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THE BANACH ALGEBRA F (S, T ) AND ITS AMENABILITY OF
COMMUTATIVE FOUNDATION ∗-SEMIGROUPS S AND T

M. Lashkarizadeh Bami

Abstract. In the present paper we shall first introduce the notion of the algebra
F(S, T ) of two topological ∗-semigroups S and T in terms of bounded and
weakly continuous ∗-representations of S and T on Hilbert spaces. In the case
where both S and T are commutative foundation ∗-semigroups with identities
it is shown that F(S, T ) is identical to the algebra of the Fourier transforms
of bimeasures in BM(S∗, T ∗), where S∗ (T ∗, respectively) denotes the locally
compact Hausdorff space of all bounded and continuous ∗-semicharacters on S(T,
respectively) endowed with the compact open topology. This result has enabled
us to make the bimeasure Banach space BM(S∗, T ∗) into a Banach algebra. It
is also shown that the Banach algebra F(S, T ) is amenable and K

(
σ(F(S, T ))

)
is a compact topological group, where σ(F(S, T )) denotes the spectrum of the
commutative Banach algebra F(S, T ) as a closed subalgebra of wap (S×T ), the
Banach algebra of weakly almost periodic continuous functions on S × T.

0. PRELIMINARIES

For a locally compact Hausdorff space X, we let L∞(X), Cb(X), C0(X) be the
spaces of complex valued and bounded functions on X which are respectively, Borel
measurable, continuous, continuous with limit zero at infinity. The supremum norm
on each of these spaces will be denoted by ‖ · ‖∞. If X and Y are locally compact
Hausdorff spaces, we write V0(X, Y ) = C0(X)⊗̂C0(Y ), the projective tensor product
of C0(X) and C0(Y ). Then the space BM(X, Y ) may be identified with the dual
Banach space of V0(X, Y ). The elements of BM(X, Y ) are called the bimeasures on
X × Y. It is well-known [7] that corresponding to every u ∈ BM(X, Y ) there exist
regular probability Borel measures λX on X and λY on Y and C > 0 such that

(1) |〈f ⊗ g, u〉| ≤ C‖f‖2‖g‖2

(
f ∈ C0(X), g ∈ C0(Y )

)
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where the L2-norms refer to L2(X, λX) and L2(Y, λY ), respectively. Let |‖u|‖ =
inf {C : (1) holds for some λX , λY }. Then there is a universal constant KG such that

(2) ‖u‖ ≤ |‖u|‖ ≤ KG‖u‖
(
u ∈ BM(X, Y )

)
.

The measures λX , λY are called a Grothendieck measure pair for u. Moreover, corre-
sponding to every u ∈ BM(X, Y ) there is a unique extension of u to L∞(X)⊗̂L∞(Y )
such that for every pair λX , λY of Grothendieck measures for u with C as in (1)

(3) |〈f ⊗ g, u〉| ≤ C‖f‖2‖g‖2

(
f ∈ L∞(X), g ∈ L∞(Y )

)
,

(cf. Corollary 1.3 of [7]). Recall that the support of a bimeasure u on X × Y is the
smallest closed set F in X × Y for which 〈f, u〉 = 0 for all f ∈ V0(X, Y ) such that
f ≡ 0 on a neighbourhood of F. Note that the bimeasures with compact support are
dense in BM(X, Y ) (see [7, Lemma 1.4]).

Throughout this paper S and T will denote locally compact, Hausdorff and jointly
continuous topological semigroups. A continuous mapping ∗ : S → S is called an
involution on S if x∗∗ = x and (xy)∗ = y∗x∗ (x, y ∈ S). A topological semigroup
with an involution is called a topological ∗-semigroup. A homomorphism π of a
topolical ∗-semigroup S into the unit ball of B(H) (the C∗-algebra of bounded linear
operators on a Hilbert space H) is called a ∗-representation if π(x∗) = π(x)∗ for all
x ∈ S, where π(x)∗ denotes the adjoint operator to π(x). A ∗-representation π : S →
B(H) is called weakly continuous (strongly continuous, respectively) if the mapping
s 
→ 〈π(s)ξ, η〉 of S into C (s 
→ π(s)ξ of S into H, respectively) is continuous
(norm continuous, respectively) for every ξ, η ∈ H. A one dimensional representation
is called a semicharacter. We denote by S̃ (respectively, S∗) the space of continuous
semicharacters (respectively, continuous ∗-semicharacters) on S. That is a χ ∈ Ŝ if
χ : S → C is continuous, |χ(x)| ≤ 1 and χ(xy) = χ(x)χ(y) for all x, y ∈ S, and
χ ∈ X∗ if χ ∈ Ŝ and χ(x∗) = χ(x) (x ∈ X). A function f ∈ Cb(S) is called weakly
almost periodic if RSf = {Rsf : s ∈ S} is relatively weakly compact in Cb(S), where
for every s ∈ S, the function Rsf is defined by Rsf(x) = f(xs) (x ∈ S). The space
of all weakly almost periodic continuous functions on S will be denoted by wap (S).

Recall that on a Hausdorff locally compact topological semigroup S the space of
all measures µ in M(S) (the Banach algebra of all regular complex bounded measures
on S with total variation norm) for which the mappings: x 
→ |µ| ∗ δx and x 
→ δx ∗ |µ|
(δx denotes by Ma(S) (see [1, 2, 6]). It is well known that Ma(S) is a closed two
sided L-ideal of M(S). A Hausdorff locally compact topological semigroup S is called
a foundation semigroup if S coincides with the closure of

⋃{supp (µ) : µ ∈ Ma(S)}.
It is well known that if S is a foundation semigroup with an identity then for every
µ ∈ Ma(S) both the mappings: x → δx∗µ and x :→ µ∗δx from S into Ma(S) are norm
continuous (cf. [12]). We also recall that if S is a commutative foundation semigroup,
then the Gelfand space M̂a(S) of Ma(S) with the Gelfand topology is homeomorphic
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with Ŝ when Ŝ is endowed with the compact open topology. In particular Ŝ with the
compact open topology defines a locally compact Hausdorff space. Moreover, for every
µ in Ma(S) the Gelfand transform µ̂ is given by the equation µ̂(χ) =

∫
S χ(s)dµ(s)

(χ ∈ Ŝ) (see [1]). We also note that if S is a foundation ∗-semigroup, then with the
involution given by µ∗(f) =

∫
f(x∗)dµ(x)

(
f ∈ C0(S)

)
, both M(S) and Ma(S)

define Banach ∗-algebras. If S is a commutative foundation ∗-semigroup, then it is
clear the µ̂

∣∣
S∗ (the restriction of µ to S∗) belongs to C0(S∗)

(
µ ∈ Ma(S)

)
.

1. THE BANACH ALGEBRA F (S, T ) OF COMMUTATIVE FOUNDATION

∗-SEMIGROUPS S AND T

We start with the following definition.

Definition 1.1. Let S, T be two Hausdorff locally compact topological ∗-semigroups.
We denote by F (S, T ) the set of functions f : S × T → C such that

(4) f(s, t) = 〈π1(s)ξ, π2(t)η〉
(
(s, t) ∈ S × T

)
,

where π1 (respectively, π2) defines a continuous ∗-representation of S (respectively,
T ) by bounded operators on some Hilbert space H and some vectors ξ, η ∈ H.

In the following result, F (S × T ) denotes the Fourier-Stieljes algebra of S × T
defined by Lau in [10].

Lemma 1.2. (i) For any two Hausdorff locally compact topological ∗-semigroups
S and T , F (S, T ) defines an algebra of bounded functions on S × T.

(ii) If f is as in (4) and both π1 and π2 are strongly continuous representations,
then f ∈ wap (S × T ).

(iii) F (S × T ) ⊆ F (S, T ).

Proof. The proof of (i) is clear. To prove (ii) we assume that there exist two
strongly continuous ∗-representations π1 of S and π2 of T by bounded operators on a
Hilbert space H such that for some vectors ξ, η ∈ H

f(s, t) = 〈π1(s)ξ, π2(t)η〉,
(
(s, t) ∈ S × T ).

We first show that f ∈ Cb(S×T ). To this end, we suppose that
(
(sα, tα)

)
α∈I

is a net
in S × T converging to (s, t) ∈ S × T.

Given ε > 0, by the strong continuity of π1 and π2 there exists α0 ∈ I such that
for all α ≥ α0

‖π1(sα)ξ − π1(s)ξ‖ < ε and ‖π2(tα)η − π2(t)η‖ < ε.

Then for all α ≥ α0
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|〈π1(sα)ξ, π2(tα)η〉 − 〈π1(s)ξ, π2(t)η〉|
≤ |〈π1(sα)ξ, π2(tα)η〉 − 〈π1(s)ξ, π2(tα)η〉|

+ |〈π1(s)ξ, π2(tα)η〉 − 〈π1(s)ξ, π2(t)η〉|
≤ ‖π1(σα)ξ − π1(s)ξ‖ ‖η‖+ ‖π2(tα)η − π2(t)η‖ ‖ξ‖
< ε(‖η‖+ ‖ξ‖).

Thus f is continuous on S×T. It is also clear that ‖f‖∞ ≤ ‖ξ‖ ‖η‖. So f ∈ Cb(S×T ).
To prove that f belongs to wap (S × T ) we define U : S × T → B(H ⊗ H) by

U(s,t)(ξ
′ ⊗ η′) = π1(s)ξ′ ⊗ π2(t)η′ (ξ′ ⊗ η′ ∈ H ⊗ H),

where H ⊗ H denotes the Hilbert space tensor product of H by itself. Since π1 and
π2 are weakly continuous and for every ξ′, ξ′′, η′, η′′ ∈ H, and (s, t) ∈ S × T

〈U(s,t)(ξ
′ ⊗ η′), ξ′′ ⊗ η′′〉 = 〈π1(s)ξ′, ξ′′〉 〈π2(t)η′, η′′〉,

we infer that I defines a weakly continuous ∗-representation of S × T by bounded
operators on H ⊗ H. So for every x ∈ H ⊗ H the set US×T (x) = {U(s,t)x : (s, t) ∈
S × T} is relatively weakly compact in H × H. Define

V : H ⊗ H → Cb(S × T ) by
(
V (ξ′ ⊗ η′)

)
(s, t) = 〈π1(s)ξ′, π2(t)η′〉

(ξ′⊗η′ ∈ H⊗H, (s, t) ∈ S×T ). Then V (ξ′⊗η′) ∈ Cb(S×T ) and ‖V (ξ′⊗η′)‖∞ ≤
‖ξ′‖ ‖η′‖. Thus V defines a bounded linear operator. So by Theorem V.3.15, p. 422 of
[5] V is continuous when H ⊗H and Cb(S×T ) have the weak topology. So V maps
weakly compact sets onto weakly compact sets. Since V

(
US×T (x)

)
= RS×T (V x), it

follows that RS×T (V x) is relatively weakly compact, for every x ∈ H⊗H). Therefore
f = V (ξ ⊗ η) ∈ wap (S × T ).

(iii) We only need to choose π2(t) = I (t ∈ T ), where I is the identity operator
on a Hilbert space and then applying Theorem 3.2 of [10].

Lemma 1.3. Let S be a foundation ∗ semigroup with an identity. Then every
weakly continuous ∗-representation of S by bounded operators on a Hilbert space is
strongly continuous.

Proof. Let π be a continuous ∗-representation of S by bounded operators on a
Hilbert space H. Then by Theorem 2.4 of [8] the equation

〈π̃(µ)ξ, η〉 =
∫

S
〈π(x)ξ, η〉dµ(x),

(
µ ∈ Ma(S), ξ, η ∈ H

)
defines a ∗-representation of the Banach ∗-algebra Ma(S) by bounded operators on H

such that π(x)Tµ=Tδx∗µ
(
x∈S, µ∈Ma(S)

)
. We claim that ξ∈{π̃(µ)ξ, µ∈Ma(S)}.
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Suppose that this is not the case, then there exists η ∈ H such that 〈ξ, η〉 = 0, but
〈π̃(µ)ξ, η〉 = 0 for all µ ∈ Ma(S). Thus

∫
S〈π(x)ξ, η〉dµ(x) = 0 for all µ ∈ Ma(S).

Since the mapping: S → C given by: x 
→ 〈π(x)ξ, η〉 is continuous on S, from
Lemma 2.2 of [8] we conclude that 〈π(x)ξ, η〉 = 0 for all x ∈ S. Since π(e) = I,
where I denotes the identity operator on H and e denotes the identity of S, it follows
that 〈ξ, η〉 = 0. This contradiction proves our claim. To prove the strong continuity of
π we suppose ξ ∈ H and ε > 0 are given. Then there exists µ ∈ Ma(S) such that
‖ξ − π̃(µ)ξ‖ < ε. Let x0 be fixed in S. Then by the norm continuity of the mapping:
x → δx ∗ µ from S into Ma(S) one can find a neighbourhood V of x0 such that
‖δx ∗ µ − δx0 ∗ µ‖ < ε for all x ∈ V. Thus

‖π(x)ξ − π(x0)ξ‖ ≤ ‖π(x)ξ − π(x)π̃(µ)(ξ)‖
+ ‖π(x)π̃(µ)ξ − π(x0)Tµξ‖

≤ ‖ξ − π̃(µ)ξ‖+ ‖π̃(δx ∗ µ)(ξ)− π̃(δx0 ∗ µ)(ξ)‖
≤ ε + ‖δx ∗ µ − δx0 ∗ µ‖ ‖ξ‖
< ε(1 + ‖ξ‖).

That is π is strongly continuous.

A combination of Lemmas 1.2 and 1.3 yields the following result.

Theorem 1.4. Let S and T be two foundation topological ∗-semigroups with
identities. Then F (S, T ) ⊆ wap (S × T ).

Before turning to the next lemma, we need to introduce the C∗-algebra C∗(S) of
a foundation ∗-semigroup S with an identity. To do this, we first recall that for any
foundation ∗-semigroup S with an identity the Banach ∗-algebra Ma(S) has a bounded
approximate identity (cf. [12] [Proposition 5.16]). Since by Theorem 2.4 of [8] the
equation

〈π̃(µ)ξ, η〉 =
∫

S
〈π(s)ξ, η〉dµ(s)

(
ξ, η ∈ H, µ ∈ Ma(S)

)
defines a one-to-one correspondence between the continuous non-degenerate ∗-repre-
sentations π of S by bounded operators on Hilbert spaces H and the ∗-representations
of the Banach ∗-algebra Ma(S), so if for every µ ∈ Ma(S) we let ‖µ‖′ to denote the
supremum of all ‖π̃(µ)‖ where π is a continuous non-degenerate ∗-representation of S
by bounded operators on some Hilbert space, then we have

‖µ ∗ µ∗‖′ = ‖µ‖′2 and ‖µ‖′ ≤ ‖µ‖ for every µ ∈ Ma(S).

Putting I0 = {µ ∈ Ma(S) : ‖µ‖′ = 0}, then I0 defines a closed ideal of Ma(S). The
completion of Ma(S)/I0 with respect to ‖ · ‖′ defines a C∗-algebra which we denote
it by C∗(S). Indeed, C∗(S) is the enveloping C∗-algebra of Ma(S) (cf. 2.7.2 of [4]).
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Remark 1.5. For the rest of this paper if S is any commutative foundation ∗-
semigroup S with an identity then for every µ ∈ Ma(S) we shall denote µ̃

∣∣
S∗ again

by µ̂.

Lemma 1.6. Let S be a commutative foundation ∗-semigroup with an identity.
Then for every µ ∈ Ma(S), ‖µ‖′ = ‖µ̂‖∞ = sup {|µ̂(x)| : χ ∈ S∗}. Furthermore,
C∗(S) ≈ C0(S∗).

Proof. Let π be a non-degenerate continuous ∗-representation of S by operators
on a Hilbert space H . Then A the closure of {π̃(µ) : µ ∈ Ma(S)} in B(H) defines
a commutative C∗-algebra. Let σ(A) denote the maximal ideal space of A. For every
τ ∈ σ(A) we define τ̃ on Ma(S) by τ̃(µ) = τ

(
π̃(µ)

) (
µ ∈ Ma(S)

)
. So |τ̃(µ)| ≤

‖π(µ)‖ ≤ ‖µ‖. Thus τ̃ ∈ σ
(
Ma(S)

)
. Moreover, τ̃(µ∗) = τ(µ)

(
µ ∈ Ma(S)

)
. That is

τ̃ is a ∗-homorphism on Ma(S). Define χτ by χτ (x) = τ (ν∗δx)
τ (ν) (x ∈ S), where ν is

some measure in Ma(S) with τ(ν) = 0. Then

χτ (x∗) =
τ(ν ∗ δx∗)

τ(ν)
=

τ(ν∗ ∗ δx)
τ(ν∗)

= χτ (x) (x ∈ S).

That is χτ̃ ∈ S∗, by Theorem 2.5.3 of [6]. For every µ ∈ Ma(S)

‖π̃(µ)‖ = sup
{∣∣τ(

π̃(µ)
)∣∣ : τ ∈ Â

}
= sup

{∣∣τ̃(µ)
∣∣ : µ ∈ Ma(S)

}
= sup

{∣∣ ∫
S

χτ̃ (x)dµ(x)
∣∣ : µ ∈ Ma(S)

}
≤ sup

{∣∣µ̂(χ)
∣∣ : x ∈ S∗}

= ‖µ̂|∞.

Thus ‖µ‖′ ≤ ‖µ̂‖∞. Now the equality of ‖µ‖′ = ‖µ̂‖∞ follows from Corol-
lary 1.2.5 of [11]. That is C∗(S) ≈ C0(Ŝ).

Lemma 1.7. Let S be a commutative foundation ∗-semigroup with an identity e.

Suppose that U is a compact neighbourhood base of e. Then the following are valid:

(i) For every U ∈ U and every ε ∈ (0, 1) the set

Ûε = {χ ∈ S∗ : |χ(x)− 1| < ε for all x ∈ U}
is open in S∗.

(ii) For every ε ∈ (0, 1),
S∗ = ∪{Ûε : U ∈ U}.
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Proof. (i) Let U ∈ U , ε ∈ (0, 1) and χ0 ∈ Ûε. Put δ = inf {ε − |χ0(x)− 1| : x ∈
U}. Since U is compact, it follows that δ > 0. It is easy to see that the neighbourhood
{χ ∈ S∗ : |χ(x) − χ0(x)| < ε for all x ∈ U} of χ0 is contained in Ûε.

(ii) Let χ0 ∈ S∗ and ε ∈ (0, 1), then from the continuity of χ0 at e it follows that
{x ∈ S : |χ0(x) − 1| < ε} is a neighbourhood of e and therefore it contains some
U ∈ U . Thus χ0 ∈ Ũε. This completes the proof of (ii).

Definition 1.8. Let S and T be two commutative foundation ∗-semigroups with
identities. For every u ∈ BM(S∗, T ∗) we define û : S × T → C by

(7) û(s, t) = 〈s̃ ⊗ t̃, u〉 (
(s, t) ∈ S × T

)
,

where s̃ : S∗ → C and t̃ : T → C are given by s̃(χ) = χ(s) (χ ∈ S∗) and t̃(γ) = γ(t)
(γ ∈ T ∗). From (3) and (2) it follows that (7) makes sense and

‖û‖∞ ≤ KG‖u‖BM

(
u ∈ BM(S∗, T ∗)

)
.

We are now in a position to prove the first main result of the paper.

Theorem 1.9. Let S and T be two commutative foundation ∗-semigroups with
identities eS and eT , respectively. Then the following properties are valid:
(i) If u ∈ BM(S∗, T ∗), then û ∈ F(S, T ).

(ii) If f ∈ F(S, T ), then there exists a unique u ∈ BM(S ∗, T ∗) such that f = û.

(iii) If f ∈ F(S, T ) is represented as in (4) and u ∈ BM(S ∗, T ∗) is such that f = û,
then ‖u‖BM ≤ ‖ξ‖ ‖η‖.

Proof. (i) We may assume that u = 0. Let λ1, λ2 be the Grothendieck measure
pair for u. For every h ∈ L2(S∗, λ1) and g ∈ L2(T ∗, λ2) we have

|〈h ⊗ g, u〉| ≤ KG‖h‖2‖g‖2.

So there is an operator θ : L2(S∗, λ1) → L2(T ∗, λ2) such that for every h ∈ L2(S∗, λ1)
and g ∈ L2(T ∗, λ2)

〈h ⊗ g, u〉 = 〈θh, g〉.
Define π1 : S → B1

(
L2(S∗, λ1)

)
by π1(s)h = s̃h

(
h ∈ L2(S∗, λ1)

)
and π2 : T →

B1

(
L2(T ∗, λ2)

)
by π2(t)g = t̃∗g

(
g ∈ L2(T ∗, λ2)

)
. By Proposition 4.4 of [2] π1 and

π2 define continuous ∗-representations of S and T, respectively. Furthermore, for every
(s, t) ∈ S × T

û(s, t) = 〈s̃ ⊗ t̃, u〉 = 〈θ(s̃), t̃∗〉 = 〈θ(π(s)1S, π2(t)1T 〉,
where 1S and 1T denote the functions which are identically one on S and T, respec-
tively. Let H = L2(S∗, λ1)⊕L2(T ∗, λ2) and let θ̃ denote the extension of θ to H with
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the matrix
(0 0
θ 0

)
. Let C = ‖θ̃‖ and W be a unitary dilation of C−1 θ̃ on the Hilbert

space H1 containing H (cf. p. 16 of [13]). Writing

H1 = L2(S∗, λ1)⊕ L2(T ∗, λ2) ⊕ H⊥,

and putting π ′
1 = π1 ⊕ I ⊕ I, π′

2 = W ∗(I ⊕ π2 ⊕ I)W, ξ = (C · 1S, 0, 0) and
η = W ∗(0, 1T , 0), then in H1 we have

û(s, t) = 〈CW
(
π1(s)1S, 0, 0

)
,
(
0, π2(t)1T , 0

)〉
= 〈C(

π1(s)1S , 0, 0
)
, W ∗(0, π2(t)1T , 0

)〉
= 〈π′

1(s)ξ, π
′
2(t)η〉

(
(s, t) ∈ S × T

)
.

That is; û ∈ F(S, T ).
(ii) - (iii). Let f ∈ F(S, T ). Then there exist two continuous ∗-representations π1

of S and π2 of T by bounded operators on some Hilbert space H such that for some
vectors ξ, η ∈ H

f(s, t) = 〈π1(s)ξ, π2(t)η〉,
(
(s, t) ∈ S × T

)
.

For every µ ∈ Ma(S) and ν ∈ Ma(T ) we define

〈µ̂ ⊗ ν̂, u〉 =
∫

S

∫
T
〈π1(s)ξ, π2(t)η〉dµ(s)dν(t).

Thus by Lemma 1.6

|〈µ̂ ⊗ ν̂, u〉| =
∣∣∣ ∫

S

∫
T
〈π1(s)ξ, π2(t)η〉dµ(s)dν(t)

∣∣∣
=

∣∣∣〈∫
S

π1(s)ξdµ(s),
∫

T
π2(t)ηdν(t)〉

∣∣∣
= |〈π̃(µ)ξ, π̃2(ν)η〉|
≤ ‖π̃(µ)‖ ‖π̃2(ν)‖ ‖ξ‖ ‖η‖
≤ ‖µ‖′ ‖ν‖′ ‖ξ‖ ‖η‖
= ‖µ̂‖∞‖ν̂‖∞‖ξ‖ ‖η‖.

Using the fact that {µ̂ : µ ∈ Ma(S)} is dense in C0(S∗) and {ν̂ : ν ∈ Ma(T )} is
dense in C0(T ∗), one can extend u (uniquely) to a bimeasure on S∗× T ∗ which again
we denote it by u such that

‖u‖BM ≤ ‖ξ‖ ‖η‖.
This yielding (iii) once (ii) is proven.
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Now we extend u to L∞(S∗, λ1)⊗̂L∞(T ∗, λ2) so that it satisfies the inequality
(3). We prove that f = û. To see this we choose fixed compact neighbourhood bases
U and V of eS and eT , respectively. The collection U ×V = {U ×V : U ∈ U , V ∈ V}
with the order inclusion form a directed set (i.e. for U1 × V1 and U2 × V2 in U × V ,
U1 × V1 ≤ U2 × V2 if U! ⊇ U2 and V1 ⊇ V2). For every U × V ∈ U × V we choose
positive measures µU×V in Ma(S) and νU×V in Ma(T ) such that

µU×V (S\U) = 0, νU×V (T\V ) = 0 and ‖µU×V ‖ = 1 = ‖νU×V ‖.

For every fixed (s0, t0) ∈ S × T and every two compact subsets F of S∗ and K of
T ∗ we prove that ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0 → s̃0 × t̃0 uniformly on F ×K. To prove
this we suppose that 0 < ε < 1 is given. Then by Lemma 1.7 we can find U 0 ×V 0 in
U ×V such that F ⊆ Û0

(ε) and K ⊆ V̂ 0
(ε). Now for all (U × V ) ≥ U0 × V 0 and every

χ ∈ F and γ ∈ K we have

| ̂µU×V ∗ δs0(χ) ̂νU×V ∗ δt0(γ)− s̃0(χ)t̃0(γ)|
=

∣∣∣ ∫
S

χ(s)dµU×V ∗ δs0(s)
∫

T
γ(t)dνU×V ∗ δt0(t) − χ(s0)γ(t0)

∣∣∣
=

∣∣∣ ∫
S

∫
T
[χ(ss0)γ(tt0) − χ(s0)γ(t0)]dµU×V (s)dνU×V (t)

∣∣
≤

∫
U

∫
V

|χ(s)γ(t)− 1|dµU×V (s)dνU×V (t)

<

∫
U

∫
V

2εdµU×V (s)dνU×V (t)

= 2ε.

That is ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0 converges uniformly on F × K to s̃0 ⊗ t̃0. Let
ξ′, ν′ ∈ H and g(s, t) = 〈π1(s)ξ′, π2(t)η′〉 for every (s, t) ∈ S × T. By Theorem 1.4,
g is continuous at (eS, eT ). So for every ε > 0 there exists U1 ×V1 ∈ U ×V such that

(5) |g(s, t)− g(eS, eT )| < ε
(
(s, t) ∈ U1 × V1

)
.

For all U × V ≥ U1 × V1 by (5) we have
∣∣∣ ∫

S

∫
T
〈π1(s)ξ′, π2(t)η′〉dµU×V (s)dνU×V (t) − 〈ξ′, η′〉

∣∣∣
=

∣∣ ∫
U

∫
V

(
π1(s)ξ′, π2(t)η′〉 − 〈ξ′, η′〉)dµU×V (s)dνU×V (t)

∣∣∣
≤

∫
U

∫
V

|g(s, t)− g(eS, eT )|dµU×V (s)dνU×V (t)

< ε.
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Thus for every ξ′, η′ ∈ H

(6) lim
U×V

∫
S

∫
T

〈π1(s)ξ′, π2(t)η′〉dµU×V (s)dνU×V (t) = 〈ξ′, η′〉.

Suppose ε > 0 is given, then as in the proof of Lemma 1.4 of [7] we can find a
bimeasure w in BM(S∗, T ∗) and two compact subsets F0 ⊆ S∗ and K0 ⊆ T ∗ such
that

(7) supp (w) ⊆ F0 × K0 and ‖u − w‖B < ε.

Since ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0 converging uniformly on F0 × K0 to s̃0 × t̃0, there
exists U1 × V1 ∈ U × V such that for all U × V ≥ U1 × V1,

(8) ‖ ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0 − s̃0 ⊗ t̃0‖F0×K0 < ε,

where ‖ ‖F0×K0 denotes the sup-norm on F0 × K0.
Thus for all U × V ≥ V0 × V0

|〈u, s̃0 ⊗ t̃0〉 − 〈u, ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0〉|
≤ |〈(u− w), (s̃0 × t̃0 − ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0)〉|

+ |〈w, (s̃0 × t̃0 − ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0)〉|
< ‖u − w‖BM‖s̃0 × t̃0 − ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0‖∞

+ ‖w‖BM‖s̃0 × t̃0 − ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0‖F0×K0

< 2‖u− w‖BM + ε‖w‖BM

< ε(2 + ‖w‖BM),

by (7) and (8). That is

(9) lim
U×V

〈u, ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0〉 = 〈u, s̃0 ⊗ t̃0〉.

On the other hand an application of (6) shows that

(10)

lim
U×V

〈u, ̂µU×V ∗ δs0 ⊗ ̂νU×V ∗ δt0〉

= lim
U×V

∫
S

∫
T
〈π1(s)ξ, π2(t)η〉dµU×V ∗ δs0(s)dνU×V ∗ δt0(t)

= lim
U×V

∫
S

∫
T
〈π1(ss0)ξ, π2(tt0)η〉dµU×V (s)dνU×V (t)

= lim
U×V

∫
S

∫
T

〈π1(s)
(
π(s0)ξ

)
, π2(t)

(
π2(t0)η

)〉dµU×V (s)dνU×V (t)

= 〈π1(s0)ξ, π2(t0)η〉.
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From (9) and (10) it follows that

〈u, s̃0 ⊗ t̃0〉 = f(s0, t0).

Since (s0, t0) was an arbitrary element of S × T, we conclude that

û(s, t) = f(s, t)
(
(s, t) ∈ S × T

)
.

To prove the uniqueness part of theorem, we suppose that û1 = û2 for some
u1, u2 ∈ BM(S∗, T ∗). Let λ11, λ12 be the Grothendieck measure pair for ui (i = 1, 2).
Put λi = 1

2 (λ1i + λ2i) (i = 1, 2). It is easy to see that

L2(S∗, λ1) = L2(S∗, λ11) ∩ L2(S∗, λ21),

and
L2(T ∗, λ2) = L2(T ∗, λ12) ∩ L2(T ∗, λ22).

Let 〈s̃, s ∈ S〉 denote the subalgebra of Cb(S∗) generated by the set {s̃ : s ∈ S}.
Then by Corollary A.4, p. 175 of [6], 〈s̃ = s ∈ S〉 is dense in L2(S∗, λ1). Similarly,
〈t̃ : t ∈ T 〉 is dense in L2(T ∗, λ2). So u1 = u2 on L2(S∗, λ1)⊗̂L2(T ∗, λ2). In
particular, u1 = u2 on C0(S∗)⊗̂C0(T ∗). This completes the proof.

We shall define in the next theorem the measure algebra structure BM(S∗, T ∗)
extending the measure algebra structure of M(S∗×T ∗) when S and T are commutative.

Theorem 1.10. Let S and T be two commutative foundation ∗-semigroups with
identities. For every u, v ∈ BM(S ∗, T ∗) let u ∗ v ∈ BM(S∗, T ∗) be defined by
(u ∗ v)̂ = û v̂. Then

(
BM(S∗, T ∗), ∗) defines a commutative convolution Banach

algebra with
‖u ∗ v‖BM ≤ K2

G‖u‖BM‖v‖BM .

Moreover, M(S∗ × T ∗) is a subalgebra of BM(S ∗, T ∗).

Proof. For u ∈ BM(S∗, T ∗), let λ1, λ2 be Grothendieck pair measures for u.
Let θ, π′

1, π
′
2, ξ, w and C be as in the proof of Theorem 1.8. Using (1) and (2) we

conclude that for every h ∈ C0(S∗) and g ∈ C0(T ∗)

|〈θh, g〉| = |〈h ⊗ g, u〉| ≤ KG‖u‖BM‖h‖2‖g‖2.

Thus ‖θ‖ ≤ KG‖u‖BM . Therefore ‖ξ‖ = |C| = ‖θ‖ ≤ KG‖u‖BM . Since

‖η‖ = ‖W ∗‖ ≤ 1 and u(s̃ ⊗ t̃) = 〈π′
1(s)ξ, π

′
2(t)η〉

(
(s, t) ∈ S × T

)
,

we infer that

(11) ‖u‖BM ≤ ‖ξ‖ ‖η‖ ≤ KG‖u‖BM .
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Let v ∈ BM(S∗, T ∗). So there exist a continuous ∗-representation π′′
1 of S (π′′

2 of T ,
respectively) by operators on a Hilbert space H1 (H2, respectively) such that for some
vector ξ′′ ∈ H1(η′′ ∈ H2, respectively)

(s̃ ⊗ t̃, v) = 〈π′′
1(s)ξ′′, π′′

2(t)η′′〉 (
(s, t) ∈ S × T

)
.

Applying (11) to v we obtain

(12) ‖v‖BM ≤ ‖ξ′′‖ ‖η′′‖ ≤ KG‖v‖BM .

So for every (s, t) ∈ S × T

(13)

〈s̃ ⊗ t̃, u ∗ v〉 = û(s, t)v̂(s, t)

= 〈π′
1(s)ξ, π

′
2(t)η〉 〈π′′

1(s)ξ′′, π′′(t)η′′〉
= 〈(π′

1 ⊗ π′′
1 )(s)(ξ ⊗ ξ′′), (π′

2 ⊗ π′′
2)(t)(η ⊗ η′′)〉,

with ξ ⊗ ξ ′′, η ⊗ η′′ ∈ H1 ⊗ H2. Using (11), (12) and (13), we obtain

‖u ∗ v‖BM ≤ ‖ξ ⊗ ξ′′‖ ‖η ⊗ η′′‖
= (‖ξ‖ ‖η‖)(‖ξ′′⊗ η′′‖)
≤ K2

G‖u‖BM‖v‖BM .

To show that the algebra structure of BM(S∗, T ∗) extends the algebra structure of
M(S∗ × T ∗), we first note that since S, T are foundation ∗-semigroups with identity,
then both S∗ and T ∗ define locally compact topological ∗-semigroups under the compact
open topology and the pointwise multiplcation.

Identifying S∗ × T ∗ with (S × T )∗ and noting that S × T defines a foundation
∗-semigroup with identity, whenever endowed with the compact open topology (cf.
[1]), we conclude that M(S ∗ × T ∗) ≈ M

(
(S × T )∗

)
. Using our version of Bochner’s

Theorem in [9] with the aid of Lemma 1.6 and Proposition 3.4 of [10] we conclude that
F (S×T ) is isometric isomorphic with M(S∗×T ∗). Since M(S∗×T ∗) is a subalgebra
of BM(S∗, T ∗), we infer that F (S ×T ) is indeed a subalgebra of BM(S∗, T ∗). This
completes the proof of the theorem.

2. AMENABILITY OF F (S, T ) OF TWO COMMUTATIVE FOUNDATION

∗-SEMIGROUP S AND T

The aim of the present section is to prove that for any two commutative foundation
∗-semigroups S and T with identities, the algebra F (S, T ) as a subalgebra of B(S×T )
(the space of all bounded complex-valued functions on S ×T ) is amenable if and only
if K

(
σ(F (S, T ))

)
is a compact topological group, where K

(
σ(F (S, T ))

)
denotes the

minimal ideal of σ(F (S, T ))
)
. We first need to recall some notation form [3].
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Definition 2.1. Let S be a semigroup and F be a linear subspace of B(S), the
space of all bounded complex-valued factions on S. A mean of F is a linear function
µ on F with the property that

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s) (f ∈ Fr),

where Fr denotes the set of all real-valued functions in F . The set all means of F is
denoted by M(F ). If F is an algebra then µ ∈ M(F ) is called multiplicative if

µ(fg) = µ(f)µ(g) (f, g ∈ F).

The set of all multiplicative means on F is called the spectrum of F and will be
denoted by σ(F ).

Definition 2.2. A subset F ⊆ B(S) is called right (respectively, left) translation
invariant if rsf ∈ F (respectively, �sf ∈ F) for every s ∈ S and f ∈ F . If F is
both left translation invariant and right translation invariant, then it is called translation
invariant.

Definition 2.3. For a translation invariant linear subspace F of B(S) and µ ∈ F ∗,
the left introversion operator determined by µ is the mapping T µ : F → B(S) defined
by

(Tµf)(s) = µ(�sf) (f ∈ F , s ∈ S).

The right introversion operator determined by µ is the mapping U µ : F → B(S)
defined by

(Uµf)(s) = µ(rsf) (f ∈ F , s ∈ S).

Definition 2.4. Let F be a conjugate closed, translation invariant, linear subspace
(respectively, subalgebra) of B(S) containing the constant functions. F is said to be left
introverted (respectively, left m-introverted) if TµF ⊆ F for µ ∈ M(F ) [respectively,
µ ∈ σ(F )]. Right introversion and right m-introversion are defined similarly. F is
said to be introverted (respectively, m-introverted) if is both left and right introverted
(respectively, left and right m-introverted).

Definition 2.5. An admissible subspace of B(S) is a norm closed, conjugate
closed, translation invariant, left introverted subspace of B(S) containing the constant
functions. An m-admissible subalgebra of B(S) is a translation invariant, left m-
introverted C∗-subalgebra of B(S) containing the constant functions.

Definition 2.6. Let F be a left (respectively, right) translation invariant, conjugate
closed, linear subspace of B(S) containing the constant functions. A member µ of
F ∗ is said to be left (respectively, right) invariant if, µ(�sf) = µ(f) [respectively,
µ(rsf) = µ(f)] for all s ∈ S and all f ∈ F . F is said to be left (respectively, right)
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amenable, if it has a left (respectively, right) invariant mean. If F is translation
invariant, then F is called amenable if it is both left and right amenable.

The following is the first result of this section.

Lemma 2.1. Let S and T be commutative foundation ∗-semigroups with identities.
Then F (S, T ) is a conjugation closed and translation invariant subalgebra of wap (S×
T ) which also contains the constant functions. Furthermore, ‖� (s,t)f‖BM ≤ ‖f‖BM

for every (s, t) ∈ S × T, and ‖f‖∞ ≤ ‖f‖BM for all f ∈ F(S, T ).

Proof. By Lemma 1.2, F (S, T ) is a subalgebra of wap (S×T ). Let f ∈ F(S, T )
and uf be the unique element in BM(S ∗, T ∗) such that f = ûf . That is f(s, t) =
〈t̃ ⊗ s̃, uf〉

(
(s, t) ∈ S × T

)
. Let ũf denote the bimeasure defined on S∗ × T ∗ by

ũf(g, h) = uf (h, g)
(
g ∈ C0(S∗), h ∈ C0(T ∗)

)
. Then there exist two continuous ∗-

representations π1 on S and π2 of T by bounded operators on a Hilbert space H with
some two vectors ξ, η ∈ H such that 〈t̃ ⊗ s̃, ũg〉 = 〈π1(t)ξ, π2(s)η〉

(
(s, t) ∈ S × T

)
.

Thus,
f(s, t) = 〈s̃ ⊗ t̃, uf〉 = 〈t̃ ⊗ s̃, ũf〉

= 〈π1(t)ξ, π2(s)η〉
(
(s, t) ∈ S × T

)
.

So f(s, t) = 〈π2(s)η, π1(t)ξ〉
(
(s, t) ∈ S × T

)
. Thus f ∈ F(S, T ). It is also clear that

F (S, T ) is translation invariant. Since F (S×T ) ⊆ F (S, T ), from Theorem 3.2 of [10]
it follows that F (S, T ) contains the constant functions. It is also clear that F (S, T )
is translation invariant. Let (s0, t0) ∈ S × T by fixed. Since ‖(s̃0g) ⊗ t̃0h‖∞ ≤
‖g‖∞‖h‖∞ for every g ∈ C0(S∗) and h ∈ C0(T ∗), it follows that ‖(s̃0 ⊗ t̃0)k‖V0 ≤
‖k‖V0 for every k ∈ V0(S, T ). Thus ‖�(s0,t0)f‖BM ≤ ‖f‖BM for every f ∈ F(S, T ).
To see that ‖f‖∞ ≤ ‖f‖BM for every f ∈ F(S, T ), we first note that if u is any
bimeasure on S∗×T ∗ with compact support, then for every (s, t) ∈ S×T the function
s̃⊗t̃ agrees on support of u with a function g⊗h in V0(S∗, T ∗) with ‖g⊗h‖∞ ≤ 1. Thus
|û(s̃ ⊗ t̃)| ≤ ‖u‖BM . So ‖û‖∞ ≤ ‖u‖BM . Let w be any bimeasure in BM(S∗, T ∗).
Given ε > 0, by Lemma 1.4 of [7] there exists a bimeasure w in BM(S∗, T ∗) with
compact support such that ‖w − u‖BM < ε. Hence ‖u‖BM ≤ ‖u − w‖BM + ‖w‖B.
So

‖ŵ‖∞ ≤ ‖ŵ − u‖∞ + ‖û‖∞ ≤ KG‖w − u‖BM + ‖u‖BM

< (KG + 1)‖w − u‖BM + ‖w‖B

< (KG + 1)ε + ‖w‖BM .

Letting ε → 0, we conclude that ‖ŵ‖∞ ≤ ‖w‖BM . That is ‖f‖∞ ≤ ‖f‖BM for every
f ∈ F(S, T ).

We close this paper with the following theorem which characterizes the amenability
of F (S, T ) as a subalgebra of B(S ×T ) of two commutative foundation ∗-semigroups
S and T with identities.
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Theorem 2.8. Let S and T be two commutative foundation ∗-semigroups with
identities. Let F (S, T ) denotes the sup-norm closure of F (S, T ) in wap (S × T ).
Then F (S, T ) is an m-admissible subalgebra of wap (S × T ). Moreover, F (S, T ) is
amenable and K

(
σ(F (S, T )

)
is a topological group, where K

(
σ(F (S, T )

)
denotes

the minimal ideal of σ(F (S, T )
)
.

Proof. By Lemma 2.7, F (S, T ) is a conjugation closed and translation invariant
subalgebra of wap (S×T ). Since BM(S∗, T ∗) is commutative, so is amenable. Hence
F (S, T ) is amenable. Let m be an invariant mean on F (S, T ). By the Hahn-Banach
theorem we can extend m to a mean m̃ on F (S, T ). It is clear that m̃ defines an
invariant mean on F (S, T ). So F (S, T ) is amenable. Clearly, F (S, T ) is a norm
closed, conjugate closed and translation invariant subalgebra of wap (S × T ) which
also contains the constant functions. By Corollary 4.2.7 of [3] it is introverted and
hence is an m-admissible subalgebra of wap (S × T ). So by Theorem 4.2.12 of [3]
K

(
σ(F (S, T ))

)
is a compact topological group.
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