
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 2, pp. 771-776, April 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS

Shuliang Huang

Abstract. Let R be a prime ring, I a nonzero ideal of R and n a fixed
positive integer. If R admits a generalized derivation F associated with a
nonzero derivation d such that (F (x ◦ y))n = x ◦ y for all x, y ∈ I, then R is
commutative. We also examine the case where R is a semiprime ring.

1. INTRODUCTION

In all that follows, unless stated otherwise, R will be an associative ring, Z(R)
the center of R, Q its Martindale quotient ring. The center of Q, denoted by C, is
called the extended centroid of R. For any x, y ∈ R, the symbol [x, y] and x ◦ y
stand for the commutator xy−yx and anti-commutator xy+yx, respectively. Recall
that a ring R is prime if for any a, b ∈ R, aRb = (0) implies a = 0 or b = 0, and
is semiprime if for any a ∈ R, aRa = (0) implies a = 0. An additive mapping
d : R −→ R is called a derivation if d(xy) = d(x)y +xd(y) holds for all x, y ∈ R.
In particular d is an inner derivation induced by an element a ∈ R, if d(x) = [a, x]
for all x ∈ R.

In [6], Bresar introduced the definition of generalized derivation: an additive
mapping F : R −→ R is called a generalized derivation if there exists a derivation
d : R −→ R such that F (xy) = F (x)y+xd(y) holds for all x, y ∈ R, and d is called
the associated derivation of F . Hence, the concept of generalized derivations covers
both the concepts of a derivation and of a left multiplier (i.e., an additive mapping
satisfying f(xy) = f(x)y for all x, y ∈ R). Basic examples are derivations and
generalized inner derivations (i.e., mappings of type x −→ ax+ xb for some a, b ∈
R). We refer to call such mappings generalized inner derivations for the reason they
present a generalization of the concept of inner derivations (i.e., mappings of the
form x −→ ax − xa for some a ∈ R).
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In [13], Hvala studied generalized derivations in the context of algebras on
certain norm spaces. The related object we need to mention is the right Utumi
quotient ring U of ring R (sometimes, as in [5], U is called the maximal right ring
of quotient). In [16], Lee extended the definition of a generalized derivation as
follows: by a generalized derivation we mean an additive mapping F : I −→ U

such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ I , where I is a dense left
ideal of R and d is a derivation from I into U . Moreover, Lee also proved that
every generalized derivation can be uniquely extended to a generalized derivation of
U and thus all generalized derivations of R will be implicitly assumed to be defined
on the whole of U . Lee obtained the following: every generalized derivation F
on a dense left ideal of R can be uniquely extended to U and assumes the form
F (x) = ax + d(x) for some a ∈ U and a derivation d on U . This result will be
used in the sequel to prove our theorems. More related results about derivations and
generalized derivations can be found in [3, 4, 11] and [12].

In [1, Theorem 4.1], Ashraf and Rehman proved that if R is a prime ring,
I a nonzero ideal of R and d is a derivation of R such that d(x ◦ y) = x ◦ y

for all x, y ∈ I , then R is commutative. In [2, Theorem 1], Argaç and Inceboz
generalized the above result as following: Let R be a prime ring, I a nonzero ideal
of R and n a fixed positive integer, if R admits a derivation d with the property
(d(x ◦ y))n = x ◦ y for all x, y ∈ I , then R is commutative. In [21, Theorem
2.3], Quadri et al., discussed the commutativity of prime rings with generalized
derivations. More precisely, Quadri et al., proved that if R is a prime ring, I
a nonzero ideal of R and F a generalized derivation associated with a nonzero
derivation d such that F (x ◦ y) = x ◦ y for all x, y ∈ I , then R is commutative.

The present paper is then motivated by [2] and [21]. Explicitly we shall prove
the following:

Theorem A. Let R be a prime ring, I a nonzero ideal of R and n a fixed
positive integer. If R admits a generalized derivation F associated with a nonzero
derivation d such that (F (x◦y))n = x◦y for all x, y ∈ I , then R is commutative.

Theorem B. Let R be a semiprime ring and n a fixed positive integer. If R
admits a generalized derivation F associated with a nonzero derivation d such that
(F (x ◦ y))n = x ◦ y for all x, y ∈ R, then R is commutative.

We are now in a position to prove our main results.

2. THE CASE: R A PRIME RING

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and n a fixed
positive integer. If R admits a generalized derivation F associated with a nonzero
derivation d such that (F (x◦y))n = x◦y for all x, y ∈ I , then R is commutative.
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Proof. Since R is a prime ring and F is a generalized derivation of R, by Lee
[16], F (x) = ax + d(x) for some a ∈ U and a derivation d on U . By the given
hypothesis we have now x ◦ y = (a(x ◦ y) + d(x ◦ y))n = (a(x ◦ y) + d(x)y +
xd(y)+d(y)x+yd(x))n for all x, y ∈ I . By our hypothesis d �= 0. By Kharchenko
[15], we divide the proof into two cases:

Case 1. Let d be an outer derivation of U , then I satisfies the polynomial
identity (a(x ◦ y) + sy + xt + tx + ys)n = x ◦ y for all x, y, s, t ∈ I . In particular,
for y = 0, I satisfies the blended component (xt + tx)n = 0 for all x, t ∈ I . If
CharR �= 2, then (2x2)n = 0 for all x ∈ I . This is a contradiction by Xu [22].
If CharR = 2, then (xt + tx)n = 0 = [x, t]n and by Herstein [14], we have
I ⊆ Z(R), and so R is commutative by Mayne [19].

Case 2. Let now d be the inner derivation induced by an element q ∈ Q, that
is d(x) = [q, x] for all x, y ∈ U . It follows that (a(x ◦ y) + [q, x]y + x[q, y] +
[q, y]x+ y[q, x])n = x ◦ y for all x, y ∈ I . By a theorem due to Chuang [8], I and
Q satisfy the same generalized polynomial identities (GPIs), we have (a(x ◦ y) +
[q, x]y + x[q, y] + [q, y]x + y[q, x])n = x ◦ y for all x, y ∈ Q. In case center C

of Q is infinite, we have (a(x ◦ y) + [q, x]y + x[q, y] + [q, y]x + y[q, x])n = x ◦ y
for all x, y ∈ Q

⊗
C C , where C is the algebraic closure of C. Since both Q and

Q
⊗

C C are prime and centrally closed [10], we may replace R by Q or Q
⊗

C C
according as C is finite or infinite. Thus we may assume that R is centrally
closed over C (i.e. RC = R) which is either finite or algebraically closed and
(a(x ◦ y) + [q, x]y + x[q, y] + [q, y]x + y[q, x])n = x ◦ y for all x, y ∈ R. By
Martindale [20], RC (and so R) is a primitive ring which is isomorphic to a dense
ring of linear transformations of a vector space V over a division ring D.

Assume that dimVD ≥ 3.
First of all, we want to show that v and qv are linearly D-dependent for all

v ∈ V . Since if qv = 0 then {v, qv} is D-dependent, suppose that qv �= 0. If v and
qv are D-independent, since dimVD ≥ 3, then there exists w ∈ V such that v, qv, w
are also linearly independent. By the density of R, there exists x, y ∈ R such that:
xv = 0, xqv = w, xw = v; yv = 0, yqv = 0, yw = v. These imply that (−1)nv =
(a(x ◦ y) + [q, x]y + x[q, y] + [q, y]x + y[q, x])nv = (x ◦ y)v = xyv + yxv = 0, a
contradiction. So we conclude that v and qv are linearly D-dependent for all v ∈ V .

Our next goal is to show that there exists b ∈ D such that qv = vb for all
v ∈ V . Note that the arguments in [7] are still valid in the present situation. For
the sake of completeness and clearness we prefer to present it. In fact, choose
v, w ∈ V linearly independent. Since dimVD ≥ 3, then there exists u ∈ V such
that {u, v, w} is linearly independent. Then bu, bv, bw ∈ D such that qu = ubu,
qv = vbv, qw = wbw, that is q(u + v + w) = ubu + vbv + wbw. Moreover
q(u + v + w) = (u + v + w)bu+v+w for a suitable bu+v+w ∈ D. Then 0 =
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u(bu+v+w − bu) + v(bu+v+w − bv) + w(bu+v+w − bw) and because u, v, w are
linearly independent, bu = bv = bw = bu+v+w , that is b does not depend on the
choice of v. Hence now we have qv = vb for all v ∈ V .

Now for r ∈ R, v ∈ V , we have (rq)v = r(qv) = r(vb) = (rv)b = q(rv), that
is [q, R]V = 0. Since V is a left faithful irreducible R-module, hence [q, R] = 0,
i.e. q ∈ Z(R) and so d = 0, a contradiction.

Therefore dimVD must be ≤ 2. In this case R is a simple GPI-ring with 1, and
so it is a central simple algebra finite dimensional over its center. By Lanski [18],
it follows that there exists a suitable filed F such that R ⊆ Mk(F ), the ring of all
k × k matrices over F , and moreover Mk(F ) satisfies the same GPI as R.

Assume k ≥ 3, by the same argument as in the above, we can get a contradiction.
If k = 1, then it is clear that R is commutative. Thus we may assume that R ⊆
M2(F ), where M2(F ) satisfies (a(x◦y)+[q, x]y+x[q, y]+[q, y]x+y[q, x])n = x◦y.
Denote eij the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. Let x◦y =
e21◦e11 = e21. In this case we have (ae21+qe21−e21q)n = e21. Right multiplying
by e21, we get (−1)n(e21q)ne21 = (ae21 + qe21 − e21q)ne21 = e21e21 = 0. Set

q =
(

q11 q12

q21 q22

)
. By calculation we find that (−1)n

(
0 0

qn
12 0

)
= 0, which

implies that q12 = 0. Similarly we can see that q21 = 0. Therefore q is diagonal
in M2(F ). Let f ∈ Aut(M2(F )). Since (f(a)[f(x), f(y)]+ [[f(q), f(x)], f(y)]+
[f(x), [f(q), f(y)]])n = [f(x), f(y)] so f(q) must be a diagonal matrix in M2(F ).
In particular, let f(x) = (1−eij)x(1+eij) for i �= j, then f(q) = q+(qii−qjj)eij ,
that is qii = qjj for i �= j. This implies that q is central in M2(F ), which leads to
d = 0, a contradiction. This completes the proof of the theorem.

The following example shows that the primeness condition in the above theorem
can not be omitted.

Example 2.1. Let S be any ring and R =
{(

a b

0 0

)
| a, b ∈ S

}
. Let I ={(

0 a

0 0

)
| a ∈ S

}
be a nonzero ideal of R and we define a map F : R → R

by F (x) = 2e11x − xe11. Then it is easy to see that F is a generalized derivation
associated with a nonzero derivation d(x) = [e11, x]. It is straightforward to check
that F satisfies the property: (F (x ◦ y))n = x ◦ y for all x, y ∈ I . However, R is
not commutative.

3. THE CASE: R A SEMIPRIME RING

Theorem 3.1 Let R be a semiprime ring and n a fixed positive integer. If R

admits a generalized derivation F associated with a nonzero derivation d such that
(F (x ◦ y))n = x ◦ y for all x, y ∈ R, then R is commutative.

Proof. Since R is semiprime and F is a generalized derivation of R, by Lee
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[16], F (x) = ax + d(x) for some a ∈ U and a derivation d on U . We are given
that (a(x ◦ y) + d(x ◦ y))n = x ◦ y for all x, y ∈ R. By Lee [16,], R and U
satisfy the same differential identities, then (a(x ◦ y) + d(x ◦ y))n = x ◦ y for all
x, y ∈ U . Let B be the complete Boolean algebra of idempotents in C and M
be any maximal ideal of B. Since U is a B-algebra orthogonal complete [15] and
MU is a prime ideal of U , which is d-invariant. Denote U = U/MU and d the
derivation induced by d on U , i.e., d(u) = d(u) for all u ∈ U . For all x, y ∈ U ,
(a(x◦y)+d(x◦y))n = x◦y. It is obvious that U is prime. Therefore, by Theorem
2.1, we have U is commutative, i.e., [U, U ] = 0. This implies that, for any maximal
ideal M of B, [U, U ] ⊆ MU . Consequently, [U, U ] ⊆ ⋂

MU , where MU runs
over all prime ideals of U . Therefore [U, U ] = 0 since

⋂
MU = 0. In particular,

R is commutative.
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