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THE HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT AND
THEIR APPLICATIONS

Hongbin Wang and Zongguang Liu

Abstract. In this paper, a certain Herz-type Hardy spaces with variable exponent
are introduced, and characterizations of these spaces are established in terms of
atomic and molecular decompositions. Using these decompositions, the authors
obtain the boundedness of some operators on the Herz-type Hardy spaces with
variable exponent.

1. INTRODUCTION

In recent years, the theory of function spaces with variable exponents has developed
since the paper [8] of Kovacik and Rakosnik appeared in 1991. Lebesgue and Sobolev
spaces with integrability exponent have been extensively investigated, see [5] and the
references therein. Many applications of these spaces were given, see [6]. Very recently,
Izuki [7] introduced the Herz spaces with variable exponent and proved the boundedness
of some sublinear operators on these spaces.

Inspired by [9, 10], we introduce a certain Herz-type Hardy spaces with variable
exponent which is a generalization of classical Herz-type Hardy spaces, and establish
the atomic and molecular decompositions. Using these decompositions, we obtain the
boundedness of some operators on the Herz-type Hardy spaces with variable exponent.

To be precise, we first briefly recall some standard notations in the remainder of this
section. In Section 2, we will define the Herz-type Hardy spaces with variable exponent

HI'(;(’?)’(R”) and HK;(’?)’(R”), and give their atomic characterizations. In Section 3,

we will present the molecular characterizations of HK;(’?)’(R”) and HK;(’?)’(R”).

Given an open set Q  R”, and a measurable function p(-) : Q — [1, 00), LP1)(Q)
denotes the set of measurable functions f on © such that for some A > 0,

/Q (\f()\_x)\)p(””) dr < oo.
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This set becomes a Banach function space when equipped with the Luxemburg-Nakano

norm ©
, |f@) [\
”f”Lp(-)(Q):lnf{)\>0i/Q< \ ) dx Sl}.

These spaces are referred to as variable Lebesgue spaces or, more simply, as variable
LP spaces, since they generalized the standard LP spaces: if p(z) = p is a constant,
then LP()(Q) is isometrically isomorphic to LP(2). The variable L” spaces are a
special case of Musielak- Orlicz spaces. For all compact subsets £ C €2, the space
L{’(fc)( Q) is defined by Lloc( ) == {f : f € LPV)(E)}. Define P(Q) to be set of
p(+) : © — [1, 00) such that

1 <p =essinf{p(z): 2 € Q} <esssup{p(z): 2N} =p" < 0.

Denote p'(z) = p(z)/(p(z) — 1).
Let f € Lloc( ™), the Hardy-Littlewood maximal operator is defined by

M f(z) = sup ———

dy,
SUD B Br(m)\ (y)|dy

where B, (z) = {y € R" : |z — y| < r}. There exist some sufficient conditions on
p(-) such that the maximal operator M is bounded on LP()(R™), see [1-4, 11, 12]. Let
B(R™) be the set of p(-) € P(R™) such that M is bounded on L?¢)(R™).

Let B, = {x € R" : |z| < 2} and A, = By \ By_, for k € Z. Denote Z, as
the set of positive integers, xi = x4, for k € Z, xx, = x& if k € Z1 and xo = xB,,
where x4, is the characteristic function of A.

Definition 1.1. ([7]). Leta € R,0 < p < oo and ¢(-) € P(R"). The homoge-
neous Herz space with variable exponent KC?‘(’?)’(R”) is defined by

KB ®") = {1 € LEJ® {0} 1l ey < 00

where

o0

1/p
HfHK:;(’I;(R") = { Z QkOCprXk‘HII)lq()(Rn)} *

k=—oc0

The non-homogeneous Herz space with variable exponent Kg‘(l)’ (R™) is defined by

K h(R™) = {f € Lloc( ") Hf”K;"("‘;(R") < 00},

where

o0

1/p
Hf”Ko‘p(R" = {ZQkapr)ZkHiq(.)(Rn)} :

k=0
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In the proof of our main result, we will use the following lemmas.

Lemma 1.1. ([8]). Let p(-) € P(R™). If f € LPO)(R™) and g € L' ()(R™), then
fg is integrable on R™ and

[ 10@)g(@)d < 1l 0 g 9] ey

where
rp=1+1/p” —1/p".

This inequality is named the generalized Holder inequality with respect to the
variable P spaces.

Lemma 1.2. ([7]). Let p(-) € B(R™). Then there exists a positive constant C'
such that for all balls B in R™ and all measurable subsets S C B,

IxBl oo @y - C@,
x5l e (my 5]

. n 61
x5l o) () <c (@)
1XB| Lo (ny | B

10 (om 62

g Pesllzro@n SC(@) |

X8l o) ey | B

where 1, 0o are constants with 0 < §1, do < 1.

Throughout this paper d5 is the same as in Lemma 1.2.

Lemma 1.3. ([7]). Suppose p(:) € B(R™). Then there exists a constant C' > 0
such that for all balls B in R™,

1
X8I Lo @) IXB [ L) @ny < C-
|B| ) (R")

In [13], we establish the following boundedness theorem on the Herz spaces with
variable exponent for a class of sublinear operators.

Lemma 1.4. ([13]). Let 0 < a < nd2,0 < p < oo and ¢(-) € B(R™). If a
sublinear operator T' satisfies

(1.1) Tf (@) < Cllflh /Il if - dist(z, suppf) > |x|/2,
for any integrable function f with a compact support and 7" is bounded on L 9¢) (R"),

then T is bounded on K(?‘(I)’ (R") and K5 (R"), respectively.
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2. THE ATomIC CHARACTERIZATIONS AND THEIR APPLICATIONS

In this section, we will give the definition of Herz-type Hardy spaces with variable
exponent HK;((I)’(R”) and HK;(’?)’(R”). S(R™) denotes the Schwartz space of all

rapidly decreasing infinitely differentiable functions on R™, and S’(R™) denotes the
dual space of S(R"). Let G f(x) be the grand maximal function of f(z) defined by

Gnf(x) = sup |¢5(f)(x)l,

pEAN

where Ay = {¢ € S(R") : sup |2*D7¢(z)] < 1} and N > n + 1, ¢% is the
laf,|B|<N
nontangential maximal operator defined by

¢v(f)(@) = sup |¢¢ f(y)]

ly—z|<t
with ¢, (z) = t " ¢(x/t).

Definition 2.1. Leta € R,0<p < c0,q(-) € P(R") and N > n + 1.

(i) The homogeneous Herz-type Hardy space with variable exponent HK;"(I)’ (R™) is
defined by

HK;(’.I;(R”) — {f € S’(Rn) . GNf(x) c K;(J)?(Rn)}

and we define HfHHKa,p(Rn = ”GNfHK""p(R")'

(ii) The non-homogeneous Herz-type Hardy space with variable exponent A KO‘ B (R”)
is defined by

HK;(’.I))(R”) — {f € S’(Rn) . GNf(x) c K;(’.I))(Rn)}

and we define HfHHK;"("‘;(R") = HGNfHKZ‘("‘;(R")'

It is obvious that G f satisfies (1.1). Thus, by Lemma 1.4, we can easily prove
that if 0 < & < nd2,0 < p < oo and ¢(-) € B(R™), then

HESHRY) 0 LL) (R {0}) = Ko7 (R?)
and 0
HE 5 (R") N L (R") = K5 (R™).
If ndy < a < 00,0 <p<ooandq(-) € B(R™), then
HE(R™) 0L (R {0}) S KB (R™)

and



The Herz-type Hardy Spaces with Variable Exponent 1367
; q(*) ;
HE N(R") N L) (R™) G Ko B(R™).
Thus we are interested in the case o > ndo. In this case, we establish characterizations
of the spaces H K(?‘(I)’ (R™) and H K(?‘(I)’ (R™) in terms of central atomic decompositions.
For x € R we denote by [x] the largest integer less than or equal to x.

Definition 2.2. Let nds < a < oo,q(-) € P(R™), and non-negative integer
s > [a — nda.
(i) A function @ on R™ is said to be a central («, ¢(-))-atom, if it satisfies
(1) suppa C B(0,7) ={z € R" : |z| < r}.
(2) llall Lo @ny < [BO, 7)™
(3) Jgn alx)2’dz =0,16] < s.
(if) A function a on R"™ is said to be a central («, ¢(-))-atom of restricted type, if it
satisfies the conditions (2), (3) above and
(1)" suppa C B(0,7),r > 1.

Remark 2.1. If ¢(z) = ¢ is a constant, then taking 0o = 1 — 1/¢ we can get the
classical case.

Theorem 2.1. Let nds < o < 00,0 < p < oo and ¢(-) € B(R™). Then we have

(i) f € HK;(()(R”) if and only if

o
(2.1) f= Z Akag, in the sense of &'(R"™),
k=—cc 00
where each ay, is a central («, ¢(-))-atom with support contained in B, and Z | Ax|P

k=—00

< 00. Moreover,

[ee] 1/p
£l = inf( > wwp) ,

k=—00

where the infimum is taken over all above decompositions of f.

(i) f € HK;((I)’(R”) if and only if

o
= Z)\kak, in the sense of S'(R"),
k=0
where each ay, is a central («, ¢(-))-atom of restricted type with support contained in

o0
Biand ) |Ak|P < co. Moreover,
k=0

00 1/p
HfHHKZ‘("’;(R") ~ inf <Z ‘)‘k‘p> ;

k=0
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where the infimum is taken over all above decompositions of f.

Proof. We only prove (i), and (ii) can be proved in the similar way. To prove the
necessity, choose ¢ € Cj°(R™) such that ¢ > 0, [pn ¢(x)da = 1,supp¢ C {z : |z|
<1}. For j € Z;, let ‘ ‘

b (@) = 2" (2 x).
For each f € S'(R"), set ‘
FO(2) = [+ ().
It is obvious that (/) € C°°(R") and lim fU) = f in the sense of distribution. Let
J—00
1 be a radial smooth function such that suppy C {z : 1/2 — ¢ < |z| < 1+ €} with
0<e<1/4,9(x)=1for1/2<|z| <1. Let opp(x) = (2 %z) for k € Z and
Ao = {21 — 2Fe < o] < 2F 4 2F¢).
Observe that supptr, C A and ¢y (z) = 1for x € Ay = {z: 281 < |z| < 2F).

Obviously, 1 < Y ¢h(z) < 2, 2| > 0. Let

k=—00

SRS ROV SRTCREE)

l=—00
0, =0,
then Z Py (x) =1 forx # 0. For some m € N, we denote by P, the class of all the
k=—oc0
real polynomials with the degree less than m. Let P,gj) (x) =Py, _ (f(j)‘bk)(fl‘)XAk _(2)
€ P, (R™) be the unique polynomial satisfying

| (f9@uta) - P@) ade =0, 18] < m = [a ]

Write
, ° , @ G
@ =3 (f(])(x) w(@) — P (@ ) Z PO (z Z Z
k=—oc0 k=—oc0
) }
For the term >, let gt/ (2) = /) (2)@x(2) — P (x) and o () = g (x) /A,
! k1
where A = b Bi11|*" Y [(GNF)Xtll oty ny and b is a constant which will be
I=k—1

o0
chosen later. Note that suppa'’) € By, Z > Aral

k=—o0
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Now we estimate Hgk HLQ(>(Rn) To do this, let {¢k : |d| < m} be the orthogonal

polynomials restricted to Ay, . with respect to the weight 1/| Ay .|, which are obtained
from {27 : |8] < m} by Gram-Schmidt’s method, that is

1
‘Akf‘ Aks

(0, o)) = o (2) ¢y (x)dx = by

It is readily to see that P/ () = > (fDy, o)l (x) for & € Ay On the other
|d|<m
hand, from IA}TI Ji,. o (x) ¢k (z)dx = by, we infer that

1

‘Al,e‘ 1‘11,5

(pI;(Qk_ly)(bﬁ(Qk_ly)dy = 5Vl,l,'

We can get ¢f (28 1y) = ¢l (y) a.e.. Thatis ¢f(x) = ¢L(2' %) a.e. for z € Ay
Thus |¢(2)| < C, and for = € Ay, by the generalized Holder inequality we have

, C |
‘P/ij)(x)\ < — ] ‘f(])(x)(bk(x)‘dx
‘Ake‘ Ap e
)
< A [Fa& Pkl Lae) (mn) HXAMHLQ()(R”)

Therefore, by Lemma 1.3 we have

Hg/(ﬁj) HL‘I(')(R")

< FDRI o amy + 1P ot ey
; C
< Hf(j)(I)kHL‘Z(')(R") + A
el
< DDl o ey + ClLFD BRIl s (o

< C||(f * ¢(j))¢’k”Lq(-)(Rn)
k+1

< Z H(GNf)XlHLq(->(Rn)-
I=k—1

Hf(j)‘I’kHLq(->(Rn) ”XA,M HLQ/(.)(W) HXA,G’E | LaC) ()

Choose b = (', then Hagj)HLq(.)(Rn) < |Biy1]|~*/™ and each aﬁcj) is a central (o, q(+))-
atom with support contained in By1. Furthermore,

00 & ktl "
INEIDS \Bk+1\pa/"<2 H(szf>szLq<-><Rn>> < OGN g oy
o

k=—o00 k=—00 I=k—1
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where C'is independent of 5 and f.
(4)
It remains to estimate » . Let {¢)% : |d| < m} be the dual basis of {=” : |3| < m}
11
with respect to the weight 1/| A | on A ., that is

<'¢d7 > ﬂ'(ﬂg(%')dw = 5ﬂd-

‘Ak‘ 5‘ Ak €
Similar to the method of [9], let
vi@xa,, (@) @)X, (@)

k
o) = 3 ( A

l=—00

> Rn F9(2) 0 (2)2da.

‘ Ak—f—l,e ‘
We can write

(4) 00
o= > Y Ve, (@)

I k=—oo |d|<m

Z Z (/ f(j)(pkxddx)%k(?;—ljm

dI<m k=—o
=Y Z (Z f(j)(x)fbl(x)xddx>
|d|<m k=—00 \l=—oc ’R"
) wg(fﬂ)f(jk’s({ﬂ) ¢k+1(~)XAk+LE(x)
‘Ak,e‘ ‘A/H—l,e‘
= > Z akdh )foka= Y, Y, O‘kad“;{zﬂ(m)’
|d[<m k=—oc0 |d[<m k=—oc0
where
k2
ara =b > (GNI)ill paeo oy | Braz|*"
1=k—1

and b is a constant which will be chosen later. Note that

/ Z\cbl d\dw—Z/ |®(2)2|dz < C2FFdD.

l=—00 l=—00
By a computation we have

k

s FO) Y a(y)ytdy

l=—00

< C2PHD Gy (), = € Bpyo.
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This together with the inequality that

k _ k+1 _ k+1
wd(x)ch’“’E(x) _ Va (%)XA’““’E (@) < ¢~ kntd) Z xi(x),
| Ak | | Agyel I=h—1
shows that
‘ k+1
1A o @my < €7 Y IGN )Xl pato -
I=k—1

Take b = C”. Itis readily to verify that each agjzl is a central («, ¢(-))-atom with support
k+2
contained in Ay UAy 1. C Bji2, and apq = C” Z H(Gf)XlHLq(.)(Rn)\Bk+2\0‘/”,
I=k—1
where C” is a constant independent of j, f, k and d. Moreover,

00 k+1 p
Dolaral <C Y \Bk+2\ap/”<z H(GNf)XlHLQ(-)(R")>
k,d

k=—c0 I=k—1
< P
= CHGNfHK:;("I;(Rn) < 00,
where C' is independent of 5 and f.

Thus we obtain that

@) = 3 Aaal@),

d=—o0

where each a&j) is a central (a, g(+))-atom with support contained in fld,e U fldﬂ,e C
Bgi2, Agq is independent of 5 and

[ee] 1/p
( > wwp) < CIGN Sy g < 0
a(-)

d=—oc0

where C' is independent of 5 and f.
Since

—a/n
)

sup [lag” || uc> ey < |Be
JELy
by the Banach-Alaoglu theorem we can obtain a subsequence {aéj"o)} of {a(()j)} con-
verging in the weak® topology of LI()(R") to some ap € LIO)(R™). It is readily to
verify that a is a central («, ¢(+))-atom supported on By. Next, since

sup [laf | oy < |Bsl 7",
Ing Sy
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another application of the Banach-Alaoglu theorem yields a subsequence {a(lj"l)} of
{al")} which converges weak* in L4()(R") to a central (a, ¢(-))-atom a; with sup-
port in Bs. Furthermore,

—oc/n'

sup (a0 uo gy < IBI
Inq Sy

Similarly, there exists a subsequence {a(_j;‘l)} of {a(_jg”)} which converges weak”
in LIC)(R") to some a_; € LIO)(R™), and a_, is a central («, ¢(-))-atom supported
on B;. Repeating the above procedure for each d € Z, we can find a subsequence
{a;j"d)} of {a/} converging weak® in L1)(R™) to some ag € L0)(R™) which is
a central («, ¢(-))-atom supported on Bg,o. By the usual diagonal method we obtain
a subsequence {j,} of Z, such that for each d € Z, Vli_)r& a&j”) = aq in the weak™
topology of L2()(R") and therefore in S'(R").
Now our proof is reduced to prove that

(2.2) f= Z Adag, in the sense of S'(R™).

d=—00

For each ¢ € S(R™), note that supp a&j”) C (Ad,e U fldﬂ,e) C(Ag—1UAqU A4 U
Agi2). We have

V—00

(f.0) = lim di M [ et

See [9] for the details.
Recall that m = [a — nd2]. If d < 0, then by Lemma 1.2 and the generalized
Holder inequality we have

. B
— / a&j”)(x) o(z) — Z L (p(o)xﬂ dx

R? 18]<m
<c / 15 ()] - | d

/n a&j”)(x)ap(x)dx

< €2 s s
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)
< CQd(m—i—l—a) ‘Bd+2‘ 2 H H ,
= ‘B ‘ X By L4 (')(R")

d 52) | B2l
< Oodlmt1-a-tndy) B, ‘HXB()HLQ()(Rn)

< 02d(mtl-atndy) i ¢ {)\ >0: / 2@y < 1}
Byg

< C9d(m+1-atnda) 5 ¢ {1 >A>0: / )\_(q/)+dx < 1}
Bo

_ CQd(m—l—l—a—I—n(Sg ) ‘ By ‘ 1/(¢)*

— CQd(m-l—l—oc—I—n(Sg)

where C' is independent of d.

1373

If d > 0, let kg € Z such that kg + « —n > 0, then by Lemma 1.2 and the

generalized Holder inequality we have

/ (Ju)( dm

<c/ |af) ()] Foda
< ¢~ dlko+a) IXBasall o) ()

_ | Bi2|
< (2 d(k0+a)WHXBO”LQ/(')(R")

< 02~ Ukota=n) jn¢ {)\ >0: / A @ gy < 1}
Byo

< 02~ Ukota=n) jn¢ {1 >A>0: / 2@ g < 1}
Byg

— CQ—d(k‘Q +a—n) ,

where C' is independent of d.

Let
_ [ Paf2dtmredmi) g <o,
Hd = ‘)\d‘Q—d(ko—l—oc—n)7 d >0,
Then . - 1p
Y lml<c ( > P\d\p> < ClGN fll e @y < 00
d=—oc0 d=—o0
and ‘
M| df@pplants) < Clul,

which implies that

n

) = Z lim )\d/ a&j”) x)dx = Z )\d/ aq(z)p(x)dx.
d=—00
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This establishes the identity (2.2).
To prove the sufficiency, we consider the two cases 0 <p < land1 < p < oc.
If 0 < p <1, it suffices to show that for each central («, ¢(-))-atom a,

IGNal geon ey < €
with the constant C' > 0 independent of a. For a fixed central («, ¢(-))-atom a, with
suppa(x) C B(0,2k0) for some kg € Z. Write

ko+3
IGN gy = D 1Bl I a6
-

k=—00

o
+ Z | By.| /" (GNa)Xk”iqm(Rn)
k=ko+4

=I+1I.

By the L¢()(R™) boundedness of the grand maximal operator Gy we have

k0+3 I{IO+3
1< GNal gy Do 1B < Cllall iy Do 1B < C.
k=00 k=—o00

To estimate 77, we need a pointwise estimate for Gya(z) on Ay. Letp € Ay, m e N
such that « — nds < m + 1. Denote by P, the m-th order Taylor series expansion. If
| — y| < t, then from the vanishing moment condition of a we have

aronti) =0 | [ ) (0(255) - 2 (4) )

<o [ @I [E[™ @ty - sl

<C [ Ja(@)m e+ ly - 02
Rn
where 0 < § < 1. Since 2 € A, for k > ko + 4, we have |z| > 2 - 2o+l From
|z —y| < tand |z| < 2k*! we have
t+ly =0z > o —yl+ [y —0z] = |a] —[2] = |2/2.
Thus,
|ax ¢y (y)| < C/R la(2)| |2 (| = y| + |y — 0=)~ "D dz
< C2ko(mt1)| g~ (ntm+1) la(z)|dz

Rn
< (ko (m+1) ‘x‘—(n+m+1) | Bk, \_a/nHXBkO HLQ/(')(R")'
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Therefore, we have
Gnya(x) SCQkO(m+1)_k(”+m+1)\Bko\_o‘/”HXBkO I La'e)@nys © € Ak, and k> ko + 4.

So by Lemma 1.2 and Lemma 1.3 we have

> B pa/n
<o Y ol kntm)] (\ k\)
X HXBkO ”I;/q/()(R") ”XBk HI;/Q()(R")

o0
B Bk‘ pa/n
<C Z oplko(m+1)—k(n+m-+1)] (‘_)
k=ko+4 ‘
P B -1 8
XH)CBICQHLQ/(')(R") (‘ k“HXBkHLq/(')(R")>

S ko—k)(m—+1—a HXBkOHLq/(')(Rn) P

k=ko+4 HXBkHLq/(')(Rn)
o0
<C Z op(ko—k)(m+1-a+ndz) «
k=ko+4

This proves the desired estimate for the case 0 < p < 1.
If 1 <p < oo, write

[e%] %) p
IGN ) < > By ( > \Az\H(GNaz>><kHLq<->(Rn)>
e

k=—o0 l=—00
[e%] 0o P
<C ). \Bk\“‘p/”<2 \Az\uazum.)(Rn)>
k=—oc0 I=k—1
(o] k—2 p
+C 3 B ( > wu<GNaz>Xkqu<.>(Rn)>
k=—o0 l=—00
=JIT+1V.

Using the Holder inequality, we have

00 00 p
HIr<c \BW“(Z MzHBz\_”‘/”>

k=—c0 I=k—1
o [e’) 0o p/p/
<C Y |Byforin ( S \)\Z\P\BZ\—W/(%)) (Z ‘Bl‘—ap//un))
h=—00 I=k—1 I=k—1
SC N BN 3T NP By /e
k=—00 I=k—1

oS

l=—00
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Now suppose o« — nds < m + 1. As in the argument for 77, we can obtain that

v

00 k—2 | Byl a/n
Y (Z [ Agf210m 4D Kt me1) (@) erBlrqu«W)rprkrqu<->(Rn)>
k

=—00 \l=—00

00 k—2 p
C Z <Z ‘)\Z‘Q(Z—k)(m-f—l—oc—knéz))

k=—o0 \l=—00

G = k=2 p/p
C Z <Z \Az\pQ(Z—k)(m+1—a+n52)p/Z> <Z 2(l—k)(m+1—a+n62)p//2>

k=—o00 \l=—00 l=—00

oS

l=—00

p

IN

IN

/

IN

This finishes the proof of Theorem 2.1.

Remark 2.2. If f € HK;(’?)’(R”) NS(R™), we can replace f(9) by f in the proof
of the necessity, and have

f@)= " Mear(@)+ D pbr(z),

k=—cc k=—cc
where
lakll Lacr gy < 1B, 2577 [[bkl| paco (gmy < |B(0, 25727/,
supp ag C Ak,& supp by C Ak,e U Ak—f—l,ev
and
k+1
0 < Mg, e < C2°% Y [GN ()Xl at) Ry,
j=k—1

with N >n+a+ 1.

Remark 2.3. For the case 0 < p < 1, if we remove the condition supp a; C Bk,
then the conclusion of Theorem 2.1 is also true .

As an application of the atomic decomposition theorems, we shall extend Lemma
1.4 to the case of a > nds.

Theorem 2.2. Let ndy < a < 00,0 < p < 00,¢(-) € B(R™) and the integer
s = [a — ndy]. If a sublinear operator 7" satisfies that

(i) T is bounded on L90)(R™);
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(i) there exists a constant 6 > 0 such that s + 0 > o —nd 2, and for any compact
support function f with

f(x)xﬂ dx =0, |0 <s,
Rn

T f satisfies the size condition
ITf(2)] < C(diam(supp £))* ||~ "+ £y,

(2.3)
if dist(x, suppf) > |z|/2.

Then T can be extended to be a bounded operator from HK;()(R”) to K7 (R™) (or

( a()
bounded from HK;(’?)’(R”) to KC?‘(’?)’(R”)).

Proof. It suffices to prove homogeneous case. Suppose f € HK;(’?)’(R”). By

o
Theorem 2.1, f = > A;b; in the sense of S'(R™), where each b; is a central
j=—00

(v, q(+))-atom with support contained in B; and

1/p
xD
1F g e oy 2 I [ (217
q(-) .
j=—00

Therefore, we get

0o
HTfHI;'(a,p(Rn) = Z 2kap”(Tf)Xk”iq(-)(Rn)
o0 k—2

p
SC[ Z 2kap< Z ‘)\j‘H(Tbj)XkIHLQ(')(Rn)>

k=—00 Jj=—00

00 s ?
I Z 2kap< Z ‘)\j‘H(Tbj)XkHL'Z(')(R")> ]

k=—o0 j=k—1
= C(Il + Ig)

Let us first estimate 7;. By (2.3) and the generalized Holder inequality, we get

Tha)| < Clal~ 926590 [ )y
‘ j
< 27 knts+9) 2j(8+6)HijLtz(')(R")HXB]'HLQ/(~)(R")

< O HQ R |y g ) oy

So by Lemma 1.1 and Lemma 1.2, we have
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1(T05) x| Lae) ()
< O (sHoe)—k(ston) HXB-HLq/(->(Rn IxB, HL‘Z(')(R")

(2_4) < CQj(S—HS_a) k(s+0) 9= Im(‘Bk‘HXBkHLq ') (R) )”XB]'HLQ/(')(RTL)

= (O9/(sto—a)=k(s+9) ) IxEs o ey
HXBk ”Lq 'C) (R™)
< 02(8+(5+n62)(j—k)

Therefore, when 0 < p < 1, by nd < a < s+ § + nd,, we get

00 k—2

p
=3 2 (X Il )
k=—o0 j=—00
0 ’ k—2
(2.5) <C Z 2’%@( Z ‘)\j‘pQ[(8+5+n62)(j_k)_j0<]P)
k*—oo j=—00
=C Z AP Z 9(i—k)(s+5+nd2—c)p < Z IV
Jj=—00 k=j+2 j=—00

When 1 < p < oo, take 1/p+ 1/p’ = 1. Since nds < o < s + 6 + nds, by (2.4) and
the Holder inequality, we have

I, <C Z 2kap< Z p\ju(s—l—é—l—néz)(i—k)—ja)

k=—oc0 jf—OO

<C Z < Z ‘)\ ‘p2(j )(s+0+nda— oc)p/2>

k=—oc0 “j=—o0
k—2

, L \P/P
><< Z 2(j—k)(s+5+n62—o<)p /2)

(2.6) =0

SC Z < Z ‘)\ ‘p2(j )(s+0+nda— oc)p/2>

k*—oo Jj=—00
00

- C Z ‘)\ ‘p Z 2(j )(s+d+ndz—a)p/2

j=—00 k=j+2

Let us now estimate I;. When 0 < p < 1, by L¢0)(R™) boundedness of T', we
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have
B= 3 2 3 W o)
k*—oo j=k—1
ka
<y ( 5 I
(2.7) P j=k-1
> 2o 3 i)
k=—o0 Jj=k—1
J+1
SIS SESLID oY)
Jj=—0o0 k=—00 j=—00

When 1 < p < oo, by L20)(R™) boundedness of 7" and the Holder inequality, we have

I, <C Z 2’“‘1’( Z | AP I1(TD; )XkHLq()(R" )

k*—oo j=k—1
p/p’
2
< Z [(Tb; Xk”i!(-)([@n))
j=k—1
= kap( p/2 v/2 p/p
<o > 2 (S I e ) (2 I )
k*—oo j=k—1 j=k—1
(2.8) oo 0 ) p/p’
<C Qkap< Z |\; 1P| B;| P/ 2™ )( |B;| P /(2n)>
k*—oo j=k— 1 j=k—1
<C Z 2kap/2< Z \)\j\p\Bj\_O‘p/(Z”))
k=—o0 =k—1
J+1
=C Z AP Z o(k=jap/2 < Z AP
Jj=—00 k=—o0 Jj=—00

Combining (2.5)-(2.8), we have
T Fll gon ey < Ul prien ey

Thus, the proof of Theorem 2.2 is completed.
Furthermore, we will consider the Calderon-Zygmund operator 7" of Coifman and
Meyer with associated standard kernel K in the sense of

Tf(x) = - K(z,y)f(y)dy, = &supp f,

which is a L()(R™)-bounded operator. See [2] for more details.
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Theorem 2.3. Suppose that 7" is an above Caldero6n-Zygmund operator, and
that 0 < § < 1 is the constant associated with the standard kernel K, then for
ndy < a <ndy + 6 and 0 < p < oo, T is bounded from HK;(’?)’(R”) to KC?‘(’?)’(R”).

Proof. Note that nds < a < ndy + 6 implies that s = [ — nds] = 0. Thus, the
operator T considered here satisfies (2.3) with s = 0. The desired conclusion follows
from Theorem 2.2 directly.

3. THE MoLECULAR CHARACTERIZATIONS AND THEIR APPLICATIONS

In this section, we will consider the molecular decomposition of the Herz-type
Hardy spaces with variable exponent. We first give the notation of molecule.

Definition 3.1. Letndy, < a < oo, 0 <p < o0, ¢(-) € P(R"), and s > [ —ndy]
be a non-negative integer. Set ¢ > max{s/n,a/n — d},a = d2 — a/n + ¢ and
b =6y +e. A function M; e LIC)(R™) with [ € Z (or [ € N) is said to be a dyadic
central (v, q(+); s, £);-molecule (or dyadic central («, g(+); s, £);)-molecule of restricted
type) if it satisfies

(1) 1Ml par ey < 27

a/b n 1—a/b
(2) Ry (M) = IMill 550 oy - M) | ol gy <

) Jan Mi(z)2Pdz =0, for any 8 with |3] < s.

Definition 3.2. Letndy, < a < oo, 0 <p < o0, ¢(-) € P(R"), and s > [ —ndy]
be a non-negative integer. Sete > max{s/n, a/n—d},a = do—a/n+e and b = Jr+e.

(i) A function M e L1C)(R™) is said to be a central («, ¢(-); s, €)-molecule if it

satisfies
a/b n 1—a/b
<1> Rq<>< ) = M550 oy 1+ M ][y < 00
2) [gn M(z)2Pdz =0, for any (3 with |3] < s.

(ii) A function M e LIO)(R™) is said to be a central («, ¢(-); s, e)-molecule of
restricted type if it satisfies (1), (2) in (i) and

(3) M|l o) (mny < 1.

The following lemma proves that molecule is a generalization of atom.

Lemma 3.1. Letndy < a <00, 0<p<oo,q(-) € PR"), s > [a—nde) bea
non-negative integer, ¢ > max{s/n,a/n — d2}, a = o —a/n+c and b = Jy +¢.
If M is a central («,¢(-))-atom (or («,q(-))-atom of restricted type), M is also a
central («, ¢(-); s,€)-molecule (or (¢, q(+); s, £)-molecule of restricted type) such that
Ry (M) < C with C independent of M.
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Proof. We only need consider the case that a is a («, ¢(+))-atom with support on
a ball B(0,r). A straightforward computation leads to that

‘\ ' ‘nbM()‘ 1—a/b

LaC) (R™)
Now we give the molecular decomposition of the Herz-type Hardy spaces with
variable exponent.

a/b
HMHLQ()(Rn)

< ™M oy gy < Crr™® < C.

Theorem 3.1. Letnds < o < 00, 0 < p < o0, ¢(-) € B(R™), and s > [a — nds]
be a non-negative integer. Set ¢ > max{s/n,a/n — d2},a = d2 — a/n + € and
b = 09 + . Then we have

(i) fe HI'(;(’?)’(R”) if and only if f can be represented as
f= Z AMg, in the sense of &'(R"),

k=—o0
0

where each Mj is a dyadic central (o, q(-); s, ) -molecule, and > AP < oc.

k=—oc0

Moreover,

[ee] 1/p
1 F iz = inf( > wwp) ,

k=—o0

where the infimum is taken over all above decompositions of f.

(i) f € HK;((I)’(R”) if and only if

o0
f= Z)‘kMk’ in the sense of S'(R"),
k=0
where each M, is a dyadic central (o, q(+); s, e)x-molecule of restricted type, and

o0
> " [AklP < 0. Moreover,
k=0

00 1/p
HfHHKZ‘("’;(R") ~ inf <Z ‘)‘k‘p> ;
k=0
where the infimum is taken over all above decompositions of f.

Theorem 3.2. Letnd <a <oo, 0<p<1,q(-) € BR"),and s > [ — ndo)
be a non-negative integer. Set ¢ > max{s/n,a/n — d2},a = 02 — a/n + ¢ and
b = 09 + . Then we have

(i) fe HI'(;(’.)(R”) if and only if f can be represented as

o0
f= Z)‘kMk’ in the sense of S'(R"™),
k=1
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o0

where each M, is a central (c, q(-); s, £)-molecule, and >~ [Ax[? < co. Moreover,
k=1

00 1/p
HfHHK:;("I;(Rn) ~ inf <Z ‘)\k‘p> )
k=1
where the infimum is taken over all above decompositions of f.

(i) f € HK;((I)’(R”) if and only if

o0
f= Z MMy, in the sense of S'(R"),
k=1

o
where each M, is a central («, g(+); s, £)-molecule of restricted type, and Z IAil? <

k=1
oo. Moreover,

00 1/p
HfHHK;"("‘;(R") ~ inf <Z ‘)‘k‘p> ;
k=1

where the infimum is taken over all above decompositions of f.

By Theorem 2.1, Remark 2.2 and Lemma 3.1, we know that Theorem 3.1 and
Theorem 3.2 can be obtained from the following lemma.

Lemma 3.2. Letndy < a <oo,0<p < oo, q(:) € BR™), s > [a —ndy] be a
non-negative integer, € > max{s/n,a/n — 02}, a =Jy —a/n+c and b = oz + ¢.

(i) If 0 < p < 1, there exists a constant C' such that for any central (a, q(+); s, €)-
molecule (or (a, q(+); s, e)-molecule of restricted type) M,

”M”HK;(’g(R") < C(or | M|l o @my < ©)-

(ii) There exists a constant C' such that for any [ € Z(or ! € N) and dyadic central
(ar, q(+); s,&);-molecule (or dyadic central («a, g(+); s, €);-molecule of restricted type)
M;,
1M gy o ny < € (or [ Mill e emy < C)-

Proof. We only prove (i) for homogeneous case, the proof for non-homogeneous
case and the proof of (ii) are similar. Let M be a central («, ¢(-); s,€)-molecule. Let

-1/

0= HMHLq(-)(Rn)

, Eg={x:|z| <o}

and
Ero={z:2" 1o <|z| < 2%}, ke Z,.



The Herz-type Hardy Spaces with Variable Exponent 1383

Set By, = {z : |x| < 2¥c}. Denote by xx. the characteristic function of Ej ,. It

follows that
xD
Z M Xk 0'
k=0

Let My(z) = M(x)xko(z). We denote by P, the class of all real polynomials of
degree m. Let Pg, , My € Py, be the unique polynomial satisfying

(3.1) /E (Mi(2) — Pr, , Mi(z)) 2Pdz = 0, |6] < s.

Set Qk(z) = (P, , Mk)(z) Xk, (7). If we can prove that
(a) there is a constant C' > 0 and a sequences of numbers { Ay} such that

> Il < o0, My — Q1 = Arax,
k=0
where each ay, is a («, ¢(+))-atom;
(b) Z Qy; has a («, ¢(-))-atom decomposition,

k=0
then our desired conclusion can be deduced directly.

We first show (a). Without loss of generality, we can suppose that R, (M) = 1,
which implies that

—a/(b—a) _
La0) (R = [|M HLQ()(Rn = o™

1178

Set {¢F : |I| < s} C Ps(R") such that

1
<80;u (IOV>Ek o QOIIZ(III)QOI;((I))C[{I) = 5uu-
‘Ek‘ 0" Ek -
It is easy to see that
(3:2) Qi(z) = D (M, ¢}) B, ¢ (@), itz € Eyy
[U[<s
and
|Qk(2)] < | My, () |dex.

‘ < —
‘Ekvo" Ek,a



1384 Hongbin Wang and Zongguang Liu

Thus for any k € Z,, by Lemma 1.3 and b — a = «/n we have

1Mk — Qkll Lao) (mn)

< HMkHL‘Z(')(R") + ”QkHLq(~>(Rn)

C
< || M| Lac) (mmy + Er ‘HMkHL‘Z()(R" WXE N Lo ey IXEL o | Lot (@)

< 1Ml ot gmy + CIIM| Lo gy
< Cl| Mgl pac ny

. |nb . k__|—nb
<c||i- 1) oo 1271

_ C‘Qka‘—nbana _ CQ—Ima‘Bk’J‘—a'

We see that My, — Qr = Agag, With Ay = C27%"* and a;, a central (o, ¢(-))-atom
o0

supported in By, ,. Obviously, Z |AklP < oo.

k=0
Next we will show (b). Let {¢F : |I] < s} C Pg(R™) be the dual basis of
{z : Ja| < s} with respect to the weight 1/|E} | on Ej, ., that is

1
(PF, %) = —— YF(2)xvde = 814,
‘Ekﬂ" Ek,o
If set of (x) = > BLa” and ¢f(x) = > 7ph(x), then we have
lv|<s v|<s
Vl_ ¢17<PV Zﬁ wzvﬁ Zﬁ 517
[vI<s Iv<s

So f(x) = Z Bk ok (x). By a computation we deduce that for z € Ej, ,
|

v|<s

<Mk7 ‘PﬂEk,a@éﬁ(w‘) - <M/€7 Z ﬁlyﬁle>Ek,o(Pé§(x) - Z <M/€7 xV>Ek,oﬁI;l(Pé§(x)v

lv|<s lv|<s

which together with (3.2) implies that

(3.3) Qr(x) =Y (M, 2'yg, Uf(x), ifx € By,

[1|<s
Now we assert that there is a constant C' > 0 such that

(3.4) [Ur(2)] < C2 o)l
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Weset E={z e R": 1< |z| <2}, F={z eR":|z| <1}, {e : |l| < s} C
Ps(R™) satisfying |—]§le el(x)x¥dx = 814, and {&; : |I] < s} C Ps(R™) satisfying
|1T| [ é(z)z*dz = 6q.
Noting that
1

Slo =
“ ‘Ekﬂ" Ek,o

1 — [0 — (0%
v @) = /E (25 Lo)llyf 2oy yody,

we get e,(y) = (28 1o)lhpF(25=1oy). This in turn leads to that

— — T
vty) = @0y Ve (525) @ € B

Similarly, we have
k(o — (ok=1 _\—ll5 (%
Wk () = (2F o) g, (J) ,zeF.
Taking C = sup {[le/|| oo (rn), €1l oo mny}- Then (3.4) follows directly.
L:||<s

Now we can conclude (b). Set
Z\ ol (Mj,2YE, . k€N,

It is readily to see that

Z\ ol (M, 2l g Ejo Z/ M(x ldm— M (z)ztdz =0,

and for k € Z, there exists E, C Ej, such that |E,| = min{1, |E; |}, so we have
e Z / o)olldz

| \
j=k
s .

<C 2(2j0)|l|—nb
j=k

La() (Rm) ”XE]',U HLq/(-)(Rn)

[Rise27101

Biel) ™ i
L‘Z(')(R") ‘EO" XEq |l a (-)(Rn)

oo
< J g\ lil=nb+ndz ||| . mb ‘ /()
<0y ) G0 1B

j=k

oo
< CZ J|l|—|—7’La—7’bb—|—m52 2j(|l|—nb+n62)

=k

< Cg|l|—a+n62 2k(|l|—nb+n62) )
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This via (3.4) shows that
(3.5) | Erol INFUF (@) Xho(2)] < ComP2mmagmhnbHl=02) 0 if k — oo,

By Abel transform and (3.5) we have

iQk(w)
2599 ] DRI

[l|<s k=0 \j=0
< {1 Bl 0 @) o () - \Em,arlwf“<x>xk+1,a<w>}

= 3 YN 1Bl T @)X (0) = 1B 70 @) xe1.0 ()}
|I|<s k=0

Meanwhile, we also have

‘NHI {‘Ek,a‘_lwlk(x))(k,a(@ - ‘Ek—l—l,o“_1¢ﬁ+1($)xk+1’o.(x)}‘
< C‘NIH—IHEIH_I 0‘ 1‘,¢k+1( )‘
< CQ_kna‘Ek+1’o—‘62_l_a/n.

Set \;; = C27Fne and

ay, = A (=NF) {\Ek,a\_llﬂz’“(w)Xk,a(w) - \Ek+1,a\_lwlk“(w))ckﬂ,a(w)} :
Then we have

i Qr(z) =" i Ak
k=0

|[|<s k=0

with ay, a (a, ¢(-))-atom, and Z Z Akl < oc.

ll|<s k=0
The conclusion (b) then holds.

Theorem 3.3.  For any central («a, g(+))-atom f, let

Tf(x) = - K(z,y)f(y)dy, x ¢ supp f
satisfying [, Tf(z)dz = 0 be a bounded operator on L4()(R™) for some q(-) €
B(R™), and the kernel K satisfies that there are constants C’ > 0 and 0 < § < 1 such
that

ly|°

/!
|K(z,y) — K(z,0)] < C Wv

lz] > 2|y|.
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Then for any « and p with ndy < a < ndy+0 and 0 < p < oo, there exists a constant
C such that HTfHHK;"("‘;(R") <C (or HTfHHK;"("‘;(R") < C)-

Proof. We only prove homogeneous case. Let f be a central («, ¢(-))-atom sup-
porting in B(0,r)(r > 0). It suffices to show T'f is a central («a, g(+); 0,&)-molecule
forsome 1+0/n—3d > e > a/n—dy. To thisaim, leta = 09 —a/n+¢e, b =ds +e¢.
Obviously, we only need to verify the size condition for molecules, that is

I-reano

a/b
Rq(.)(Tf) - HTfH / LaC) (R™)

La() (Rn)

—_ )

with C'independent of f. To do this, we first estimate || - [**(7'f)(-)|| o) (gny-
In fact, we have

11T )

On the other hand, the vanishing moment of f and the regularity of K give us that for
x with |z| > 2r,

< O Tl oo ny < O™

LaC) (]-]<2r)

T ()| =

[ Kanima

[ (K- K(w,o»f(y)dy(

<c/ W) jay

& —y|" o
< Crtlg =t L [ r()ldy
‘BOJ" BO,T
< Crn—l—é‘x‘—(n—ké)Mf(x)
and so by nb —n — 6 < 0 we have
. |nb . n+6 ||| . nb—n—(SM . ‘
[ 1@ DOy <O |1 O i o

< Crn+(5+nb—n—6 HMfHL‘Z(')(R")

< O™ £l s gy < CP

Thus, we get
a/b n 1—a/b
Ry (1) = 1Tt o | TN
< CHfHa/b (nb—a)(1-a/b)

La() (R™)
< Or- aa/b+(nb—a)(1—a/b) _ C,
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where C'is independent of f.

This completes the proof of Theorem 3.3.
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