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STOCHASTIC FITZHUGH-NAGUMO SYSTEMS WITH DELAY

Lu Xu and Weiping Yan

Abstract. This paper is concerned with the existence of random attractors for
the stochastic FitzZHugh-Nagumo systems with delay on infinite lattice. Under
suitable dissipative conditions, It shows that such a system has a random attractor
which is a random compact invariant set.

1. INTRODUCTION

In this paper, we consider the following stochastic FitzHugh-Nagumo lattice dy-
namical system with delay

Ui + (Au(t)); + i — filui) — agii(t) =0,
1) Ui+ Mabi — Aau; — biagi(t) = 0,
Ujr = ’Ll,z‘(S + 7_)7 s € [_7_7 0]7

where t > 7, i € Z, uyy = ui(s) = u;(t + s) is the delay term with the interval
of delay time [—7,0], and w;; = w;(7 + s) is the initial datum in the interval [0, 7],
Z is the integer set, A is a linear operator defined by (Au); = w41 + wi—1 — 2u;,
u = (u;)icz € 2, M1, Mo and 7 are positive constants, a = (a;)icz, b = (b;)icz € €2,
fi is a smooth function satisfying some dissipative conditions (see the hypotheses (H1)
and (H2) in Section 3), {wy;(t) : i € Z} are independent two-side real valued standard
Wiener processes, k = 1, 2.

Lattice dynamical systems (LDSs) play an important role in their potential appli-
cations such as biology [25, 9], chemical reaction [16], pattern recognition and image
processing [7, 8], electrical engineering [6], laser systems [11], and material science
[14], etc. One of most famous model is discrete FitzHugh-Nagumo systems describing
the signal transmission across axons. In fact, this infinite lattice model describe infinite
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many cycle oscillators, v;(t) denotes the action potentials, also called spiking or firing
events, in a neuron. 1;(t) denotes a refractory period after each firing event during
which the neutron cannot fire again. More details, see [17, 22]. Recently, Huang [15]
study the existence of random attractor for the stochastic FitzHugh-Nagumo equation
on infinite lattice.

In fact, the stochastic lattice dynamical systems with delay have gained great atten-
tion by considering that, a system in reality is usually affected by external perturbations
which in many cases are of great uncertainty or random influence. These random
effects are introduced not only to compensate for the defects in some deterministic
models, but also to reveal the intrinsic phenomena. Some hereditary characteristics
such as after-effect, time-lag and time delay can appear in the variables, this leads
the delay effect in an system. The study of existence and stability of solutions for
stochastic partial differential equations with delays also has attracted by many authors
(see [27, 24, 20, 4, 5]). In [3], small lattices of N nearest-neighbor coupled excitable
FitzHugh-Nagumo systems, with time-delayed coupling are studied and compared with
systems of FitzHugh-Nagumo oscillators with the same delayed coupling. The delay
terms f satisfies

£(0)=0, f(0)=6 > 0.

Using augmented moment method, Hasegawa[13] study the stochastic ensembles with
delayed couplings for the FitzZHugh-Nagumo model, where the exponent delay term is
considered.

The existence of global random attractor for a kind of first order dynamical systems
driven by white noise on lattice Z first investigated by Bates et al. [2]. Then, Lv [18]
extended their results to the higher dimensional lattices. Later, stochastic complex
Ginzburg-Landau equation on infinite lattice were also studied by Lv [19]. Most
Recently, Yan, W, etc al [26] obtained the existence of random attractors for first order
stochastic retarded lattice dynamical system. In present paper, we study the existence
of random attractor for the stochastic discrete FitzHugh-Nagumo systems with delay.

Throughout this paper, the inner product and norm of Hilbert space ¢2 are defined

(0) = > wivis ul? = (w,u) = > o
i€Z icZ
for each u = (u;)iez, v = (v3)icz € £2. In addition, for the reason of delays, we take
X, = C([—,0]; ) as the phase space endowed with the norm

2
lullx, = max) (ZZ\W(S)\ > :

This paper is organized as follows. In Section 2, we recall some basic concepts
and already known results related to random dynamical systems and random attractors.

as
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In Section 3, we first give an abstract theorem for the existence of random attractor
associated with the stochastic FitzHugh-Nagumo lattice systems with delay by refor-
mulating the result of Bates et al. [2]. Then we apply the abstract theorem to prove
the existence of random attractor for system (1).

2. DEFINITION AND PRELIMINARIES

In this section, we introduce some basic concepts related to random dynamical
systems and random attractors, which are taken from [2, 10].
Let (H, | - ||z) be a Hilbert space, (2, F, P) be a probability space.

Definition 2.1. (Q,F, P, (6:):r) is called a metric dynamical systems, if 6 :
RxQ— Qis (DR) x F,F) measurable, 0y = Z, 0,4s = 6,06, forall t,s € R,
and ;P = P for all t € R.

Definition 2.2. A stochastic process ¢(t,w, ) : RT x Q x H — H is called
a random dynamical system (RDS) over (Q,F, P, ()icr) if ¢ is (B(RT) x F x
B(H), B(H))-measurable, and for P-a.e. w € (2,

e the mapping ¢ is continuous;
e $(0,w,-) =7 on H;
e (t+ s,w, )= d(t,Osw,-) o p(s,w,-) forall t,s > 0.

Definition 2.3. A random bounded set { B(w)}.eq C H is called tempered with
respect to (0;):er if for P-ae. w € Q,

lim e~ “d(B(0_;w)) =0, for all e >0,

t—o00

where d(B) = sup,¢p ||| #-

In what follows, we shall consider the continuous random dynamical system ¢(t, w, -)
over (2, F, P, (0)ier)-

Definition 2.4. Let D be a collection of random subsets of H and {K(w)},eq € D.
Then a random set {K(w)},eq is called an absorbing set in D if for every B € D and
P-ae. w €, there exists tz(w) > 0 such that

o(t, 0_w, B(0_yw)) C K(w), for all t > tp(w).

Definition 2.5. Let D be a collection of random subsets of H. Then a random set
{A(w)}ueq is a D-random attractor for RDS ¢ if the following conditions are satisfied,
for P-a.e. w e,
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e A(w) is compact, and w — d(x, A(w)) is measurable for every = € H;
e A(w) is invariant, i.e., ¢(t,w, A(w)) = A(b;w), for all t > 0;
e A(w) attracts every setin D, i.e,, for all B = {B(w)}weq € D,

tliglo d(¢(t,0_w, B(A_w)), Aw)) = 0,

where d denotes the Hausdorff semi-metric given by d(X,Y) = sup,cx infyey ||z —
y||g forany X,Y C H.

Definition 2.6. Let D be a collection of random subsets of H. Then ¢ is called
D-Pullback asymptotically compact in H if for P-a.e. w € Q, {¢(ty, 0_s,w, z,)}5° 4
has a convergent subsequence in H whenever ¢, — oo, and z,, € B(f_,w) with
{B(w)}weg eD.

The following existence result for a random attractor for a continuous RDS can be

found in [2, 12].

Proposition 2.1. Let D be an inclusion-closed collection of random subsets of H
and ¢ be a RDS on H over (2, F, P, (0,):cr). Suppose that {/C(w)}.eq is a closed
random absorbing set for a D-pullback asymptotically compact continuous RDS ¢.
Then ¢ has a unique D-random attractor

Alw) = () | ¢t 01w, K(0-w)),

k>0t>K

which is compact in H.

3. THE EXISTENCE OF RANDOM ATTRACTORS

(1) is a system for unknown v and ), and firstly we search for a solution w, ¢» € ¢2.
For convenience, we rewrite system (1) as

i+ Au+ ¢ — f(u) = ain(t),
(3.1) Y+ M — Au = bivo(t),
ur =u(s+7), se€[-7,0], 7 >0,

where u; = ui(s) = u(t + s) is the delay term with the interval of delay time [—7, 0],
ur = u(7T + s) is the initial datum in the interval [0, 7], and f is a smooth function
satisfying the dissipative conditions:

(H1) For any bounded set Y C ¢2 there exists a positive constant L ; such that for any
u,v €Y

1f(w) = F()]| < Lyllu = o]l
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(H2) There exist positive constants «y, as such that

£i(0) =0, fi(ui)u; < —aq|ui* + ag max luie|?, Vt € RY.
s€[—T,

Remark 1. Here, assumption (H2) about nonlinear term f in system (3.1) is a
dissipative condition which making the solution of system (3.1) has the decay property
about time ¢. The choice of parameters aq, a, A1 and A, depends on how can make
the Gronwall’s inequality hold.

Denote the linear operators B and B* from ¢2 to ¢? by (Bu); = u;y1 — u; and
(B*u); = u; — u;—1 respectively, then it is easy to see that A = BB* = B*B and
(B*u,v) = (u, Bv). Therefore, (Au,u) > 0 for all u € 2.

Let Wl(t) = ZieZ aiwli(t)ei, Wg(t) = ZieZ biwgi(t)ei, (az‘)z‘ez € 2 and
(b;)icz € €2, where {e'};cz denotes a complete orthonormal basis in #2. Then Wy (e)
and Ws(e) are, obviously, Q-Wiener processes with Q = diag{---,a?,---} and Q =
diag{---,b?,-- -}, respectively. It is obvious that EW;(t) = 0, Cov(W;(t)) = tQ,
for j = 1, 2. For details we refer to [23].

Consider the probability space

Q= {weC(R, ) : w(0) =0}

endowed with the compact open topology [1]. We denote P to be the corresponding
Wiener measure and F to be the P-completion of the Borel o-algebra on €.

Let 0, W;(-) = W;(- +t) — W;(t), t € R. Then (Q,F, P, (0):cr) is a metric
dynamical system with the filtration F; :=\/_, F%, ¢t € R, where F. = o{W;(t2) —
Wi(t1) : s < t1 <t <t} is the smallest o-algebra generated by the random variable
W;(t2) — W;(t1) for all ¢, ¢, such that s < ¢; <ty <t, see [1] for more details.

We introduce an Ornstein-Uhlenbeck process in £2 on the metric dynamical system
(Q,F, P, 0,) given by the Wiener process:

t
yilt) = / M1 AW, fori=1,2,

where \g, Ay > 0. The above integral exists in the sense that for any path w with a
subexponential growth, y; (¢) and y»(t) solve the following 1td equations

dy1(t) + Aoy (t)dt = dWi(t), for t >0,

(3.2)
dyg(t) + Alyg(t)dt = dWQ(t), fort>0.

In fact, the mapping ¢ — yx(6w), k = 1,2, is an Ornstein-Uhlenbeck process. Fur-
thermore, there exists a 6; invariant set Q' c  such that:

(1) the mapping ¢ — yg(6;w) is continuous for P-a.e. w € ;
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(2) the random variables |yx(w)| is tempered, i.e. tl}:rtnooﬁlog—’— lye(6iw)| = 0,
P-ae.
Moreover, all the parameters satisfying
200 = 2a2e” > Ly + Ao+ Ao+ 13, 2A1 —2X2 > 1, (Xl—(XQZ)\Q—%—f—lQ—B,

where Ay > 0 are defined in (3.2).
Denote

o) = u(t) =y (bw),
pt) = (t) = y2(biw),

where (u(t),(t)) is a solution of system (3.1). Then (v(t), ¢(t)) satisfies:

(3.3)

0 = —Av— o+ f(ve + y1(Oi4sw)) + (Ao — A)y1 (Oiw) — y2(biw),
(3.4) © = =1+ v+ Aoy (Brw),

vy = Ur — Y(Or1sw).
Remark 2. By (3.1)-(3.2) and the definition of 1/ and W5, we get that

. d
i+ Au+ 9 — flur) = I+ Doy,

. d
Y+ MY — Agu = % + A1y2,

ur =u(s+7), s€[-7,0], 7>0.

Then, by (3.3), (3.4) can be derived.

In what follows, we first give an abstract theorem about the existence of random
attractors associated with general first order stochastic retarded lattice system (3.1),
which can be seen as the reformulation of Proposition 2.1. Then we apply it to prove
the existence of random attractors for system (3.1).

Denote D be a collection of random subsets of X, = C([—,0]; £%) with norm
|lu|lx, = max (Z \ui(s)\Q)%. Assume that system (3.1) has a unique solution and

~r0]
generates a contir:tejous random dynamical system (RDS) ¢ (Theorem 3.2-3.3 will
explain the assumptions).

Theorem 3.1. The continuous random dynamical system (RDS) ¢ (see Theorem
3.3 for more details about ¢,) generated by system (3.1) has a unique D-random
attractor A in X if it satisfies, for P-a.e. w € (),
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(C1) RDS ¢, possesses a bounded absorbing set {K(w)} weq € D;
(C2) For any {t,}nen With ¢, — 0o as n — oo,
lim limsup max Z (bit,, (8,04, w, )% =0,

m—0o0 n 00 sE€[—T,0]
| |>m

where z,, € K(0_¢,w).

Proof.  According to Proposition 2.1, we only need to prove RDS ¢ possesses
a bounded absorbing set and its D-pullback asymptotically compact. Assumption (C1)
shows that ¢; possesses a bounded absorbing set, the rest is to use assumption (C2) to

prove that RDS ¢, is D-pullback asymptotically compact.
Let

S =A{d, (s,0_1,w, ) : xp € K(O_t,w), t, — 00 as n — oo},

where {K(w)}weq € D is the bounded absorbing set of RDS ¢;. According to Propo-
sition 2.1, it is only need to prove S is precompact in X, x ¢2.
By (C2), for any € > 0, there exist m;(¢) and N (e) such that

(3.5) . er?%(yp%e) 2, (5,0_1,w,2,))% <&, forn>N(e).

Denote A = {qﬁtn}N(E) Noting that A is a finite set and for all ¢, € X, x ¢, we have

lim max Z $% (5,0 ¢, w, xn))% =0.
li|>m

So there exists ma(¢) > 0 such that

(3.6) . er?ggm(m;j(e) 2, (5,0_1,w,2,))% <e, forn < N(e).
Let m(e) = max{m;(g), ma(e)}. Then, by (3.5)-(3.6), we have
(3.7) e (30 o, (s O_t,w,20))% <e, forn>1.
li|=m(e)
Set
X,T(.m(s)) X gm(e) : C([ T, 0]7€m(6) X gm(e)) X gm(e)

where EEH(E) := {v = (v3)j|<m(e), vi € R}, and rewrite (3.4) as

1
—~
~
~—
I

o)+ [ e+ 1 (Oes)) — Ao

+(Xo — Azyl(etw) —y2(Ow)]dh, t > 7 >0,

o) = o(r) + / [“ A1 + Aow + Aoy (0p0)|dh, £ > 7> 0,
=y (B 1w,

(3.8)

<
Bl
—~
»
S~—
Il
S
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In what follows we will use Ascoli-Arzela theorem to prove set I' = {(dit, ) ji|<m(e)
¢, = (i, )icz, € A} is precompact in X{™) x Efn(e). For convenience, we de-
note any sequence in T' by {(w;(tn), ¥i(tn))}ij<m(e)- BY (C1), it is obvious that
{(ui(tn), ¥i(tn)) }jij<m(e) is uniform bounded in 2{mED o Efn(e). Then, by (H1) and

(3.8), we have

0 <

IN

g flui(tn + @, ur(w)) = i(tn, w, ur (@) |2

m(e)
Hiltn + 5,0, ur)) = iltm o ur @Dl )

gi_)I%{H'Uz‘(tn + 6, w, vr(w)) — vi(tn, w, UT(W))H@”(E)

Hpiltn +¢ w,0r(W)) = @iltn, w, vr (@)l |}
+lim{lly1 (0, +cw) = 91 00w)lle,

Hy2(0r,4w) =420, w)lle2, }

tn+¢
i | [ o 1 ) = = Av( o)
S— tn

+(Ao = A1 (Ohw) — y2(Opw))dhl ez,

tn+<
+gl_)Hé H (—)\14,0 + dov + )\zyz(ehw))th@n(E)

tn

+lim{lly1 (0, +w) = 51 00w)lle,

Hy2(0r,4w) = 420, W)z, }
0.

Then, by replacing w in above estimate with 6_;, w, we have

i (tn + <, 01,0, ur (0-1,w)) = i(tn, 01,0, ur (61, w)) | 2
c—

m(e)

HYi(tn + < w, ur(w)) = Yiltn, w, ur(W))lle } =0,

()

which implies that { (wi(t, ), ¥i(tn)) }ij<m () iS €quicontinuous in ) s g2 o) Thus,

I' is precompact in XTm(E) X Efn(e). So, for above ¢ > 0 there exists a finite subset

rms(e) =

c xmE) 2

L) ey ) ) () ey (Vi) )5+
() [[2550 () )}

m(e)?
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which forms a finite e-net of I".
For j =1,2,...,ms(e), we choose

and

Obviously, {(a(), zﬁ(j))}g”jl(g) C X x L2,y Then, for any ¢, (s, 0w, x,) € S, by
(3.7) we have

H¢% (37 e_tnw7 xn) - (u(j)v ¢(j))HXsz2 < 2e.

m(e)

Hence, S is precompact in X, x Bfn(e). The proof is completed. ]

Theorem 3.2. For any T' > 0 and (u,,%,) € X, x £2, there is a unique solution
(ult, ), (t, 1)) € L2(2, C([0, T); x£2)) of system (3.1), with (us (-, ur), (-, 7))
c X, x 2t e r,T), (ur(-,ur), ¥ (%)) = (ur,v;). Moreover, the mapping
(r,hr) — (u(,w, ur), (-, w, 1)) € C([0,T]; £2x £2) is continuous for each w € .

Proof. By (H1)-(H2), it is known that equation (3.1) has a unique solution
(u, ) € L2(2, C([0,T]; £2 x £2)), and there exists a bounded set Y C X, x £2 such
that (u, 1) € Y x £2. (see, for example, Theorem 2.6 in [21], and also can be obtained
by the method in [2]).

Rewriting (3.1) as

u(t) = u(r) + / (Flun) — (k) — Au(h) + W(h))dh,
v = v+ [ (CA(h) + Agu(h) + W2(h))dh,

Ur = u(S—i—T),Ts € [-,0],

(3.9)

then, by (H1), we know that for any (u., ¥(7)), (vr, (7)) € Y C & x £ and (u, 1)),
(v, ) the corresponding solutions of system (3.9)

() — w(®) |2 + 0(t) — ()2
= Jlur — vy +2/ (F(aun) — F(on)s = v) — (& — g, — v)
~(Afu=o),u=0)dh+ [ P2 [ (~Nallo— P+ Aalu—o, 1)) dh

t
< e = wrl 4 o = e+ 9+ Do = 200) [ = vl

T
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t t
+2a9 max \uh—vh\ dh+ (1+ X2 —2)\;) / H¢—<P”2dh

7 s€[—7,0]

< o = w2+ [ = 1P+ 04 22— 20 [ = vl
t+s T
1205 max / lu(h) — v(h)|2dh + ] (t — )
s€[=7,0] Jr4s "
(1+>\2—2>\1)/ 16 — o|2dh

T

< (14 2007) |lur — vr|)? 4 [|90r — @r||? + (9 + A2 + 200 — 207) / |u — vl||2dh

H -2 [ o= olPdh
By (H2) and Gronwall’s inequality, we obtain

lu(t) —o@)IP+ 19 (D) = @)* < T (lur = [P+ - =7 17), for t € 7,77,

where ﬁ = max{9 4+ Ao+ 209 — 201, 1 + Ao — 2)\1}
Therefore

sup ([fu(t) = v(@)II* + 19(t) = o)1) < D ((lur = o7 P + ([0 = or|I),

te|r,T)
which implies that the uniqueness and continuous dependence on the initial data. This
completes the proof. [ |

Theorem 3.3. Equation (3.1) generates a continuous random dynamical system
(¢e(s))e>- over (Q,F, P, (6:)tcr), Where
Or(s,w,ur) = (ug(s,w,ur), Y(t,w,r)), YVt > 7, s € [-7,0] and for all w € Q.
Proof. The proof is similar to that of Theorem 3.2 in [2], so here it is omitted. m
Lemma 3.1. For P-ae. w € €, there exists {K(w)}weq € D such that
{K(w)}weq is a random bounded absorbing set for RDS ¢ ;.
Proof.  Taking the inner product of the first equation in (3.4) with v(¢), we have

@10 Tl = ~2(dv,0) ~ 2p,0)+ A+ 11 (Brs)), )

+2((No — A)y1 (Ow), v) — 2(y2,v), Yt > 7.
By (H2), it is easy to see that
(f(or + y1(Or45w)),v) = (f(vr +y1(Oe1sw)) — f(ve), v) + (f(ve), ),
(f(or + y1(Osw)) — fve),v) < Ly|lyr(Orrsw) 2, |v]]
(3.11) < Ll Gers)l, + 01),
(f(ve +y1,v(0w)) < —alzm taz nax Zlvnl

< —quvH + azl\vtl\x
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In addition, noting that

(3.12) (Av,v) >0,
1
(3.13) (Ay1,v) = —(By1, Bv) < gHBUHQ +8|| Byr (6w) |2
1
< §HvH2+32Hy1(0tw)H2,

thus by (3.11)—(3.13), for ¢t > 7, we can obtain

d
Zlol? < B+ Ly + X0 = 200)[[0l* + o [* + 202 ]vn %,
+(64 + X0)ly1 (0ew)II* + Lillys (Oe+s) 3, + lly2(0r) |1
Therefore, for any given v which specified later, we have
d d
(€ ol®) = el *+e = lv]]*

(314) < (B+Lg+Ao+y — 2a1)e”tHUH2—|—2a267tHthg(T + e”tHapH2

+(64 + Xo)e™[[y1 ()|
L™ [yr (Orrsw)ll%, + € lly2 ().
Integrating (3.14) over [r, t] with ¢ > 7, and by (H2), it yields that
ol = e lu(7)|?

t t
< (3—|—Lf—|—)\o+’y—2a1)/ evhuvu2dh+2a2/ O fon 1%, dh

T T

t t
—|—/ ewhHapH2dh+(64+)\o)/ | y1(0pw)||2dh

t t
+Lp [ M)z, dn+ [ M nO)an

t t+s
315 = (3+Lf+A0+7—20¢1)/ e”thH2dh+2azeT/ o) 2dh

T T+s

t t
—|—/ ewhHapH2dh+(64+)\o)/ | y1(0pw)||2dh

t+s t
g [ MO dn+ [ O Pan
T+s T

t T
< (3—|—Lf—|—)\0+fy—2a1)/ e”thH2dh+2ageT/ Mo |2dh
0

T

t t
—|—20¢26T/ e”thH2dh+/ M| pl?dh + (64 4+ Xo + LyeT)
T

T
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t
[ ()| an

T t
FLger / 1y (Bniw) |2 + / M ly2(640) |2
0

-
t

< B3+ L+ —|—fy—|—2a267—2a1)/ e ||v||*dh
T

+2a57e¢ 0T max [jv(t)]?
tel0,7]

t t
—|—/ e”hHapH2dh—|—(64+)\0—|—Lf67)/ e”thl(th)Hth

LT s (017 + [ )
Taking the inner product of the second equation in (3.4) with ¢(t), we have
L1l = ~2nll? + 22a(0, 0) + 2o (B1), )
< 2% = A)llell® + Azllv ]| + Aalyr () |12
As done in (3.15), we get
e ll® — e llp(7)I?
(3.16) < (v 42X —2)\) /t | o|2dh + Mg /t e |v||*dh

T T

t
o / g1 (Onw) | 2.

Summing up (3.15)-(3.16), for

0< v < min{2a1 — Lf — )\0 — Ay — 20&267 — 3,2)\1 —2Xy — 1},

we have
[o(t, w, vr(@)]I? + o (t, w, vr(w)) 12
t
< (B4 Ly+ Ao+ A2+ v+ 200" —20) / e’ h=0v||2dh
t T
Lty 4 20 — 2)\1)/ =D | |2
(3.17) 12007 max [|u(#)]|?
tel0,7]

t
(04420 L") [ 0D P Ly ma oy (00|
te|0,7

T [

t
+(1+A2)/ D g2 (Onw)lPdh + T ([fo(r)|P + [le(r)]1%)

T
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t
< 2971t m[gx]Hv(t)yy2+(64+A0+LfeT+A2) / "D ||y (Opw)]|2dh
te|0,7 r

t
+L eI max ly1 (B[ + 1 / "0 lya (Ow) | *dh
te|0,7 r
+ T (o)1 + e ()]1?).

Furthermore, since ||yx(w)| (k = 1,2) are tempered and yx(6,w) is continuous in ¢,
by Proposition 4.33 in [1], there is a tempered function r(w) > 0, such that

Iy (B:)|I* < (0,0) < r(w)e? .
Thus, by replacing w in (3.17) with 6_,w, we have

lo(t, 0—tw, vr(0—ew))|I* + llp(t, 0w, vr (0—p)) |

CHEDT max [lo(t)|?

< 2a9Te
t€l0,7] .
+(64 + o+ Lre” + o) / ev(h=t) 91 (On—sw)||*dh

t
(3.18) +Lfe('y+1)7—'yt max] Hy1(93—tw)H2 + 1/ e'V(h—t)Hy2(0h_tw)”2dh

€10 -
+7 T ([0 (0-w)[1* + o7 (0-w) 1)
< 207707 ma o0 + 7 ([or(0-0)]
te|0,7
Hor (0—)|%) + Cr(w),

where C > 0 is a constant.
By (3.3) and (3.18), we obtain

lut, 0w, ur(0—w)|* + [[$(t, 0w, ur(0—w))||?
= [lu(t, 6w, vr (0—w)) + y1(6r0) |
Hlp(t, 0-1w, v-(0-1w)) + y2(07w) |°
< 2|v(t, 01w, v (0_w))||? + 2||v(t, O_sw, v (O_w)) |
+2r(w)e™ ([ly1 (@)|* + ly2 (@)II)

< 4opre T max (o (t)||?
tel0,7]

+2¢77C) (|l (0-w) 1 + [l pr (0-1) 1)
+HACT (W) + 4l @)1 + lly2@)[*), ¢ > 7.

Therefore, for ¢t > 27, we have ¢t + s > 7 for any s € [—7,0], and
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lut + 5, 01—, ur (0—t—sw))|I* + 19 (¢, 0w, ur(0—4w)) ||

< dagreTH D7 mase [u(0) |+ ¢ (o (O @)+ s (012
€l0,7

+4CT (@) + 4y (@) + lly2(@)]1*)-
By replacing w in above estimate with 6w, we obtain

lue(s, 01w, ur (0—e) )II* + [0 (2, -, ur (0-1)) |

(DTt 12

< 4agTe max ||v(t)

t€l0,7]
+e 02T (o (0-0) |1” + llepr (0-)[1?)
+4CT(w) + 4y (@) + Ny2(@)[[)-

Set

R(w) = 8Cr(w) + 8([lyr (w)[I* + lly2(w)I*).
Then K(w) = {(u, ) € Xy x €% : |Jug||x, + |[2]| < R(w)} is a bounded absorbing set
for RDS ¢;. This completes the proof. [ ]

Lemma 3.2. Assume that (u,,¢,) € K(w). Then for any ¢ > 0 and P-a.e.
w € Q, there exist T'(e,w) > 0 and N(s,w) > 0 such that the solution «; of system
(3.8) satisfiesvt > T'(e,w) + 7,

max Z it (5, 0_sw, ur(6_sw))|* + Z li(t, 0w, ur(f_1w))|? < e.

€m0l SN ew) i[> N (2.0)

Proof. Letn(x) € C(R4,]0,1]) be a cut-off function satisfying
n(z) =0, forall z €[0,1]; n(x)=1, for all x € [2,+00),

and |n’(x)| < no (a positive constant).
Taking the inner product of the first equation in (3.4) with a(t) = (a,(t))icz =
(n(i0)0;)iez in €2, we get
(0, a(t)) = —(Av(t), a(t)) — (1), a(t)) + (f (ve + y1(0r45w)), alt))
+((Ao = A)y1(0iw), a(t)) — (y2(0uw), a(t)).

Now we estimate the terms (3.19) one by one. First, taking into consideration that

(3.19)

(Av(t), a(t)) = (Bo(t), Ba(t))
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and
141 1 ] 1
(Ba)s = aer - a0 = (o) < (o on(Wyo s e
we have
141 1
(ao(t).a®) = S g (s,
i€EZ
(3.20) +> (57 L 1 (Bo) =D (g Il (3o,
i€Z ‘ ‘ ‘ ‘ 1€Z ‘ ‘
1 —|— 1 1 1
= 3 a0 e (Bo)i+ 3 n(ih (B,
i€Z 1€Z
Then, noting that
1 —|— 1 1 1
S —a (T eaBo)l < 13 W@ (Bo)
i€EZ 1€Z
< > I E)llvi — vivin |
(3.21) 3
o 2 o 2
< 20 A L A
_2M ’UZ+1+2MZ’UZ
2170 i€Z 1€Z
< 202
and
1 1
c.22) Sn(h B0z < a3 (0w
i€Z i€Z
thus, by (3.20)-(3.22), it yields that
2
(3.23) (Av(t).a(t) > ~4 3 n( 2 = 20 o2

i€Z
Note that by (H2)

Joe +y1(0pysw)) — f(v1), @)

= Z’?(M)[fi(vz‘t + y1(0rsw)) — f(vir)|vs,

ZEZ

< —Zn )y1(Orrsw)|? +—Z77 ‘ ‘ )vil?,

i€EZ i€Z

(3.24)

and
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(f(vt)va) - Zn fz 'Uzt
(3.25) i€z

< - Zn ‘— )vil® + as énax Zn ‘— )| vt *ds.
1€Z

By (3.24)-(3.25), we have
(f('Ut + Y1 (0145w)), a) = (f (vt + y1 (Or4sw)) — f(vt) a) + (f(vt),a),
o) (Gl + 0z ma Zn v 2ds

ZEZ

L Zn )1 (Br4s0)].

i€Z

(3.26)

Furthermore, noting that
—(Ay (0w), a(t))

= Z(Byl)i(n( i+ JVig1 — n(m)”i)

i€EZ

\Hl\ \ \
= > (n )i(Bv)i
(3.27) Zez M ‘ z“EZ
1+ 1
< = S @) Byl - Zn<7><3ym<3v>i
i€Z i€Z i i
2n0 2 1o 2 i 2 i 2
< — — 2 — )|V 2 — )y~
< Sl 4 gl 23l 423 npl
and
(3.28) (6,0) = 34 57,z () vil?,

thus, by (3.23)-(3.28), we have

a5 i
=3 (gl

icZ
< [134 L + Xo — 20] Zn L\l‘ ‘%‘24—20‘2 err[1ax Zn ]\4‘ "Uzt‘
(329 i to. 5 5w N
+Zn(ﬂ)\%‘\2+—Hy1H2+—!!v!!2+(4+>\o Zn(ﬁ)\yu\Z
i€Z i€Z

i
+Zn(%)\yzi\2 on )y (Or4sw)]?,

i€Z i€Z
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holds for ¢ > 7.
Thus, by (3.29), for any given ~ specified later, we have

%(avtzn%)v%(t» = S )+ ;;n<3}> ()

13+L + Ag+vy—2aq]e ] )|vi|*4-202¢?" max v |?
[f0’71277||2ez77|t|

1€EZ
Sy "f| 24210 0 o 2 (44 20)7 S (L g
BZT]M()OL M@ yl M@ v 0)€ : 77My11
1€EZ 1€EZ
i Leert i
e SOl + S s 6,
1€EZ 1€EZ

Integrating (3.30) over [r, ¢] and taking into consideration of (H2), we obtain

) o Y

1€Z i€Z

t .
< [13+Lf+>\0+7—2oc1]/ e””Zn(%)\vz‘th
T i€Z
t .
Yh M 12
+2azsé?_a7>_’<0]/T e ;n(M)‘vzh‘ dh
Lo i 2 4no +h L2
+ [ e Zn(—)\%\ dh+ 7 | e ly1(0pw) | dh+ M e’|[v][*dh
T i€Z
+(4 + o) /ethn )yai( th)\2dh
T ZEZ
+ [ Sadhimowran s 2 [ or S adhinon e
T i€Z T 1€Z
)
< [13+Lf+>\0+7—2a1]2n(%)/ e |vil*dh
i€Z T
T : t i
s2ase [T n(Eh e+ 2ae” [ S n(ihlean
0 i€Z T i€Z
! vh "L‘ 2 4770 ! vh 2
+ [ € Zn(ﬁ)\%‘\dJrﬁ e |[y1 (Opw)||“dh
T ZeZ T

5 t i
20 [ mpolpan+ a0 [ S o pan
T i€Z
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e
; / S () o) Pan + / 3 () g, (6 P

i€Z i€Z
Lye™ ! h 1] 2
L [ S () P
i€Z
. t
1
< [13+Lf+Ao+v—2oq+2azeT]Zn(%)/ e vi|*dh

i€Z T

\ n Lo i\, o
tgl[gX]Zn Pl @+ [ ety (Lol dh

T i€Z

Ha o +L2 )Y [ et tonean

i€Z T

+2a276(7+ T

4no +h 9 5770/ VR 112
+M ey (Opw)||“dh + M [v[|“dh

t : T T :
h ] 2 Lye h 1] 2
+ [ ol O)Fan + 5= [T S (0P,

i€Z icZ
which implies that
> ez
i€Z . ;
< 13+ L+ Ao +v—2a1+2azeT]Zn(M)/ " v;*dh
i€Z T
+2a27677tg1[ax Zn \2-1—2 / Wh‘%‘ﬁdh
ZEZ
4 _
@) 03 (0 i 2 200 0y 0y 2
i€EZ T
Lye
caen By <‘ B [ et=iyutonean
i€Z T
5770 ¢ 7(h_t)H,UH2dh_|_Z:n(L‘) /tew(h_t)‘yl(@hw)ﬁdh
M i€Z M7 Z
Lye™ / h—t 1] 2
i A eV (h=1) (=) |y1:(Onw)|“dh.
5 ], o)

Taking the inner product of the second equation in (3.4) with b(t) = (bi(t))icz =
(n(%)%‘)z‘ez in /2, we get

(3.32)  (2,0(1)) = =Au(p(t), b(£)) + Az(v(t), b(t)) — Aa(y2(Osw), b(1))-
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By (3.32), it follows that

—Zn ‘M il < 2(02 = A1) Zn il
(333) i€Z z.EZ

1 1
20 3D 4 20 Y0

1€Z i€Z

As the proving process of (3.31), it holds

il 2
>_ ()l
i€Z .

/2] B2
< (%w—%)%n(ﬁ il dh
(3.34) ‘ ‘ "
+Xo Zn /ewh\vi\th
i€Z

+Aze‘”t§n(%)/7 " yai(Opw)[Pdh + ) ;77 ‘M lps(T)[2.

Summing up (3.31) and (3.34), by the choose of
0 <y <min{20; — Ly — Ao — A2 — 2a9e” — 13, 2A\; — 2Xy — 1},

we get

Sy uf? + loif)
i€Z . t
[13+Lf+>\0+>\2+7—2a1+2a2eT]Zn(%)/ ¢ v;|*dh
i€Z T
il [ an g2
+(1+2)\2+7—2)\1)%Z:n(ﬂ) j ™ i 2dh

(v+1)7 .
s S0

5 t
+ev<7—“2n% \w<7>\2+m<7>\2>+%e‘“ / e o][*dh
z‘eZ ’

ST i )e > n(y; A /e%\yn(th)Pdh

i€Z

4
TR / My () P

+(1+ Ag)e Wth H /ewh\ygi(ﬁhw)ﬁdh

i€EZ

IN

+2a9TeE
(3.35)
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L T T N
L e“h-“Zn@)\yu(ehwwdh

2
0 i€Z

< 207 TTUT ax Zn )|vi(t)

tE[OT]
+e (7Y Zn \vz 2+ |oi(7)?)
i€Z
5
+%e—%/ Whuvu%zh
(4+)\0+ _Wth H / " |y1i(Opw) |*dh
i€Z
4
TR / () P
+(1+ A2) Wth H / 7" [yai (Opw)[*dh
i€Z
P e S Sl
2 helo, ] !

Replacing w in (3.35) by 6_;w, we have

1

Z n(%)(v?(t, 01w, vr(0_4w) + 92 (t, 0_w, v (0_4w))
i€Z

< 2097V tgl[g>;]Zn ‘ ‘ )|vi(

12D L0200 1,000 + 200,00 100010)

i€Z

Lye
20+ E) Sl [ oDy pan
(3.36) icz v
xS il [0,
i€Z T

5 t
2 [ Do h, 0, 0,0 P

dno [* s 2
+2 / & Hylwh_tw)rr an

Lf
127 (=) E (Opw
5 € he[%x] 77 ‘ylz h )‘

In what follows, we estimate each term in (3.36). First, it is easy to see that there
exists To(e,w) > 7 such that if ¢ > Ty(e,w), we have
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2 (D) T=t vi(®) 2 + |@i(t)]?) < e.
aoTe tl’en[EOiX]Zn ‘ 4 ‘QOZ( )‘ ) =

Then, by (3.18), we derive

e Z (Lw‘)( C(7, 0w, v (04 ))"“P?(ﬁ 0w, vr(0—w)))

i€Z

< 2agre #1077 max lo(8)][?) + Ce " Dr(w)
te

+€20) (o (0-40) 1 + 7 (0-10) 1

Thus, there exists T4 (e, w) > 7 such that if ¢ > T (e, w), we have

@37) S () (027,00, 00 (0-w) + O, v (0-))) < <
i€Z

For the rest term in the right side of (3.36), let 7/ > 0 to be determined later, we have

Lie™ [t o i
(4 + )\0 + fT) / GW(h t) Zn(%)‘yh(ﬁh_tw)Pdh
T i€Z

) [ e S o an
7 M v

i€Z

Lye™ - h 2
+(4+ Xo + 5 ) e"|y1 (Opw)||*dh.

—t

T

= A+ +

Lye
2

8(4+>\0+#)7’(W) )

H 2
Choosing T, > = In( —

and noting that
(3.38) g1 (0) 1 < () < r(w)e2 !,

then for ¢t > T, + 7, we have

T

8(

f T
2 )r(w)e_wTQ <e.

Lye T h 2
(3.39) (4+ Ao+ L) / My () |2 <
T—1

Furthermore, for the fixed T, by Lebesgue’s theorem there is a positive constant
Ni(e,w) such that for M > Ny(e,w),

Lye™ 0 h li 2
(4+ o+ —5 )/ "> (o) yri(Onw)*dh < e,
2 )" &My
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which combining with (3.38) and (3.39) implies

(3.40) 4+ Xo —|— — / v(h=t) Zn y1i(On—_sw)|?dh < 2e.
T icZ
By the same method, there is a constant 73 > %ln(g(l%?r(w)), fort > T3+ 1,
t .
_ (3
(3.41) (14 A2) /T V(=) Zn(%)\y%(eh_tw)ﬁdh < 2e.

1€Z
By (3.18), it yields that

t
5}\4& eV(h—1) (R, 0_4w, v-(0_1w))||*dh

< 100&27‘170

< L0080 () ma o)
5& _ 2y(T—t) 2 2 507707“(“1)
ot —T)e (lor (@) I+ o (6-s2)I") + —p ==

Recall the fact that v, (6;w) € K(0w), this implies that |[v, (6;w) % + |lor(B:w)|? <
R(f_4w) is tempered. Thus there exist T4(¢,w) > 7 and Nj(e,w) such that, for
t > Ty(e,w) and M > Ny(e,w), we have

510
M

Finally, for the last two terms in the right side of (3.36), by (3.38), there exist
N3(e,w) > 0 and T5(e,w), it yields that

4 Tt 4 0 8
ﬂ Tl (o) |2l < 2TL)0 / Zap < Sor@)
M M T—t

Lfe (r—t)
5 ——e\7T hrél[%x]zn ) y1i(Opw) 2.

t
(3.42) "D w(h, 0_w, v-(0_w))||?dh < e.

Set
T(e,w) = max{Ty(e,w), Ti(e,w), To(e,w) + 7, T5(e,w) + 7, Ty(e,w), Ts(e,w) },
and
N = max{Ni(g,w), No(e,w), N3(e,w)}.
Then by combining (3.37), (3.40), (3.41) and (3.42), it follows that for ¢ > T' > 7 and
M > N, we have

D (Wit 0w, v-(0-w)) + v (L 0w, v-(0_w))) < Ce.

li|>2M
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Thus we have

Z (‘ui(tv 01w, ’U’F(e—tw))‘2 + ‘vi(tv 01w, ’UT(H—tw))P)

li|>2M

<2 Y (foilt, 0-, vr(0-1)) [P + [i(t, 01, v (0-10))|?)
li|>2M

+2 Z (l91:(0—e0) * + [y2i (0-1w)[?)

li|>2M
< Ce.

Therefore, for ¢t > T'(e,w) 4+ 7, we have t + s > T'(¢,w) for any s € [—, 0], and

Z (\uz‘t(& 0_t—sw, UT(H—t—sw))‘Q + “‘Pi(tv 0_sw, vT(é?_tw))\2) <e&.
li|>2M

By replacing w in above estimate with 6w, we obtain

Z (Juir(s, 0w, v (0—1w)) [ + |@i(t, 0_w, v (0_w))[?) < e.
li|>2M

This completes the proof. ]
By Theorem 3.1, Lemmas 3.1 and 3.2, we have the following result.

Theorem 3.4. Assumptions (H1)-(H2) hold. Then for P-ae. w € Q, RDS ¢,
associated with equation (3.1) possesses a D-random attractor.
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