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EXISTENCE OF EQUILIBRIA IN COMPLETE METRIC SPACES

A. Amini-Harandi, Q. H. Ansari and A. P. Farajzadeh

Abstract. In this paper, we establish equilibrium version of Ekeland’s varia-
tional principle without assuming any kind of semicontinuity of the bifunction
involved in the formulation of the principle. By using such principle, we
derive some existence results for a solution of equilibrium problems with or
without compactness assumption on the underlying set. A coercivity condition
is introduced to obtain a solution of an equilibrium problem for noncompact
case. Our results extend and improve several known results in the literature.

1. INTRODUCTION

By an equilibrium problem, we understand the problem of finding

(EP) f(x̄, y) ≥ 0, ∀y ∈ K,

where X is a given set, D ⊆ X a nonempty set and f : D × D → R is a given
functions. In the recent past, (EP) is among the most interesting and intensively
studied classes of problems. It includes fundamental mathematical problems, for
instance, optimization problem, Nash equilibrium problem, fixed point problems,
variational inequality problems, minimax inequalities and complementarity prob-
lems. It is studied in several papers, among others we quote Brézis et al. [6],
Bianchi and Pini [3], Bianchi et al. [2] and Kas et al. [8]. The convexity of the
underlying set D and generalized convexity and monotonicity together with some
weak continuity assumptions on f are the most used assumptions in dealing with
equilibrium problems; see, for example, [3, 4, 7] and references therein. Blum and
Oettli [5] and Oettli and Th éra [9] proved the existence of a solution of (EP) by
using Ekeland’s variational principle but without any kind of convexity assumption.
Recently, Bianchi et al. [2] extended Ekeland’s variational principle for equilibrium-
type bifunctions and obtained some existence results for equilibria on compact sets
or noncompact case together with a coercivity condition in reflexive Banach spaces.
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In section 2, we establish equilibrium version of Ekeland’s variational princi-
ple without assuming any kind of semicontinuity of the bifunction involved in the
formulation of the principle. We also provide an example which shows that our
result is an improvement of Theorem 2.1 in [2]. By using such principle, we derive
some existence results for a solution of equilibrium problem under compactness
assumption on the underlying set. In section 3, we introduce a coercivity condition
and obtain an existence result for a solution of equilibrium problem for noncompact
case. Our results extend and improve several known results in the literature.

2. EXISTENCE RESULTS FOR EQUILIBRIA ON COMPACT SETS

The Ekeland’s variational principle has been widely used in nonlinear analysis
since it entails the existence of approximate solutions of a minimization problem
for lower semicontinuous functions on a complete metric spaces. Bianchi et al.
[2] extended Ekeland’s theorem to the setting of equilibrium problem involving a
bifunction f defined on D × D where D is a closed subset of a reflexive Banach
space. By modifying the technique of [2], we establish the following equilibrium
version of Ekeland’s variational principle without assuming lower semicontinuity of
the function f(x, ·) for each fixed x ∈ D.

Theorem 2.1. Let D be a nonempty closed subset of a complete metric space
(M, d) and f : D × D → R be a bifunction. Assume that ε > 0 and the following
assumptions are satisfied:

(i) lev≤0f(x, .)+ εd(x, .) := {y ∈ D : f(x, y)+ εd(x, y) ≤ 0} is closed, for all
x ∈ D;

(ii) f(t, t) = 0, for all t ∈ D;

(iii) f(z, x) ≤ f(z, y) + f(y, x), for all x, y, z ∈ D.

If inf
y∈D

f(x0, y) > −∞ for some x0 ∈ D, then there exists x̄ ∈ D such that

{
f(x0, x̄) + εd(x0, x̄) ≤ 0,

f(x̄, x) + εd(x̄, x) > 0, ∀x ∈ D, x �= x̄.

Proof. Without loss of generality, we can restrict the proof to the case ε = 1.
We define F : D → 2D as follows

F (x) = {y ∈ D : f(x, y) + d(x, y) ≤ 0}.

By (ii), x ∈ F (x), and by (i), F (x) is closed for every x ∈ D. It is easy to see, from
(iii), that if y ∈ F (x), then F (y) ⊂ F (x). Now we show that there is a sequence
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{xn} of D such that

xn+1 ∈ F (xn), f(xn, xn+1) < inf
z∈F (xn)

f(xn, z) +
1

n + 1
, ∀n ≥ 0.

Indeed, let v(x0) = inf
z∈F (x0)

f(x0, z) > −∞. Hence, there exists x1 ∈ F (x0) such

that f(x0, x1) < v(x0) + 1
1 . From x1 ∈ F (x0) and (iii), we have

inf
z∈F (x1)

f(x1, z) ≥ inf
z∈F (x1)

f(x0, z)− f(x0, x1) ≥ v(x0) − f(x0, x1) > −∞.

If we let v(x1) = inf
z∈F (x1)

f(x1, z), then there exists x2 ∈ F (x1) such that f(x1, x2) <

v(x1) + 1
2 and so (iii) implies that

v(x2) = inf
z∈F (x2)

f(x2, z) ≥ inf
z∈F (x2)

f(x1, z)− f(x1, x2) ≥ v(x1) − f(x1, x2).

Continuing this process, we obtain a sequence {xn} such that

xn+1 ∈ F (xn), f(xn, xn+1) < v(xn) +
1

n + 1
,

v(xn+1) ≥ v(xn) − f(xn, xn+1), ∀n ≥ 0,

which imply that

−v(xn) ≤ −f(xn, xn+1) +
1

n + 1
≤ v(xn+1)− v(xn) +

1
n + 1

.

Consequently, by the above inequality,

(2.1) v(xn+1) +
1

n + 1
≥ 0, ∀n ≥ 0.

Now if z1, z2 ∈ F (xn), then

d(z1, z2) ≤ d(xn, z1) + d(xn, z2) ≤ −f(xn, z1) − f(xn, z2) ≤ −2v(xn).

Hence, the diameter of F (xn), diamF (xn) ≤ −2v(xn). Thus, by (2.1), diamF (xn)
→ 0 if n → ∞. This, F (xn) being closed, and F (xn+1) ⊆ F (xn) for every n ≥ 0
imply that ⋂

n≥0

F (xn) = {x̄}.

Therefore F (x̄) ⊂ F (xn), for every n ≥ 0, and hence since x̄ ∈ F (x̄) we have
F (x̄) = {x̄} and F (x̄) ⊆ F (x0) and so the proof is completed.
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Remark 2.1. If for each fixed x ∈ D, the function f(x, .), as a mapping on
D, is lower semicontinuous, then condition (i) of Theorem 2.1, for all ε > 0, holds.
This follows from the fact that the sum of two lower semicontinuous function is
lower semicontinuous function again.

The following example shows that the converse of Remark 2.1 need not be true
in general. Therefore, Theorem 2.1 improves Theorem 2.1 in [2].

Example 2.1. Let D = [0,∞) and f : D × D → R defined as follows

f(x, y) =

{
0, if (x, y) ∈ {0} × D or x = y

1, otherwise.

It is easy to check that f satisfies all of the assumptions of Theorem 2.1 for ε > 0,
but f(x, .) is not lower semicontinuous at x = 0.

The following example shows that condition (iii) of Theorem 2.1 cannot be
omitted.

Example 2.2. Let D = [0, 1] and f : D × D → R defined by f(x, y) =
−1

3

√|x − y|. If in Theorem 2.1 we let ε = 1
2 , then f satisfies all the assumptions

of Theorem 2.1 except (iii), but the conclusion of Theorem 2.1 does not hold.

As applications of Theorem 2.1, we derive the following corollaries.

Corollary 2.1. If the following condition

(iv) For every x ∈ K with inf
y∈D

f(x, y) < 0 there exists z ∈ D such that z �= x

and f(x, z) + εd(x, z) ≤ 0,

together with the assumptions of Theorem 2.1 are satisfied, then the solution set of
(EP) is nonempty, that is, there exists x̄ ∈ D such that f(x̄, y) ≥ 0, for all y ∈ D.

Proof. By Theorem 2.1, there exists x̄ ∈ D such that

(2.2) f(x̄, y) + εd(x̄, y) > 0, ∀y ∈ D, y �= x̄.

We claim that x̄ is a solution of (EP). Otherwise, there exists y ∈ D such that
f(x̄, y) < 0. From assumption (iv), we obtain z ∈ D with z �= x̄ and f(x, z) +
εd(x, z) ≤ 0 which contradicts (2.2).

The following corollary guarantees the existence of a solution of the minimiza-
tion problem for a lower bounded function on a closed set.
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Corollary 2.2. Let D be a nonempty closed subset of a complete metric space
(M, d), φ : D → R be a lower bounded real function and the set {y ∈ D :
φ(y) + εd(x, y) ≤ φ(x)} be closed for all x ∈ D and for some ε > 0. If for
every x ∈ D with inf

y∈D
(φ(y) − φ(x)) < 0, there exists z ∈ D such that z �= x and

φ(z) + εd(x, z) ≤ φ(x), then there exists x̄ ∈ D such that φ(x̄) ≤ φ(y) for all
y ∈ D.

Proof. Define f : D × D → R as

f(x, y) = φ(y)− φ(x), ∀x, y ∈ D.

Then f satisfies all of the assumptions of Corollary 2.1. So, there exists x̄ ∈ D

such that f(x̄, y) ≥ 0, for all y ∈ D.

Remark 2.2. Let D be a nonempty set and f : D × D → R be a real func-
tion which satisfies assumptions (ii) and (iii) of Theorem 2.1. If for x0 ∈ D,
inf
y∈D

f(x0, y) ≥ 0, then for every ε > 0, there exists xε ∈ D such that

{
f(x0, xε) + εδ(x0, xε) ≤ 0,

f(xε, x) + ε ≥ 0, ∀x ∈ D,

where δ(x, y) = 0, if x = y; otherwise δ(x, y) = 1.

This fact (slightly) leads us to consider equilibrium problems on arbitrary sets
together with properties on functions instead of topologically or linearity properties
on the domains of functions.

Remark 2.3. Let {tn} be a sequence of positive real numbers which is bounded
below by some positive numbers. If conditions of Theorem 2.1, for ε = tn, for all
n, hold, then the sequence of approximate solutions {xn} obtained by Theorem 2.1
corresponding tn is bounded. Indeed, putting α = inf

y∈D
f(x0, y) and β = inf

n∈N

tn and

using Theorem 2.1 with ε = tn for every n, we have

d(x0, xn) ≤ 1
tn

− f(x0, xn) ≤ 1
tn

− inf
y∈D

f(x0, y) ≤ 1
β
− α.

We need the following definition for the next result.

Definition 2.1. Given f : D × D → R and ε > 0, x is said to be an ε−
equilibrium point of f if

f(x̄, y) ≥ −εd(x̄, y), ∀y ∈ D.
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By applying Theorem 2.1, we establish the following result which improves
Proposition 3.2 in [4].

Theorem 2.2. Let D be a nonempty compact subset of a metric space (M, d), f :
D × D → R, and {tn} be a decreasing sequence of positive real numbers such
that tn → 0. Assume that

(i) lev≤0f(x, .)+ tnd(x, .) is closed for every x ∈ D and for all positive integer
n;

(ii) f(t, t) = 0, for all t ∈ D;

(iii) f(z, x) ≤ f(z, y) + f(y, x), for all x, y, z ∈ D;

(iv) lev≥0f(., x)+ tnd(., x) is closed for every x ∈ D and for all positive integer
n.

If inf
y∈D

f(x0, y) > −∞ for some x0 ∈ D, then the set of solutions of (EP) is
nonempty.

Proof. By Theorem 2.1, for each n ∈ N, there exists tn−equilibrium point of
f, that is, there exists xn ∈ D such that

(2.3) f(xn, y) ≥ −tnd(xn, y), ∀y ∈ D.

Since D is compact, we can choose a subsequence {xnk
} of {xn} such that xnk

→ x̄
as k → ∞. By (2.3) and {tn} is decreasing sequence, for every fixed positive integer
k0, we have

xnk
∈ lev≥0f(., y) + tnk0

d(., y), ∀ k ≥ k0, ∀y ∈ D.

By (iv) and xnk
→ x̄, we deduce that

(2.4) f(x̄, y) + tnk0
d(x̄, y) ≥ 0, ∀y ∈ D.

Since nk0 is arbitrary and tnk
approach to zero if k → +∞, (2.4) implies that x̄ is

a solution of (EP).

Corollary 2.3. [4, Proposition 3.2]. Let D be a compact subset of a complete
metric space and f : D×D→R be a function satisfying the following conditions.

(i) f(x, .) is lower semicontinuous, for every x ∈ D;

(ii) f(x, x) = 0, for every x ∈ K;
(iii) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ K;

(iv) f(., y) is upper semicontinuous, for every y ∈ K.
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Then the set of solutions of (EP) is nonempty and compact.

Remark 2.4. Conditions (i) and (ii) of Corollary 2.3 imply assumptions (i) and
(ii) of Theorem 2.2, respectively but the converse dose not hold. Since, for instance,
if we consider Example 2.1 with D = [0, 1] and

{
tn = 1

n

}
n∈N

, then it satisfies all of
the assumptions of Theorem 2.2 but it does not satisfy all the conditions of Corollary
2.3 because f(0, .) is not lower semicontinuous.

3. EQUILIBRIA ON NONCOMPACT SETS

We consider now the noncompact case. Throughout this section we assume that
(M, d) is a metric space with Heine-Borel property, that is, each closed bounded
subset of M is compact. For instance, If X is a reflexive Banach space with sparable
dual then X equipped with metrizable weak topology has Heine-Borel property. Let
D be a closed subset of M and f : D × D → R be a given function.

Consider the following coercivity condition:

(C) ∃B(c, r) : ∀x ∈ D\Kr ∃ y ∈ D, d(y, c) < d(x, c); f(x, y) ≤ 0,

where Kr = D ∩ B(c, r) and B(c, r) = {y ∈ M : d(c, y) ≤ r}.

If we set X = R
n Euclidean space and c = 0, then the above coercivity

condition reduces to the coercivity introduced in [4].
The following theorem improves Theorem 4.1 in [4]. However its proof is

similar to Theorem 4.1 in [4].

Theorem 3.1. Let D be a nonempty closed subset of (M, d) and {tn} be a
decreasing sequence of the positive real numbers such that t n → 0. Suppose that
f : D×D → R satisfies conditions (i)–(iv) of Theorem 2.2. If inf

y∈D
f(x0, y) > −∞

for some x0 ∈ D and coercivity condition (C) hold, then the set of solutions of
(EP) is nonempty.

Proof. For each x ∈ D, consider the nonempty set

S(x) = {y ∈ D : d(y, c) ≤ d(x, c), f(x, y)≤ 0}.
Observe that for every x, y ∈ Kr, y ∈ S(x) implies that S(y) ⊆ S(x). Indeed,
for z ∈ S(y) we have d(z, c) ≤ d(y, c) ≤ d(x, c) and by (iii) f(x, z) ≤ f(x, y) +
f(y, z) ≤ 0. Since Kr is nonempty and compact, by Theorem 2.2 there exists
xr ∈ Kr such that

(3.1) f(xr, y) ≥ 0, ∀y ∈ Kr.

Suppose that there exists x ∈ D with f(xr, x) < 0 and put
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a = min
y∈S(x)

d(y, c).

We distinguish two cases.

Case 1. a ≤ r. Let y0 ∈ S(x) such that d(y0, c) = a ≤ r. Then, we have
f(x, y0) ≤ 0. Since f(xr, x) < 0, it follows by (iii) that

f(xr, y0) ≤ f(xr, x) + f(x, y0) < 0,

which contradicted by (3.1).

Case 2. a > r. Let again y0 ∈ S(x) such that d(y0, c) = a > r. Then by
(C) we can choose an element y1 ∈ D with d(y1, c) < d(y0, c) = a such that
f(y0, y1) ≤ 0. Thus, y1 ∈ S(y0) ⊆ S(x). Hence

d(y1, c) < a = min
y∈S(x)

d(y, c),

which is a contradiction. Therefore, there is no x ∈ D such that f(xr, x) < 0, that
is, xr is a solution of (EP) on D.
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