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A NOTE ON WEIGHTED NORM INEQUALITIES FOR FRACTIONAL
MAXIMAL OPERATORS WITH NON-DOUBLING MEASURES

Weihong Wang, Chaoqiang Tan and Zengjian Lou*

Abstract. Let µ be a non-negative Borel measure on R
d which only satisfies some

growth condition, we study two-weight norm inequalities for fractional maximal
functions associated to such µ. A necessary and sufficient condition for the
maximal operator to be bounded from Lp(v) into weak Lq(u) (1 ≤ p ≤ q < ∞)
is given. Furthermore, by using certain Orlicz norm, a strong type inequality is
obtained.

1. INTRODUCTION

Let µ be a non-negative “n-dimensional” Borel measure on Rd which only satisfies
the following growth condition: there exists n ∈ (0, d] such that

(1.1) µ(Q) ≤ �(Q)n

for any cube Q ⊂ R
d, where �(Q) stands for the side length of Q. Throughout this

paper, by a cube Q ⊂ Rd, we mean a closed cube whose sides are parallel to the
coordinate axes and we shall always denote the side length as above. For λ > 0 and
any cube Q, λQ is a cube concentric as Q and with �(λQ) = λ�(Q). Moreover,
Q(x, r) will be the cube centered at x with side length r.

The classical theory of harmonic analysis for maximal functions and singular inte-
grals on (Rd, µ) has been developed under the assumption that the underlying measure
µ satisfies the doubling property, i.e., there exists a constant C > 0 such that for
x ∈ Rd and r > 0, µ(B(x, 2r)) ≤ Cµ(B(x, r)), where B(x, r) stands for the open
ball centered at x with radius r (see [1, 2, 4, 7, 12, 15]). However, it seems that this
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doubling condition can be removed and many classical results of Calderón-Zygmund
theory have been proved to continue to hold (see [5, 6, 8-11, 17-19). The motiva-
tion for developing the analysis on non-homogeneous spaces and some examples of
non-doubling measures can be found in [20]. For a complete account of this topic the
reader is referred to [3] (Chapter 5, pp. 137-147).

For 0 ≤ α < 1, define the non-centered fractional maximal function

(1.2) Mαf(x) = sup
Q�x

1
µ(5Q)1−α

∫
Q

|f(y)| dµ(y),

where the supremum is taken over all cubes that contain x. The purpose of the paper
is to consider two-weight norm inequalities for the maximal function Mα. We shall
investigate that for which pairs of weights, Mα satisfies a weak or a strong type
inequality. A weight w will be a nonnegative and locally integrable function. For
any measurable set E , we shall write w(E) =

∫
E w dµ and Lp(w) = Lp(wdµ) for

0 < p < ∞. If 1 ≤ p ≤ ∞, as usual, p′ will be the exponent conjugate to p, that is,
the one satisfying p′ = p/(p − 1).

Garc ía-Cuerva and Martell in [5] introduced the following radical fractional max-
imal functions: for 0 ≤ α < n,

(1.3) Mαf(x) = sup
Q�x

1
�(Q)n−α

∫
Q
|f(y)| dµ(y),

where the measure µ just satisfies the growth condition (1.1). As we can see in many
papers (e.g. [13] and [16]), it is more natural to define the fractional maximal operators
as showing in (1.2), which can be seen from the following example in the case of R.

Example 1. Given a non-doubling measure dµ = χ[0, 1]dx, i.e. µ(Q) =
∫
Q χ[0,1] dx,

for Q ⊂ R. Obviously, the measure µ satisfies the growth condition (1.1), for
0 < n ≤ 1. In fact, let �(Q) = r ≥ 0. When r ≥ 1, then µ(Q) ≤ 1 ≤ rn.
When 0 < r < 1, then µ(Q) ≤ r ≤ rn. So, for any n ∈ (0, 1], the measure µ
satisfies the growth condition. As a conclusion, there are infinite maximal functions
for a same measure µ according to the definition of Mα defined in (1.3). This fact
causes difficulties in studying properties of the measure space. However, the maximal
function Mα defined in (1.2) is unique in some sense.

Definition 1.1. Let 1 ≤ p ≤ q < ∞ and 0 ≤ α < 1. We shall say that the pair of
weights (u, v) ∈ Aα

p, q, if for every cube Q

(i)
1

µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q
(∫

Q
v(x)1−p′ dµ(x)

) 1
p′ ≤ C, when 1<p<∞.

(ii)
1

µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q

≤ Cv(x), for µ-almost every x ∈ Q, when p=1.
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Here and afterward, C denotes a constant independent of functions, whose value may
differ from line to line.

Remark 1.1. In Definition 1.1, we are implicitly assuming that u, v1−p′ ∈ L1
loc(µ)

and so u < ∞, v > 0 µ-almost everywhere.

The main results of the paper can be stated as follows. Theorem 1.1 concerns with
the problem of finding pairs of weights such that the maximal operator Mα satisfies
a weak type inequality; Theorem 1.2 characterizes those pairs of weights for which
Mα satisfies a strong type inequality, which can be achieved by certain Orlize norm
localized in cubes. Their proofs are given respectively in Sections 2 and 3.

Theorem 1.1. Let 1 ≤ p ≤ q < ∞, 0 ≤ α < 1 and 0 < λ < ∞, u and v are two
weights. Then the maximal operator f �→ Mαf is of weak-type (Lp(v), Lq(u)), i.e.,

(1.4) u({x ∈ R
d : Mαf(x) > λ}) ≤ C

λq

(∫
Rd

|f(x)|pv(x) dµ(x)
)q

p

if and only if the pair of weights (u, v) ∈ Aα
p, q.

Theorem 1.2. Let 1 < p < q < ∞ and 0 ≤ α < 1. Let (u, v) be a pair of weights
such that for every cube Q

(1.5) �(Q)n(1−1
p
)
µ(Q)α−1u(3Q)

1
q ‖v− 1

p ‖Φ, Q ≤ C,

where Φ is a Young function whose complementary function Φ̄ ∈ Bp. Then

(1.6)
(∫

Rd

(Mαf(x))q u(x) dµ(x)
)1

q

≤ C

(∫
Rd

|f(x)|pv(x) dµ(x)
)1

p

for f ∈ Lp(v) which is bounded with compact support.

The definitions of Young function Φ, norm ‖ · ‖Φ, Q, and Bp condition are given in
Section 3.

2. PROOF OF THEOREM 1.1

To prove Theorem 1.1 we need the following lemma which provides an equivalence
for the pair of weights in Aα

p,q.

Lemma 2.1. Let 1 ≤ p ≤ q < ∞ and 0 ≤ α < 1. The pair of weights (u, v) ∈
Aα

p,q if and only if for every cube Q and every f ≥ 0,

(2.1)
(

1
µ(5Q)1−α

∫
Q

f(x) dµ(x)
)q

u(Q) ≤ C

(∫
Q

f(x)pv(x) dµ(x)
)q

p

.
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Proof. When p = 1, for (u, v) ∈ Aα
1, q,(

1
µ(5Q)1−α

∫
Q

f(x) dµ(x)
)q

u(Q)

=

(∫
Q

f(x)
1

µ(5Q)1−α

(∫
Q

u(y) dµ(y)
)1

q

dµ(x)

)q

≤ C

(∫
Q

f(x)v(x) dµ(x)
)q

.

When 1 < p < ∞, by Hölder’s inequality, we obtain(
1

µ(5Q)1−α

∫
Q

f(x) dµ(x)
)q

u(Q)

≤ 1
µ(5Q)(1−α)q

(∫
Q

f(x)pv(x) dµ(x)
)q

p
(∫

Q
v(x)1−p′ dµ(x)

) q
p′
∫

Q
u(x) dµ(x)

=
(∫

Q

f(x)pv(x) dµ(x)
)q

p

(
1

µ(5Q)1−α

(∫
Q

u(y) dµ(y)
)1

q
(∫

Q

v(x)1−p′dµ(x)
) 1

p′
)q

≤ C

(∫
Q

f(x)pv(x) dµ(x)
)q

p

.

To prove the converse, for any S ⊂ Q, apply (2.1) to fχS ,

(2.2)
(

1
µ(5Q)1−α

∫
S

f(x) dµ(x)
)q

u(Q) ≤ C

(∫
S

f(x)pv(x) dµ(x)
)q

p

.

Take f ≡ 1, (2.2) gives

(2.3)
(

µ(S)
µ(5Q)1−α

)q

u(Q) ≤ Cv(S)
q
p .

From the inequality above it follows that u ∈ L1
loc(µ) (unless v = ∞ µ-almost ev-

erywhere) and that v > 0 µ-almost everywhere (unless u = 0 µ-almost everywhere).
Now, we are going to show that (u, v) ∈ Aα

p, q.
For p = 1, note that (2.3) can be written as

1
µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q

≤ C
v(S)
µ(S)

, for any S ⊂ Q with µ(S) > 0.

Fix Q and consider

a > ess inf
Q

v = inf{t > 0 : µ(St) > 0},
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where St = {x ∈ Q : v(x) < t} ⊂ Q. Then µ(Sa) > 0, and

1
µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q

≤ C

µ(Sa)

∫
Sa

v(x) dµ(x)

≤ Ca.

Let a → ess infQ v, we get

1
µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q

≤ C ess inf
Q

v ≤ Cv(x) for µ-a.e. x ∈ Q.

That is (u, v) ∈ Aα
1, q.

For 1 < p < ∞, take f(x) = f(x)pv(x), that is f(x) = v(x)1−p′. Fix Q and
define

Sj = {x ∈ Q : v(x) >
1
j
}, j = 1, 2, · · · .

Then, f is bounded in every Sj and
∫
Sj

f dµ < ∞ (fix j and Q). Applying (2.2) for
S = Sj and f(x) = v(x)1−p′ gives(

1
µ(5Q)1−α

∫
Sj

v(x)1−p′ dµ(x)

)q

u(Q) ≤ C

(∫
Sj

v(x)1−p′ dµ(x)

) q
p

.

So
1

µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q

(∫
Sj

v(x)1−p′ dµ(x)

) 1
p′

≤ C.

Since S1 ⊂ S2 ⊂ · · · ⊂ Sj · · · , and ∪jSj = {x ∈ Q : v(x) > 0} = Q. Let j → ∞,
we get

1
µ(5Q)1−α

(∫
Q

u(x) dµ(x)
)1

q
(∫

Q
v(x)1−p′ dµ(x)

) 1
p′ ≤ C.

That is (u, v) ∈ Aα
p, q. The lemma is proved.

Proof of Theorem 1.1. Suppose that (1.4) holds. For f ≥ 0 and a cube Q, Take λ
with

0 < λ < mα,Q(f) =:
1

µ(5Q)1−α

∫
Q

f(x) dµ(x).

Note that
mα,Q(f) ≤ Mα(fχQ)(x), x ∈ Q,
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we have Q ⊂ {x ∈ R
d : Mα(fχQ)(x) > λ}. Using (1.4),

u(Q) ≤ u
(
{x ∈ R

d : Mα(fχQ)(x) > λ}
)
≤ C

λq

(∫
Q

f(x)pv(x) dµ(x)
)q

p

.

That is,

λqu(Q) ≤ C

(∫
Q

f(x)pv(x) dµ(x)
)q

p

for 0 < λ < mα,Q(f).

Let λ → mα,Q(f), then

(mα,Q(f))q u(Q) ≤ C

(∫
Q

f(x)pv(x) dµ(x)
)q

p

.

Hence (u, v) ∈ Aα
p, q by Lemma 2.1.

In proving the converse, we still invoke Lemma 2.1. For fixed λ > 0 and A > 0
large enough, set

EA
λ = {x ∈ R

d : Mαf(x) > λ, |x| ≤ A}.
Then, for any x ∈ EA

λ , there is a cube Qx containing x such that

(2.4)
1

µ(5Qx)1−α

∫
Qx

|f(y)| dµ(y) > λ.

By Besicovitch covering lemma, there exists a countable collection of quasi-disjoint
cubes {Qj}j = {Q(xj, rj)}j with xj ∈ EA

λ and rj = rxj , such that

EA
λ ⊂

⋃
j

Qj , χQj(x) ≤ B(d),

where B(d) > 1 is usually called the Besicovitch constant. Recall the equivalence of
(2.1) and (u, v) ∈ Aα

p,q along with (2.4), we have

u(EA
λ ) ≤

∑
j

u(Qj)

≤ C
∑

j

(
1

µ(5Qj)1−α

∫
Qj

|f(x)| dµ(x)

)−q (∫
Qj

|f(x)|pv(x) dµ(x)

)q
p

≤ C

λq

∑
j

(∫
Qj

|f(x)|pv(x) dµ(x)

)q
p

≤ C

λq

∑
j

∫
Qj

|f(x)|pv(x) dµ(x)


q
p

≤ C

λq

(∫
Rd

|f(x)|pv(x) dµ(x)
)q

p

,
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where the constant C is independent of A. Letting A → ∞, the Monotone Convergence
Theorem leads to the desired weak-type inequality (1.4). This completes the proof of
Theorem 1.1.

3. PROOF OF THEOREM 1.2

We first recall some definitions and basic facts related to Orlicz spaces (see [14]).
Let Φ : [0, ∞) �→ [0, ∞) be a Young function, i.e. a continuous, convex, increasing
function with Φ(0) = 0 and Φ(t) → ∞ as t → ∞. The Orlicz space LΦ(Rd, µ)
consists of measurable functions f such that∫

Rd
Φ
( |f(x)|

λ

)
dµ(x) < ∞, for some λ > 0.

The space LΦ(Rd, µ) is a Banach space if it is endowed with the Luxemburg norm

‖f‖Φ = inf{λ > 0 :
∫

Rd

Φ
( |f(x)|

λ

)
dµ(x) ≤ 1}.

Each Young function Φ has associated to it a complementary Young function Φ̄ which
satisfies

t ≤ Φ−1(t)Φ̄−1(t) ≤ 2t, for all t > 0.

Let us define the following localized version of the Orlisz norm: for every cube
Q ⊂ R

d with µ(Q) < ∞

‖f‖Φ,Q = inf{λ > 0 :
1

�(Q)n

∫
Q

Φ
( |f(x)|

λ

)
dµ(x) ≤ 1}.

By the properties of Young function, it is easy to check that ‖ · ‖Φ, Q provides a norm
over LΦ(Q, µ): the space of all measurable functions on Q such that there exists λ > 0
for which

1
�(Q)n

∫
Q

Φ
( |f(x)|

λ

)
dµ(x) < ∞.

From [14], the following generalization of Hölder inequality holds

1
�(Q)n

∫
Q
|f(x)h(x)| dµ(x) ≤ C ‖f‖Φ, Q‖h‖Φ̄,Q.

For 1 < p < ∞, it is said that a Young function Φ satisfies Bp condition (Φ ∈ BP ),
if ∫ ∞

c

Φ(t)
tp

dt

t
< ∞, for some c > 0.

For the proof of Theorem 1.2, we also need the following lemma.
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Lemma 3.1. Let 0 ≤ α < 1 and f ≥ 0 be a locally integrable function. If

1
µ(5Q)1−α

∫
Q

f(y) dµ(y) > t,

for some cube Q and t > 0. Then there exists a dyadic cube P such that P ⊂ 5Q,
Q ⊂ 3P and

1
µ(P )1−α

∫
P

f(y) dµ(y) > 2−dt.

Proof. Take s ∈ Z such that 2s−1 ≤ �(Q) < 2s, there exist dyadic cubes
P1, · · · , Pj, · · · , PN (1 ≤ N ≤ 2d) which intersect Q with the side length 2 s, and
Pj ⊂ 5Q, Q ⊂ 3Pj , j ∈ [1, N ], and for at least one of them, say P , the following
estimate holds ∫

P
f(y) dµ(y) >

tµ(5Q)1−α

2d
.

Otherwise, ∫
Q

f(y) dµ(y) ≤
N∑

j=1

∫
Pj

f(y) dµ(y)

≤
N∑

j=1

tµ(5Q)1−α

2d

≤ tµ(5Q)1−α,

which contradicts the hypothesis. Note that P ⊂ 5Q, we get

1
µ(P )1−α

∫
P

f(y) dµ(y) >
tµ(5Q)1−α

2dµ(P )1−α
≥ 2−dt.

Lemma 3.1 is proved.

Proof of Theorem 1.2. We will employ the ideas in [5] with modifications. Let

MR
α f(x) = sup

Q�x, �(Q)<R

1
µ(5Q)1−α

∫
Q
|f(y)| dµ(y).

First, we will prove (1.6) with Mαf(x) replaced by MR
α f(x). Decompose Rd in the

following way

R
d =

⋃
k∈Z

Ωk, with Ωk = {x ∈ R
d : 2k < MR

α f(x) ≤ 2k+1}.
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Then, for k ∈ Z and x ∈ Ωk , there exists a cube Qk
x containing x, such that

1
µ(5Qk

x)1−α

∫
Qk

x

|f(y)| dµ(y) > 2k.

By Lemma 3.1, there exists a dyadic cube Pk
x with Qk

x ⊂ 3P k
x , Pk

x ⊂ 5Qk
x, such that

(3.1)
1

µ(P k
x )1−α

∫
Pk

x

|f(y)| dµ(y) > 2−d2k.

From the definition of MR
α , every cube Qk

x has bounded size, and so has every dyadic
cube P k

x . Then, for fixed k, there is a sub-collection of maximal dyadic cubes {Pk
j }j∈N

satisfying that every Qk
x is contained in 3P k

j for some j. We can write

R
d =

⋃
k∈Z

Ωk ⊂
⋃
j, k

3P k
j .

Next, notice that these P k
j are the maximal cubes for which (3.1) holds. However, for

P k+1
i ,

1
µ(P k+1

i )1−α

∫
Pk+1

i

|f(y)| dµ(y) > 2−d2k+1 > 2−d2k.

Hence, for every i, there exists j = j(i, k) such that Pk+1
i ⊂ P k

j . In short, for a fixed
k, the cubes {P k

j }j∈N, k∈Z are pairwise disjoint and they are strictly nested for different
k.

Let K > 0 be a large integer, ΛK = {(j, k) ∈ N × Z : |k| ≤ K}. Then

IK =
∫
∪K

k=−KΩk

(
MR

α f(x)
)q

u(x) dµ(x)

≤
∑

(j, k)∈ΛK

∫
3Pk

j

(
MR

α f(x)
)q

u(x) dµ(x)

≤
∑

(j, k)∈ΛK

u
(
3P k

j

)(
2k+1

)q

≤ C
∑

(j, k)∈ΛK

u
(
3P k

j

)( 1
µ(P k

j )1−α

∫
Pk

j

|f(y)| dµ(y)

)q

≤ C
∑

(j, k)∈ΛK

u
(
3P k

j

)
µ
(
P k

j

)(α−1)q
�
(
P k

j

)nq
‖fv

1
p ‖q

Φ̄, Pk
j
‖v− 1

p ‖q

Φ, Pk
j
,

where we used the generalization of Hölder inequality. From (1.5), we have

(3.2) IK ≤ C
∑

(j, k)∈ΛK

�
(
P k

j

)nq
p ‖fv

1
p ‖q

Φ̄, Pk
j

=: C

∫
Y

(
TK(fv

1
p )
)q

dν,
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here Y = N × Z, ν is a measure on Y given by ν(j, k) = �(Pk
j )

nq
p and the operator

TK is defined by
TKg(j, k) = ‖g‖Φ̄, Pk

j
χΛK

(j, k).

We next to show that TK : Lp(Rd, µ) �→ Lq(Y, ν) is bounded independently of
K. For a bounded function g with compact support and λ ≥ 0, take

Fλ = {(j, k) ∈ Y : TKg(j, k) > λ} = {(j, k) ∈ ΛK : ‖g‖Φ̄, Pk
j

> λ}.
Without loss of generality, we may assume that Φ̄(1) = 1. Write

g(x) = g(x)χ{x: |g(x)|>λ
2
}(x) + g(x)χ{x: |g(x)|≤λ

2
}(x) = g1(x) + g2(x).

Then
1

�(Q)n

∫
Q

Φ̄
(

2|g2(x)|
λ

)
dµ(x) ≤ 1

�(Q)n

∫
Q

Φ̄(1) dµ(x)

=
µ(Q)
�(Q)n

≤ 1.

So, for every Q, ‖g2‖Φ̄, Q ≤ λ/2. For Q such that ‖g‖Φ̄, Q > λ, the triangle inequality
gives

λ < ‖g‖Φ̄,Q = ‖g1 + g2‖Φ̄,Q

≤ ‖g1‖Φ̄,Q + ‖g2‖Φ̄, Q

≤ ‖g1‖Φ̄,Q +
λ

2
,

i.e. ‖g1‖Φ̄, Q > λ/2. Thus

Fλ = {(j, k) ∈ ΛK : ‖g‖Φ̄, Pk
j

> λ} ⊂ {(j, k) ∈ ΛK : ‖g1‖Φ̄, Pk
j

>
λ

2
} = F̃λ.

If (j, k) ∈ F̃λ, then
1

�(P k
j )n

∫
Pk

j

Φ̄
(

2|g1|
λ

)
dµ > 1.

So
�(P k

j )n <

∫
Pk

j

Φ̄
(

2|g1|
λ

)
dµ.

It follows that

ν(Fλ) ≤ ν(F̃λ)

=
∑

(j, k)∈F̃λ

�(P k
j )

nq
p

≤
∑

(j, k)∈F̃λ

�(P k
j )n

(
q
p
−1
) ∫

Pk
j

Φ̄
(

2|g1|
λ

)
dµ.
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Notice that the dyadic cubes {P k
j }j∈N, k∈Z have bounded size, so we can extract a

maximal sub-collection {Pi} to get

ν(Fλ) ≤
∑

i

∑
Pk

j ⊂Pi

�(P k
j )n

(
q
p
−1
) ∫

Pk
j

Φ̄
(

2|g1|
λ

)
dµ

=
∑

i

∞∑
m=0

∑
Pk

j ⊂Pi

�(Pk
j )=2−m�(Pi)

�(P k
j )n

(
q
p
−1
) ∫

Pk
j

Φ̄
(

2|g1|
λ

)
dµ

=
∑

i

�(Pi)
n
(

q
p
−1
) ∞∑

m=0

2−mn( q
p
−1)

∑
Pk

j
⊂Pi

�(Pk
j

)=2−m�(Pi)

∫
Pk

j

Φ̄
(

2|g1|
λ

)
dµ

≤
∑

i

�(Pi)
n
(

q
p
−1
) ∫

Pi

Φ̄
(

2|g1|
λ

)
dµ

∞∑
m=0

2−mn( q
p
−1)

≤ C
∑

i

�(Pi)
n
(

q
p
−1
) ∫

Pi

Φ̄
(

2|g1|
λ

)
dµ.

Furthermore, for every i, there exists (j, k) ∈ F̃λ such that Pi = P k
j . Consequently

ν(Fλ) ≤ C
∑

i

(∫
Pi

Φ̄
(

2|g1|
λ

)
dµ

) q
p

≤ C

(∑
i

∫
Pi

Φ̄
(

2|g1|
λ

)
dµ

) q
p

≤ C

(∫
Rd

Φ̄
(

2|g1|
λ

)
dµ

) q
p

= C

(∫
{x∈Rd: |g(x)|>λ

2
}
Φ̄
(

2|g|
λ

)
dµ

) q
p

.

Now we can verify

(3.3)
∫
Y

TKg(j, k) q dν(j, k) ≤ C

(∫
Rd

|g(x)|p dµ(x)
) q

p

,

where the constant C is independent of K.
To see this, we begin by using the formula of distribution function∫

Y
TKg(j, k) q dν(j, k) = q

∫ ∞

0

λqν ({(j, k) ∈ Y : TKg(j, k) > λ}) dλ

λ

= q

∫ ∞

0
λqν(Fλ)

dλ

λ
.
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By the calculation of ν(Fλ), we have∫
Y
TKg(j, k) q dν(j, k) ≤ C

∑
s∈Z

∫ 2s+1

2s

(
λp

∫
{x∈Rd: |g(x)|>λ

2
}
Φ̄
(

2|g|
λ

)
dµ

) q
p

dλ

λ

≤ C
∑
s∈Z

((
2s+1

)p ∫
{x∈Rd: |g(x)|>2s

2
}
Φ̄
(

2|g|
2s

)
dµ

) q
p

≤ C

(∑
s∈Z

(
2s+1

)p ∫
{x∈Rd: |g(x)|>2s

2
}
Φ̄
(

2|g|
2s

)
dµ

) q
p

.

Note that ∑
s∈Z

(
2s+1

)p ∫
{x∈Rd: |g(x)|>2s

2
}
Φ̄
(

2|g(x)|
2s

)
dµ(x)

=
∑
s∈Z

∫ 2s+1

2s

(
2s+1

)p ∫
{x∈Rd: |g(x)|>2s

2
}
Φ̄
(

2|g(x)|
2s

)
dµ(x)

dλ

2s

≤
∫ ∞

0

(2λ)p

∫
{x∈Rd: |g(x)|>λ

4
}
Φ̄
(

4|g(x)|
λ

)
dµ(x)

2dλ

λ

= 2p+1

∫
Rd

∫ 4|g(x)|

0
λp Φ̄

(
4|g(x)|

λ

)
dλ

λ
dµ(x)

= 2p+1

∫
Rd

∫ ∞

1

(
4|g(x)|

t

)p

Φ̄(t)
dt

t
dµ(x)

= 23p+1

(∫
Rd

|g(x)|p dµ(x)
)(∫ ∞

1

Φ̄(t)
tp

dt

t

)
≤ C

∫
Rd

|g(x)|p dµ(x),

where we used the fact that Φ̄ ∈ Bp. We have proved the estimate (3.3) with the
constant C independent of K. Combining (3.2) and (3.3) leads to that

IK ≤ C

∫
Y

TK

(
fv

1
p

) q
dν ≤ C

(∫
Rd

|f |pv dµ

) q
p

.

The uniformity in K of this estimate and the Monotone Convergence Theorem imply
that ∫

Rd

(
MR

α f(x)
)q

u(x) dµ(x) ≤ C

(∫
Rd

|f(x)|pv(x) dµ(x)
)q

p

,

where the constant C is independent of R. Letting R → ∞, using the Monotone
Convergence Theorem again, we complete the proof of Theorem 1.2.



A Note on Weighted Norm Inequalities for Fractional Maximal Operators 1421

ACKNOWLEDGMENT

The authors are grateful to Professor Guoen Hu for useful discussions.

REFERENCES

1. R. Coifman and C. Fefferman, Weighter norm inequalities for maximal furctions and
singualar integrals, Studia Math., 51 (1974), 241-250.

2. D. Cru-Uribe, New proofs of two-weight norm inequalities for the maximal operator,
Georgian Math. J., 7(1) (2000), 33-42.

3. D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture
Notes in Mathematics, 1966, Springer-Verlag Berlin Heidelberg, 2009.

4. X. Duong and L. Yan, Weak type (1,1) estimates of maximal truncated singular oper-
ators, International conference on harmonic analysis and related topics, Proc. Centre
Math. Appl., Vol. 41, Austral. Nat. Univ., Canberra, 2002, pp. 46-56.

5. J. García-Cuerva and J. M. Martell, Two-weight norm inequalities for maximal operators
and fractional integrals on non-homogencous spaces, Indiana Univ. Math. J., 50(3)
(2001), 1241-1280.

6. J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for non doubling measures, Duke
Math. J., 102(3) (2000), 533-565.

7. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans.
Amer. Math. Soc., 165 (1972), 207-226.

8. F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators
on nonhomogeneous spaces, Internat. Math. Res. Notices, 1997(15) (1997), 703-726.

9. F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for
Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Notices,
1998(9) (1998), 463-487.

10. F. Nazarov, S. Treil and A. Volberg, Accretive system Tb-theorems on nonhomogeneous
spaces, Duke Math. J., 113 (2002), 259-312.
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