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COUPLING EXTRA-GRADIENT METHODS WITH KM’S METHODS FOR
VARIATIONAL INEQUALITIES AND FIXED POINTS

Yonghong Yao, Yeong-Cheng Liou* and Pei-Xia Yang

Abstract. In this paper, we suggest and analyze a new method which couple
extra-gradient methods with KM’s methods for solving some variational inequality
problem and fixed points problem. It is shown that the proposed method has strong
convergence in a general Hilbert space.

1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let A : C —
H be a nonlinear operator. It is well-known that the variational inequality problem
VI(C, A) is to find 2* € C such that

(Az*,v—2*) >0, YveCl.

Variational inequality theory has emerged as an important tool in studying a wide class
of obstacle, unilateral and equilibrium problems, which arise in several branches of
pure and applied sciences in a unified and general framework. Several numerical
methods have been developed for solving variational inequalities and related optimiza-
tion problems, see [1]-[17], [20] and the references therein. In order to solve variational
inequality VI(C, A), Korpelevich [6] introduced a so-called extra-gradient method

(L.1) {yn = Polx, — Mz,

Tny1 = Polzn — AMy,),n > 0,

where P is the metric projection from R™ onto C. However, the algorithm (1.1) fails,
in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces.
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The purpose of this paper is to modify the above extra-gradient method such that the
strong convergence is obtained in the setting of infinite-dimensional Hilbert spaces.

On the other hand, in the present paper we also concern on the algorithm construc-
tion for non-expansive mappings. This is main due to many practical problems can be
formulated as a fixed point problem

r =S,

where S is a non-expansive mapping defined on a closed convex subset C' of a Hilbert
space. For instance, some problems in signal processing, e.g., phase retrieval [21],[22]
and design of a nonlinear synthetic discriminant filter for optical pattern recognition
([23]) can be formulated as a split feasibility problem of finding a point z* with the

property:
z* € C and Ax™ € Q,

where C' and @ are closed convex subsets of R™ and R™, respectively, and A : R" —
R™ is a linear operator can equivalently be rewritten as a fixed point problem

x*x = Sa* = Po[l —yA*(I — Pg)Az™],

where Pc and P are the (nearest point) projections onto C' and @, respectively, v is
any positive parameter, and A* is the adjoint of A. It is known that for sufficiently small
v > 0, the mapping S = Pc[I —vA*(I— Pg)A] is non-expansive. Another example is
the intensity-modulated radiation therapy which have received a great deal of attention
recently; see [24]-[27] and references therein. Therefore, it is an interesting topic of
finding some algorithms for approximating fixed point of a non-expansive mapping.
Some related works can be found in [28]-[41].

It is worth mentioning that some algorithms in signal processing and image recon-
struction may be written as the well-known KM iteration:

(1.2) Tpgl = ATy + (1 — o) Sy

and that the main feature of its corresponding convergence theorems provided a uni-
fied frame for analyzing various concrete algorithms. For details, see [32], [43]-[44].
Although the above KM algorithm (1.2) solve some practical problems, we only obtain
some weak convergence theorems. A natural question rises: could we obtain a strong
convergence result by using the well-known KM’s algorithm? In this connection, in
1975, Genel and Lindenstrass [42] gave a counterexample. For more details, please
see [42]. This fact implies that some modifications associated with KM algorithms are
needed.

In this paper, we suggest and analyze a new method which couple extra-gradient
method (1.1) with KM’s method (1.2) for solving some variational inequality problem
and fixed points problem. It is shown that the proposed method has strong convergence
in a general Hilbert space.
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-,-) and norm || - || and let C
be a closed convex subset of H. A mapping A : C — H is called a-inverse-strongly-
monotone if there exists a positive real number « such that

(Au— Av,u —v) > af Au — Av||%, Yu,v € C.
Recall that a mapping S : C — C is said to be non-expansive if
[|Sz — Sy[| < ||z —y|| forallz,yeC.

Denote by Fiz(S) the set of fixed points of S; that is, Fix(S) = {z € C: Sz = x}.
It is well known that, for any u € H, there exists a unique uo € C such that

|lu — ug|| = inf{||lu —z|| : z € C}.

We denote ug by Pou, where P is called the metric projection of H onto C. The
metric projection Po of H onto C' has the following basic properties:
(i) ||[Pcx — Poyl|| < ||z — vy for all z,y € H;
(i) (x —y, Pox — Poy) > ||Pox — Poyl|? for every z,y € H;
(i) (x — Pox,y — Pcx) <0 forallz € H, y € C.

We need the following well-known lemmas for proving our main results.

Lemma 2.1. (Demiclosedness principle). Let C' be a nonempty closed convex
subset of a real Hilbert space H. Let S : C' — C be a non-expansive mapping
with Fiz(S) # 0. Then S is demiclosed on C, i.e., if y, — z € C weakly and
Yn — Syn — y strongly, then (I — S)z =y.

Lemma 2.2. (Suzuki’s Lemma [35]). Let {z,} and {y,} be bounded sequences
in a Banach space X and {3, } be a sequence in [0, 1] with 0 < liminf, . (B, <
limsup,,_,., B, < 1. Suppose that z,+1 = (1 — 5,,)yn + Bnxy, for all n > 0 and
lim sup,, oo (1941 = Ynll = [Zn41 — @al]) < 0. Then limy, oo |yn — 2|l = 0.

Lemma 2.3. (Xu’s Lemma [18]). Assume {a,,} is a sequence of nonnegative real
numbers such that
An+1 < (1 - P)/n)an + 5n7

where {~,,} is a sequence in (0,1) and {J,,} is a sequence such that

(1) 2720:1 Tn = 005
(2) Hmsup,,_. 0n/7n <0 0r > > [0,] < oo

Then lim,,_,o a, = 0.
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3. MaIN ReEsuLTS

In this section we will state and prove our main result. The set of solutions of the
variational inequality problem is denoted by VI(C, A). Set Q@ = VI(C, A) N Fix(S).

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let
A : C — H be an a-inverse-strongly-monotone mapping and S : C — C be a non-
expansive mapping with 2 # (. For given 2o € C arbitrarily, define a sequence {x,}
iteratively by

zn = Polx, — A\pAxy),
(3.1) Yn = Pol(1 — an)(2zn — AnAzy)],
Tn+l = /Bfl'n + (1 - /B)Synv n Z 07

where {«,} is a sequence in (0,1), {\,} is a sequence in [a,b] C (0,2«) and
B € (0,1) is a constant. Assume the following conditions are satisfied:

(7) limy,— 00 afy = 0;
(i) 3 optq n = 00;

(#68) 1imp—oo(Ans1 — Ap) = 0.
Then the sequence {z,,} generated by (3.1) converges strongly to zo = Pqn(0).

We will divide our detail proofs into several conclusions. In the sequel, we assume
all conditions in Theorem 3.1 are satisfied. In order to prove our main result, we first
need some facts:

Fact 1. If z € VI(C, A), the we have
Z = Po(Z — vAz), for all v > 0.
In particular, if we choose v = A, (1 — a,), then we have

(32) z=PFPolz— (1 —ap)AZ] = Polan + (1 — ay) (2 — M\ AT)], Vn > 0.

Fact 2. (see [12]) T — A\, A is non-expansive and for all z,y € C
(33) U= Ad)z — (I = XA)yl? < [z = ylI* + Aa(An — 20) || Az — Ay]|*.

Conclusion 3.2. The sequences {z,}, {yn}, {20}, {Azn}, {Az,} and {Sy,} are
all bounded.
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Proof. Take z* € Q. By (3.1), (3.2) and the non-expansivity of I — ), A, we have
llzn — 2*|| = [|Polxn — AnAxy,| — Polz™ — A, Az™]|]
< |(xp — %) — An(Azy, — AAZY)||
= [|(I = AA)z, — (I — N A)x™|

< [lwn — 2],
and
[

= || Po[(1 — an)(zn — AnAzy)] — Polanz™ + (1 — ay) (2" — A Az™)]|]
(34) < |lan(—=2")+ (1 — an)[(zn — AnAzy) — (" — A Az™)]||

< a2t + (1= an)[(I = AnA)zn — (I = AnA)z”||

< oz + (1 —an)llzn — 27|

< ozt + (1 = an)fzn — 27
Thus,

[ent1 — 2% = [[B(zn — 27) + (1 = B)(Syn — 27|
< Bllzn — 27| + (1 = B)[[Syn — 27
(3.5) < Bllzn — 27+ (1 = B)llyn — 27|
< Bllzn — 27+ (1 = Blanllz™| + (1 — an)[lzn — 27|]
(1= Banllz"[| + [1 = (1 = B)an]||zn — 27|

max{||z*], [[zo — = }-

Therefore, {x,,} is bounded and so are {y,},{zn}, {Az,}, {Az,} and {Sy,}. |

IN

Conclusion 3.3. lim,, o || Zn+1—2n|| = limy, oo ||Azp—Az™*|| = limy, 00 || Azp—
Az*|| = 0.

Proof. From (3.1), we have

15Yn — Syn—1l|
< lyn — yn—-1ll
= [[Pc[(1 — an)(zn — And2y)] — Pel(1 — an—1)(2n—1 — An—1Azn—1)]||
< |z — AnAzn) — (21 — An—1Azn—1) || + anllzn — AnAzy ||
+on—1]|Zn—1 — An—14zn_1||
= [(zn — MAzp) — (2n—1 — MAzn—1) + (An—1 — An) Azn—1]|

+anHzn - )\nAan + an—1 Hzn—l — A—1Azp 1 H
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< llzn = zn-1ll + [An = At Azn—1 [l + anllzn — AnAzn|
+an—1|lzn-1 — An—1Azp_1||
= ||Polzn — AMAxy] — Polzn—1 — M—1Azn ||| + [ A — A1 ||| Az ||
+an||zn — AnAzn|| + an—1llzn—1 — An—1Azp_1]]
< (@ — ApAzy) — (Tn—1 — AMATp—1) + (An—1 — A\n) Azp_1]|
+An = A1l Azn-1ll + anllzn — AnAzn | + an-1ll2n-1 — An—1A2p-1||
< lzn = -1l + 1A = A1 [Azn—1 | + [An = An—a ||| Azn—1]|
+an||zn — AnAzn|| + an—1llzn—1 — An—1Azp_1]].

Hence,

15Yn — Syn—1ll = [[Tn — Tp1]|
< A = A1l Azn-1 || + [An = An—1ll[ Az |
+anHzn - )\nAan +ap_1 Hzn—l - )\n—lAzn—l H

It follows that

lim sup(||Syn — Syn—1ll = | — zn-1l]) < 0.

n—oo

Thus, by Lemma 2.2, we obtain

lim ||Syn, — x,|| = 0.
n—oo
Consequently,
lim @41 — zpl| = lim (1 = B)||Syn — x,|| = 0.
n—oo n—oo

From (3.1) and (3.3), we get

llzn — 2*||2 = ||Pc[zn — MAzy,] — Polo* — )\nAx*]H2
< I = ApA)zy — (I = A A)z*|)?
< lan — 2% + An(An — 20)|| Az, — Az*||?
< lzp — x*H2 +a(b—2a)||Az, — Aw*”2.

(3.6)

From (3.3), (3.4), (3.6) and the convexity of the norm, we deduce

lyn — "2

lan (=) + (1 = an)[(zn — AnAzn) — (& = A Az™)]||?
anl|z*|* + (1 = an) (1 = AnA)zn — (I = ApA)z™|?

anl|z*|* + (1 = an)llzn — 2" | + An(An — 20)[| Az, — Az™|?]
anl|z*|* + |z — 2| + (1 — an)a(b - 20) | Az, — Az”|®
+(1 = ap)a(b — 20) | Az, — Az*||%

3.7)

ININCIN A
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By the convexity of the norm, we have
|zn41 = 2*|* = [|B(zn — %) + (1 = B)(Syn — 2)||?
(3.8) < Bllan — 2| + (1 = B)||Syn — 2|
< Bl =212 + (1= B)llyn — 2™
Substitute (3.7) into (3.8) to obtain
|41 — 2"
< Bllen —2|* + (1 = B)anllz”|* + lzn — 2|
+(1 = ap)a(b — 20)|| Az, — Az*||* + (1 — ay,)a(b — 20)|| Az, — Az*||?]
= (1= B)anllz|* + zn — 2™ + (1 = B)(1 - an)a(b - 2a)[| Az, — Az*|®
+(1 = B)(1 = ap)a(b — 20)|| Az, — Az*|>.
It follows that
(1= B)(1 - an)a(2a = ) (| Az, — Az*|* + [| Az, — Ac”|)
< (1= Banllz*[* + 2 — &*|* — l|lzn41 — 27|
< (1= Banlla*? + (e = 2*[| + llznsr = 2*]) X [l2n — @niall.
Since o, — 0 and ||z, — zp11]] — 0 @s n — oo, we obtain ||Ax,, — Az*|| — 0 and

|Az, — Az*|| — 0 as n — oc. |

Conclusion 3.4. lim,, .o || Syn — ynl| = 0.

Proof. By the firmly non-expansivity of the metric projection R (see (ii)), we
have

|20 — || = | Pclzn — AAx,] — Polz® — A Az™]||?
< (g — ApAxy) — (25 — \yAZ™), 2, — 2¥)

1 . . .
= L~ M) — @ = M) 4 2 — 2

—|[(xp — ApAzy,) — (2% — A\yAZ™) — (2, — x*)HQ}
L
2
= S{llen =22 + o = 212 =~ = 2P

F2An (@ = 2n, Ay — Az®) = | An(Azy — Aa")]?}

IN

Lln =212 + llzn = "2 = |20 — 20) — An(Aan — Aa")|?}
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1
< {0l =22+ zn = @12 = llzn = 2l

2|0 = 2l Az, — Aa*] },
and

Iy — 2*[|> = ||Pc[(1 — an)(2n — Andza)] — Po(a® — ApAz®)|?
< A{(1 = an)(zn — AMAzy) — (2 — N\yAx™), yp — 2)

1
= 5{”(271 — MAzp) — (2" = M AZY) — (1 — )‘nA)an2 + {[yn — x*H2

—(zn — ApAzy) — (2" — MyAZ™) — (yn — 27) — (I — )\nA)anQ}

IN

1
{10 = AnAzn) = (@ = A Az) |2+ @M + |1y — 2"

10 = ) = An(Azn = A2*) = (I = AaA)zal}

IN

1 * *

{20 = 212 + €M + g = 2112 = 120 —
+2X0(zn — Yn, Az — Ax™) + 20, (I — Ay A) 2, 20, — Yn)
(A2 — AZ) + an(I = ApA)za*}

IN

1 * *
S{lz0 = 2" 12 + anM + flyn = 2712 = 120 = a1
+20nllz0 = Y420 — A2 + 20 ll(T = AnA)zallll20 = pall}

where M > 0 is some constant.
It follows that
lzn = 2*[1* < Jlan — 2> = |20 — 2all® + 2Anll2n — 20|l Ay — Az*),
and
g — 21> < llzn — 2*)1* + anM — ||zn — yal?
+2Anllzn — yn || Azn — A2™|| 4 200 | (1 — AnA) 2n |l 20 — Ynl
< g — 22 = 2 — 20l1? = 120 — ynll® + 22020 — 20| | A2y — A2
+an, M + 2)‘nHzn - ynHHAzn - Ax*H + 20%”([ - )‘nA)ZnHHzn - ynH
This together with (3.8) imply that

Zn1 — 2| < Bllag —a*[* + (1 = B)|lyn — 2*|
<l =22 = (1 = B)lJzn — 2al” = (1 = B) |20 — ynll?
+2X\, ||z — 20 ||| Ay, — A2™|| + M
+2Xnllzn = ynlll|Azn — Az™|| + 200[|(I = AnA)znll[| 20 — ynl-
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Therefore,
(1= B)llzn = 2nll* + (1 = B) |20 — ynll?
< (lzn = 27| + [[#n41 — 2Dl @nsr — @4l
+2X\, ||z — 20 ||||Azy, — Az™|| + o, M
+2Xnllzn — ynllllAzn — Az™|| + 2an||(I = And)zn|[ |20 — ynl-

Since ay, — 0, ||z, — Zpy1|| — O, ||Azy, — Ax*|| — 0 and ||Az, — Az*|| — 0, we
derive ||z, — z,|| — 0 and ||z, — y,|| — 0. Note that

15yn = ynll < [1Syn — 2nll + 120 — 20l + 120 — .
Hence,
[y = Synll — 0. u
Conclusion 3.5.

lim sup (20, 20 — ) < 0,

n—oo

where zy = Pq(0).

Proof. We choose a subsequence {y,,} of {y,} such that

lim sup(zo, 20 — Yn) = lim (20, 20 — Yn,)-
n—00 1—00

As {yy,} is bounded, we have that a subsequence {y,,, } of {y,,} converges weakly

to z. We may assume without loss of generality that ,, — 2. Since ||Sy,, —yn|| — 0,

we obtain Sy,, — z as ¢ — oo. This together with the demi-closedness principle

(see Lemma 2.1), we have immediately z € Fiz(S). Next, we only need to prove

2 e VI(C,A).

Define

0, v ¢ C.

Then T' is maximal monotone (see [19]). Let (v,w) € G(T). Since w — Av € N¢v
and y,, € C, we have (v — y,, w — Av) > 0. On the other hand, from y,, = Po[(1 —
an)(zn — AnAz,)], we have

Av + New,v € C,
Tv:{ ¢

<’U ~YnsYn — (1 - an)(zn - )‘nAzn)> >0,

that is,
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Yn —n 4 Ay 4 %(I — AA)z,) > 0.

<'U - yrm )\n )\n

Therefore, we have

<'U_yni7’w> Z <’U_yni7A’U>

= (U —ypn,, Av — Az, — yn’)\;nzm — i:: (I — Xy, A)zp,)

7

= 2. (a7
(0= gy P T = A A)n)
= 2 (a7
Z <’U - ynivAyni - Aznz> - <’U — Yn;» M + . (I - )‘nZA)znz>
An, An,

Noting that a,,;, — 0, |lyn, — 2n,|| — 0 and A is Lipschitz continuous, we obtain
(v — z,w) > 0. Since T is maximal monotone, we have z € T-1(0) and hence
z € VI(C,A). Thus, we obtain z € Q. Therefore,
lim sup(zo, 20 — yn) = lim (20, 20 — Yn,) = (20, 20 — 2) < 0. ]
1— 00

n—oo

Next, we prove Theorem 3.1. Proof. Finally, we prove x,, — zy. By the property
(i) of metric projection P, we have

lyn — 20l
= |Pcl(1 = an)(zn — AnAz)] — Polanzo + (1 — an) (20 — MAz)]|)?

< {an(—20) + (1 — an)[(2n — AnAzn) — (20 — AnAz0)], Yn — 20)

< an(20, 20 = Yn) + (1 — an)[|(zn — AnAzn) — (20 — AnA20)l[lyn — 20l

< an(20, 20 — Yn) + (1 — an)ll2n — 20/ [|yn — 20|

11—«

< an(20,20 = Yn) + —5 “(llzn — 20l + llyn — 20/1?).-

Hence
lgn — 201> < (1= am)ll2n — 20l* + 200 (20, 20 — Yn)
< (1 —ap)l|lzn — on2 + 20, (205 20 — Yn,)-

Therefore,

lzns1 = 20l* < Bllwn 20l + (1 = B)llyn — 20”
< [1= (1= Ban]llzn = 20l® +2(1 = B)an(z0, 20 — yn)-

We apply Lemma 2.3 to the last inequality to deduce that ¢y — zo. This completes
the proof. [ |
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Remark 3.6. It is clear that Korpelevich’s extra-gradient method has strong con-
vergence in a finite-dimensional Hilbert space (as a matter of fact, in Euclid space R™)
and has only weak convergence in the setting of infinite-dimensional Hilbert spaces. It
is well-known that the KM’s method also has only weak convergence in Hilbert space.
However our method which couple Korpelevich’s extra-gradient method with KM’s
method has strong convergence in a general Hilbert space.

Remark 3.7. We not only prove the proposed algorithm (3.1) converges strongly
to a common element of a solution of the variational inequality VI(C, A) and the
fixed point of a non-expansive mapping S, but also note that this common element
29 = Pq/(0) is the minimum norm element in Q2. This is an additional interesting point.

4. APPLICATION

A mapping 7' : C — C'is called strictly pseudo-contractive if there exists k& with
0 < k < 1 such that

1Tz — Tyl|* < |l = ylI* + k(I = T)x — (I = T)yl*,
forall z,y € C. Put A= 1 —T, then we have
I = Az — (I = A)yl* < | — yll* + k]| Az — Ay]|*.
On the other hand,
I = Az — (I = Ay = |lz — ylI> + [ Az — Ay||* - 2(x — y, Az — Ay).

Hence we have -
(x —y, Az — Ay) > —— | Az — Ay||*.

As an application of Theorem 3.1, we have the following.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let T be
a k-strictly pseudo-contractive mapping of C' into itself and let S be a non-expansive
mapping of C' into itself such that Fiz:(T)NFixz(S) # (. For given z o € C arbitrarily,
define a sequence {x,} iteratively by

zn = (1= X\p)zn + ATy,
(4.1) Yn = Pol(1 — an)(zn — An(I —T)2,)],
$n+1 :/an+(1_/8)syn7 n207

where {«a,,} is a sequence in (0,1), {\,} is a sequence in [a,b] C (0,1 — k) and
B € (0,1) is a constant. Assume the following conditions are satisfied:
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(1) limy,— 00 ay = 0;
(i) 3 optq n = 00;

(i11) limpy—oo(Ang1 — An) = 0.

Then the sequence {z,,} generated by (4.1) converges strongly to 2o = Ppy(1)n Fiz(s) (0)-

Proof. Put A =1 —T. Then A is (1 — k)/2-inverse-strongly monotone. We
have Fiz(T) = VI(C, A). So, by Theorem 3.1, we can obtain the desired result. This
completes the proof. [ |
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