GEOMETRY OF $\mathcal{P} R$-WARPED PRODUCTS IN PARA-KÄHLER MANIFOLDS

Bang-Yen Chen and Marian Ioan Munteanu

Abstract

In this paper, we initiate the study of $\mathcal{P} R$-warped products in paraKahler manifolds and prove some fundamental results on such submanifolds. In particular, we establish a general optimal inequality for $\mathcal{P} R$-warped products in para-Kähler manifolds involving only the warping function and the second fundamental form. Moreover, we completely classify $\mathcal{P} R$-warped products in the flat para-Kahler manifold with least codimension which satisfy the equality case of the inequality. Our results provide an answer to the Open Problem (3) proposed in [19, Section 5].

1. Introduction

An almost para-Hermitian manifold is a manifold \widetilde{M} equipped with an almost product structure $\mathcal{P} \neq \pm I$ and a pseudo-Riemannian metric \widetilde{g} such that

$$
\begin{equation*}
\mathcal{P}^{2}=I, \quad \widetilde{g}(\mathcal{P} X, \mathcal{P} Y)=-\widetilde{g}(X, Y) \tag{1.1}
\end{equation*}
$$

for vector fields X, Y tangent to \widetilde{M}, where I is the identity map. Clearly, it follows from (1.1) that the dimension of \widetilde{M} is even and the metric \widetilde{g} is neutral. An almost $\underset{\widetilde{\nabla}}{\text { para-Hermitian manifold is called para-Kahler if it satisfies } \widetilde{\nabla} \mathcal{P}=0 \text { identically, where }}$ $\widetilde{\nabla}$ denotes the Levi Civita connection of \widetilde{M}. We define $\|X\|_{2}$ associated with \widetilde{g} on \widetilde{M} by $\|X\|_{2}=\widetilde{g}(X, X)$.

Properties of para-Kähler manifolds were first studied in 1948 by Rashevski who considered a neutral metric of signature (m, m) defined from a potential function on a locally product $2 m$-manifold [27]. He called such manifolds stratified spaces. ParaKähler manifolds were explicitly defined by Rozenfeld in 1949 [28]. Such manifolds were also defined by Ruse in 1949 [29] and studied by Libermann [23] in the context of G-structures.

[^0]There exist many para-Kahler manifolds, for instance, it was proved in [22] that a homogeneous manifold $\widetilde{M}=G / H$ of a semisimple Lie group G admits an invariant para-Kähler structure ($\widetilde{g}, \mathcal{P}$) if and only if it is a covering of the adjoint orbit $\operatorname{Ad}_{G} h$ of a semisimple element h. Para-Kahler manifolds have been applied in supersymmetric field theories as well as in string theory in recent years (see, for instance, [16, 17, 18]). (For a nice survey on para-Kahler manifolds, see [19].)

A pseudo-Riemannian submanifold M of a para-Kähler manifold \widetilde{M} is called invariant if the tangent bundle of M is invariant under the action of $\mathcal{P} . M$ is called anti-invariant if \mathcal{P} maps each tangent space $T_{p} M, p \in M$, into the normal space $T_{p}^{\perp} M$. A Lagrangian submanifold M of a para-Kähler manifold \widetilde{M} is an anti-invariant submanifold satisfying $\operatorname{dim} \widetilde{M}=2 \operatorname{dim} M$. Such submanifolds have been investigated recently in [12, 13, 14, 15].

A pseudo-Riemannian submanifold M of a para-Kähler manifold \widetilde{M} is called a $\mathcal{P} R$-submanifold if the tangent bundle $T M$ of M is the direct sum of an invariant distribution \mathcal{D} and an anti-invariant distribution \mathcal{D}^{\perp}, i.e.,

$$
T(M)=\mathcal{D} \oplus \mathcal{D}^{\perp}, \quad \mathcal{P D}=\mathcal{D}, \quad \mathcal{P} \mathcal{D}^{\perp} \subseteq T_{p}^{\perp}(M)
$$

A $\mathcal{P} R$-submanifold is called a $\mathcal{P} R$-warped product if it is a warped product $N_{T} \times_{f}$ N_{\perp} of an invariant submanifold N_{\top} and an anti-invariant submanifold N_{\perp}.

In this paper we initiate the study of $\mathcal{P} R$-warped products in para-Kăhler manifolds. The basic properties of $\mathcal{P} R$-warped products are given in section 3 . We establish in section 4 a general optimal inequality for $\mathcal{P} R$-warped products in para-Kähler manifolds involving only the warping function and the second fundamental form. In section 5, we provide the exact solutions of a PDE system associated with $\mathcal{P} R$-warped products. In the last section, we classify $\mathcal{P} R$-warped products $N_{\top} \times_{f} N_{\perp}$ with least codimension in the flat para-Kähler manifold which verify the equality case of the general inequality derived in section 4 .

2. Preliminaries

2.1. Warped product manifolds

The notion of warped product (or, more generally warped bundle) was introduced by Bishop and O'Neill in [4] in order to construct a large variety of manifolds of negative curvature. For example, negative space forms can easily be constructed in this way from flat space forms. The interest of geometers was to extend the classical de Rham theorem to warped products. Hiepko proved a result in [21] which will be used in this paper.

Let us recall some basic results on warped products. Let B and F be two pseudoRiemannian manifolds with pseudo-Riemannian metrics g_{B} and g_{F} respectively, and f
a positive function on B. Consider the product manifold $B \times F$. Let $\pi_{1}: B \times F \longrightarrow B$ and $\pi_{2}: B \times F \longrightarrow F$ be the canonical projections.

We define the manifold $M=B \times{ }_{f} F$ and call it warped product if it is equipped with the following warped metric

$$
\begin{equation*}
g(X, Y)=g_{B}\left(\pi_{1_{*}}(X), \pi_{1_{*}}(Y)\right)+f^{2}\left(\pi_{1}(p)\right) g_{F}\left(\pi_{2_{*}}(X), \pi_{2_{*}}(Y)\right) \tag{2.1}
\end{equation*}
$$

for all $X, Y \in T_{p}(M), p \in M$, or equivalently,

$$
\begin{equation*}
g=g_{B}+f^{2} g_{F} . \tag{2.2}
\end{equation*}
$$

The function f is called the warping function. For the sake of simplicity we will identify a vector field X on B (respectively, a vector field Z on F) with its lift \tilde{X} (respectively \tilde{Z}) on $B \times_{f} F$.

If ∇, ∇^{B} and ∇^{F} denote the Levi-Civita connections of M, B and F, respectively, then the following formulas hold

$$
\begin{align*}
& \nabla_{X} Y=\nabla_{X}^{B} Y, \\
& \nabla_{X} Z=\nabla_{Z} X=X(\ln f) Z \tag{2.3}\\
& \nabla_{Z} W=\nabla_{Z}^{F} W-g(Z, W) \nabla(\ln f)
\end{align*}
$$

where X, Y are tangent to B and Z, W are tangent to F. Moreover, $\nabla(\ln f)$ is the gradient of $\ln f$ with respect to the metric g.

2.2. Geometry of submanifolds

Let M be an n-dimensional submanifold of \widetilde{M}. We need the Gauss and Weingarten formulas:

$$
\begin{equation*}
\text { (G) } \quad \tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \quad \text { (W) } \quad \tilde{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\frac{1}{X}} \xi \tag{W}
\end{equation*}
$$

for vector fields X, Y tangent to M and ξ normal to M, where ∇ is the induced connection, ∇^{\perp} is the normal connection on the normal bundle $T^{\perp}(M), \sigma$ is the second fundamental form, and A_{ξ} is the shape operator associated with the normal section ξ. The mean curvature vector H of M is defined by $H=\frac{1}{n}$ trace h.

For later use we recall the equations of Gauss and Codazzi:
(EG) $g\left(R_{X Y} Z, W\right)=\widetilde{g}\left(\widetilde{R}_{X Y} Z, W\right)+\widetilde{g}(\sigma(Y, Z), \sigma(X, W))-\widetilde{g}(\sigma(X, Z), \sigma(Y, W))$,
(EC) $\left(\widetilde{R}_{X Y} Z\right)^{\perp}=\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z)$
for X, Y, Z and W tangent to M, where R, \widetilde{R} are the curvature tensors on M and \widetilde{M}, respectively, $\left(\widetilde{R}_{X Y} Z\right)^{\perp}$ is the normal component of $\widetilde{R}_{X Y} Z$ and $\bar{\nabla}$ is the van der Waerden - Bortolotti connection defined as

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X}, Z\right) . \tag{2.4}
\end{equation*}
$$

In this paper the curvature is defined by $R_{X Y}=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$.
A submanifold is called totally geodesic if its second fundamental form vanishes identically. For a normal vector field ξ on M, if $A_{\xi}=\lambda I$, for certain function λ on M, then ξ is called a umbilical section (or M is umbilical with respect to ξ). If M is umbilical with respect to every (local) normal vector field, then M is called a totally umbilical submanifold. A pseudo-Riemannian submanifold is called minimal if the mean curvature vector H vanishes identically. And it is called quasi-minimal if H is a light-like vector field.

Recall that for a warped product $M=B \times_{f} F, B$ is totally geodesic and F is totally umbilical in M.

2.3. Para-Kähler n-plane

The simplest example of para-Kăhler manifold is the para-Kähler n-plane $\left(\mathbb{E}_{n}^{2 n}, \mathcal{P}\right.$, $\left.g_{0}\right)$ consisting of the pseudo-Euclidean $2 n$-space $\mathbb{E}_{n}^{2 n}$, the standard flat neutral metric

$$
\begin{equation*}
g_{0}=-\sum_{j=1}^{n} d x_{j}^{2}+\sum_{j=1}^{n} d y_{j}^{2} \tag{2.5}
\end{equation*}
$$

and the almost product structure

$$
\begin{equation*}
\mathcal{P}=\sum_{j=1}^{n} \frac{\partial}{\partial y_{j}} \otimes d x_{j}+\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \otimes d y_{j} \tag{2.6}
\end{equation*}
$$

We simply denote the para-Kahler n-plane $\left(\mathbb{E}_{n}^{2 n}, \mathcal{P}, g_{0}\right)$ by \mathcal{P}^{n}.

3. $\mathcal{P} R$-Submanifolds of Para-KÄhler Manifolds

For any vector field X tangent to M, we put $P X=\tan (\mathcal{P} X)$ and $F X=$ $\operatorname{nor}(\mathcal{P} X)$, where $\tan _{p}$ and nor $_{p}$ are the natural projections associated to the direct sum decomposition

$$
T_{p}(\widetilde{M})=T_{p}(M) \oplus T_{p}^{\perp}(M), p \in M
$$

Then P is an endomorphism of the tangent bundle $T(M)$ and F is a normal bundle valued 1-form on M. Similarly, for a normal vector field ξ, we put $t \xi=\tan (\mathcal{P} \xi)$ and $f \xi=\operatorname{nor}(\mathcal{P} \xi)$ for the tangential and the normal part of $\mathcal{P} \xi$, respectively.

Let ν denote the orthogonal complement of $\mathcal{P} \mathcal{D}^{\perp}$ in $T^{\perp}(M)$. Then we have

$$
T^{\perp}(M)=\mathcal{P} \mathcal{D}^{\perp} \oplus \nu
$$

Notice that ν is invariant, i.e., $\mathcal{P} \nu=\nu$.
The following proposition characterizes $\mathcal{P} R$-submanifolds of para-Kähler manifolds. A similar result is known for $C R$-submanifolds in Kählerian manifolds and contact $C R$-submanifolds in Sasakian manifolds. See e.g. [30].

Proposition 3.1. Let $M \rightarrow \widetilde{M}$ be an isometric immersion of a pseudo-Riemannian manifold M into a para-Kahler manifold \widetilde{M}. Then a necessary and sufficient condition for M to be a $\mathcal{P} R$-submanifold is that $F \circ P=0$.

Proof. For U tangent to M we have the following decomposition

$$
U=\mathcal{P}^{2} U=P^{2} U+F P U+t F U+f F U .
$$

By identifying the tangent and the normal parts respectively, we find

$$
P^{2}+t F=I \quad \text { and } \quad F P+f F=0 .
$$

Suppose that M is a $\mathcal{P} R$-submanifold. After we choose $U=X \in \mathcal{D}$ we have $\mathcal{P} X=P X$ and $F X=0$. Hence $P^{2}=I$ and $F P=0$ on \mathcal{D}. On the other hand, if $U=Z=\mathcal{D}^{\perp}$, we have $P Z=0$. Hence $F P=0$ on \mathcal{D}^{\perp} too.

Conversely, suppose that $F P=0$. Put

$$
\mathcal{D}=\{X \in T(M): \mathcal{P} X \in T(M)\} \text { and } \mathcal{D}^{\perp}=\left\{Z \in T(M): \mathcal{P} Z \in T^{\perp}(M)\right\} .
$$

Then by direct computations we conclude that \mathcal{D} and \mathcal{D}^{\perp} are orthogonal such that $T(M)=\mathcal{D} \oplus \mathcal{D}^{\perp}$.

The following results from [15] are necessary for our further computations.
Proposition 3.2. Let M be a $\mathcal{P} R$-submanifold of a para-Kahler manifold \widetilde{M}. Then
(i) the anti-invariant distribution \mathcal{D}^{\perp} is a non-degenerate integrable distribution;
(ii) the invariant distribution \mathcal{D} is a non-degenerate minimal distribution;
(iii) the invariant distribution \mathcal{D} is integrable if and only if $\sigma(P X, Y)=\sigma(X, P Y)$, for all $X, Y \in \mathcal{D}$;
(iv) \mathcal{D} is integrable if and only if $\dot{\sigma}$ is symmetric, equivalently to $\dot{\sigma}(P X, Y)=$ $\dot{\sigma}(X, P Y)$. Here $\dot{\sigma}$ denotes the second fundamental form of \mathcal{D} in M.

Now, let us give some useful formulas.
Lemma 3.3. If M is a $\mathcal{P} R$-submanifold of a para-Kahler manifold \widetilde{M}, then
(a) $\widetilde{g}\left(A_{F Z} U, P X\right)=g\left(\nabla_{U} Z, X\right)$,
(b) $A_{F Z} W=A_{F W} Z$ and $A_{f \xi} X=-A_{\xi} P X$,
for all $X, Y \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}, U \in T(M)$ and $\xi \in \Gamma(\nu)$.
We need the following for later use.
Proposition 3.4. Let M be a $\mathcal{P} R$-submanifold of a para-Kahler manifold \widetilde{M}. Then
(i) the distribution \mathcal{D}^{\perp} is totally geodesic if and only if

$$
\begin{equation*}
\widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \mathcal{P} \mathcal{D}^{\perp}\right)=0 \tag{3.1}
\end{equation*}
$$

(ii) the distribution \mathcal{D} is totally geodesic if and only if

$$
\begin{equation*}
\widetilde{g}\left(\sigma(\mathcal{D}, \mathcal{D}), \mathcal{P} \mathcal{D}^{\perp}\right)=0 \tag{3.2}
\end{equation*}
$$

(iii) \mathcal{D} is totally umbilical if and only if there exists $Z_{0} \in \mathcal{D}^{\perp}$ such that

$$
\begin{equation*}
\sigma(X, Y)=g(X, P Y) F Z_{0}(\bmod \nu), \forall X, Y \in \mathcal{D} \tag{3.3}
\end{equation*}
$$

Proof. This can be proved by classical computations: see e.g. [6] or [24].

3.1. $\mathcal{P} R$-products

A $\mathcal{P} R$-submanifold of a para-Kähler manifold is called a $\mathcal{P} R$-product if it is locally a direct product $N_{\top} \times N_{\perp}$ of an invariant submanifold N_{\top} and an anti-invariant submanifold N_{\perp}.

The next result characterizes $\mathcal{P} R$-products in terms of the operator P.
Proposition 3.5. (Characterization). A $\mathcal{P} R$-submanifold of a para-Kahler manifold is a $\mathcal{P} R$-product if and only if P is parallel.

Proof. By straightforward computations (as in [6, Theorem 4.1] or [24, Theorem 2.2]) we may prove that

$$
\left(\nabla_{U} P\right) V=\nabla_{U}(P V)-P \nabla_{U} V=0, \forall U, V \in \chi(M)
$$

which implies the desired result.

The following result was proved in [15, page 224].
Proposition 3.6. Let $N_{\top} \times N_{\perp}$ be a $\mathcal{P} R$-product of the para-Kahler $(h+p)$-plane \mathcal{P}^{h+p} with $h=\frac{1}{2} \operatorname{dim} N_{\top}$ and $p=\operatorname{dim} N_{\perp}$. If N_{\perp} is either spacelike or timelike, then the $\mathcal{P} R$-product is an open part of a direct product of a para-K ahler h-plane \mathcal{P}^{h} and a Lagrangian submanifold L of \mathcal{P}^{p}, i.e.,

$$
N_{\top} \times N_{\perp} \subset \mathcal{P}^{h} \times L \subset \mathcal{P}^{h} \times \mathcal{P}^{p}=\mathcal{P}^{h+p}
$$

3.2. $\mathcal{P} R$-warped products

Let us begin with the following result.

Proposition 3.7. If a $\mathcal{P} R$-submanifold M is a warped product $N_{\perp} \times_{f} N_{\top}$ of an anti-invariant submanifold N_{\perp} and an invariant submanifold N_{\top} with warping function $f: N_{\perp} \longrightarrow \mathbb{R}_{+}$, then M is a $\mathcal{P} R$ product $N_{\perp} \times N_{\top}^{f}$, where N_{\top}^{f} is the manifold N_{\top} endowed with the homothetic metric $g_{\top}^{f}=f^{2} g_{\top}$.

Proof. Consider $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. Compute

$$
\begin{aligned}
& \widetilde{g}(\sigma(X, Y), F Z)=\widetilde{g}\left(\widetilde{\nabla}_{X} Y, \mathcal{P} Z\right)=-\widetilde{g}\left(Y, \mathcal{P} \widetilde{\nabla}_{X} Z\right)=g\left(P Y, \nabla_{X} Z\right)= \\
& \quad=g(P Y, Z(\ln f) X)=Z(\ln f) g(X, P Y) .
\end{aligned}
$$

Since $\sigma(\cdot, \cdot)$ is symmetric and $g(\cdot, P \cdot)$ is skew-symmetric, it follows that $Z(\ln f)$ vanishes for all Z tangent to N_{\perp}. Consequently, f is a constant and thus the warped product is nothing but the product $N_{\perp} \times N_{\top}^{f}$.

The previous result shows that there do not exist warped product $\mathcal{P} R$-submanifolds in para-Käehler manifolds of the form $N_{\perp} \times{ }_{f} N_{\top}$, other than $\mathcal{P} R$-products. Thus, in view of Proposition 3.7 we give the following definition:

Definition 3.8. A $\mathcal{P} R$-submanifold of a para-Kăhler manifold \widetilde{M} is called a $\mathcal{P} R$ warped product if it is a warped product of the form: $N_{\top} \times_{f} N_{\perp}$, where N_{\top} in an invariant submanifold, N_{\perp} is an anti-invariant submanifold of \widetilde{M} and f is a nonconstant function $f: N_{\top} \rightarrow \mathbb{R}_{+}$.

Since the metric on N_{T} of a $\mathcal{P} R$-warped product $N_{\top} \times_{f} N_{\perp}$ is neutral, we simply called the $\mathcal{P} R$-warped product $N_{\top} \times_{f} N_{\perp}$ space-like or time-like depending on N_{\perp} is space-like or time-like, respectively.

The next result characterizes $\mathcal{P} R$-warped products in para-Kahler manifolds.
Proposition 3.9. Let M be a proper $\mathcal{P} R$-submanifold of a para-K ahler manifold. Then M is a $\mathcal{P} R$-warped product if and only if

$$
\begin{equation*}
A_{F Z} X=(P X(\mu)) Z, \forall X \in \mathcal{D}, Z \in \mathcal{D}^{\perp} \tag{3.4}
\end{equation*}
$$

for some smooth function μ on M satisfying $W(\mu)=0, \forall W \in \mathcal{D}^{\perp}$.
The proof of this result is similar as in the case of Kähler or Sasakian ambient space. The key is the characterization of warped products given by Hiepko in [21].

4. An Optimal Inequality

Theorem 4.1. Let $M=N_{\top} \times_{f} N_{\perp}$ be a $\mathcal{P} R$-warped product in a para-Kahler manifold \widetilde{M}. Suppose that N_{\perp} is space-like and $\nabla^{\perp}\left(\mathcal{P} N_{\perp}\right) \subseteq \mathcal{P} N_{\perp}$. Then the second fundamental form of M satisfies

$$
\begin{equation*}
S_{\sigma} \leq 2 p\|\nabla \ln f\|_{2}+\left\|\sigma_{\nu}^{\mathcal{D}}\right\|_{2} \tag{4.1}
\end{equation*}
$$

where $p=\operatorname{dim} N_{\perp}, S_{\sigma}=\widetilde{g}(\sigma, \sigma), \nabla \ln f$ is the gradient of $\ln f$ with respect to the metric g and $\left\|\sigma_{\nu}^{\mathcal{D}}\right\|_{2}=\widetilde{g}\left(\sigma_{\nu}(\mathcal{D}, \mathcal{D}), \sigma_{\nu}(\mathcal{D}, \mathcal{D})\right)$. Here the index ν represents the ν-component of that object.

Proof. If we denote by g_{\top} and g_{\perp} the metrics on N_{\top} and N_{\perp}, then the warped metric on M is $g=g_{\top}+f^{2} g_{\perp}$. Let us consider

- on N_{\top} : an orthonormal basis $\left\{X_{i}, X_{i *}=P X_{i}\right\}, i=1, \ldots, h$, where $h=\operatorname{dim} N_{\top}$; moreover, one can suppose that $\epsilon_{i}:=g\left(X_{i}, X_{i}\right)=1$ and hence $\epsilon_{i *}:=g\left(X_{i *}, X_{i *}\right)=-1$, for all i.
- on N_{\perp} : an orthonormal basis $\left\{\tilde{Z}_{a}\right\}, a=1, \ldots, p$; we put $\epsilon_{a}:=g_{\perp}\left(\tilde{Z}_{a}, \tilde{Z}_{a}\right)=1$, for all a;
- in each point $(x, y) \in M: Z_{a}(x, y)=\frac{1}{f(x)} \tilde{Z}_{a}(y)$;
- in ν : an orthonormal basis $\left\{\xi_{\alpha}, \xi_{\alpha *}=f \xi_{\alpha *}\right\}, \alpha=1, \ldots, q$; moreover, one can suppose that $\epsilon_{\alpha}:=\widetilde{g}\left(\xi_{\alpha}, \xi_{\alpha}\right)=1$ and hence $\epsilon_{\alpha *}:=\widetilde{g}\left(\xi_{\alpha *}, \xi_{\alpha *}\right)=-1$.

Now, we want to compute

$$
\begin{aligned}
& \widetilde{g}(\sigma, \sigma) \\
= & \widetilde{g}(\sigma(\mathcal{D}, D), \sigma(\mathcal{D}, \mathcal{D}))+2 \widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right)+\widetilde{g}\left(\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)\right),
\end{aligned}
$$

where

$$
\begin{align*}
& \widetilde{g}(\sigma(\mathcal{D}, \mathcal{D}), \sigma(\mathcal{D}, \mathcal{D})) \\
& =\sum_{i, j=1}^{h}\left(\epsilon_{i} \epsilon_{j} \widetilde{g}\left(\sigma\left(X_{i}, X_{j}\right), \sigma\left(X_{i}, X_{j}\right)\right)\right. \tag{4.2}\\
& +\epsilon_{i *} \epsilon_{j} \widetilde{g}\left(\sigma\left(X_{i *}, X_{j}\right), \sigma\left(X_{i *}, X_{j}\right)\right)+\epsilon_{i} \epsilon_{j *} \widetilde{g}\left(\sigma\left(X_{i}, X_{j *}\right), \sigma\left(X_{i}, X_{j *}\right)\right) \\
& \\
& \left.+\epsilon_{i *} \epsilon_{j *} \widetilde{g}\left(\sigma\left(X_{i *}, X_{j *}\right), \sigma\left(X_{i *}, X_{j *}\right)\right)\right), \tag{4.3}\\
& \begin{aligned}
\widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right) & =\sum_{i=1}^{h} \sum_{a=1}^{p}\left(\epsilon_{i} \epsilon_{a} \widetilde{g}\left(\sigma\left(X_{i}, Z_{a}\right), \sigma\left(X_{i}, Z_{a}\right)\right)\right. \\
& \left.+\epsilon_{i *} \epsilon_{a} \widetilde{g}\left(\sigma\left(X_{i *}, Z_{a}\right), \sigma\left(X_{i *}, Z_{a}\right)\right)\right)
\end{aligned}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{g}\left(\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)\right)=\sum_{a, b=1}^{p} \epsilon_{a} \epsilon_{b} \widetilde{g}\left(\sigma\left(Z_{a}, Z_{b}\right), \sigma\left(Z_{a}, Z_{b}\right)\right) \tag{4.4}
\end{equation*}
$$

To do so, first we analyze $\sigma(\mathcal{D}, \mathcal{D})$. Since \mathcal{D} is totally geodesic, we have $\sigma(\mathcal{D}, \mathcal{D}) \in$ ν. Hence one can write the following

$$
\begin{aligned}
\sigma\left(X_{i}, X_{j}\right) & =\sigma_{i j}^{\alpha} \xi_{\alpha}+\sigma_{i j}^{\alpha *} \xi_{\alpha *}, & \sigma\left(X_{i *}, X_{j}\right) & =\sigma_{i * j}^{\alpha} \xi_{\alpha}+\sigma_{i * j}^{\alpha *} \xi_{\alpha *}, \\
\sigma\left(X_{i *}, X_{j *}\right) & =\sigma_{i * j *}^{\alpha} \xi_{\alpha}+\sigma_{i * j *}^{\alpha *} \xi_{\alpha *}, & & \sigma\left(X_{i}, X_{j *}\right)=\sigma_{i j *}^{\alpha} \xi_{\alpha}+\sigma_{i j *}^{\alpha *} \xi_{\alpha *} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\widetilde{g}(\sigma(\mathcal{D}, \mathcal{D}), \sigma(\mathcal{D}, \mathcal{D}))= & \sum_{i, j=1}^{h} \sum_{\alpha=1}^{q}\left\{\left[\left(\sigma_{i j}^{\alpha}\right)^{2}-\left(\sigma_{i j}^{\alpha *}\right)^{2}\right]-\left[\left(\sigma_{i * j}^{\alpha}\right)^{2}-\left(\sigma_{i * j}^{\alpha *}\right)^{2}\right]\right. \tag{4.5}\\
& \left.-\left[\left(\sigma_{i j *}^{\alpha}\right)^{2}-\left(\sigma_{i j *}^{\alpha *}\right)^{2}\right]+\left[\left(\sigma_{i * j *}^{\alpha}\right)^{2}-\left(\sigma_{i * j *}^{\alpha *}\right)^{2}\right]\right\} .
\end{align*}
$$

Due to the integrability of \mathcal{D} we deduce that $\sigma_{i * j}^{\alpha}=\sigma_{i j *}^{\alpha}, \sigma_{i * j}^{\alpha *}=\sigma_{i j *}^{\alpha *}, \sigma_{i * j *}^{\alpha}=\sigma_{i j}^{\alpha}$, $\sigma_{i * j *}^{\alpha *}=\sigma_{i j}^{\alpha *}$. Furthermore, using Lemma 3.3, we may write

$$
\widetilde{g}(\sigma(X, Y), \xi)=-\widetilde{g}(\sigma(X, P Y), f \xi), \forall X, Y \in \mathcal{D}, \xi \in \nu
$$

and consequently we have

$$
\begin{aligned}
\sigma_{i j}^{\alpha} & =\widetilde{g}\left(\sigma\left(X_{i}, X_{j}\right), \xi_{\alpha}\right)=-\widetilde{g}\left(\sigma\left(X_{i}, X_{j *}\right), \xi_{\alpha *}\right) \\
\sigma_{i j}^{\alpha *} & =-\widetilde{g}\left(\sigma\left(X_{i j *}, X_{j}\right), \xi_{\alpha *}\right)=\widetilde{g}\left(\sigma\left(X_{i}, X_{j *}\right), \xi_{\alpha}\right)
\end{aligned}=\sigma_{i j *}^{\alpha} .
$$

By replacing all these in (4.5), we obtain

$$
\begin{equation*}
\widetilde{g}(\sigma(\mathcal{D}, \mathcal{D}), \sigma(\mathcal{D}, \mathcal{D}))=\left\|\sigma_{\nu}^{\mathcal{D}}\right\|_{2}=4 \sum_{i, j=1}^{h} \sum_{\alpha=1}^{q}\left[\left(\sigma_{i j}^{\alpha}\right)^{2}-\left(\sigma_{i j}^{\alpha *}\right)^{2}\right] . \tag{4.6}
\end{equation*}
$$

Let us focus now on $\widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right)$. As before, we write

$$
\begin{aligned}
\sigma\left(X_{i}, Z_{a}\right) & =\sigma_{i a}^{b} F Z_{b}+\sigma_{i a}^{\alpha} \xi_{\alpha}+\sigma_{i a}^{\alpha *} \xi_{\alpha *}, \\
\sigma\left(X_{i *}, Z_{a}\right) & =\sigma_{i * a}^{b} F Z_{b}+\sigma_{i * a}^{\alpha} \xi_{\alpha}+\sigma_{i * a}^{\alpha *} \xi_{\alpha *} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\widetilde{g}\left(\sigma\left(X_{i}, Z_{a}\right), \sigma\left(X_{i}, Z_{a}\right)\right) & =-\sum_{b=1}^{p}\left(\sigma_{i a}^{b}\right)^{2}+\sum_{\alpha=1}^{q}\left[\left(\sigma_{i a}^{\alpha}\right)^{2}-\left(\sigma_{i a}^{\alpha *}\right)^{2}\right], \\
\widetilde{g}\left(\sigma\left(X_{i *}, Z_{a}\right), \sigma\left(X_{i *}, Z_{a}\right)\right) & =-\sum_{b=1}^{p}\left(\sigma_{i * a}^{b}\right)^{2}+\sum_{\alpha=1}^{q}\left[\left(\sigma_{i * a}^{\alpha}\right)^{2}-\left(\sigma_{i * a}^{\alpha *}\right)^{2}\right] .
\end{aligned}
$$

We obtain

$$
\begin{align*}
& \widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right) \\
= & -\sum_{i=1}^{h} \sum_{a, b=1}^{p}\left[\left(\sigma_{i a}^{b}\right)^{2}-\left(\sigma_{i * a}^{b}\right)^{2}\right] \tag{4.7}\\
& +\sum_{i=1}^{h} \sum_{a=1}^{p} \sum_{\alpha=1}^{q}\left[\left(\sigma_{i a}^{\alpha}\right)^{2}-\left(\sigma_{i a}^{\alpha *}\right)^{2}-\left(\sigma_{i * a}^{\alpha}\right)^{2}+\left(\sigma_{i *}^{\alpha *}\right)^{2}\right] .
\end{align*}
$$

From Lemma 3.3 we have

$$
\widetilde{g}(\sigma(P X, Z), f \xi)=-\widetilde{g}(\sigma(X, Z), \xi)
$$

and consequently

$$
\begin{align*}
\sigma_{i * a}^{\alpha} & =\widetilde{g}\left(\sigma\left(X_{i *}, Z_{a}\right), \xi_{\alpha}\right)=-\widetilde{g}\left(\sigma\left(X_{i}, Z_{a}\right), \xi_{\alpha *}\right)=\sigma_{i a}^{\alpha *} \\
\sigma_{i * a}^{\alpha *} & =-\widetilde{g}\left(\sigma\left(X_{i *}, Z_{a}\right), \xi_{\alpha *}\right)=\widetilde{g}\left(\sigma\left(X_{i}, Z_{a}\right), \xi_{\alpha}\right)=\sigma_{i a}^{\alpha} \tag{4.8}
\end{align*}
$$

Moreover we know that $\widetilde{g}(\sigma(P X, Z), F W)=-X(\ln f) g(Z, W)$. This yields

$$
\begin{equation*}
\sigma_{i a}^{b}=P X_{i}(\ln f) \delta_{a b} \text { and } \sigma_{i * a}^{b}=X_{i}(\ln f) \delta_{a b} \tag{4.9}
\end{equation*}
$$

By combining (4.7), (4.8) and (4.9) we get

$$
\begin{align*}
\widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right)= & p \sum_{i=1}^{h}\left[\left(X_{i}(\ln f)\right)^{2}-\left(P X_{i}(\ln f)\right)^{2}\right] \tag{4.10}\\
& +2 \sum_{i=1}^{h} \sum_{a=1}^{p} \sum_{\alpha=1}^{q}\left[\left(\sigma_{i a}^{\alpha}\right)^{2}-\left(\sigma_{i a}^{\alpha *}\right)^{2}\right]
\end{align*}
$$

As $\widetilde{g}(\sigma(X, Z), f \xi)=-\widetilde{g}\left(\nabla \frac{\perp}{X} F Z, \xi\right)$ and using the hypothesis $\nabla{ }_{\mathcal{D}}^{\perp} \mathcal{P} \mathcal{D}^{\perp} \subseteq \mathcal{P} \mathcal{D}^{\perp}$ we get $\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right) \subseteq \mathcal{P} \mathcal{D}^{\perp}$. Hence $\sigma_{i a}^{\alpha}$ and $\sigma_{i a}^{\alpha *}$ vanish. Thus

$$
\begin{equation*}
\widetilde{g}\left(\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right)=p g(\nabla \ln f, \nabla \ln f) \tag{4.11}
\end{equation*}
$$

Finally, we study $\widetilde{g}\left(\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)\right)$. We write

$$
\sigma\left(Z_{a}, Z_{b}\right)=\sigma_{a b}^{c} F Z_{c}+\sigma_{a b}^{\alpha} \xi_{\alpha}+\sigma_{a b}^{\alpha *} \xi_{\alpha *}
$$

and hence

$$
\widetilde{g}\left(\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)\right)=-\sum_{a, b, c=1}^{p}\left(\sigma_{a b}^{c}\right)^{2}+\sum_{a, b=1}^{p} \sum_{\alpha=1}^{q}\left[\left(\sigma_{a b}^{\alpha}\right)^{2}-\left(\sigma_{a b}^{\alpha *}\right)^{2}\right]
$$

As $\widetilde{g}(\sigma(Z, W), f \xi)=-\widetilde{g}\left(\nabla \frac{\perp}{Z} F W, \xi\right)$ and using the hypothesis $\nabla_{\mathcal{D}^{\perp}}^{\perp} \mathcal{P} \mathcal{D}^{\perp} \subseteq$ $\mathcal{P} \mathcal{D}^{\perp}$ we get $\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right) \subseteq \mathcal{P} \mathcal{D}^{\perp}$. Hence $\sigma_{a b}^{\alpha}$ and $\sigma_{a b}^{\alpha *}$ vanish. We conclude with

$$
\begin{equation*}
\widetilde{g}\left(\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right), \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)\right)=-\sum_{a, b, c=1}^{p}\left(\sigma_{a b}^{c}\right)^{2} \tag{4.12}
\end{equation*}
$$

From these we obtain the theorem.

Remark 4.2. If the manifold N_{\perp} in Theorem 4.1 is time-like, then (4.1) shall be replaced by

$$
\begin{equation*}
S_{\sigma} \geq 2 p\|\nabla \ln f\|_{2}+\left\|\sigma_{\nu}^{\mathcal{D}}\right\|_{2} \tag{4.13}
\end{equation*}
$$

Remark 4.3. For every $\mathcal{P} R$-warped product $N_{\top} \times N_{\perp}$ in a para-Kahler manifold $\widetilde{M}, \operatorname{dim} \widetilde{M} \geq \operatorname{dim} N_{\top}+2 \operatorname{dim} N_{\perp}$ holds. Thus the smallest codimension is $\operatorname{dim} N_{\perp}$.

Theorem 4.4. Let $N_{\top} \times_{f} N_{\perp}$ be a $\mathcal{P} R$-warped product in a para-Kahler manifold \widetilde{M}. If N_{\perp} is space-like (respectively, time-like) and $\operatorname{dim} \widetilde{M}=\operatorname{dim} N_{\top}+2 \operatorname{dim} N_{\perp}$, then the second fundamental form of M satisfies

$$
\begin{equation*}
S_{\sigma} \leq 2 p\|\nabla \ln f\|_{2} \quad \text { (respectively, } S_{\sigma} \geq 2 p\|\nabla \ln f\|_{2} \text {) } \tag{4.14}
\end{equation*}
$$

If the equality sign of (4.14) holds identically, we have

$$
\begin{equation*}
\sigma(\mathcal{D}, \mathcal{D})=\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=\{0\} \tag{4.15}
\end{equation*}
$$

Proof. Inequality (4.14) follows from (4.1). When the equality sign holds, (4.15) follows from the proof of Theorem 4.1.

5. Exact Solutions for a Special Pde's System

We need the exact solutions of the following PDE system for later use.
Proposition 5.1. The non-constant solutions $\psi=\psi\left(s_{1}, \ldots, s_{h}, t_{1}, \ldots, t_{h}\right)$ of the following system of partial differential equations

$$
\begin{align*}
& \frac{\partial^{2} \psi}{\partial s_{i} \partial s_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial s_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial t_{j}}=0 \tag{5.1.a}\\
& \frac{\partial^{2} \psi}{\partial s_{i} \partial t_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial t_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial s_{j}}=0, \quad i, j=1, \ldots, h \\
& \frac{\partial^{2} \psi}{\partial t_{i} \partial t_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial t_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial s_{j}}=0
\end{align*}
$$

are either given by

$$
\begin{equation*}
\psi=\frac{1}{2} \ln \left|\left[\left(\langle\mathbf{v}, z\rangle+c_{1}\right)^{2}-\left(\langle\mathrm{j} \mathbf{v}, z\rangle+c_{2}\right)^{2}\right]\right| \tag{5.2}
\end{equation*}
$$

where $z=\left(s_{1}, s_{2}, \ldots, s_{h}, t_{1}, t_{2}, \ldots, t_{h}\right), \mathbf{v}=\left(a_{1}, a_{2}, \ldots, a_{h}, 0, b_{2}, \ldots, b_{h}\right)$ is a constant vector in $\mathbb{R}^{2 h}$ with $a_{1} \neq 0, c_{1}, c_{2} \in \mathbb{R}$ and $\mathbf{j} \mathbf{v}=\left(0, b_{2}, \ldots, b_{h}, a_{1}, a_{2}, \ldots, a_{h}\right)$;
or given by

$$
\begin{equation*}
\psi=\frac{1}{2} \ln \left|\left(\left\langle\mathbf{v}_{\mathbf{1}}, z\right\rangle+c\right)\left(\left\langle\mathbf{v}_{\mathbf{2}}, z\right\rangle+d\right)\right| \tag{5.3}
\end{equation*}
$$

where $\mathbf{v}_{\mathbf{1}}=\left(0, a_{2}, \ldots, a_{h}, 0, \epsilon a_{2}, \ldots, \epsilon a_{h}\right), \mathbf{v}_{\mathbf{2}}=\left(b_{1}, \ldots, b_{h},-\epsilon b_{1}, \ldots,-\epsilon b_{h}\right)$ with $b_{1} \neq 0, z$ is as above and $c, d \in \mathbb{R}$.

Here \langle,$\rangle denotes the Euclidean scalar product in \mathbb{R}^{2 h}$.
Proof. Let us make some notations: $\psi_{s_{i}}:=\frac{\partial \psi}{\partial s_{i}} ; \psi_{s_{i} s_{j}}:=\frac{\partial^{2} \psi}{\partial s_{i} \partial s_{j}}$, and similar for $\psi_{t_{i}}, \psi_{s_{i} t_{j}}$, respectively $\psi_{t_{i} t_{j}}$. The same notations for any other function.

If in (5.1.b) we take $i=j$ one gets $\psi_{s_{i} t_{i}}=-2 \psi_{s_{i}} \psi_{t_{i}}$ for all $i=1, \ldots, h$. Since ψ is non-constant, there exists i_{0} such that at least one of $\psi_{s_{i_{0}}}$ or $\psi_{t_{i_{0}}}$ is different from 0 . Without loss of the generality we suppose $i_{0}=1$. Both situations yield

$$
e^{2 \psi}=\zeta\left(t_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)+\eta\left(s_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right),
$$

where ζ and η are functions of $2 h-1$ variables such that $\zeta+\eta>0$ on the domain of ψ. It follows that

$$
\begin{align*}
& \psi_{s_{1}}=\frac{\eta_{s_{1}}}{2(\zeta+\eta)}, \psi_{s_{1} s_{1}}=\frac{\eta_{s_{1} s_{1}}(\zeta+\eta)-\eta_{s_{1}}^{2}}{2(\zeta+\eta)^{2}} \\
& \psi_{t_{1}}=\frac{\zeta_{t_{1}}}{2(\zeta+\eta)}, \psi_{t_{1} t_{1}}=\frac{\zeta_{t_{1} t_{1}}(\zeta+\eta)-\eta_{t_{1}}^{2}}{2(\zeta+\eta)^{2}} \tag{5.4}
\end{align*}
$$

Using (5.1.a) and (5.1.c) we obtain

$$
\begin{equation*}
2 \eta_{s_{1} s_{1}}(\zeta+\eta)=\eta_{s_{1}}^{2}-\zeta_{t_{1}}^{2}, \quad 2 \zeta_{t_{1} t_{1}}(\zeta+\eta)=\zeta_{t_{1}}^{2}-\eta_{s_{1}}^{2} \tag{5.5}
\end{equation*}
$$

Since $\zeta+\eta \neq 0$, adding the previous relations, one gets

$$
\eta_{s_{1} s_{1}}\left(s_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)+\zeta_{t_{1} t_{1}}\left(t_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=0
$$

and hence, there exists a function F depending on $s_{2}, t_{2}, \ldots, s_{h}, t_{h}$ such that

$$
\begin{aligned}
& \eta_{s_{1} s_{1}}\left(s_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=2 F\left(s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right) \\
& \zeta_{t_{1} t_{1}}\left(t_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=-2 F\left(s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)
\end{aligned}
$$

At this point one integrates with respect to s_{1} and t_{1} respectively and one gets

$$
\begin{align*}
& \eta\left(s_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=F s_{1}^{2}+G s_{1}+H \tag{5.6}\\
& \zeta\left(t_{1}, s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=-F t_{1}^{2}-K t_{1}-L
\end{align*}
$$

where G, H, L and K are functions depending on $s_{2}, t_{2}, \ldots, s_{h}, t_{h}$ satisfying the following condition

$$
\begin{equation*}
4 F(H-L)=G^{2}-K^{2} \tag{5.7}
\end{equation*}
$$

It follows that $\eta+\zeta=\left(F s_{1}^{2}+G s_{1}+H\right)-\left(F t_{1}^{2}+K t_{1}+L\right)$.

Case 1. Suppose $F \neq 0$; being continuous, it preserves constant sign; denote it by ε. From (5.7) we have $H-L=\frac{G^{2}-K^{2}}{4 F}$ which combined with (5.6) yields

$$
\eta+\zeta=\varepsilon\left[\left(\varepsilon \sqrt{\varepsilon F} s_{1}+\frac{G}{2 \sqrt{\varepsilon F}}\right)^{2}-\left(\varepsilon \sqrt{\varepsilon F} t_{1}+\frac{K}{2 \sqrt{\varepsilon F}}\right)^{2}\right] .
$$

We make some notations: $a=\varepsilon \sqrt{\varepsilon F}, \gamma=\frac{G}{2 \sqrt{\varepsilon F}}$ and $\delta=\frac{K}{2 \sqrt{\varepsilon F}}$, all of them being functions depending on $s_{2}, t_{2}, \ldots, s_{h}, t_{h}$. We are able to re-write the function ψ as

$$
\begin{equation*}
\psi=\frac{1}{2} \ln \varepsilon\left[\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}\right] . \tag{5.8}
\end{equation*}
$$

We compute now

$$
\begin{equation*}
\psi_{s_{1}}=\frac{a(a s+\gamma)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}}, \psi_{t_{1}}=\frac{-a\left(a t_{1}+\delta\right)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}} \tag{5.9}
\end{equation*}
$$

and for $i \neq 1$

$$
\begin{align*}
& \psi_{s_{i}}=\frac{\left(a s_{1}+\gamma\right)\left(a_{s_{i}} s_{1}+\gamma_{s_{i}}\right)-\left(a t_{1}+\delta\right)\left(a_{s_{i}} t_{1}+\delta_{s_{i}}\right)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}} \\
& \psi_{t_{i}}=\frac{\left(a s_{1}+\gamma\right)\left(a a_{t_{i}} s_{1}+\gamma_{t_{i}}\right)-\left(a t_{1}+\delta\right)\left(a_{t_{i}} t_{1}+\delta_{t_{i}}\right)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}} \tag{5.10}
\end{align*}
$$

Computing also $\psi_{s_{1} s_{i}}$, we can use (5.1.a) for $j=1, i=2, \ldots, h$ and obtain

$$
\begin{aligned}
& {\left[a\left(a_{s_{i}} s_{1}+\gamma_{s_{i}}\right)+a_{s_{i}}\left(a s_{1}+\gamma\right)\right]\left[\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}\right] } \\
&-a\left(a s_{1}+\gamma\right)\left[\left(a s_{1}+\gamma\right)\left(a_{s_{i}} s_{1}+\gamma_{s_{i}}\right)-\left(a t_{1}+\delta\right)\left(a_{s_{i}} t_{1}+\delta_{s_{i}}\right)\right] \\
&-a\left(a t_{1}+\delta\right)\left[\left(a s_{1}+\gamma\right)\left(a_{t_{i}} s_{1}+\gamma_{t_{i}}\right)-\left(a t_{1}+\delta\right)\left(a_{t_{i}} t_{1}+\delta_{t_{i}}\right)\right]=0 .
\end{aligned}
$$

This represents a polynomial in s_{1} and t_{1}, identically zero, and hence, all its coefficients must vanish. Analyzing the coefficients for s_{1}^{3} and t_{1}^{3} we obtain $a_{s_{i}}=0$ and $a_{t_{i}}=0$ for all $i=2, \ldots, h$. Consequently a is a real constant.

Replacing in the previous equation we get

$$
\delta_{s_{i}}\left(a s_{1}+\gamma\right)-\gamma_{s_{i}}\left(a t_{1}+\delta\right)-\gamma_{t_{i}}\left(a s_{1}+\gamma\right)+\delta_{t_{i}}\left(a t_{1}+\delta\right)=0 .
$$

Looking at the coefficients of s_{1} and t_{1} we have

$$
\begin{equation*}
\delta_{s_{i}}=\gamma_{t_{i}} \text { and } \delta_{t_{i}}=\gamma_{s_{i}}, \forall i=2, \ldots, h . \tag{5.11}
\end{equation*}
$$

Therefore (5.10) gives

$$
\begin{equation*}
\psi_{s_{i}}=\frac{\gamma_{s_{i}}\left(a s_{1}+\gamma\right)-\delta_{s_{i}}\left(a t_{1}+\delta\right)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}}, \psi_{t_{i}}=\frac{\gamma_{t_{i}}\left(a s_{1}+\gamma\right)-\delta_{t_{i}}\left(a t_{1}+\delta\right)}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}} \tag{5.12}
\end{equation*}
$$

We may compute

$$
\begin{align*}
\psi_{s_{i} t_{j}}= & \frac{\gamma_{s_{i} t_{j}}\left(a s_{1}+\gamma\right)+\gamma_{s_{i}} \gamma_{t_{j}}-\delta_{s_{i} t_{j}}\left(a t_{1}+\delta\right)-\delta_{s_{i}} \delta_{t_{j}}}{\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}} \tag{5.13}\\
& -2 \frac{\left[\gamma_{t_{j}}\left(a s_{1}+\gamma\right)-\delta_{t_{j}}\left(a t_{1}+\delta\right)\right]\left[\gamma_{s_{i}}\left(a s_{1}+\gamma\right)-\delta_{s_{i}}\left(a t_{1}+\delta\right)\right]}{\left[\left(a s_{1}+\gamma\right)^{2}-\left(a t_{1}+\delta\right)^{2}\right]^{2}}
\end{align*}
$$

and using (5.1.b) with $i, j>1$, we obtain again a polynomial in s_{1} and t_{1}, identically zero. By comparing the coefficients of s_{1}^{3} and t_{1}^{3} we find $\gamma_{s_{i} t_{j}}=0$ and $\delta_{s_{i} t_{j}}=0$, for all $i, j=2, \ldots, h$. It follows that $\gamma_{s_{i}}$ depend only on s_{2}, \ldots, s_{h} and $\delta_{t_{i}}$ depend only on t_{2}, \ldots, t_{h}, for all i. From (5.11) we know $\gamma_{s_{i}}=\delta_{t_{i}}$. Hence, there exist constants $a_{i} \in \mathbb{R}$ such that $\gamma_{s_{i}}=\delta_{t_{i}}=a_{i}, \forall i=2, \ldots, h$. In the same way, there exist constants $b_{i} \in \mathbb{R}$ such that $\gamma_{t_{i}}=\delta_{s_{i}}=b_{i}, \forall i=2, \ldots, h$. It follows that

$$
\begin{align*}
& \gamma\left(s_{2}, t_{2} \ldots, s_{h}, t_{h}\right)=\sum_{i=2}^{h} a_{i} s_{i}+\sum_{i=2}^{h} b_{i} t_{i}+c_{1}, \tag{5.14}\\
& \delta\left(s_{2}, t_{2} \ldots, s_{h}, t_{h}\right)=\sum_{i=2}^{h} b_{i} s_{i}+\sum_{i=2}^{h} a_{i} t_{i}+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R} .
\end{align*}
$$

We conclude with

$$
\begin{aligned}
\psi= & \frac{1}{2} \ln \varepsilon\left[\left(a s_{1}+a_{2} s_{2}+b_{2} t_{2}+\ldots+a_{h} s_{h}+b_{h} t_{h}+c_{1}\right)^{2}\right. \\
& \left.-\left(a t_{1}+b_{2} s_{2}+a_{2} t_{2}+\ldots+b_{h} s_{h}+a_{h} t_{h}+c_{2}\right)^{2}\right] .
\end{aligned}
$$

Hence the solution (5.2) is obtained with $a_{1}=a \neq 0$.
Case 2. Let us come back to the case $F=0$ (on a certain open set). From (5.7) we immediately find $\eta+\zeta=G s_{1}-K t_{1}+H$, where G, H, K are functions depending on ($s_{2}, \ldots, s_{h}, t_{2}, \ldots, t_{h}$), and $K=\epsilon G, \epsilon= \pm 1$. Thus

$$
\psi=\frac{1}{2} \ln \left|\left(s_{1}-\epsilon t_{1}\right) G+H\right| .
$$

We have

$$
\begin{aligned}
\psi_{s_{1}} & =\frac{G}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]}, \psi_{t_{1}}=-\frac{\epsilon G}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]}, \\
\psi_{s_{i}} & =\frac{\left(s_{1}-\epsilon t_{1}\right) G_{s_{i}}+H_{s_{i}}}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]}, \psi_{t_{i}}=\frac{\left(s_{1}-\epsilon t_{1}\right) G_{t_{i}}+H_{t_{i}}}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]}, i=2, \ldots, h, \\
\psi_{s_{i} s_{1}} & =\frac{G_{s_{i}}\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]-G\left[\left(s_{1}-\epsilon t_{1}\right) G_{s_{i}}+H_{s_{i}}\right)}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]^{2}}, i=2, \ldots, h .
\end{aligned}
$$

By applying (5.1.a) for $j=1$ and $i=2, \ldots, h$ we obtain

$$
2 G_{s_{i}}\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]-G\left[\left(s_{1}-\epsilon t_{1}\right) G_{s_{i}}+H_{s_{i}}\right]-\epsilon G\left[\left(s_{1}-\epsilon t_{1}\right) G_{t_{i}}+H_{t_{i}}\right]=0
$$

By comparing the coefficients of s_{1} and t_{1} we find

$$
\begin{equation*}
G\left(G_{s_{i}}-\epsilon G_{t_{i}}\right)=0, \quad 2 G_{s_{i}} H-G\left(H_{s_{i}}+\epsilon H_{t_{i}}\right)=0 . \tag{5.15}
\end{equation*}
$$

Since $G \neq 0$ we have $G_{t_{i}}=\epsilon G_{s_{i}}$. In the sequel, computing

$$
\psi_{s_{i} s_{j}}=\frac{\left(s_{1}-\epsilon t_{1}\right) G_{s_{i} s_{j}}+H_{s_{i} s_{j}}}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]}-\frac{\left[\left(s_{1}-\epsilon t_{1}\right) G_{s_{i}}+H_{s_{i}}\right]\left[\left(s_{1}-\epsilon t_{1}\right) G_{s_{j}}+H_{s_{j}}\right]}{2\left[\left(s_{1}-\epsilon t_{1}\right) G+H\right]^{2}}
$$

for $i, j \geq 2$, replacing in (5.1.a) and comparing the coefficients of s_{1}^{2} we find $G_{s_{i} s_{j}}=0$. It follows also $G_{s_{i} t_{j}}=0$ and $G_{t_{i} t_{j}}=0$. Hence

$$
G\left(s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=\sum_{i=2}^{h} a_{i}\left(s_{i}+\epsilon t_{i}\right)+c, \quad a_{i}, c \in \mathbb{R} .
$$

Moreover, H should satisfy

$$
\begin{gather*}
2 G H_{s_{i} s_{j}}-G_{s_{i}}\left(H_{s_{j}}-\epsilon H_{t_{j}}\right)-G_{s_{j}}\left(H_{s_{i}}-\epsilon H_{t_{i}}\right)=0, \tag{5.16}\\
2 H H_{s_{i} s_{j}}-H_{s_{i}} H_{s_{j}}+H_{t_{i}} H_{t_{j}}=0 . \tag{5.17}
\end{gather*}
$$

Case 2a. If G is a non-zero constant c (and this happens when all a_{i} vanish), then from the second equation in (5.15) we find $H_{s_{i}}+\epsilon H_{t_{i}}=0$ for all $i \geq 2$. Therefore, H has the form

$$
H\left(s_{2}, t_{2}, \ldots, s_{h}, t_{h}\right)=Q\left(s_{2}-\epsilon t_{2}, \ldots, s_{h}-\epsilon t_{h}\right),
$$

where Q is a function depending only on h variables. From (5.16) we get $H_{s_{i} s_{j}}=0$ and then Q is an affine function. Thus $H=\sum_{i=2}^{h} b_{i}\left(s_{i}-\epsilon t_{i}\right)+d$, with $b_{2}, \ldots, b_{h}, d \in \mathbb{R}$. Consequently,

$$
\psi=\frac{1}{2} \ln \left[\sum_{i=1}^{h} b_{i}\left(s_{i}-\epsilon t_{i}\right)+d\right], \quad b_{1}=c \neq 0 .
$$

Case 2b. If there exists at least one $a_{i} \neq 0$, from the second equation in (5.15) we can express H in the form $H=Q G$, where Q is a function on $s_{2}, t_{2}, \ldots, s_{h}, t_{h}$. Then, for every $i \geq 2$,

$$
H_{s_{i}}+\epsilon H_{t_{i}}=2 a_{i} Q+G\left(Q_{s_{i}}+Q_{t_{i}}\right),
$$

which combined with (5.15) gives $Q_{s_{i}}+\epsilon Q_{t_{i}}=0$. Thus, $Q=Q\left(s_{2}-\epsilon t_{2}, \ldots, s_{h}-\epsilon t_{h}\right)$. Using (5.16), it follows that Q is an affine function and hence $H=\sum_{i=2}^{h} b_{i}\left(s_{i}-\epsilon t_{i}\right)+d$, with $b_{2}, \ldots, b_{h}, d \in \mathbb{R}$. Consequently,

$$
\psi=\frac{1}{2} \ln \left\{\left[\sum_{i=1}^{h} b_{i}\left(s_{i}-\epsilon t_{i}\right)+d\right]\left[\sum_{j=2}^{h} a_{i}\left(s_{i}+\epsilon t_{i}\right)+c\right]\right\}
$$

with $b_{1}=1$. This completes the proof.
6. $\mathcal{P} R$-Warped Products in \mathcal{P}^{h+p} Satisfying $S_{\sigma}=2 p\|\nabla \ln f\|_{2}$

In the following, we use letters i, j, k for indices running from 1 to $h ; a, b, c$ for indices from 1 to p; and A, B for indices between 1 and m with $m=h+p$.

On $\mathbb{E}_{h+p}^{2(h+p)}$ we consider the global coordinates $\left(x_{i}, x_{h+a}, y_{i}, y_{h+a}\right)$ and the canonical flat para-Kähler structure defined as above.

Proposition 6.1. Let $M=N_{\top} \times_{f} N_{\perp}$ be a space-like $\mathcal{P} R$-warped product in the para-Kahler $(h+p)$-plane \mathcal{P}^{h+p} with $h=\frac{1}{2} \operatorname{dim} N_{\top}$ and $p=\operatorname{dim} N_{\perp}$. If M satisfies the equality case of (4.14) identically, then

- N_{\top} is a totally geodesic submanifold in \mathcal{P}^{h+p}, and hence it is congruent to an open part of \mathcal{P}^{h};
- N_{\perp} is a totally umbilical submanifold in \mathcal{P}^{h+p}.

Moreover, if N_{\perp} is a real space form of constant curvature k, then the warping function f satisfies $\|\nabla f\|_{2}=k$.

Proof. Under the hypothesis, we know from the proof of Theorem 4.1 that the second fundamental form satisfies

$$
\sigma(\mathcal{D}, \mathcal{D})=\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=\{0\} .
$$

On the other hand, since $M=N_{\top} \times_{f} N_{\perp}$ is a warped product, N_{\top} is totally geodesic and N_{\perp} is totally umbilical in M. Thus we have the first two statements.

The last statement of the proposition can be proved as follows. If R^{\perp} denotes the Riemann curvature tensor of N_{\perp}, then we have

$$
R_{Z V} W=R_{Z V}^{\perp} W-\|\nabla \ln f\|_{2}(g(V, W) Z-g(Z, W) V)
$$

for any Z, V, W tangent to N_{\perp}. See for details [26, page 210] (pay attention to the sign; see also page 74). If N_{\perp} is a space form of constant curvature k, then R takes the form

$$
\begin{equation*}
R_{Z V} W=\left(\frac{k}{f^{2}}-\|\nabla \ln f\|_{2}\right)(g(V, W) Z-g(Z, W) V) . \tag{6.1}
\end{equation*}
$$

The equation of Gauss may be written, for vectors tangent to N_{\perp}, as

$$
g\left(R_{Z V} W, U\right)=\left\langle\widetilde{R}_{Z V} W, U\right\rangle+\langle\sigma(V, W), \sigma(Z, U)\rangle-\langle\sigma(Z, W), \sigma(V, U)\rangle
$$

Since the ambient space is flat and $\sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=0$ due to the equality in (4.14), it follows that $g\left(R_{Z V} W, U\right)=0$. Combining this with (6.1) gives $\|\nabla \ln f\|_{2}=\frac{k}{f^{2}}$. This gives the statement.

Para-complex numbers were introduced by Graves in 1845 [20] as a generalization of complex numbers. Such numbers have the expression $v=x+\mathrm{j} y$, where x, y are real numbers and j satisfies $\mathrm{j}^{2}=1, \mathrm{j} \neq \pm 1$. The conjugate of v is $\bar{v}=x-\mathrm{j} y$. The multiplication of two para-complex numbers is defined by

$$
(a+\mathrm{j} b)(s+\mathrm{j} t)=(a s+b t)+\mathrm{j}(a t+b s) .
$$

For each natural number m, we put $\mathbb{D}^{m}=\left\{\left(x_{1}+\mathrm{j} y_{1}, \ldots, x_{m}+\mathrm{j} y_{m}\right): x_{i}, y_{i} \in\right.$ $\mathbb{R}\}$. With respect to the multiplication of para-complex numbers and the canonical flat metric, \mathbb{D}^{m} is a flat para-Kähler manifold of dimension $2 m$. Once we identify $\left(x_{1}+\mathrm{j} y_{1}, \ldots, x_{m}+\mathrm{j} y_{m}\right) \in \mathbb{D}^{m}$ with $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}\right) \in \mathbb{E}_{m}^{2 m}$, we may identify \mathbb{D}^{m} with the para-Kahler m-plane \mathcal{P}^{m} in a natural way.

In the following we denote by $\mathbb{S}^{p}, \mathbb{E}^{p}$ and \mathbb{H}^{p} the unit p-sphere, the Euclidean p-space and the unit hyperbolic p-space, respectively.

Theorem 6.2. Let $N_{\top} \times_{f} N_{\perp}$ be a space-like $\mathcal{P} R$-warped product in the paraKabler $(h+p)$-plane \mathcal{P}^{h+p} with $h=\frac{1}{2} \operatorname{dim} N_{\top}$ and $p=\operatorname{dim} N_{\perp}$. Then we have

$$
\begin{equation*}
S_{\sigma} \leq 2 p\|\nabla \ln f\|_{2} . \tag{6.2}
\end{equation*}
$$

The equality sign of (6.2) holds identically if and only if N_{\top} is an open part of a para-Kahler h-plane, N_{\perp} is an open part of $\mathbb{S}^{p}, \mathbb{E}^{p}$ or \mathbb{H}^{p}, and the immersion is given by one of the following:

1. $\Phi: D_{1} \times_{f} \mathbb{S}^{p} \longrightarrow \mathcal{P}^{h+p}$;

$$
\begin{align*}
\Phi(z, w)= & \left(z_{1}+\bar{v}_{1}\left(w_{0}-1\right) \sum_{j=1}^{h} v_{j} z_{j}, \ldots, z_{h}+\bar{v}_{h}\left(w_{0}-1\right) \sum_{j=1}^{h} v_{j} z_{j},\right. \tag{6.3}\\
& \left.w_{1} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}, \ldots, w_{p} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}\right), \quad h \geq 2,
\end{align*}
$$

with warping function

$$
f=\sqrt{\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}},
$$

where $v=\left(v_{1}, \ldots, v_{h}\right) \in \mathbb{S}^{2 h-1} \subset \mathbb{D}^{h}, w=\left(w_{0}, w_{1}, \ldots, w_{p}\right) \in \mathbb{S}^{p}, z=\left(z_{1}, \ldots, z_{h}\right) \in$ D_{1} and $D_{1}=\left\{z \in \mathbb{D}^{h}:\langle\bar{v}, z\rangle^{2}>\langle\mathrm{j} \bar{v}, z\rangle^{2}\right\}$.
2. $\Phi: D_{1} \times f \mathbb{H}^{p} \longrightarrow \mathcal{P}^{h+p}$;

$$
\begin{align*}
\Phi(z, w)= & \left(z_{1}+\bar{v}_{1}\left(w_{0}-1\right) \sum_{j=1}^{h} v_{j} z_{j}, \ldots, z_{h}+\bar{v}_{h}\left(w_{0}-1\right) \sum_{j=1}^{h} v_{j} z_{j},\right. \tag{6.4}\\
& \left.w_{1} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}, \ldots, w_{p} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}\right), \quad h \geq 1,
\end{align*}
$$

with the warping function $f=\sqrt{\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}}$, where $v=\left(v_{1}, \ldots, v_{h}\right) \in \mathbb{H}^{2 h-1} \subset$ $\mathbb{D}^{h}, w=\left(w_{0}, w_{1}, \ldots, w_{p}\right) \in \mathbb{H}^{p}$ and $z=\left(z_{1}, \ldots, z_{h}\right) \in D_{1}$.
3. $\Phi(z, u): D_{1} \times_{f} \mathbb{E}^{p} \longrightarrow \mathcal{P}^{h+p}$;

$$
\begin{align*}
\Phi(z, u)= & \left(z_{1}+\frac{\bar{v}_{1}}{2}\left(\sum_{a=1}^{p} u_{a}^{2}\right) \sum_{j=1}^{h} v_{j} z_{j}, \ldots, z_{h}+\frac{\bar{v}_{h}}{2}\left(\sum_{a=1}^{p} u_{a}^{2}\right) \sum_{j=1}^{h} v_{j} z_{j}\right. \tag{6.5}\\
& \left.u_{1} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}, \ldots, u_{p} \sum_{j=1}^{h} \mathrm{j} v_{j} z_{j}\right), \quad h \geq 2
\end{align*}
$$

with the warping function $f=\sqrt{\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}}$, where $v=\left(v_{1}, \ldots, v_{h}\right)$ is a lightlike vector in $\mathbb{D}^{h}, z=\left(z_{1}, \ldots, z_{h}\right) \in D_{1}$ and $u=\left(u_{1}, \ldots, u_{p}\right) \in \mathbb{E}^{p}$,

Moreover, in this case, each leaf \mathbb{E}^{p} is quasi-minimal in \mathcal{P}^{h+p}.
4. $\Phi(z, u): D_{2} \times_{f} \mathbb{E}^{p} \longrightarrow \mathcal{P}^{h+p}$;

$$
\begin{equation*}
\Phi(z, u)=\left(z_{1}+\frac{v_{1}}{2} \sum_{a=1}^{p} u_{a}^{2}, \ldots, z_{h}+\frac{v_{h}}{2} \sum_{a=1}^{p} u_{a}^{2}, \frac{v_{0}}{2} u_{1}, \ldots, \frac{v_{0}}{2} u_{p}\right), h \geq 1 \tag{6.6}
\end{equation*}
$$

with the warping function $f=\sqrt{-\langle v, z\rangle}$, where $v_{0}=\sqrt{b_{1}}+\epsilon \mathrm{j} \sqrt{b_{1}}$ with $b_{1}>0$, $D_{2}=\left\{z \in \mathbb{D}^{h}:\langle v, z\rangle<0\right\}, v=\left(v_{1}, \ldots, v_{h}\right)=\left(b_{1}+\epsilon \mathrm{j} b_{1}, \ldots, b_{h}+\epsilon \mathrm{j} b_{h}\right), \epsilon= \pm 1$, $z=\left(z_{1}, \ldots, z_{h}\right) \in D_{2}$ and $u=\left(u_{1}, \ldots, u_{p}\right) \in \mathbb{E}^{p}$.

In each of the four cases the warped product is minimal in $\mathbb{E}_{h+p}^{2(h+p)}$.
Proof. Inequality (6.2) is already given in Theorem 4.4. From now on, let us assume that $\Phi: N_{\top} \times_{f} N_{\perp} \longrightarrow \mathcal{P}^{m}$ is a space-like $\mathcal{P} R$-warped product satisfying the equality in (6.2) with $m=h+p$. Then it follows that $\nu=0$ and hence

$$
\begin{equation*}
\sigma(X, Y)=0, \sigma(Z, W)=0, \sigma(X, Z)=(P X(\ln f)) F Z \tag{6.7}
\end{equation*}
$$

for all X, Y tangent to N_{\top} and Z, W tangent to N_{\perp}. Thus, N_{\top} is totally geodesic in \mathcal{P}^{m} and N_{\perp} is totally umbilical \mathcal{P}^{m}.

As N_{\top} is invariant and totally geodesic in \mathcal{P}^{m}, it is congruent with \mathcal{P}^{h} with the canonical (induced) para-Kähler structure [15]. On $\mathbb{E}_{h}^{2 h}$ we may choose global coordinates $s=\left(s_{1}, \ldots, s_{h}\right)$ and $t=\left(t_{1}, \ldots, t_{h}\right)$ such that

$$
\begin{equation*}
g_{\top}=-\sum_{i=1}^{h} d s_{i}^{2}+\sum_{i=1}^{h} d t_{i}^{2}, \quad \mathcal{P} \partial_{s_{i}}=\partial_{t_{i}}, \quad \mathcal{P} \partial_{t_{i}}=\partial_{s_{i}} \tag{6.8}
\end{equation*}
$$

for $i=1, \ldots, h$.
Let us put $\partial_{s_{i}}=\frac{\partial}{\partial s_{i}}, \partial_{t_{i}}=\frac{\partial}{\partial t_{i}}$ and so on.
Now, we study the case $p>1$.
Since N_{\perp} is a space-like totally umbilical, non-totally geodesic submanifold in \mathcal{P}^{m}, it is congruent (cf. [1], [15, Proposition 3.6])

- either to the Euclidean p-sphere \mathbb{S}^{p},
- or to the hyperbolic p-plane \mathbb{H}^{p},
- or to a flat quasi-minimal submanifold \mathbb{E}^{p}.

In what follows we discuss successively, all the three situations.
On \mathbb{S}^{p} we consider spherical coordinates $u=\left(u_{1}, \ldots, u_{p}\right)$ such that the metric g_{\perp} is expressed by

$$
\begin{equation*}
g_{\perp}=d u_{1}^{2}+\cos ^{2} u_{1} d u_{2}^{2}+\ldots+\cos ^{2} u_{1} \ldots \cos ^{2} u_{p-1} d u_{p}^{2} \tag{6.9}
\end{equation*}
$$

Thus, the warped metric on M is given by

$$
g=g_{\top}(s, t)+f^{2}(s, t) g_{\perp}(u) .
$$

Then the Levi Civita connection ∇ of g satisfies

$$
\begin{equation*}
\nabla_{\partial_{s_{i}}} \partial_{s_{j}}=0, \nabla_{\partial_{s_{i}}} \partial_{t_{j}}=0, \nabla_{\partial_{t_{i}}} \partial_{t_{j}}=0 \tag{6.10.a}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{\partial_{s_{i}}} \partial_{u_{a}}=\frac{f_{s_{i}}}{f} \partial_{u_{a}}, \nabla_{\partial_{t_{i}}} \partial_{u_{a}}=\frac{f_{t_{i}}}{f} \partial_{u_{a}}, \tag{6.10.b}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{\partial_{u_{a}}} \partial_{u_{b}}=-\tan u_{a} \partial_{u_{b}} \quad(a<b), \tag{6.10.c}
\end{equation*}
$$

$$
\begin{align*}
\nabla_{\partial_{u_{a}}} \partial_{u_{a}} & =\prod_{b=1}^{a-1} \cos ^{2} u_{b} \sum_{i=1}^{h}\left(f f_{s_{i}} \partial_{s_{i}}-f f_{t_{i}} \partial_{t_{i}}\right) \tag{6.10.d}\\
& +\sum_{b=1}^{a-1}\left(\sin u_{b} \cos u_{b} \cos ^{2} u_{b+1} \ldots \cos ^{2} u_{a-1}\right) \partial_{u_{b}}
\end{align*}
$$

for $i, j=1, \ldots, h$ and $a, b=1, \ldots, p$.
From now on we put $\psi=\ln f$. Using the relations above, we find that the Riemann curvature tensor R satisfies

$$
\begin{align*}
R\left(\partial_{s_{i}}, \partial_{u_{a}}\right) \partial_{s_{j}} & =\left(\frac{\partial^{2} \psi}{\partial s_{i} \partial s_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial s_{j}}\right) \partial_{u_{a}} \\
R\left(\partial_{s_{i}}, \partial_{u_{a}}\right) \partial_{t_{j}} & =\left(\frac{\partial^{2} \psi}{\partial s_{i} \partial t_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial t_{j}}\right) \partial_{u_{a}} \tag{6.11}\\
R\left(\partial_{t_{i}}, \partial_{u_{a}}\right) \partial_{t_{j}} & =\left(\frac{\partial^{2} \psi}{\partial t_{i} \partial t_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial t_{j}}\right) \partial_{u_{a}} .
\end{align*}
$$

Moreover we have

$$
\sigma\left(\partial_{s_{i}}, \partial_{u_{a}}\right)=\frac{\partial \psi}{\partial t_{i}} F \partial_{u_{a}}, \sigma\left(\partial_{t_{i}}, \partial_{u_{a}}\right)=\frac{\partial \psi}{\partial s_{i}} F \partial_{u_{a}} .
$$

Applying Gauss’ equation we find

$$
\widetilde{g}\left(\widetilde{R}_{X Z} Y, W\right)=g\left(R_{X Z} Y, W\right)+\widetilde{g}(\sigma(X, Y), \sigma(Z, W))-\widetilde{g}(\sigma(X, W), \sigma(Y, Z))
$$

for X, Y tangent to N_{\top} and Z, W tangent to N_{\perp}. Using (6.7) and (6.11) we get

$$
\begin{align*}
& \frac{\partial^{2} \psi}{\partial s_{i} \partial s_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial s_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial t_{j}}=0 \\
& \frac{\partial^{2} \psi}{\partial s_{i} \partial t_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial t_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial s_{j}}=0 \tag{6.12}\\
& \frac{\partial^{2} \psi}{\partial t_{i} \partial t_{j}}+\frac{\partial \psi}{\partial s_{i}} \frac{\partial \psi}{\partial s_{j}}+\frac{\partial \psi}{\partial t_{i}} \frac{\partial \psi}{\partial t_{j}}=0, i=1, \ldots, h
\end{align*}
$$

Let us first consider the case $h \geq 2$.
By applying Proposition 5.1 (case 1 , in the proof), we know that there exists a constant vector $v=\left(a_{1}, a_{2}, \ldots, a_{h}, 0, b_{2}, \ldots, b_{h}\right)$, with $a_{1}>0$, such that

$$
\psi=\frac{1}{2} \ln \left[\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}\right]
$$

where $z=\left(s_{1}, \ldots, s_{h}, t_{1}, \ldots, t_{h}\right)$ and \langle,$\rangle denotes the pseudo-Euclidean product in$ $\mathbb{E}_{h}^{2 h}$. If $a_{1}<0$ we are allowed to make the isometric transformation in $\mathbb{E}_{h}^{2 h}: s_{1} \mapsto-s_{1}$ and $t_{1} \mapsto-t_{1}$. In the sequel, we apply Gauss' formula

$$
\widetilde{\nabla}_{\Phi_{*} U} \Phi_{*} V=\Phi_{*} \nabla_{U} V+\sigma(U, V), \forall U, V \in \chi(M)
$$

where Φ_{*} denotes the differential of the map Φ. Taking $U, V \in \mathcal{D}$ we obtain

$$
\begin{align*}
\frac{\partial^{2} x_{A}}{\partial s_{i} \partial s_{j}} & =\frac{\partial^{2} x_{A}}{\partial s_{i} \partial t_{j}}=\frac{\partial^{2} x_{A}}{\partial t_{i} \partial t_{j}}=0 \tag{6.13}\\
\frac{\partial^{2} y_{A}}{\partial s_{i} \partial s_{j}} & =\frac{\partial^{2} y_{A}}{\partial s_{i} \partial t_{j}}=\frac{\partial^{2} y_{A}}{\partial t_{i} \partial t_{j}}=0
\end{align*}
$$

For $U \in \mathcal{D}$ and $V \in \mathcal{D}^{\perp}$ we have

$$
\begin{align*}
\frac{\partial^{2} x_{A}}{\partial s_{i} \partial u_{a}} & =\psi_{s_{i}} \frac{\partial x_{A}}{\partial u_{a}}+\psi_{t_{i}} \frac{\partial y_{A}}{\partial u_{a}},
\end{aligned} \begin{aligned}
& \frac{\partial^{2} x_{A}}{\partial t_{i} \partial u_{a}}=\psi_{t_{i}} \frac{\partial x_{A}}{\partial u_{a}}+\psi_{s_{i}} \frac{\partial y_{A}}{\partial u_{a}} \tag{6.14}\\
& \frac{\partial^{2} y_{A}}{\partial s_{i} \partial u_{a}} \\
& =\psi_{s_{i}} \frac{\partial y_{A}}{\partial u_{a}}+\psi_{t_{i}} \frac{\partial x_{A}}{\partial u_{a}}, \quad \frac{\partial^{2} y_{A}}{\partial t_{i} \partial u_{a}}=\psi_{t_{i}} \frac{\partial y_{A}}{\partial u_{a}}+\psi_{s_{i}} \frac{\partial x_{A}}{\partial u_{a}}
\end{align*}
$$

Finally, taking $U, V \in \mathcal{D}^{\perp}$ we obtain

$$
\begin{align*}
\frac{\partial^{2} x_{A}}{\partial u_{a} \partial u_{b}}= & -\tan u_{a} \frac{\partial x_{A}}{\partial u_{b}}, \quad \frac{\partial^{2} y_{A}}{\partial u_{a} \partial u_{b}}=-\tan u_{a} \frac{\partial y_{A}}{\partial u_{b}}, a<b \\
\frac{\partial^{2} x_{A}}{\partial u_{a}^{2}}= & \prod_{b=1}^{a-1} \cos ^{2} u_{b} \sum_{j=1}^{h}\left(f f_{s_{j}} \frac{\partial x_{A}}{\partial s_{j}}-f f_{t_{j}} \frac{\partial x_{A}}{\partial t_{j}}\right) \\
& +\sum_{b=1}^{a-1}\left(\sin u_{b} \cos u_{b} \cos ^{2} u_{b+1} \ldots \cos ^{2} u_{a-1}\right) \frac{\partial x_{A}}{\partial u_{b}} \tag{6.15}\\
\frac{\partial^{2} y_{A}}{\partial u_{a}^{2}}= & \prod_{b=1}^{a-1} \cos ^{2} u_{b} \sum_{j=1}^{h}\left(f f_{s_{j}} \frac{\partial y_{A}}{\partial s_{j}}-f f_{t_{j}} \frac{\partial y_{A}}{\partial t_{j}}\right) \\
& +\sum_{b=1}^{a-1}\left(\sin u_{b} \cos u_{b} \cos ^{2} u_{b+1} \ldots \cos ^{2} u_{a-1}\right) \frac{\partial y_{A}}{\partial u_{b}}
\end{align*}
$$

From (6.13) we get

$$
\begin{align*}
x_{A}(s, t, u) & =\sum_{1}^{h} \lambda_{A}^{j}(u) s_{j}+\sum_{1}^{h} \rho_{A}^{j}(u) t_{j}+C_{A}(u) \tag{6.16}\\
y_{A}(s, t, u) & =\sum_{1}^{h} \tilde{\rho}_{A}^{j}(u) s_{j}+\sum_{1}^{h} \tilde{\lambda}_{A}^{j}(u) t_{j}+\tilde{C}_{A}(u)
\end{align*}
$$

By combining (6.14) with (6.16) we obtain

$$
\begin{align*}
\frac{\partial \tilde{\lambda}_{A}^{i}}{\partial u_{a}}=\frac{\partial \lambda_{A}^{i}}{\partial u_{a}}= & \psi_{s_{i}}\left[\frac{\partial \lambda_{A}^{j}}{\partial u_{a}}(u) s_{j}+\frac{\partial \rho_{A}^{j}}{\partial u_{a}}(u) t_{j}+\frac{\partial C_{A}}{\partial u_{a}}\right] \\
& +\psi_{t_{i}}\left[\frac{\partial \rho_{A}^{j}}{\partial u_{a}}(u) s_{j}+\frac{\partial \lambda_{A}^{j}}{\partial u_{a}}(u) t_{j}+\frac{\partial \tilde{C}_{A}}{\partial u_{a}}\right] \\
\frac{\partial \tilde{\rho}_{A}^{i}}{\partial u_{a}}=\frac{\partial \rho_{A}^{i}}{\partial u_{a}}= & \psi_{t_{i}}\left[\frac{\partial \lambda_{A}^{j}}{\partial u_{a}}(u) s_{j}+\frac{\partial \rho_{A}^{j}}{\partial u_{a}}(u) t_{j}+\frac{\partial C_{A}}{\partial u_{a}}\right] \tag{6.17}\\
& +\psi_{s_{i}}\left[\frac{\partial \rho_{A}^{j}}{\partial u_{a}}(u) s_{j}+\frac{\partial \lambda_{A}^{j}}{\partial u_{a}}(u) t_{j}+\frac{\partial \tilde{C}_{A}}{\partial u_{a}}\right]
\end{align*}
$$

For $i=1$ we have

$$
\psi_{s_{1}}=\frac{a_{1}\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)}{\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)^{2}-\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)^{2}},
$$

$$
\psi_{t_{1}}=\frac{-a_{1}\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)}{\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)^{2}-\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)^{2}}
$$

Substituting in (6.17) we find polynomials in s and t. Comparing the coefficients corresponding to $s_{1} s_{i}$ and $s_{1} t_{i}, i>1$, we find

$$
\begin{equation*}
\lambda_{A}^{i}(u)=\frac{a_{i}}{a_{1}} \lambda_{A}(u)+\frac{b_{i}}{a_{1}} \rho_{A}(u)+\frac{c_{A}^{i}}{a_{1}}, \rho_{A}^{i}(u)=\frac{b_{i}}{a_{1}} \lambda_{A}(u)+\frac{a_{i}}{a_{1}} \rho_{A}(u)+\frac{d_{A}^{i}}{a_{1}} \tag{6.18}
\end{equation*}
$$

for $i=2, \ldots, h$, and $\lambda_{A}^{1}(u)=\lambda_{A}(u), \rho_{A}^{1}(u)=\rho_{A}(u)$, where $c_{A}^{i}, d_{A}^{i} \in \mathbb{R}$.
Comparing the coefficients of s_{1} and t_{1} we find that C_{A} and \tilde{C}_{A} are constants, and applying a suitable translation in $\mathbb{E}_{m}^{2 m}$ if necessary, one may suppose $C_{A}=0$ and $\tilde{C}_{A}=0, A=1, \ldots, m$. Replacing in (6.16) and taking into account (6.17) we get

$$
\begin{align*}
x_{A}(s, t, u)= & \frac{1}{a_{1}} \lambda_{A}(u)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \\
& +\frac{1}{a_{1}} \rho_{A}(u)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \\
& +\frac{1}{a_{1}}\left(\sum_{2}^{h} c_{A}^{j} s_{j}+\sum_{2}^{h} d_{A}^{j} t_{j}\right) \tag{6.19}\\
y_{A}(s, t, u)= & \frac{1}{a_{1}} \lambda_{A}(u)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \\
& +\frac{1}{a_{1}} \rho_{A}(u)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \\
& +\frac{1}{a_{1}}\left(\tilde{d}_{A} s_{1}+\tilde{c}_{A} t_{1}+\sum_{2}^{h} \tilde{d}_{A}^{j} s_{j}+\sum_{2}^{h} \tilde{c}_{A}^{j} t_{j}\right)
\end{align*}
$$

where $\tilde{c}_{A}, \tilde{d}_{A}, \tilde{c}_{A}^{i}$ and \tilde{d}_{A}^{i} are real numbers. The third equation in (6.15) for $a=1$ gives

$$
\begin{aligned}
\frac{\partial^{2} x_{A}}{\partial u_{1}^{2}}= & \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)\left[a_{1} \frac{\partial x_{A}}{\partial s_{1}}+\sum_{2}^{h} a_{j} \frac{\partial x_{A}}{\partial s_{j}}-\sum_{2}^{h} b_{j} \frac{\partial x_{A}}{\partial t_{j}}\right] \\
& +\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)\left[a_{1} \frac{\partial x_{A}}{\partial t_{1}}+\sum_{2}^{h} a_{j} \frac{\partial x_{A}}{\partial t_{j}}-\sum_{2}^{h} b_{j} \frac{\partial x_{A}}{\partial s_{j}}\right]
\end{aligned}
$$

which combined with the first equation in (6.19) yields

$$
\begin{align*}
& \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)\left[\frac{\partial^{2} \lambda_{A}}{\partial u_{1}^{2}}(u)+\langle v, v\rangle \lambda_{A}(u)+D_{A}\right] \tag{6.20}\\
+ & \left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)\left[\frac{\partial^{2} \rho_{A}}{\partial u_{1}^{2}}(u)+\langle v, v\rangle \rho_{A}(u)+\tilde{D}_{A}\right]=0
\end{align*}
$$

where $D_{A}=\sum_{2}^{h}\left(a_{j} c_{A}^{j}-b_{j} d_{A}^{j}\right)$ and $\tilde{D}_{A}=\sum_{2}^{h}\left(a_{j} d_{A}^{j}-b_{j} c_{A}^{j}\right)$.
Since $\|\nabla f\|_{2}=-a_{1}^{2}-\sum_{2}^{h} a_{j}^{2}+\sum_{2}^{h} b_{j}^{2}$, Proposition 6.1 implies $\langle v, v\rangle=1$. Hence, considering in (6.20) the coefficients of s_{1} and t_{1} one obtains the following PDEs:

$$
\begin{equation*}
\frac{\partial^{2} \lambda_{A}}{\partial u_{1}^{2}}(u)+\lambda_{A}(u)-D_{A}=0, \quad \frac{\partial^{2} \rho_{A}}{\partial u_{1}^{2}}(u)+\rho_{A}(u)-\tilde{D}_{A}=0 . \tag{6.21}
\end{equation*}
$$

We immediately get

$$
\begin{align*}
& \lambda_{A}(u)=\cos u_{1} \Theta_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right)+\sin u_{1} D_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right)+D_{A}, \\
& \rho_{A}(u)=\cos u_{1} \tilde{\Theta}_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right)+\sin u_{1} \tilde{D}_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right)+\tilde{D}_{A} \tag{6.22}
\end{align*}
$$

where $\Theta_{A}^{(1)}, D_{A}^{(1)}, \tilde{\Theta}_{A}^{(1)}$ and $\tilde{D}_{A}^{(1)}$ are functions depending on u_{2}, \ldots, u_{p}. The first equation in (6.15) for $a=1$ gives $\frac{\partial^{2} x_{A}}{\partial u_{1} \partial u_{b}}=-\tan u_{1} \frac{\partial x_{A}}{\partial u_{b}}, b>1$ which combined with (6.19) yields

$$
\frac{\partial^{2} \lambda_{A}}{\partial u_{1} \partial u_{b}}=-\tan u_{1} \frac{\partial \lambda_{A}}{\partial u_{b}}, \frac{\partial^{2} \rho_{A}}{\partial u_{1} \partial u_{b}}=-\tan u_{1} \frac{\partial \rho_{A}}{\partial u_{b}} .
$$

Using (6.22), we get $\frac{\partial D_{A}^{(1)}}{\partial u_{b}}=0$, and $\frac{\partial \tilde{D}_{A}^{(1)}}{\partial u_{b}}=0, \forall b>1$, hence $D_{A}^{(1)}$ and $\tilde{D}_{A}^{(1)}$ are real constants.

Returning to the third equation in (6.15) with $a=2$ we get

$$
\begin{aligned}
\frac{\partial^{2} x_{A}}{\partial u_{2}^{2}}= & \cos ^{2} u_{1}\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right)\left[a_{1} \frac{\partial x_{A}}{\partial s_{1}}+\sum_{2}^{h} a_{j} \frac{\partial x_{A}}{\partial s_{j}}-\sum_{2}^{h} b_{j} \frac{\partial x_{A}}{\partial t_{j}}\right] \\
& +\cos ^{2} u_{2}\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right)\left[a_{1} \frac{\partial x_{A}}{\partial t_{1}}+!\sum_{2}^{h} a_{j} \frac{\partial x_{A}}{\partial t_{j}}-\sum_{2}^{h} b_{j} \frac{\partial x_{A}}{\partial s_{j}}\right] \\
& +\sin u_{1} \cos u_{1} \frac{\partial x_{A}}{\partial u_{1}} .
\end{aligned}
$$

This relation together with (6.19) yield a polynomial in s and t, and considering the coefficients of s_{1} and t_{1} respectively, we obtain

$$
\begin{aligned}
& \frac{\partial^{2} \lambda_{A}}{\partial u_{2}^{2}}-\sin u_{1} \cos u_{1} \frac{\partial \lambda_{A}}{\partial u_{1}}+\left(\cos ^{2} u_{1}\right) \lambda_{A}-D_{A} \cos ^{2} u_{1}=0 \\
& \frac{\partial^{2} \rho_{A}}{\partial u_{2}^{2}}-\sin u_{1} \cos u_{1} \frac{\partial \rho_{A}}{\partial u_{1}}+\left(\cos ^{2} u_{1}\right) \rho_{A}-\tilde{D}_{A} \cos ^{2} u_{1}=0
\end{aligned}
$$

Using (6.22) one gets

$$
\frac{\partial^{2} \Theta_{A}^{(1)}}{\partial u_{2}^{2}}+\Theta_{A}^{(1)}=0, \frac{\partial^{2} \tilde{\Theta}_{A}^{(1)}}{\partial u_{2}^{2}}+\tilde{\Theta}_{A}^{(1)}=0
$$

with the solutions

$$
\begin{aligned}
& \Theta_{A}^{(1)}=\cos u_{2} \Theta_{A}^{(2)}\left(u_{3}, \ldots, u_{p}\right)+\sin u_{2} D_{A}^{(2)}\left(u_{3}, \ldots, u_{p}\right), \\
& \tilde{\Theta}_{A}^{(1)}=\cos u_{2} \tilde{\Theta}_{A}^{(2)}\left(u_{3}, \ldots, u_{p}\right)+\sin u_{2} \tilde{D}_{A}^{(2)}\left(u_{3}, \ldots, u_{p}\right),
\end{aligned}
$$

where $\Theta_{A}^{(2)}, D_{A}^{(2)}, \tilde{\Theta}_{A}^{(2)}$ and $\tilde{D}_{A}^{(2)}$ are functions depending on u_{3}, \ldots, u_{p}. Continuing such procedure sufficiently many times, we find

$$
\begin{align*}
\lambda_{A}(u)= & D_{A}^{(0)} \cos u_{1} \ldots \cos _{p-1} \cos u_{p}+D_{A}^{(p)} \cos u_{1} \ldots \cos _{p-1} \sin u_{p} \\
& +D_{A}^{(p-1)} \cos u_{1} \ldots \sin _{p-1}+\ldots \\
& +D_{A}^{(2)} \cos u_{1} \sin u_{1}+D_{A}^{(1)} \sin u_{1}+D_{A} \\
\rho_{A}(u)= & \tilde{D}_{A}^{(0)} \cos u_{1} \ldots \cos _{p-1} \cos u_{p}+\tilde{D}_{A}^{(p)} \cos u_{1} \ldots \cos _{p-1} \sin u_{p} \tag{6.23}\\
& +\tilde{D}_{A}^{(p-1)} \cos u_{1} \ldots \sin _{p-1}+\ldots \\
& +\tilde{D}_{A}^{(2)} \cos u_{1} \sin u_{1}+\tilde{D}_{A}^{(1)} \sin u_{1}+\tilde{D}_{A}
\end{align*}
$$

where $D_{A}^{(p)}, \ldots, D_{A}^{(0)}, D_{A}, \tilde{D}_{A}^{(p)}, \ldots, \tilde{D}_{A}^{(0)}$ and \tilde{D}_{A} are real constants. At this point let us make the following notations

$$
\begin{aligned}
w_{0} & =\cos u_{1} \ldots \cos u_{p-1} \cos u_{p} \\
w_{p} & =\cos u_{1} \ldots \cos u_{p-1} \sin u_{p} \\
w_{p-1} & =\cos u_{1} \ldots \sin u_{p-1} \\
\ldots & \ldots \ldots \ldots \ldots \ldots \\
w_{2} & =\cos u_{1} \sin u_{2} \\
w_{1} & =\sin u_{1}
\end{aligned}
$$

It follows that λ_{A} and ρ_{A} may be rewritten as

$$
\begin{equation*}
\lambda_{A}(w)=D_{A}+\sum_{a=0}^{p} D_{A}^{(a)} w_{a}, \quad \rho_{A}(w)=\tilde{D}_{A}+\sum_{a=0}^{p} \tilde{D}_{A}^{(a)} w_{a} . \tag{6.24}
\end{equation*}
$$

Going back to (6.19) we get, after a re-scaling with $a_{1} \neq 0$

$$
\begin{align*}
x_{A}(s, t, w)= & \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \sum_{a=0}^{p} D_{A}^{(a)} w_{a} \\
& +\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \sum_{a=0}^{p} \tilde{D}_{A}^{(a)} w_{a}+\sum_{j=1}^{h}\left(\alpha_{A}^{j} s_{j}+\beta_{A}^{j} t_{j}\right), \tag{6.25}\\
y_{A}(s, t, w)= & \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \sum_{a=0}^{p} \tilde{D}_{A}^{(a)} w_{a} \\
& +\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \sum_{a=0}^{p} D_{A}^{(a)} w_{a}+\sum_{j=1}^{h}\left(\tilde{\alpha}_{A}^{j} s_{j}+\tilde{\beta}_{A}^{j} t_{j}\right) .
\end{align*}
$$

Let us choose the initial conditions
(6.26.a) $\quad \Phi_{*} \partial_{s_{i}}(1,0, \ldots, 0)=\left(0, \ldots, 0,{ }_{1}^{(i)}, 0, \ldots, 0,0, \ldots, 0\right)$,
(6.26.b) $\quad \Phi_{*} \partial_{t_{i}}(1,0, \ldots, 0)=(0, \ldots, 0,0, \ldots, \stackrel{(m+i)}{1}, 0, \ldots, 0), i=1, \ldots, h$,
(6.26.c) $\quad \Phi_{*} \partial_{u_{b}}(1,0, \ldots, 0)=\left(0, \ldots, 0,0, \ldots, \stackrel{(m+h+b)}{a_{1},} 0, \ldots, 0\right), b=1, \ldots, p$.

From (6.25) and (6.26.c) and taking into account that

$$
\left.\frac{\partial w_{a}}{\partial u_{b}}\right|_{u=0}=\left\{\begin{array}{l}
0, \text { if } a=0 \\
0, \text { if } b \neq a, a \geq 1 \\
1, \text { if } b=a,
\end{array}\right.
$$

we obtain that

$$
\begin{equation*}
D_{i}^{(b)}=0, D_{h+a}^{(b)}=0, \tilde{D}_{i}^{(b)}=0, \tilde{D}_{h+a}^{(b)}=0,(a \neq b), \tilde{D}_{h+b}^{(b)}=1, \tag{6.27}
\end{equation*}
$$

$$
i=1, \ldots, h ; a, b=1, \ldots, p .
$$

From (6.25) and (6.26.a) we find

$$
\begin{align*}
& a_{i} D_{j}^{(0)}+b_{i} \tilde{D}_{j}^{(0)}+\alpha_{j}^{i}=\delta_{i j}, \\
& a_{i} D_{h+a}^{(0)}+b_{i} \tilde{D}_{h+a}^{(0)}+\alpha_{h+a}^{i}=0, \tag{6.28}\\
& a_{i} \tilde{D}_{j}^{(0)}+b_{i} D_{j}^{(0)}+\tilde{\alpha}_{j}^{i}=0, \quad a_{i} \tilde{D}_{h+a}^{(0)}+b_{i} D_{h+a}^{(0)}+\tilde{\alpha}_{h+a}^{i}=0, \\
& i, j=1, \ldots, h, a=1, \ldots, p, b_{1}=0 .
\end{align*}
$$

Finally, from (6.25) and (6.26.b) we get

$$
\begin{align*}
& b_{i} D_{j}^{(0)}+a_{i} \tilde{D}_{j}^{(0)}+\beta_{j}^{i}=0, \quad b_{i} D_{h+a}^{(0)}+a_{i} \tilde{D}_{h+a}^{(0)}+\beta_{h+a}^{i}=0 \\
& b_{i} \tilde{D}_{j}^{(0)}+a_{i} D_{j}^{(0)}+\tilde{\beta}_{j}^{i}=\delta_{i j}, \quad b_{i} \tilde{D}_{h+a}^{(0)}+a_{i} D_{h+a}^{(0)}+\tilde{\beta}_{h+a}^{i}=0 \tag{6.29}\\
& i, j=1, \ldots, h, a=1, \ldots, p, b_{1}=0
\end{align*}
$$

Now, plugging (6.27), (6.28) and (6.29) in (6.25) we obtain

$$
\begin{align*}
x_{i}(s, t, w)= & s_{i}+D_{i}^{(0)}\left(w_{0}-1\right)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \tag{6.30.a}\\
& +\tilde{D}_{i}^{(0)}\left(w_{0}-1\right)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \\
x_{h+a}(s, t, w)= & D_{h+a}^{(0)}\left(w_{0}-1\right)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \tag{6.30.b}\\
+ & {\left[w_{a}+\tilde{D}_{h+a}^{(0)}\left(w_{0}-1\right)\right]\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) } \\
y_{i}(s, t, w)= & t_{i}+D_{i}^{(0)}\left(w_{0}-1\right)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \tag{6.30.c}\\
& +\tilde{D}_{i}^{(0)}\left(w_{0}-1\right)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right), \\
y_{h+a}(s, t, w)= & D_{h+a}^{(0)}\left(w_{0}-1\right)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \tag{6.30.d}\\
+ & {\left[w_{a}+\tilde{D}_{h+a}^{(0)}\left(w_{0}-1\right)\right]\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) }
\end{align*}
$$

Since Φ is an isometric immersion we have $\tilde{g}\left(\Phi_{*} U, \Phi_{*} V\right)=g(U, V)$ for every U and V tangent to M. From $\tilde{g}\left(\Phi_{*} \partial_{s_{1}}, \Phi_{*} \partial_{s_{1}}\right)=-1$ and (6.30) we get

$$
\left(w_{0}-1\right)\left\langle D^{(0)}, D^{(0)}\right\rangle+2 \sum_{a=1}^{p} w_{a} \tilde{D}_{h+a}^{(0)}-\frac{2}{a_{1}} D_{1}^{(0)}-\left(w_{0}+1\right)=0
$$

for all $w \in \mathbb{S}^{p}$, where

$$
D^{(0)}=\left(D_{1}^{(0)}, \ldots, D_{h}^{(0)}, D_{h+1}^{(0)}, \ldots, D_{2 h}^{(0)}, \tilde{D}_{1}^{(0)}, \ldots, \tilde{D}_{h}^{(0)}, \tilde{D}_{h+1}^{(0)}, \ldots, \tilde{D}_{2 h}^{(0)}\right)
$$

Therefore

$$
\begin{equation*}
D_{1}^{(0)}=-a_{1}, \tilde{D}_{h+a}^{(0)}=0, \forall a=1, \ldots, p,\left\langle D^{(0)}, D^{(0)}\right\rangle=1 . \tag{6.31}
\end{equation*}
$$

From $\tilde{g}\left(\Phi_{*} \partial_{s_{1}}, \Phi_{*} \partial_{s_{j}}\right)=0$ and $\tilde{g}\left(\Phi_{*} \partial_{s_{1}}, \Phi_{*} \partial_{t_{j}}\right)=0,(j \geq 2)$, together with (6.30) and (6.31) it follows

$$
\begin{equation*}
D_{j}^{(0)}=-a_{j}-\frac{b_{j}}{a_{1}} \tilde{D}_{1}^{(0)}, \quad \tilde{D}_{j}^{(0)}=b_{j}+\frac{a_{j}}{a_{1}} \tilde{D}_{1}^{(0)}, \forall j \geq 2 . \tag{6.32}
\end{equation*}
$$

Finally, from $\tilde{g}\left(\Phi_{*} \partial_{s_{1}}, \Phi_{*} \partial_{u_{b}}\right)=0$, (6.30) and (6.31) we get $\tilde{D}_{1}^{(0)}=0$. Hence from (6.32) one obtains $D_{j}^{(0)}=-a_{j}$ and $\tilde{D}_{j}^{(0)}=b_{j}$, for all $j=1, \ldots, h$ (recall $b_{1}=0$), which combined with $\left\langle D^{(0)}, D^{(0)}\right\rangle=1$ yield $D_{h+a}^{(0)}=0$.

We conclude from (6.30) the following

$$
\begin{align*}
x_{i}(s, t, w)= & s_{i}-a_{i}\left(w_{0}-1\right)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \\
& +b_{i}\left(w_{0}-1\right)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right), \\
x_{h+a}(s, t, w)= & w_{a}\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right), \tag{6.33}\\
y_{i}(s, t, w)= & t_{i}-a_{i}\left(w_{0}-1\right)\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \\
& +b_{i}\left(w_{0}-1\right)\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right), \\
y_{h+a}(s, t, w)= & w_{a}\left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) .
\end{align*}
$$

Computing now $x_{i}+\mathrm{j} y_{i}$ and $x_{h+a}+\mathrm{j} y_{h+a}$ one gets (6.3).
Let consider the second situation when N_{\perp} is the hyperbolic space \mathbb{H}^{p}. On \mathbb{H}^{p} consider coordinates $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ such that the metric g_{\perp} is expressed by

$$
\begin{equation*}
g_{\perp}=d u_{1}^{2}+\sinh ^{2} u_{1}\left(d u_{2}^{2}+\cos ^{2} u_{2} d u_{3}^{2}+\ldots+\cos ^{2} u_{2} \ldots \cos ^{2} u_{p-1} d u_{p}^{2}\right), \tag{6.34}
\end{equation*}
$$

and the warped metric on M is given by $g=g_{\top}(s, t)+f^{2}(s, t) g_{\perp}(u)$. Then the Levi

Civita connection ∇ of g satisfies
(6.35.a) $\quad \nabla_{\partial_{s_{i}}} \partial_{s_{j}}=0, \nabla_{\partial_{s_{i}}} \partial_{t_{j}}=0, \nabla_{\partial_{t_{i}}} \partial_{t_{j}}=0$,
(6.35.b) $\quad \nabla_{\partial_{s_{i}}} \partial_{u_{a}}=\frac{f_{s_{i}}}{f} \partial_{u_{a}}, \nabla_{\partial_{t_{i}}} \partial_{u_{a}}=\frac{f_{t_{i}}}{f} \partial_{u_{a}}$,
(6.35.c) $\quad \nabla_{\partial u_{1}} \partial_{u_{b}}=\operatorname{coth} u_{1} \partial_{u_{b}} \quad(1<b)$,
(6.35.d) $\quad \nabla_{\partial_{u_{a}}} \partial_{u_{b}}=-\tan u_{a} \partial_{u_{b}} \quad(1<a<b)$,
(6.35.e)

$$
\begin{align*}
\nabla_{\partial_{u_{1}}} \partial_{u_{1}}= & \sum_{i=1}^{h}\left(f f_{s_{i}} \partial_{s_{i}}-f f_{t_{i}} \partial_{t_{i}}\right) \\
\nabla_{\partial_{u_{a}}} \partial_{u_{a}}= & \sinh ^{2} u_{1} \prod_{b=2}^{a-1} \cos ^{2} u_{b} \sum_{i=1}^{h}\left(f f_{s_{i}} \partial_{s_{i}}-f f_{t_{i}} \partial_{t_{i}}\right) \tag{6.35.f}\\
& -\sinh u_{1} \cosh u_{1} \prod_{b=2}^{a-1} \cos ^{2} u_{b} \partial_{u_{1}} \\
& +\sum_{b=1}^{a-1}\left(\sin u_{b} \cos u_{b} \cos ^{2} u_{b+1} \ldots \cos ^{2} u_{a-1}\right) \partial_{u_{b}}, \quad(1<a)
\end{align*}
$$

for any $i, j=1, \ldots, h$ and $a, b=1, \ldots, p$.
In the following we proceed in the same way as in previous case. Since some computations are very similar we skip them, and we will focus only on the major differences between the two cases.

The function ψ is obtained from Proposition 5.1 (case 1 in the proof):

$$
\psi=\frac{1}{2} \ln \left[\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}\right],
$$

where $v=\left(a_{1}, a_{2}, \ldots, a_{h}, 0, b_{2}, \ldots, b_{h}\right)$, with $a_{1}>0$ is a constant vector.
Applying Gauss' formula $\widetilde{\nabla}_{\Phi_{*} U} \Phi_{*} V=\Phi_{*} \nabla_{U} V+\sigma(U, V)$ for $U, V \in \mathcal{D}$, respectively for $U \in \mathcal{D}$ and $V \in \mathcal{D}^{\perp}$ we may write (6.19). Using Gauss' formula for $U=V=\partial_{u_{1}}$, we find

$$
\begin{array}{ll}
\frac{\partial \lambda_{A}}{\partial u_{1}^{2}}+\langle v, v\rangle \lambda_{A}-D_{A}=0 & : \quad D_{A}=\sum a_{j} c_{A}^{j}-\sum b_{j} \tilde{c}_{A}^{j} \\
\frac{\partial \rho_{A}}{\partial u_{1}^{2}}+\langle v, v\rangle \rho_{A}-\tilde{D}_{A}=0 & : \quad D_{A}=\sum b_{j} c_{A}^{j}-\sum a_{j} \tilde{c}_{A}^{j} .
\end{array}
$$

Here $\langle v, v\rangle=\|\nabla f\|_{2}=-1$ and consequently

$$
\begin{align*}
& \lambda_{A}(u)=\cosh u_{1} D_{A}^{(0)}\left(u_{2}, \ldots, u_{p}\right)+\sinh u_{1} \Theta_{A}^{(0)}\left(u_{2}, \ldots, u_{p}\right)-D_{A}, \tag{6.36}\\
& \rho_{A}(u)=\cosh u_{1} \tilde{D}_{A}^{(0)}\left(u_{2}, \ldots, u_{p}\right)+\sinh u_{1} \tilde{\Theta}_{A}^{(0)}\left(u_{2}, \ldots, u_{p}\right)-\tilde{D}_{A} .
\end{align*}
$$

Taking $U=\partial_{u_{1}}$ and $V=\partial_{u_{b}},(b>1)$ we find that $D_{A}^{(0)}$ and $\tilde{D}_{A}^{(0)}$ are constants. Next, applying the Gauss formula for $U=V=\partial_{u_{2}}$ and respectively for $U=\partial_{u_{2}}$ and $V=\partial_{u_{b}},(b>2)$ we get

$$
\begin{aligned}
& \Theta_{A}^{(0)}=\cos u_{2} \Theta_{A}^{(1)}\left(u_{3}, \ldots, u_{p}\right)+D_{A}^{(1)} \sin u_{2}, \\
& \tilde{\Theta}_{A}^{(0)}=\cos u_{2} \tilde{\Theta}_{A}^{(1)}\left(u_{3}, \ldots, u_{p}\right)+\tilde{D}_{A}^{(1)} \sin u_{2}, \quad D_{A}^{(1)}, \tilde{D}_{A}^{(1)} \in \mathbb{R}
\end{aligned}
$$

Continuing the procedure sufficiently many times we finally get

$$
\begin{aligned}
\lambda_{A}= & -D_{A}+D_{A}^{(0)} \cosh u_{1}+D_{A}^{(1)} \sinh u_{1} \cos u_{2}+D_{A}^{(2)} \sinh u_{1} \cos u_{2} \sin u_{3}+\cdots \\
& +D_{A}^{p-1)} \sinh u_{1} \cos u_{2} \cdots \cos u_{p-1} \sin u_{p}+D_{A}^{(p)} \sinh u_{1} \cos u_{2} \cdots \cos u_{p} \\
\rho_{A}= & -\tilde{D}_{A}+\tilde{D}_{A}^{(0)} \cosh u_{1}+\tilde{D}_{A}^{(1)} \sinh u_{1} \cos u_{2}+\tilde{D}_{A}^{(2)} \sinh u_{1} \cos u_{2} \sin u_{3}+\cdots \\
& +\tilde{D}_{A}^{p-1)} \sinh u_{1} \cos u_{2} \cdots \cos u_{p-1} \sin u_{p}+\tilde{D}_{A}^{(p)} \sinh u_{1} \cos u_{2} \cdots \cos u_{p}
\end{aligned}
$$

Considering the hyperbolic space \mathbb{H}^{p} embedded in \mathbb{R}_{1}^{p+1} with coordinates

$$
\begin{align*}
& w_{0}=\cosh u_{1} \\
& w_{1}=\sinh u_{1} \sin u_{2} \\
& w_{2}=\sinh u_{1} \cos u_{2} \sin u_{3} \tag{6.37}\\
& \ldots \ldots \ldots \\
& w_{p-1}=\sinh u_{1} \cos u_{2} \ldots \cos u_{p-1} \sin u_{p} \\
& w_{p}=\sinh u_{1} \cos u_{2} \ldots \cos u_{p-1} \cos u_{p}
\end{align*}
$$

we may express λ_{A} and ρ_{A} in terms of $w=\left(w_{0}, w_{1}, \ldots, w_{p}\right)$:

$$
\begin{align*}
& \lambda_{A}=-D_{A}+D_{A}^{(0)} w_{0}+D_{A}^{(1)} w_{1}+\ldots+D_{A}^{(p)} w_{p} \\
& \rho_{A}=-\tilde{D}_{A}+\tilde{D}_{A}^{(0)} w_{0}+\tilde{D}_{A}^{(1)} w_{1}+\ldots+\tilde{D}_{A}^{(p)} w_{p} \tag{6.38}
\end{align*}
$$

After a rescaling with the factor $a_{1} \neq 0$ we may write

$$
\begin{aligned}
x_{A}(s, t, w)= & \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \sum_{a=0}^{p} D_{A}^{(a)} w_{a} \\
& +\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \sum_{a=0}^{p} \tilde{D}_{A}^{(a)} w_{a}+\sum_{j=1}^{h}\left(\alpha_{A}^{j} s_{j}+\beta_{A}^{j} t_{j}\right) \\
y_{A}(s, t, w)= & \left(a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j}\right) \sum_{a=0}^{p} \tilde{D}_{A}^{(a)} w_{a} \\
& +\left(a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j}\right) \sum_{a=0}^{p} D_{A}^{(a)} w_{a}+\sum_{j=1}^{h}\left(\tilde{\alpha}_{A}^{j} s_{j}+\tilde{\beta}_{A}^{j} t_{j}\right)
\end{aligned}
$$

which is similar to (6.25). From now on we will put

$$
\begin{equation*}
S=a_{1} s_{1}+\sum_{2}^{h} a_{j} s_{j}+\sum_{2}^{h} b_{j} t_{j} \quad \text { and } \quad T=a_{1} t_{1}+\sum_{2}^{h} a_{j} t_{j}+\sum_{2}^{h} b_{j} s_{j} \tag{6.39}
\end{equation*}
$$

Choose the initial point $s_{\text {init }}(1,0, \ldots, 0), t_{\text {init }}=(0,0, \ldots, 0), u_{\text {init }}=(\omega, 0, \ldots, 0)$ with $\omega \neq 0$ and the initial conditions

$$
\begin{aligned}
& \Phi_{*} \partial_{s_{i}}(1,0, \cdots, 0, \omega, 0, \cdots, 0)=(0, \cdots, 0, \stackrel{(i)}{1}, 0, \cdots, 0,0, \cdots, 0) \\
& \Phi_{*} \partial_{t_{i}}(1,0, \cdots, 0, \omega, 0, \cdots, 0)=(0, \cdots, 0,0, \cdots, \stackrel{(m+i)}{1}, 0, \cdots, 0), i=1, \cdots, h \\
& \Phi_{*} \partial_{u_{1}}(1,0, \cdots, 0, \omega, 0, \cdots, 0)=\left(0, \cdots, 0,0, \cdots, \stackrel{(m+h+1)}{a_{1},} 0, \cdots, 0\right) \\
& \Phi_{*} \partial_{u_{b}}(1,0, \cdots, 0, \omega, 0, \cdots, 0)=\left(0, \cdots, 0,0, \cdots, a_{1} \operatorname{min+h} \sinh \omega, 0, \cdots, 0\right), b=2, \cdots, p
\end{aligned}
$$

A straightforward computations, similar to previous case, yield

$$
\begin{aligned}
x_{i}(s, t, w) & =s_{i}+a_{i}\left(W_{0}-1\right) S-b_{i}\left(W_{0}-1\right) T \\
x_{h+1}(s, t, w) & =W_{p} T, \quad x_{h+a}(s, t, w)=w_{a-1} T, \quad a=2, \ldots, p \\
y_{i}(s, t, w) & =t_{i}+a_{i}\left(W_{0}-1\right) T-b_{i}\left(W_{0}-1\right) S \\
y_{h+1}(s, t, w) & =W_{p} S, \quad y_{h+a}(s, t, w)=w_{a-1} S, \quad a=2, \ldots, p
\end{aligned}
$$

where $W_{0}=w_{0} \cosh \omega-w_{p} \sinh \omega$ and $W_{p}=-w_{0} \sinh \omega+w_{p} \cosh \omega$. Moreover, since $W_{0}^{2}-W_{p}^{2}=w_{0}^{2}-w_{p}^{2}$, it follows $\left(W_{0}, w_{1}, \ldots, w_{p-1}, W_{p}\right) \in \mathbb{H}^{p}$ and after a re-notation we write

$$
\begin{aligned}
x_{i}(s, t, w) & =s_{i}+a_{i}\left(w_{0}-1\right) S-b_{i}\left(w_{0}-1\right) T \\
x_{h+a}(s, t, w) & =w_{a} T, \quad a=1, \ldots, p \\
y_{i}(s, t, w) & =t_{i}+a_{i}\left(w_{0}-1\right) T-b_{i}\left(w_{0}-1\right) S \\
y_{h+a}(s, t, w) & =w_{a} S, \quad a=1, \ldots, p
\end{aligned}
$$

where $\left(w_{0}, w_{1}, \ldots, w_{p}\right) \in \mathbb{H}^{p}$. Computing $x_{i}+\mathrm{j} y_{i}$ and $x_{h+a}+\mathrm{j} y_{h+a}$ we get (6.4).
Let consider the third situation when N_{\perp} is the flat space \mathbb{E}^{p}, on which we take coordinates $u=\left(u_{1}, u_{2}, \ldots, u_{p}\right)$ such that the metric g_{\perp} is expressed by

$$
\begin{equation*}
g_{\perp}=d u_{1}^{2}+\ldots+d u_{p}^{2} \tag{6.40}
\end{equation*}
$$

Then the warped metric on M is given by $g=g_{\top}(s, t)+f^{2}(s, t) g_{\perp}(u)$. The Levi

Civita connection ∇ of g satisfies

$$
\begin{align*}
& \nabla \partial_{s_{i}} \partial_{s_{j}}=0, \nabla_{\partial_{s_{i}}} \partial_{t_{j}}=0, \nabla \partial_{\partial_{t_{i}}} \partial_{t_{j}}=0, \tag{6.41.a}\\
& \nabla_{\partial_{s_{i}}} \partial_{u_{a}}=\frac{f_{s_{i}}}{f} \partial_{u_{a}}, \nabla_{\partial_{t_{i}}} \partial_{u_{a}}=\frac{f_{t_{i}}}{f} \partial_{u_{a}}, \tag{6.41.b}
\end{align*}
$$

$$
\begin{align*}
& \nabla_{\partial_{u_{a}}} \partial_{u_{b}}=0,(a \neq b), \tag{6.41.c}\\
& \nabla_{\partial_{u_{a}}} \partial_{u_{a}}=\sum_{i=1}^{h}\left(f f_{s_{i}} \partial_{s_{i}}-f f_{t_{i}} \partial_{t_{i}}\right), \tag{6.41.d}
\end{align*}
$$

for any $i, j=1, \ldots, h$ and $a, b=1, \ldots, p$.
In the following we will proceed in the same way as in previous cases. Again, we skip most computations, emphasizing only the major differences appearing in this situation. The function ψ is obtained from Proposition 5.1 (case 1 in the proof):

$$
\psi=\frac{1}{2} \ln \left[\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}\right],
$$

where $v=\left(a_{1}, \ldots, a_{h}, 0, t_{2}, \ldots, t_{h}\right), a_{1}>0$, is a constant vector. Applying Gauss' formula $\widetilde{\nabla}_{\Phi_{*} U} \Phi_{*} V=\Phi_{*} \nabla_{U} V+\sigma(U, V)$ for $U, V \in \mathcal{D}$, respectively for $U \in \mathcal{D}$ and $V \in \mathcal{D}^{\perp}$ we may write (6.19). Using Gauss' formula for $U=V=\partial_{u_{1}}$, we find

$$
\begin{array}{lll}
\frac{\partial \lambda_{A}}{\partial u_{1}^{2}}+\langle v, v\rangle \lambda_{A}-D_{A}=0 & : & D_{A}=\sum a_{j} c_{A}^{j}-\sum b_{j} \tilde{c}_{A}^{j} \\
\frac{\partial \rho_{A}}{\partial u_{1}^{2}}+\langle v, v\rangle \rho_{A}-\tilde{D}_{A}=0 & : & D_{A}=\sum b_{j} c_{A}^{j}-\sum a_{j} \tilde{c}_{A}^{j}
\end{array}
$$

Here $\langle v, v\rangle=\|\nabla f\|_{2}=0$. Taking $U=\partial_{u_{1}}$ and $V=\partial_{u_{b}}(b>1)$ we find that $\frac{\partial^{2} \lambda_{A}}{\partial u_{1} \partial u_{b}}=0$ and $\frac{\partial^{2} \rho_{A}}{\partial u_{1} \partial u_{b}}=0$. As consequence,

$$
\begin{aligned}
& \lambda_{A}(u)=\frac{D_{A}}{2} u_{1}^{2}+D_{A}^{(1)} u_{1}+\Theta_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right), \\
& \rho_{A}(u)=\frac{\tilde{D}_{A}}{2} u_{1}^{2}+\tilde{D}_{A}^{(1)} u_{1}+\tilde{\Theta}_{A}^{(1)}\left(u_{2}, \ldots, u_{p}\right),
\end{aligned}
$$

where $D_{A}^{(1)}, \tilde{D}_{A}^{(1)}$ are constants. Continuing the computations in the same manner it turns that

$$
\lambda_{A}(u)=\frac{D_{A}}{2} \sum_{a=1}^{p} u_{a}^{2}+\sum_{a=1}^{p} D_{A}^{(a)} u_{a}+D_{A}^{(0)}
$$

$$
\begin{equation*}
\rho_{A}(u)=\frac{\tilde{D}_{A}}{2} \sum_{a=1}^{a_{1}} u_{a}^{2}+\sum_{a=1}^{a-1} \tilde{D}_{A}^{(a)} u_{a}+\tilde{D}_{A}^{(0)} \tag{6.42}
\end{equation*}
$$

where $D_{A}^{(0)}, \tilde{D}_{A}^{(0)}$ and $D_{A}^{(a)}, \tilde{D}_{A}^{(a)}, a=1, \ldots, p$ are constants. Choosing suitable initial conditions and taking into account the property of Φ to be isometric immersion, straightforward computations yield

$$
\begin{align*}
& x_{i}=s_{i}+\frac{1}{2}\left(a_{i} S-b_{i} T\right) \sum_{1}^{p} u_{a}^{2}, x_{h+b}=u_{b} T, \\
& y_{i}=t_{i}+\frac{1}{2}\left(a_{i} T-b_{i} S\right) \sum_{1}^{p} u_{a}^{2}, \quad y_{h+b}=u_{b} S, \tag{6.43}
\end{align*}
$$

where S and T are as in (6.39). Computing now $x_{i}+\mathrm{j} y_{i}$ and $x_{h+b}+\mathrm{j} y_{h+b}$ one gets (6.5). In the end, consider $N_{\perp}^{0}=\left\{\left(s_{0}, t_{0}\right)\right\} \times \mathbb{E}^{p}$, where $\left(s_{0}, t_{0}\right)$ is a fixed point in $\mathbb{E}_{h}^{2 h}$. If σ_{\perp}^{0} is the second fundamental form of N_{\perp}^{0} in $\mathbb{E}_{m}^{2 m}$, we find $\left\|\sigma_{\perp}^{0}\left(\partial_{u_{a}}, \partial_{u_{a}}\right)\right\|_{2}=0$. So, the mean curvature vector of N_{\perp}^{0} is a light-like vector, so it is nowhere zero.

If $h=1$, then $v=\left(a_{1}, 0\right)$. Thus $\|v\|_{2}<0$. Hence, N_{\perp} is an open part of the hyperbolic space \mathbb{H}^{p}. So, we obtain item 2.

Let us now consider the case $p=1$. In this case N_{\perp} is a curve, which can be supposed to be parameterized by the arc-length u. Hence its metric is $g_{\perp}=d u^{2}$. We can make the same computations as in previous case such that (6.19) holds. Yet, a first difference appear: we are not able to say something about the value of $\|\nabla f\|_{2}=$ $-\sum_{i=1}^{h} a_{i}^{2}+\sum_{i=1}^{h} b_{i}^{2}$.

Using as usual Gauss' formula (for $U=V=\partial_{u_{a}}$) one gets

$$
\frac{\partial^{2} \lambda_{A}}{\partial u^{2}}=\langle v, v\rangle \lambda_{A}+D_{A}, \quad \frac{\partial^{2} \rho_{A}}{\partial u^{2}}=\langle v, v\rangle \rho_{A}+\tilde{D}_{A},
$$

where $D_{A}, \tilde{D}_{A} \in \mathbb{R}$. Since $\langle v, v\rangle=-\sum_{i=1}^{h} a_{i}^{2}+\sum_{i=1}^{h} b_{i}^{2}$ is an arbitrary constant, we have to distinguish three different cases: Case (i) $\langle v, v\rangle=-r^{2}$, Case (ii) $\langle v, v\rangle=r^{2}$ and Case (iii) $\langle v, v\rangle=0(r>0)$.

Solving the ordinary differential equations and doing the computations in the same manner as in the case when $p>1$, and after a re-scaling of the vector v, we obtain the first three cases stated in the theorem.

At this point we recall that the PDE system in Proposition 5.1 has also other solutions. When Case 2a from the proof is considered, doing similar computations we easily get item $\mathbf{4}$ of the theorem.

Much more interesting is to consider Case 2 b in the proof of Proposition 5.1. We have to examine again the three situations, namely when N_{\perp} is $\mathbb{S}^{p}, \mathbb{H}^{p}$ or \mathbb{E}^{p}. In the following we give only few details for the case $M=\mathbb{E}_{h}^{2 h} \times_{f} \mathbb{S}^{p}$, the other two being
very similar. Here the warping function is $f=\sqrt{A B}$, where

$$
A=\sum_{k=1}^{h} a_{k}\left(s_{k}+\epsilon t_{k}\right), \quad B=\sum_{k=1}^{h} b_{k}\left(s_{k}-\epsilon t_{k}\right),
$$

$\epsilon= \pm 1, a_{1}=0, b_{1}=1, a_{2} \neq 0$. Moreover, by Proposition 6.1 we get $\sum_{k=1}^{h} a_{k} b_{k}=-1$.
Direct computations, analogue to those done in the first part of the proof, yield

$$
\begin{align*}
& x_{i}=s_{i}+\frac{w_{0}-1}{2}\left(b_{i} A+a_{i} B\right), \quad x_{h+b}=\frac{u_{b}}{2}(A-B), \\
& y_{i}=t_{i}+\epsilon \frac{w_{0}-1}{2}\left(b_{i} A-a_{i} B\right), \quad x_{h+b}=\epsilon \frac{u_{b}}{2}(A+B), \tag{6.44}
\end{align*}
$$

where $\left(w_{0}, w_{1}, \ldots, w_{p}\right) \in \mathbb{S}^{p}$. Put $v_{k}=\frac{\epsilon}{2}\left(a_{k}+b_{k}\right)+\frac{1}{2} \mathrm{j}\left(a_{k}-b_{k}\right)$. We have $\langle v, v\rangle=1$, where $v=\left(v_{1}, \ldots, v_{p}\right)$. Computing $x_{i}+\mathrm{j} y_{i}$ and $x_{h+b}+\mathrm{j} y_{h+b}$ we obtain (6.3). Moreover, the warping function could be written as $f=\sqrt{\langle\bar{v}, z\rangle^{2}-\langle\mathrm{j} \bar{v}, z\rangle^{2}}$. So, we obtain again item $\mathbf{1}$ of the theorem.

The converse follows from direct computations.
Remark 6.3. In the case 3 of previous proof, if we choose $\left(s_{0}, t_{0}\right)=(1,0, \ldots, 0)$, and $v=(1,0, \ldots, 0, \sqrt{3}+2 \mathrm{j})$, we obtain the "initial" leaf N_{\perp}^{0} given by

$$
\Phi(1,0, u)=\left(1+\frac{1}{2} \sum u_{a}^{2}, 0, \ldots, 0, \frac{\sqrt{3}}{2} \sum^{(h)} u_{a}^{2}, 0, \ldots, 0,-\sum^{(m+h)} u_{a}^{2}, u_{1}, \ldots, u_{p}\right)
$$

which represents the submanifold given in [15, Proposition 3.6] up to rigid motions.
Remark 6.4. By applying the same method we may also classify all time-like $\mathcal{P} R$-warped products $N_{\top} \times_{f} N_{\perp}$ in the para-Kähler $(h+p)$-plane \mathcal{P}^{h+p} satisfying $h=\frac{1}{2} \operatorname{dim} N_{\top}, p=\operatorname{dim} N_{\perp}$ and $S_{\sigma}=2 p\|\nabla \ln f\|_{2}$.

Acknowledgment

The second author is supported by Fulbright Grant no. 498/2010 as a Fulbright Senior Researcher at Michigan State University, U.S.A.

References

1. S. S. Ahn, D. S. Kim and Y. H. Kim, Totally umbilic Lorentzian submanifolds, J. Korean Math. Soc., 33 (1996), 507-512.
2. A. Bejancu, $C R$ submanifolds of a Kahler manifold. I, Proc. Amer. Math. Soc., 69 (1978), 135-142.
3. A. Bejancu, $C R$ submanifolds of a Kahler manifold. II, Trans. Amer. Math. Soc., 250 (1979), 333-345.
4. R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
5. B.-Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York, 1973.
6. B.-Y. Chen, $C R$-submanifolds in Kaehler manifolds. I, J. Diff. Geom., 16 (1981), 305-322.
7. B.-Y. Chen, $C R$-submanifolds in Kaehler manifolds. II, J. Diff. Geom., 16 (1981), 493509.
8. B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math., 133 (2001), 177-195.
9. B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, II, Monatsh. Math., 134 (2001), 103-119.
10. B.-Y. Chen, Another general inequality for CR-warped products in complex space forms, Hokkaido Math. J., 32(2) (2003), 415-444.
11. B.-Y. Chen, Geometry of warped products as Riemannian submanifolds and related problems, Soochow J. Math., 28 (2002), 125-156.
12. B.-Y. Chen, Lagrangian submanifolds in para-Kähler manifolds, Nonlinear Analysis, 73 (2010), 3561-3571.
13. B.-Y. Chen, Classification of flat Lagrangian H-umbilical submanifolds in para-Kahler n-plane, Int. Electron. J. Geom., 4 (2011), 1-14.
14. B.-Y. Chen, Lagrangian H-umbilical submanifolds of para-Kähler manifolds, Taiwan. J. Math., 15 (2011), 2483-2502.
15. B.-Y. Chen, Pseudo-Riemannian Geometry, δ-invariants and Applications, Word Scientific, Hackensack, NJ, 2011.
16. V. Cortés, The special geometry of Euclidean supersymmetry: a survey, Rev. Un. Mat. Argentina, 47 (2006), 29-34.
17. V. Cortés, M.-A. Lawn and L. Schafer, Affine hyperspheres associated to special paraKahler manifolds, Int. J. Geom. Methods Mod. Phys, 3 (2006), 995-1009.
18. V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of Euclidean supersymmetry, I, Vector multiplets, J. High Energy Phys., 2004, No. 3, 028, pp. 73.
19. F. Etayo, R. Santamarỉa and U. R. Trỉas, The geometry of a bi-Lagrangian manifold, Differential Geom. Appl., 24 (2006), 33-59.
20. J. T. Graves, On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables, Phil. Magaz., 26 (1845), 315320.
21. S. Hiepko, Eine innere Kennzeichnung der verzerrten Produkte, Math. Ann., 241 (1979), 209-215.
22. Z. Hou, S. Deng and S. Kaneyuki, Dipolarizations in compact Lie algebras and homogeneous para-Kahler manifold, Tokyo J. Math., 20(2) (1997) 381-388.
23. P. Libermann, Sur le problème d‘équivalence de certains structures infinitésimales, Ann. Mat. Pura Appl., 36 (1954), 27-120.
24. M. I. Munteanu, Warped product contact CR submanifolds in Sasakian space forms, Publ. Math. Debrecen, 66(1-2) (2005), 75-120.
25. M. I. Munteanu, Doubly warped product CR-submanifolds in locally conformal Kahler manifolds, Monatsh. Math., 150(4) (2007), 333-342.
26. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, San Diego, CA, 1983.
27. P. K. Rashevskij, The scalar field in a stratified space, Trudy Sem. Vektor. Tenzor. Anal., 6 (1948), 225-248.
28. B. A. Rozenfeld, On unitary and stratified paces, Trudy Sem. Vektor. Tenzor. Anal., 7 (1949), 260-275.
29. H. S. Ruse, On parallel fields of planes in a Riemannian manifold, Quart. J. Math. Oxford Ser, 20 (1949), 218-234.
30. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math., Vol. 30, Birkhäuser, 1983.

Bang-Yen Chen
Department of Mathematics
Michigan State University
Wells Hall 48824-1029
East Lansing
U.S.A.
E-mail: bychen@math.msu.edu
Marian Ioan Munteanu
Department of Mathematics
Michigan State University
Wells Hall 48824-1029
East Lansing, U.S.A.
and
Al.I. Cuza University of Iasi
Faculty of Mathematics
Bd. Carol I, no. 11
700506 - Iasi
Romania
E-mail: marian.ioan.munteanu@gmail.com

[^0]: Received August 23, 2011, accepted September 5, 2011. Communicated by Jen-Chih Yao. 2010 Mathematics Subject Classification: 53B25, 53B30, 53C15, 53C20.
 Key words and phrases: Para-K ahler manifold, $\mathcal{P} R$-Submanifold, Warped product.

