕ0(x̂) = 0), we
deduce that

‖∇ϕ0(x)‖ = ‖∇ϕ0(x)−∇ϕ0(x̂)‖ ≤ L0‖x − x̂‖,
and hence ‖∇ϕ0(x)‖ ≤ L0dist(x, S0). As T = I − γ0∇ϕ0, we have

‖(I − T )x‖ = γ0‖∇ϕ0(x)‖ ≤ γ0L0dist(x, S0).

Now we can apply Theorem 3.3 to conclude that {xn} converges in norm to a solution
x∗ of the hierarchical minimization (4.1) which solves the VI (4.6).
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