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A CHARACTERIZATION OF DISTRIBUTIONS BY RANDOM SUMMATION

Chin-Yuan Hu and Tsung-Lin Cheng

Abstract. In this paper, we consider a problem of characterizing distribution
through the constructive property of random sum pSN , where 0 < p < 1 and N ≥
0 is an integer-valued random variable. This problem will be solved under some
regular conditions. We extend the characterization of exponential distribution to a
general case. For example, the gamma distribution, the positive Linnik distribution
and the scale mixture of stable distribution are characterized. Two new results in
the vein are obtained. Finally, the problem of characterizing distribution by the
property of the first order statistics is also investigated.

1. INTRODUCTION

The problem of characterizing distribution through a random sum has long been a
subject for study; e.g., Feller (1971), Kakosyan et al. (1984), Kotz and Steutel (1988),
Pakes (1994, 1995), Rao and Shanbhag (1994) and the references therein. Consider a
sequence of independent and identically distributed (i.i.d.) nonnegative random vari-
ables X, X1, X2, . . . with common distribution F (x) = P (X ≤ x), x ≥ 0. Assume
that N ≥0, independent of {Xn}∞n=1, is an integer-valued random variable with prob-

abilities pn =P (N =n), n=0, 1, 2, . . .. Set S0 = 0 and Sn =
n∑

i=1
Xi. Replacing n by

the random variable N , SN becomes a random sum. In this case, SN is called com-
pound and the distribution function (d.f.) of SN is dubbed as a compound distribution.

In particular, if N1 ≥ 1 is a geometric random variable with parameter 0 < p < 1,
namely, P (N1 = n) = p(1−p)n−1 for n ≥ 1, the random sum SN1 is called a geometric
compound of the sequence {Xn}∞n=1. This geometric compounding model is useful in
many fields, such as risk theory, queueing theory, reliability and distribution theory (see,
for examples, Feller (1971); Rolski et al. (1999); Hu and Lin (2001) and the references
therein). An important characterization result in this vein can be restated as follows
(Arnold (1973); Azlarov et al. (1972)). Under the geometric compounding model, the
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distributional equation X
d= pSN1 has the exponential distribution solution, where d=

stands for equality in distribution. Note that E(N1) = 1/p and E(N 2
1 ) < ∞. In this

paper, we shall consider the characterization of distributions through the distributional
equation X

d= pSN for general compound -N with E(N ) = 1/p and E(N2) < ∞,
where 0 < p < 1. Besides, we also obtain some related results. Main results of
this paper will be stated in Section 2 under an additional condition. Theorem 1 can
be viewed as an extension of the characterization of exponential distribution (Arnold
(1973) and Azlarov et al. (1972)) and it can be also regarded as a characterization
of scale mixture of stable distribution. Theorem 3 is a uniqueness theorem. The
applications of the main theorems are given in Section 3. Examples 1 and 3 are new
results in this vein. Some related problems are also investigated there.

2. MAIN RESULTS

In order to establish the main results, we need some notations and definitions in the
sequel. Throughout this section, we assume that all random variables are nonnegative,
that the distribution functions are right continuous and that the interval of integration
is closed (and may be replaced by [0,∞)). We also adopt the same notations as given
in Section 1. Let X be a nonnegative random variable with distribution function F
and its Laplace-Stieltjes transform be F̂ ; that is,

F̂ (s) = E(e−sX), s ≥ 0.

The probability generating function of a nonnegative integer-valued random variable
N will be denoted by PN ; i.e.,

PN (t) = E(tN), 0 ≤ t ≤ 1.

It is well-known that the Laplace-Stieltjes transform F̂SN
of the random sum SN =

X1 + . . . + XN , as given in Section 1, can be expressed in terms of the probability
generating function PN of N and the Laplace-Stieltjes transform F̂X of X ; namely,

(1) F̂SN
(s) = PN (F̂X(s)), s ≥ 0.

This relationship can be extended to arbitrary power series with positive coefficients
(see Feller (1971), p. 437; Steutel and Van Harn (2004), p.10). Next, we are going to
solve the following functional equation

(2) F̂ (s) = PN (F̂ (p1/αs)), s ≥ 0,

where N ≥ 0 is a given integer-valued random variable, 0 < p < 1 and 0 < α ≤ 1
are fixed constants. Under some regularity conditions, the problems of existence and
uniqueness are established in Theorem 1 below. For α = 1, Theorem 1 can be read as
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an extension of the characterization of exponential distribution (see Arnold (1973) and
Azlarov et al. (1972)); for 0 < α < 1, Theorem 1 can be viewed as a characterization
of scale mixture of stable distribution. Let for each α, 0 < α < 1, Tα be a nonnegative
random variable. Tα is called (strictly) stable with the exponent α, if the Laplace-
Stieltjes transform of Tα has the form

F̂Tα(s) = e−sα
, s ≥ 0

(see Feller (1971), p. 448; Steutel and Van Harn (2004), p. 241). We also note that
some properties of two important types of mixtures can be found in Steutel and Van
Harn (2004, p. 329). For example, the distribution of a random variable X is said to
be a scale mixture if

X
d= ZY,

where Z ≥ 0 and Y are independent random variables. In particular, let Y1 and
Tα be independent random variables with Laplace-Stieltjes transforms F̂1 and e−sα ,
respectively. Then TαY

1/α
1 has the Laplace-Stieltjes transform F̂1(sα) ( Feller (1971),

p. 463). Let Yα = TαY
1/α
1 , the distribution of Yα is called a scale mixture of stable

distribution with exponent α. To establish the main results, we need two auxiliary
lemmas.

Lemma 1. Let X be a nonnegative random variable with distribution F and finite
non-zero variance. Then the following inequality holds

(3) F̂ (s) ≤ 1 − µ2
1

µ2
+

µ2
1

µ2
e−(µ2/µ1)s, s ≥ 0,

where µj , j = 1, 2, is the j-th moment of X .

Proof. The proof of this lemma can be found in Eckberg (1977), Guljas-Pearce-
Pecaric (1998), or Hu and Lin (2008). Note that if µ2 = ∞ then the inequality is
reduced to F̂ (s) ≤ 1, and there is nothing to prove.

The following lemma is a characterization of the degenerate distribution with finite
and non-zero mean.

Lemma 2. Let 0 < µ < ∞ and 0 < p < 1 be two constants. Let X, X1, X2, . . .

be a sequence of i.i.d. nonnegative random variables with common distribution F
and E(X) = µ. Assume that N ≥ 0, independent of {Xn}∞n=1, is an integer-valued
random variable. Then, the distributional equation

(4) X
d= pSN ,

has exactly one degenerate distribution solution at x = µ if and only if there exists an
integer n0 ≥ 2 such that

P (N = n0) = 1 and n0p = 1.
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Proof. Note that the condition E(X) = µ is equivalent to the following condition

(5) lim
s→0+

1 − F̂ (s)
s

= µ.

The proof of this lemma is easy. Therefore, the detailed proof is omitted.

Theorem 1. Let 0 < α ≤ 1, λα > 0 and 0 < p < 1 be three constants. Suppose
that X, X1, X2, . . ., be a sequence of i.i.d. nonnegative random variables with common
distribution F . Assume that N ≥ 0, independent of {X n}∞n=1, is an integer-valued
random variable with E(N ) = 1/p and E(N 2) < ∞, and that the following condition
is fulfilled

(6) lim
s→0+

1 − F̂ (s)
sα

= λα,

where F̂ (s) = E(e−sX), s ≥ 0. Then the distributional equation

(7) X
d= p1/αSN

has exactly one distributional solution F α. In particular, if α = 1 then the unique
solution F1 has mean λ1 and finite variance. Furthermore the following relationship
holds

(8) Yα
d= TαY

1/α
1 ,

where Yα has distribution function Fα and the random variable Tα, independent of
Y1, has a stable distribution with exponent α.

Proof. First, we prove the case when α = 1. Note that condition (6) with λ1 = µ is
then reduced to the limiting condition (5), which is in turn tantamount to the condition
E(X) = µ. The distributional equation (7) with α = 1 is equivalent to the functional
equation

(9) F̂ (s) = PN(F̂ (pS)), s ≥ 0.

Second, we turn to the proof of the existence of an distributional solution. For n ≥ 1,
define recursively

(10) F̂n(s) = PN(F̂n−1(ps)), s ≥ 0,

in which F̂0(s) is the Laplace-Stieltjes transform of an initial random variable Y0.
Clearly, F̂1 = F̂SN

is the Laplace-Stieltjes transform of the random sum SN = Y01 +

Y02 + . . .+ Y0N , where Y0
d= Y01 and Y01, Y02, . . . are i.i.d. random variables. Hence,
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for n ≥ 1, F̂n is a well-defined Laplace-Stieltjes transform. Let Yn be a random
variable with the Laplace-Stieltjes transform F̂n. From assumptions E(N ) = 1/p and
E(N 2) < ∞, it is easy to show that the initial random variable Y0 has finite second
moment, and so does Yn for n ≥ 1. In fact, we have the following more general
recursive form

(11) E(Y 2
n ) = pE(Y 2

n−1) + p2E(N (N − 1))[E(Y0)]2, n ≥ 1

and E(Yn) = E(Y0) for every n ≥ 1. Now, we choose the initial random variable Y0

having the Laplace-Stieltjes transform

F̂Y0(s) = 1 − µ2
1

µ2
+

µ2
1

µ2
e−(µ2/µ1)s, s ≥ 0,

where µ1 = µ, µ2 = p2E(N(N−1))
1−p µ2 and F̂0 = F̂Y0 .

The condition E(N ) = 1/p > 1 and E(N 2) < ∞ implies that this Laplace-
Stieltjes transform F̂Y0 is well-defined, E(Y0) = µ1 and E(Y 2

0 ) = µ2. By using (11)
with n = 1, we obtain E(Y1) = µ1 and E(Y 2

1 ) = µ2.
To exploit Lemma 1 with X = Y1, the random variable Y1 requires a finite non-

zero variance. When the conditions E(N ) = 1/p > 1 and E(N2) < ∞ are fulfilled,
var(Y1) = µ2 − µ2

1 < ∞, which in turn implies that

var(Y1) = 0 iff E(N 2) = (E(N ))2; namely,

the integer-valued random variable N ≥ 0 is degenerate. Remember that the degenerate
case has been dealt with in Lemma 2. Therefore, we may assume that Y1 has a finite
non-zero variance. Applying Lemma 1, we obtain

F̂1(s) ≤ 1 − µ2
1

µ2
+

µ2
1

µ2
e−(µ2/µ1)s = F̂0(s), s ≥ 0.

The defining relationship (10) implies that, for n ≥ 2,

F̂n(s)− F̂n−1(s) = PN

(
F̂n−1(ps)

)
− PN

(
F̂n−2(ps)

)

=
∞∑

k=0

P (N = k)
[
F̂ k

n−1(ps) − F̂ k
n−2(ps)

]
, s ≥ 0.

Hence, we get
F̂n(s) ≤ F̂n−1(s), s ≥ 0, n ≥ 1.

Since 0 < E(Yn) = µ < ∞, the Jensen’s inequality gives

e−µs ≤ F̂n(s), s ≥ 0, n ≥ 0.
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Combining these inequalities, we have

e−µs ≤ F̂n(s) ≤ F̂0(s), s ≥ 0, n ≥ 0.

Thus, F̂n, n ≥ 0, are monotone and bounded and have a unique limit which we will
denote it by F̂∞. Since lim

s→0+
F̂∞(s) = 1, the continuity theorem (Steutel and Van Harn

(2004), p. 479) implies that this F̂∞ is the Laplace-Stieltjes transform of a random
variable Y∞. Next, we will show that F̂∞ satisfies the functional equation (9), and
that E(Y∞) = µ and E(Y 2∞) < ∞. Let X be a nonnegative random variable with
distribution F and E(X) = µ. Define a distribution Fw by

(12) Fw(x) =
1
µ

∫ x

0

(1 − F (t))dt, x ≥ 0.

Note that this distribution Fw is called the “equilibrium distribution of F”. By Feller
(1971,p.435), we have the following two identities

1 − F̂ (s)
s

=
∫ ∞

0
e−sx(1− F (x))dx, s > 0,

and
F̂ (s) − 1 + µs

s2
= µ

∫ ∞

0
e−sx(1 − Fw(x))dx, s > 0.

Hence, the above functions are decreasing in s > 0. By the above inequalities, we
have

1 − e−µs

s
≥ 1 − F̂n(s)

s
≥ 1 − F̂0(s)

s
, s > 0, n ≥ 0

and

e−µs − 1 + µs

s2
≤ F̂n(s) − 1 + µs

s2
≤ F̂0(s) − 1 + µs

s2
, s > 0, n ≥ 0.

By monotonicity, letting firstly n → ∞ and then s → 0+, we have

E(Y∞) = µ and E(Y 2
∞) ≤ µ2 < ∞.

Finally, by the dominated convergence theorem, this F̂∞(s) satisfies the functional
equation (9). Therefore, the existence is guaranteed.

To verify the uniqueness, we may assume that there are two distributions F and
G with the same µ and both of their Laplace-Stieltjes transforms F̂ and Ĝ satisfy
the functional equation (9). Verifying F = G is equivalent to verifying F̂ = Ĝ. By
definition,
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(13)

|F̂ (s) − Ĝ(s)| ≤
∞∑

k=0

P (N = k)|F̂ k(ps) − Ĝk(ps)|

≤
∞∑

k=0

P (N = k)k|F̂ (ps) − Ĝ(ps)|

= E(N )|F̂(ps) − Ĝ(ps)|

=
1
p
|F̂ (ps) − Ĝ(ps)|, s ≥ 0.

Now define,

g(s) =
∣∣∣ F̂ (s) − Ĝ(s)

s

∣∣∣, s > 0.

Since F and G have the same mean µ, we have

lim
s→0+

1 − F̂

s
= lim

s→0+

1 − Ĝ

s
= µ < ∞;

therefore, we may define
g(0) = lim

s→0+
g(s) = 0.

Dividing both sides of inequality (13) by s and iterating, we have

0 ≤ g(s) ≤ g(ps) ≤ · · · ≤ g(pns), n ≥ 1 and s > 0,

where 0 < p < 1. Let n → ∞. We obtain g(s) = 0, for all s > 0; that is, F̂ = Ĝ.
Hence F = G and this completes the proof of uniqueness.

Secondly, we shall prove Theorem 1 for 0 < α < 1. This part of existence can be
obtained by using a special transformation as shown below. The distributional equation
(7) is equivalent to the functional equation (2), that is

F̂ (s) = PN (F̂ (p1/αs)), s ≥ 0.

Let F1 be the unique solution of Theorem 1 for α = 1 (without ambiguity, for conve-
nience we use the same notation F1 here and after). Note that this distribution has a
finite mean λ1 = µ, and the following condition holds

lim
s→0+

1 − F̂1(s)
s

= µ.

By the mixture of F1 and a stable distribution with exponent α ( Feller (1971), p.463),
we can define a Laplace-Stieltjes transform

(14) F̂α(s) = F̂1(sα), s ≥ 0.

Note that F̂α is called a scale mixture of stable distribution, as given in this section
before Lemma 1. Next, we’ll prove that F̂α is a solution of the functional equation
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(2), and that it satisfies condition (6). These assertions follow immediately from the
definition of F̂α and following equations,

F̂α(s) = F̂1(sα) = PN (F̂1(psα)) = PN (F̂α(p1/αs)), s ≥ 0

and

lim
s→0+

1 − F̂α(s)
sα

= lim
t→0+

1 − F̂1(t)
t

, by setting t = sα.

The latter limit exists and is finite. The proof of existence is complete. The proof
of existence is done. The proof of uniqueness is essentially similar to the proof of
Theorem 1 for α = 1 case, and is omitted here. Therefore, we complete the proof of
Theorem 1.

Corollary 1. Let 0 < µ < ∞ and 0 < p < 1 be two constants. Let X, X1, X2, . . .

be a sequence of i.i.d. nonnegative random variables with common distribution F
and E(X) = µ. Assume that N ≥ 0, independent of {Xn}∞n=1, is an integer-valued
random variable with

(15) E(N ) =
1
p

and E(N 2) < ∞.

Then the distributional equation

(16) X
d= pSN

has exactly one distributional solution F 1 with the mean µ and finite variance. Equiv-
alently, the following functional equation

(17) F̂ (s) = PN (F̂ (ps)), s ≥ 0,

where PN (t) = E(tN), 0 ≤ t ≤ 1, has exactly one solution F̂1 with F̂ ′
1(0

+) = −µ

and F̂ ′′
1 (0+) < ∞. Furthermore, if N is not degenerate then the unique solution F 1

has a finite and nonzero variance.

Proof. The corollary follows immediately from Theorem 1. The last assertion
of the corollary follows from Lemma 2, which means that the integer-valued random
variable N ≥ 0 is not degenerate, and so is the unique solution F1.

Theorem 2. Let m > 1 be a given integer, and 0 < α ≤ 1, 0 < λα < ∞ be two
constants. Let X, X1, . . . , Xm be i.i.d. nonnegative random variables with common
distribution F . Assume that 0 ≤ B ≤ 1, independent of {X n}m

n=1, is any nonnegative
random variable with

(18) E(B2) <
1
m

= E(B)

and that the following limiting condition holds
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(19) lim
s→0+

1 − F̂ (s)
sα

= λα.

Then the distributional equation

(20) X
d= B1/α(X1 + . . . + Xm)

has exactly one distributional solution F α. In particular, if α = 1 then the unique
solution F1 has the mean λ1 and finite variance. Furthermore, the following relation
holds

Yα
d= TαY

1/α
1 ,

where Yα has the distribution Fα, and the random variable Tα, independent of Y1, has
a stable distribution with exponent α.

Proof. A sketch of proof of Theorem 2 is given here, since it is essentially similar
to that of Theorem1. It suffices to verify the case as α = 1. In this case, condition
(19) with α = 1 is equivalent to the functional equation

(21) F̂ (s) =
∫ 1

0

[F̂ (us)]mdFB(u), s ≥ 0,

where FB is the distribution function of B.
To prove the existence, let us define

(22) F̂n(s) =
∫ 1

0
[F̂n−1(us)]mdFB(u), s ≥ 0, n ≥ 1,

and F̂0 is the Laplace-Stieltjes transform of an initial random variable Y0. It is obvious
that F̂n is well-defined; that is, F̂n is a Laplace-Stieltjes for n ≥ 1, because the power
m > 1 in the functional equation (22) is an integer (noting also that the function F̂n

may not be defined if m > 1 is a real number but not an integer, this is why we need
the uniqueness in Theorem 3 below).

Let Yn be a random variable with the Laplace-Stieltjes transform F̂n, n ≥ 1. Under
the condition (18), we have (here assume that E(Y 2

0 ) < ∞)

E(Yn) = E(Y0)

and
E(Y 2

n ) = E(B2)
[
m(m− 1)[E(Y0)]2 + mE(Y 2

n−1)
]
, n ≥ 1.

Using the same argument as that of Theorem 1, choose

F̂0(s) = 1 − µ2
1

µ2
+

µ2
1

µ2
e−(µ2/µ1)s, s ≥ 0



1254 Chin-Yuan Hu and Tsung-Lin Cheng

with µ1 = µ and

µ2 =
m(m − 1)E(B2)

1 − mE(B2)
µ2.

The condition E(B2) < 1/m = E(B) implies that the Laplace-Stieltjes transform F̂0

is well-defined. Note also that if the random variable B is degenerate, then P (B =
1/m) = 1 and there is nothing to prove. Thus, the same argument as that of Theorem
ensures the existence. The proof of uniqueness is the same as that of Theorem 3 below,
hence is omitted here. The proof is completed.

Theorem 3. (Uniqueness). Let r > 1, 0 < α ≤ 1 and λα > 0 be three constants,
and X ≥ 0 be a nonnegative random variable with distribution F . Assume that
0 ≤ B ≤ 1 is a given nonnegative variable with distribution F B and that

(23) 0 < E(B) ≤ 1
r
.

Moreover, we assume that the following limit condition holds

(24) lim
s→0+

1 − F̂ (s)
sα

= λα.

Then, the functional equation

(25) F̂ (s) =
∫ 1

0

[
F̂ (u1/αs)

]r
dFB(u), s ≥ 0

has a solution only if the solution of this functional equation is unique. In this case,
we denote the solution by F̂α and we have the following relation

Yα
d= TαY

1/α
1 ,

where Yα has the distribution Fα and the random variable Tα which is independent
of Y1 has a stable distribution with exponent α.

Proof. In order to prove the uniqueness, let us assume that there are two distri-
butions F and G that satisfy (24), and that their Laplace-Stieltjes transforms F̂ and
Ĝ satisfy the functional equation (25). In the following, we want to prove F = G or
equivalently F̂ = Ĝ. Note that for r ≥ 1,

∣∣∣F̂ (s) − Ĝ(s)
∣∣∣ ≤

∫ 1

0

∣∣∣F̂ r(u1/αs) − Ĝr(u1/αs)
∣∣∣dFB(u)

≤ r

∫ 1

0

∣∣∣F̂ (u1/αs) − Ĝ(u1/αs)
∣∣∣dFB(u)(26)

≤ 1
E(B)

∫ 1

0

∣∣∣F̂ (u1/αs) − Ĝ(u1/αs)
∣∣∣dFB(u), s ≥ 0.
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Since F̂ and Ĝ satisfy (24), we can define a bounded continuous function g as below:

g(s) =

∣∣∣∣∣
F̂ (s) − Ĝ(s)

sα

∣∣∣∣∣, s > 0 and g(0) = lim
s→0+

g(s).

As a result, the following function h is also well-defined

h(s) = sup
0≤t≤s

g(t), s ≥ 0 with h(0) = 0.

It is clear that h(s) is increasing in s ≥ 0. Dividing both sides of the inequality (26)
by s > 0, we obtain

g(s) ≤
∫ 1

0
g(u1/αs)dH(u), s ≥ 0,

where the distribution function H is defined by

H(x) =
1

E(B)

∫ x

0
tdFB(t), 0 ≤ x ≤ 1.

Note that

sup
0≤t≤s

g(t) ≤ sup
0≤t≤s

∫ 1

0

g(u1/αt)dH(u)

≤
∫ 1

0
sup

0≤t≤s
g(u1/αt)dH(u)(27)

≤ h(s).(28)

(27) is due to Jensen’s inequality and (28) is due to the monotonicity of h(s), s ≥ 0. As
a result, h must be the zero function and so is g. This leads to F̂ = Ĝ, or equivalently,
F = G. This completes the proof.

3. APPLICATIONS AND EXAMPLES

Let X, X1, X2, . . . be a sequence of i.i.d. nonnegative random variables with com-
mon distribution H . Let X1,n ≤ . . . ≤ Xn,n be the corresponding order statistics of
{Xk}n

k=1 defined above. The following important property is well studied; that is,
under the condition

(29) lim
x→0+

1− H̄(x)
x

= λ, for some λ > 0,

where H̄ = 1 − H , the distributional equation X
d= nX1,n (for some n ≥ 2) charac-

terizes H to be exponential (Gupta (1973), note that without the limit condition, the
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conclusion fails). Various restatements and extensions of this result are also known
(see Galambos and Kotz (1978); Shimizu(1978,1979); Hu and Lin (2003)).

In the following, we consider a problem of characterizing distributions by the
property of the first order statistics X1,N , where N ≥ 1 is an integer-valued random
variable independent of {Xn}n≥1. This problem is in a sense dual to the main result
in section 2. The extension of Theorem 1 to the real line can be found in Theorem 7
below. The symmetric stable random variable on � will be denoted by Tα, that is, the
characteristic function φTα of Tα is defined by

φTα(t) = e−|t|α , t ∈ �,

where 0 < α ≤ 2.

Theorem 4. Let α > 0, λα > 0 and 0 < p < 1 be three constants. Assume
that {Xn}n≥1 is a sequence of i.i.d. nonnegative random variables with common
distribution H , and that N ≥ 1 is an integer-valued random variable independent of
{Xn}n≥1 with E(N ) = 1/p and E(N 2) < ∞. Suppose that the following condition
holds

(30) lim
x→0+

1 − H̄(x)
xα

= λα,

where H̄ = 1 − H . Then the following equation has exactly one solution ( say H α)

(31) X
d= p−1/αX1,N .

Proof. Under the conditions in the statement of Theorem 4, (31) is equivalent to
the following functional equation

H̄(x) = PN (H̄(p1/αx)), x ≥ 0.

The desired result follows immediately from Corollary 1 with µ = λ1. Precisely, the
unique solution of the distributional equation (31) is given by

Hα(x) = 1− F̂1(xα), x ≥ 0,

where F̂1 is the unique solution of the functional equation (17). Since the Laplace-
Stieltjes transform F̂1 is a non-increasing function with

lim
s→∞ F̂1(s) = F1(0),

that is, a possible atom of F1 at the origin has the effect that F̂1(∞) > 0. Therefore,
we have to show that 1 − F̂1(xα) is actually a non-defective probability distribution
function. The condition N ≥ 1 together with the fact that F̂1 satisfying the functional
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equation (17) (by letting s → ∞) imply F̂1(∞) = 0. Hence Hα is a proper probability
distribution function.

Theorem 5. Let n > 1 be a given integer, and α > 0, λα > 0 be two positive
constants. Let X1, . . . , Xn be i.i.d. nonnegative random variables with common
distribution H , and X1,n = Min{X1, . . . , Xn} be the first order statistics. Assume
that 0 ≤ B ≤ 1, independent of {X1, . . . , Xn}, is a given nonnegative random variable
with

(32) E(B2) <
1
n

= E(B),

and that the limit condition holds

(33) lim
x→0+

1 − H̄(x)
xα

= λα,

where H̄ = 1 − H . Then the distributional equation

(34) X
d= B−1/αX1,n

has exactly one distributional solution H α.

Proof. Under the given conditions, the distributional equation (34) is equivalent
to the following functional equation

H̄(x) =
∫ 1

0

[H̄(u1/αx)]ndFB(u), x ≥ 0.

The desired result follows from Theorem 2 with m = n, α = 1; and Hα(x) =
1 − F̂1(xα), x ≥ 0. Note that 1 − F̂1 is a proper probability distribution function.
This completes the proof.

Theorem 6. (Uniqueness). Let r > 1, α > 0 and λα > 0 be three constants. Let
X ≥ 0 be a nonnegative random variable with distribution H . Assume that 0 ≤ B ≤ 1
is a nonnegative random variable with distribution H B and

0 < E(B) ≤ 1
r
,

and that the limit condition holds

lim
x→0+

1 − H̄(x)
xα

= λα,

where H̄ = 1 − H . In addition, if the functional equation

H̄(x) =
∫ 1

0
[H̄(u1/αx)]rdHB(u), x ≥ 0,
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has a solution, then the solution of this functional equation is unique, by which we
denote it H̄α.

Proof. The proof is similar to Theorem 3 and we omit it.

Theorem 7. Let 0 < α ≤ 2, λα > 0 and 0 < p < 1 be three given constants.
Let X, X1, X2, . . . be a sequence of i.i.d. symmetric random variables on the real line
with common distribution G. Assume that N ≥ 0, independent of {X n}∞n=1, is an
integer-valued random variable with

(35) E(N ) =
1
p

and E(N 2) < ∞,

and that the limit condition holds

(36) lim
t→0

1 − φ(t)
|t|α = λα,

where φ(t), t∈�, is the characteristic function of X . Then the distributional equation

(37) X
d= p1/αSN

has exactly one solution Gα. Furthermore, the relationship holds

(38) Zα
d= TαZ

1/α
1

where Zα has distribution function G α and the random variable Tα, independent of
Z1, has a symmetric stable distribution on � with exponent α.

Proof. First note that X is symmetric if and only if its characteristic function
is real-valued, and that the distributional equation (37) is equivalent to the following
functional equation

φ(t) = PN (φ(p1/αt)), t ∈ �.

The unique solution of this functional equation is given by

φα(t) = F̂1(|t|α), t ∈ �,

where F̂1 is the unique solution of the functional equation (17) in Corollary 1 with
µ = λ1. the detailed proof is omitted here.

Example 1. Let 0 < θ < 1 and 0 < µ < ∞ be two given constants. Let
X, X1, X2, . . . be a sequence of i.i.d. nonnegative random variables with common
distribution F and E(X) = µ. Assume that N ≥ 0, independent of {Xn}∞n=1, is an
integer-valued random variable with probabilities
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P (N = n) =
( θ

1 + θ

)( 1
1 + θ

)n
, n = 0, 1, 2, . . . .

Note that E(N ) = 1
θ and E(N 2) < ∞. Now applying Corollary 1 with p = θ, the

distributional equation X
d= θSN has exactly one distributional solution F1 and the

Laplace-Stieltjes transform of F1 is given by

F̂1(s) = θ + (1 − θ)
1

1 + µs
, s ≥ 0,

that is, the unique solution F1 is a mixture of the exponential distribution. This result
can be obtained by the following fact. The Laplace-Stieltjes transform F̂1 satisfies the
functional equation

(39) F̂ (s) =
1

1 + 1
θ (1− F̂ (θs))

, s ≥ 0,

which is equivalent to the distributional equation X
d= θSN . Similarly, under the limit

condition of Theorem 1 and 0 < α ≤ 1. Theorem 1 implies that the distributional
equation X

d= θ1/αSN has exactly one distributional solution Fα and the relationship
holds

Yα
d= TαY

1/α
1

where Yα has the distributional Fα and the random variable Tα, independent of Y1,
has a stable distribution with exponent α (Feller (1971), p.448 and p. 463). That is,
the Laplace-Stieltjes transform of Fα is given by

F̂1(s) = θ + (1− θ)
1

1 + µsα
, s ≥ 0.

This means that the unique solution Fα is a mixture of the Linnik distribution ( Lukacs
(1970), p.97 ). Note that all solutions of this example belong to the compound expo-
nential type distribution and hence infinitely divisible (Steutel and Van Harn (2004), p.
99).

The unique solution F1 above has the following remarkable property. Let X be a
nonnegative random variable with distribution F and E(X) = µ, 0 < µ < ∞. Then
F1 is the unique solution of the following distributional equation

(40) W
d= X + θW,

where 0 < θ < 1, X and W are independent, and the random variable W has the
so-called equilibrium distribution. That is, the distribution of W is defined by

Fw(x) =
1
µ

∫ x

0
(1− FX(t))dt, x ≥ 0.
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Note that this distributional equation (40) is equivalent to the functional equation (39)
as mentioned before. Some related results can be found in Steutel and Van Harn (2004,
p.445).

Example 2. Set λ = 1/p > 1 and 0 < µ < ∞ to be constants. Let X, X1, X2, . . .

be a sequence of i.i.d. nonnegative random variables with common distribution F and
E(X) = µ. Assume that Nλ ≥ 0, independent of {Xn}∞n=1, is the Poisson random
variable with the parameter λ, namely,

P (Nλ = n) =
e−λλn

n!
, n = 0, 1, 2, . . .

Note that E(Nλ) = λ and E(N 2
λ) = λ(λ + 1) < ∞. Applying Corollary 1 with

p = 1/λ, the distributional equation

X
d= pSNλ

has exactly one distributional solution, say Fλ. Equivalently, the Laplace-Stieltjes
transform F̂λ of Fλ is the unique solution of the following functional equation

(41) F̂ (s) = e−
(1−F̂ (ps))

p , s ≥ 0.

It is not easy to express the solution of this functional equation in a closed form. Note
that in the degenerate case X = 0 (or F̂ (s) = 1, s ≥ 0) is not a solution because
E(X) = µ > 0. The unique solution Fλ above possesses the following properties:
(a) Fλ is the unique solution of the distributional equation

(42) Z
d= X + pZ,

where p = 1/λ, X and Z are independnet, and the random variable Z has the
so-called length-biased distribution, that is, the distribution F Z of Z is defined
by

FZ(x) =
1
µ

∫ x

0
tdFX(t), x ≥ 0.

The distributional equation above is well-known and often mentioned in the
literature on perpetuities. Some related results can be found in Iksanov and Kim
(2004a, 2004b). Note that this distributional equation (42) is equivalent to the
functional equation (41).

(b) Fλ has finite moments of all orders. Let µn be the n-th moment of Fλ, then the
following moment recurrence holds,


µn+1 = 1

1−pn

n−1∑
k=0

(
n

k

)
µk+1µn−kpk, n ≥ 1

µ0 = 1 and µ1 = µ,
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where p = 1/λ, 0 < p < 1 and E(X) = µ. Furthermore, the n-th moment has
the form

µn = gn(p)µn, n ≥ 1,

where gn(p), independent of µ, is a rational function of p. For example, µ1 = µ,
µ2 = 1

1−pµ2, µ3 = 1+2p
(1+p)(1−p)2

µ3, ..., etc.

This means that the unique distribution Fλ is completely determined by its first
moment µ1 = µ (because µ0 = 1 is always true) and the moment recurrence
before. Note that the cumulant Kn of order n of Fλ can be obtained by

Kn = µnpn−1, n ≥ 1.

(c) Clearly, Fλ is an infinitely divisible distribution and its Laplace-Stieltjes transform
F̂λ satisfies the following infinite product

F̂Zλ
(s) =

∞∏
n=0

F̂λ(pns), s ≥ 0,

where 0 < p = 1/λ < 1 and FZλ
is the length-biased distribution induced by

Fλ, that is

FZλ
(x) =

1
µ1

∫ x

0

tdFλ(t), x ≥ 0,

where µ1 is the mean of Fλ.

Example 3. Let r = 1 + (β2/β1), where β1 > 0 and β2 > 0 are two constants.
Let X ≥ 0 be a nonnegative random variable with distribution F . Assume that B

d=
B(β1, β2) has a beta distribution FB with parameters β1 and β2, and the following
condition holds

lim
s→0+

1 − F̂ (s)
sα

= λα,

where 0 < α ≤ 1 and λα > 0 are two constants. Then, the functional equation

F̂ (s) =
∫ 1

0

[
F̂ (u1/αs)

]r
dFB(u), s ≥ 0,

has exactly one solution, say F̂α. Precisely, this unique solution is given by

F̂α(s) =
( 1

1 + csα

)β1

, s ≥ 0,

where the constant c = λ1/β1 is uniquely determined by the limit condition above with
α = 1. For 0 < α < 1, this means that the unique solution Fα is a scale mixture of
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F1 and the stable distribution with exponent α. Note that this result follows from the
uniqueness Theorem 3 in Section 2 and the well-known identity below,

( 1
1 + s

)β1

=
Γ(β1 + β2)
Γ(β1)Γ(β2)

∫ 1

0

( 1
1 + us

)β1+β2

uβ1−1(1− u)β2−1du, s ≥ 0,

(See Stuart (1962), Bondesson (1992), p. 14). Some related results in this vein can be
found in Kotz and Steutel (1988), Milne and Yeo (1989), Pakes (1992, 1994, 1995)
and Rao and Shanbhag (1994, p. 150).

Example 4. The following problem seems interesting enough. Let N have the
uniform distribution with probabilities

P (N = k) =
1
n

, k = 1, 2, . . . , n,

where n ≥ 2 is a given integer. Then Corollary 1 implies the existence of a nontrivial
solution of the following functional equation

f
((n + 1)s

2

)
=

1
n

n∑
k=1

fk(s), s ≥ 0.

What is the closed form of the nontrivial solution? The problem is still in question.
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