TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 2, pp. 761-770, April 2012 This paper is available online at http://journal.taiwanmathsoc.org.tw

AN IMPROVED CHEN-RICCI INEQUALITY FOR KAEHLERIAN SLANT SUBMANIFOLDS IN COMPLEX SPACE FORMS

Adela Mihai and Ioana N. Rădulescu

Abstract. B. Y. Chen proved in [4] an optimal inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature, well-known as the Chen-Ricci inequality. Recently, the Chen-Ricci inequality was improved in [7, 11] for Lagrangian submanifolds in complex space forms. In this article we extend the improved Chen-Ricci inequality to Kaehlerian slant submanifolds in complex space forms. We also investigate the equality case of the inequality.

1. PRELIMINARIES

Let \widetilde{M} be a complex *m*-dimensional Kaehler manifold, i.e., \widetilde{M} is endowed with an almost complex structure J and with a J-Hermitian metric \widetilde{g} . By a *complex* space form $\widetilde{M}(4c)$ we mean an *m*-dimensional Kaehler manifold with constant holomorphic sectional curvature 4c. A complete simply-connected complex space form $\widetilde{M}(4c)$ is holomorphically isometric to the complex Euclidean *n*-space \mathbb{C}^m , the complex projective *m*-space $CP^m(4c)$, or the complex hyperbolic *m*-space $CH^m(4c)$, according to c = 0, c > 0 or c < 0, respectively.

Let $f: M \to \widetilde{M}$ be an isometric immersion of an *n*-dimensional Riemannian manifold M into a Kaehler *m*-manifold \widetilde{M} . Then M is called a *totally real sub-manifold* if $J(T_pM) \subset T_p^{\perp}M$, $\forall p \in M$ (cf. [6]). A Lagrangian submanifold is a totally real submanifold of maximum dimension.

We denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_pM$, $p \in M$, by h the second fundamental form and by R the Riemann curvature tensor of M. Then the Gauss equation is given by:

$$\begin{split} R(X,Y,Z,W) = & R(X,Y,Z,W) - g(h(X,Z),h(Y,W)) \\ & + g(h(X,W),h(Y,Z)), \end{split}$$

Received July 23, 2010, accepted January 20, 2011.

Communicated by Bang-Yen Chen.

²⁰¹⁰ Mathematics Subject Classification: 53C40, 53C15.

Key words and phrases: Kaehlerian slant submanifolds, Complex space forms, Chen-Ricci inequality, Ricci curvature.

for any vectors X, Y, Z, W tangent to M.

Let $p \in M$ and $\{e_1, e_2, ..., e_n\}$ be an orthonormal basis of the tangent space T_pM . We denote by H the *mean curvature vector*, i.e.,

$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i)$$

and by

$$|h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j))$$

the squared norm of the second fundamental form.

For any tangent vector X to M, one decomposes JX = PX + FX, where PX and FX are the tangential and normal components of JX, respectively.

The submanifold M is said to be a *slant submanifold* if the angle between JX and the tangent space T_pM , for any nonzero vector X tangent to M, called the *Wirtinger angle* $\theta(X)$ of X, is constant, i.e., is independent of the choice of the point p and of the vector X (cf. [1]).

Slant submanifolds are characterized by the condition $P^2 = \lambda I$, for some $\lambda \in [-1, 0]$, where *I* is the identity transformation of *TM*. If $\lambda = -1$, then $\theta = 0$ and *f* is an *invariant immersion*; if $\lambda = 0$, then $\theta = \frac{\pi}{2}$ and *f* is an *totally real immersion*; if $\lambda = -\cos^2 \theta$, with $\theta \neq 0, \frac{\pi}{2}$, then *f* is a *proper slant immersion*.

A proper slant submanifold is said to be *Kaehlerian slant* if $\nabla P = 0$ (the canonical endomorphism P is parallel), where ∇ is the Levi-Civita connection on M. A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost complex structure $\tilde{J} = (\sec \theta)J$, where θ is the slant angle.

Let M be a proper slant submanifold $p \in M$, $\pi \subset T_pM$ a 2-plane section and $\{e_1, e_2, ..., e_n\}$ be an orthonormal basis of tangent space T_pM such that $e_1, e_2 \in \pi$. If m = n, an orthonormal basis $\{e_1^*, e_2^*, ..., e_n^*\}$ of the normal space $T_p^{\perp}M$ is defined by

(1.1)
$$e_k^* = \frac{1}{\sin \theta} F e_k, \ k = 1, \dots, n.$$

For a Kaehlerian slant submanifold one has (cf. [1])

$$A_{FX}Y = A_{FY}X, \quad \forall X, Y \in T_pM,$$

or equivalently,

(1.2)
$$h_{ij}^k = h_{ik}^j = h_{jk}^i,$$

where A is the shape operator and

(1.3)
$$h_{ij}^k = g(h(e_i, e_j), e_k^*), \quad i, j, k = 1, ..., n.$$

762

The following propositions give characterizations of submanifolds with $\nabla P = 0$.

Proposition 1.1. [1]. Let M be a submanifold of an almost Hermitian manifold \widetilde{M} . Then $\nabla P = 0$ if and only if M is locally the Riemannian product $M_1 \times \ldots \times M_k$, where each M_i is either a complex submanifold, a totally real submanifold or a Kaehlerian slant submanifold of \widetilde{M} .

Proposition 1.2. [1]. Let M be an irreducible submanifold of an almost Hermitian manifold \widetilde{M} . If M is neither invariant nor totally real, then M is a Kaehlerian slant submanifold if and only if the endomorphism P is parallel, i.e., $\nabla P = 0$.

Definition 1.3. A slant *H*-umbilical submanifold of a Kaehler manifold M^n is a slant submanifold for which the second fundamental form takes the following forms:

$$h(e_1, e_1) = \lambda e_1^*, \quad h(e_2, e_2) = \dots = h(e_n, e_n) = \mu e_1^*,$$

$$h(e_1, e_j) = \mu e_j^*, \quad h(e_j, e_k) = 0, \quad 2 \le j \ne k \le n,$$

where e_1^*, \ldots, e_n^* are defined by (1.1).

2. RICCI CURVATURE OF SUBMANIFOLDS

In [3], B. Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for any *n*-dimensional Riemannian submanifold of a real space form $\widetilde{M}(c)$ of constant sectional curvature *c*; namely,

$$Ric(X) \le (n-1)c + \frac{n^2}{4} \|H\|^2$$
,

which is well-known as the Chen-Ricci inequality. The same inequality holds for Lagrangian submanifolds in a complex space form $\widetilde{M}(4c)$ as well (see [4]).

I. Mihai proved a similar inequality in [9] for certain submanifolds of Sasakian space forms.

In [8], Matsumoto, Mihai and Oiaga extended the Chen-Ricci equality to the following inequality for submanifolds in complex space forms.

Theorem 2.1. [8]. Let M be an n-dimensional submanifold of a complex m-dimensional complex space form $\widetilde{M}(4c)$. Then: (i) For each vector $X \in T_pM$ we have

$$Ric(X) \le (n-1)c + \frac{n^2}{4} ||H||^2 + 3c ||PX||^2.$$

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and only if $X \in \ker h_p$;

(iii) The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

In particular, for θ -slant submanifolds, the following result holds.

Corollary 2.2. [8]. Let M be an n-dimensional θ -slant submanifold of a complex space form $\widetilde{M}(4c)$. Then:

(i) For each vector $X \in T_pM$ we have

$$Ric(X) \le (n-1)c + \frac{n^2}{4} ||H||^2 + 3c\cos^2\theta.$$

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and only if $X \in \ker h_p$;

(iii) The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

The Chen-Ricci inequality was further improved to the following for Lagrangian submanifolds (cf. [7, 11]).

Theorem 2.3. Let M be a Lagrangian submanifold of dimension $n \ge 2$ in a complex space form $\widetilde{M}(4c)$ of constant holomorphic sectional curvature 4c and X a unit tangent vector in T_pM , $p \in M$. Then, we have

$$Ric(X) \le (n-1)\left(c + \frac{n}{4} \|H\|^2\right).$$

The equality sign holds for any unit tangent vector at p if and only if either: (i) *p is a totally geodesic point, or*

(ii) n = 2 and p is an H-umbilical point with $\lambda = 3\mu$.

Lagrangian submanifolds in complex space forms satisfying the equality case of the inequality were determined by Deng in [7]. More precisely, he proved the following.

Corollary 2.4. Let M be a Lagrangian submanifold of real dimension $n \ge 2$ in a complex space form $\widetilde{M}(4c)$. If

$$Ric(X) = (n-1)\left(c + \frac{n}{4} \|H\|^2\right),$$

for any unit tangent vector X of M, then either

(i) M is a totally geodesic submanifold in M(4c) or,

(ii) n = 2 and M is a Lagrangian H-umbilical submanifold of $\widetilde{M}(4c)$ with $\lambda = 3\mu$.

3. RICCI CURVATURE OF KAEHLERIAN SLANT SUBMANIFOLDS

In this section, we extend Theorem 2.3 to Kaehlerian slant submanifolds in complex space forms. We shall apply the following two Lemmas from [7].

Lemma 3.1. Let $f_1(x_1, x_2, ..., x_n)$ be a function in \mathbb{R}^n defined by:

$$f_1(x_1, x_2, ..., x_n) = x_1 \sum_{j=2}^n x_j - \sum_{j=2}^n x_j^2.$$

If $x_1 + x_2 + ... + x_n = 2na$, then we have

$$f_1(x_1, x_2, ..., x_n) \le \frac{n-1}{4n} (x_1 + x_2 + ... + x_n)^2,$$

with the equality sign holding if and only if $\frac{1}{n+1}x_1 = x_2 = \dots = x_n = a$.

Lemma 3.2. Let $f_2(x_1, x_2, ..., x_n)$ be a function in \mathbb{R}^n defined by:

$$f_2(x_1, x_2, ..., x_n) = x_1 \sum_{j=2}^n x_j - x_1^2.$$

If $x_1 + x_2 + ... + x_n = 4a$, then we have

$$f_2(x_1, x_2, ..., x_n) \le \frac{1}{8} (x_1 + x_2 + ... + x_n)^2,$$

with the equality sign holding if and only if $x_1 = a$ and $x_2 + ... + x_n = 3a$.

The main result of this section is the following theorem.

Theorem 3.3. Let M be an n-dimensional Kaehlerian proper θ -slant submanifold in a complex n-dimensional complex space form $\widetilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then for any unit tangent vector X to M we have

(3.1)
$$Ric(X) \le (n-1)\left(c + \frac{n}{4} \|H\|^2\right) + 3c\cos^2\theta.$$

The equality sign of (3.1) holds identically if and only if either (i) c = 0 and M is totally geodesic, or (ii) n = 2, c < 0 and M is a slant H-umbilical surface with $\lambda = 3\mu$.

Proof. For a given point $p \in M$ and a given unit vector $X \in T_pM$, we choose an orthonormal basis $\{e_1 = X, e_2, \ldots, e_n\} \subset T_pM$ and

$$\left\{e_1^* = \frac{Fe_1}{\sin\theta}, \dots, e_n^* = \frac{Fe_n}{\sin\theta}\right\} \subset T_p^{\perp} M.$$

For that $X = Z = e_1$ and $Y = W = e_j$, j = 2, ..., n, Gauss' equation gives $\widetilde{R}(e_1, e_j, e_1, e_j) = R(e_1, e_j, e_1, e_j) - g(h(e_1, e_1), h(e_j, e_j)) + g(h(e_1, e_j), h(e_1, e_j))$, or equivalently,

$$\widetilde{R}(e_1, e_j, e_1, e_j) = R(e_1, e_j, e_1, e_j) - \sum_{r=1}^n (h_{11}^r h_{jj}^r - (h_{1j}^r)^2), \quad \forall j \in \overline{2, n}.$$

Adela Mihai and Ioana N. Rădulescu

Since the Riemannian curvature tensor of $\widetilde{M}(4c)$ is given by $\widetilde{R}(X, Y, Z, W) = c\{g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + g(JX, Z)g(JY, W) - g(JX, W)g(JY, Z) + 2g(JX, Y)g(JZ, W)\},$

we find

(3.2)
$$\widetilde{R}(e_1, e_j, e_1, e_j) = c[1 + 3g^2(Je_1, e_j)].$$

By summing after $j = \overline{2, n}$, we get

$$(n-1+3 ||PX||^2)c = Ric(X) - \sum_{r=1}^n \sum_{j=2}^n \left[h_{11}^r h_{jj}^r - (h_{1j}^r)^2\right]$$

or,

$$(n-1+3\cos^2\theta)c = Ric(X) - \sum_{r=1}^n \sum_{j=2}^n \left[h_{11}^r h_{jj}^r - (h_{1j}^r)^2\right]$$

It follows that

(3.3)
$$Ric(X) - (n - 1 + 3\cos^{2}\theta)c = \sum_{r=1}^{n} \sum_{j=2}^{n} \left[h_{11}^{r}h_{jj}^{r} - (h_{1j}^{r})^{2}\right]$$
$$\leq \sum_{r=1}^{n} \sum_{j=2}^{n} h_{11}^{r}h_{jj}^{r} - \sum_{j=2}^{n} (h_{1j}^{1})^{2} - \sum_{j=2}^{n} (h_{1j}^{j})^{2}.$$

Since M is a Kaehlerian slant submanifold, we have the relations (1.2) and

$$(3.4) \quad Ric(X) - (n-1+3\cos^2\theta)c \le \sum_{r=1}^n \sum_{j=2}^n h_{11}^r h_{jj}^r - \sum_{j=2}^n (h_{11}^j)^2 - \sum_{j=2}^n (h_{jj}^1)^2.$$

Now we put

$$f_1(h_{11}^1, h_{22}^1, \dots, h_{nn}^1) = h_{11}^1 \sum_{j=2}^n h_{jj}^1 - \sum_{j=2}^n (h_{jj}^1)^2$$

and

$$f_r(h_{11}^r, h_{22}^r, ..., h_{nn}^r) = h_{11}^r \sum_{j=2}^n h_{jj}^r - (h_{11}^r)^2, \quad \forall r \in \overline{2, n}$$

Since $nH^1 = h_{11}^1 + h_{22}^1 + \dots + h_{nn}^1$, we obtain by using Lemma 3.1 that

(3.5)
$$f_1(h_{11}^1, h_{22}^1, ..., h_{nn}^1) \le \frac{n-1}{4n} (nH^1)^2 = \frac{n(n-1)}{4} (H^1)^2.$$

By applying Lemma 3.2 for $2 \le r \le n$, we get

(3.6)
$$f_r(h_{11}^r, h_{22}^r, ..., h_{nn}^r) \le \frac{1}{8}(nH^r)^2 = \frac{n^2}{8}(H^r)^2 \le \frac{n(n-1)}{4}(H^r)^2.$$

766

From (3.4), (3.5) and (3.6), we obtain

$$Ric(X) - (n - 1 + 3\cos^2\theta)c \le \frac{n(n - 1)}{4} \sum_{r=1}^n (H^r)^2 = \frac{n(n - 1)}{4} \|H\|^2.$$

Thus we have

$$Ric(X) \le (n - 1 + 3\cos^2\theta)c + \frac{n(n - 1)}{4} ||H||^2,$$

which implies (3.1).

Next, we shall study the equality case. For $n \ge 3$, we choose Fe_1 parallel to H. Then we have $H^r = 0$, for $r \ge 2$. Thus, by Lemma 3.2, we get

$$h_{1j}^1 = h_{11}^j = \frac{nH^j}{4} = 0, \quad \forall j \ge 2,$$

and

$$h_{jk}^1 = 0, \quad \forall j, k \ge 2, \quad j \ne k.$$

From Lemma 3.1, we have $h_{11}^1 = (n+1)a$ and $h_{jj}^1 = a$, $\forall j \ge 2$, with $a = \frac{H^1}{2}$.

In (3.3) we compute $Ric(X) = Ric(e_1)$. Similarly, by computing $Ric(e_2)$ and using the equality, we get

$$h_{2j}^r = h_{jr}^2 = 0, \ \forall r \neq 2, \ j \neq 2, \ r \neq j.$$

Then we obtain

$$\frac{h_{11}^2}{n+1} = h_{22}^2 = \dots = h_{nn}^2 = \frac{H^2}{2} = 0.$$

The argument is also true for matrices (h_{jk}^r) because the equality holds for all unit tangent vectors; so, $h_{2j}^2 = h_{22}^j = \frac{H^j}{2} = 0$, $\forall j \ge 3$.

The matrix (h_{jk}^2) (respectively the matrix (h_{jk}^r)) has only two possible nonzero entries $h_{12}^2 = h_{21}^2 = h_{22}^1 = \frac{H^1}{2}$ (respectively $h_{1r}^r = h_{r1}^r = h_{rr}^1 = \frac{H^1}{2}$, $\forall r \ge 3$). Now, after putting $X = Z = e_2$ and $Y = W = e_j$, $j = 3, \ldots, n$, in Gauss' equation, we obtain

$$\widetilde{R}(e_2, e_j, e_2, e_j) = R(e_2, e_j, e_2, e_j) - \left(\frac{H^1}{2}\right)^2, \quad \forall j \ge 3.$$

If we put $X = Z = e_2$ and $Y = W = e_1$ in Gauss' eqution, we get

$$\widetilde{R}(e_2, e_1, e_2, e_1) = R(e_2, e_1, e_2, e_1) - (n+1)\left(\frac{H^1}{2}\right)^2 + \left(\frac{H^1}{2}\right)^2.$$

After combining the last two relations, we find

$$Ric(e_2) - (n-1+3\cos^2\theta)c = 2(n-1)\left(\frac{H^1}{2}\right)^2.$$

On the other hand, the equality case of (3.1) implies that

$$Ric(e_2) - (n-1+3\cos^2\theta)c = \frac{n(n-1)}{4} \|H\|^2 = n(n-1)\left(\frac{H^1}{2}\right)^2.$$

Since $n \neq 1, 2$, by equating the last 2 equations we find $H^1 = 0$. Thus, (h_{jk}^r) are all zero, i.e., M is a totally geodesic submanifold in $\widetilde{M}(4c)$. In particular, M is a curvature-invariant submanifold of $\widetilde{M}(4c)$. Therefore, when $c \neq 0$, it follows from a result of Chen and Ogiue [6] that M is either a complex submanifold or a Lagrangian submanifold of $\widetilde{M}(4c)$. Hence, M is a non-proper θ -slant submanifold, which is a contradiction. Consequently, we have either

- (1) c = 0 and M is totally geodesic, or,
- (2) n = 2.

If (1) occurs, we obtain (i) of the theorem. Now, let us assume that n = 2. Let us recall a result of Chen from [2] states that if M is a proper slant surface in a complex 2-dimensional complex space form $\widetilde{M}^2(4c)$ satisfying the equality case of (3.1) identically, then M is either totally geodesic or c < 0. In particular, when Mis not totally geodesic, one has

$$h(e_1, e_1) = \lambda e_1^*, \quad h(e_2, e_2) = \mu e_1^*, \quad h(e_1, e_2) = \mu e_2^*,$$

with $\lambda = 3\mu = \frac{3H^1}{2}$, i.e., M is H-umbilical. This gives case (ii) of the theorem.

Since a proper slant surface is Kaehlerian slant automatically (cf. [1]), we rediscover the following result of [2] from Theorem 3.3.

Theorem 3.4. If M is a proper slant surface in a complex space form $\widetilde{M}(4c)$ of complex dimension 2, then the squared mean curvature and the Gaussian curvature of M satisfy:

$$||H||^2 \ge 2[G - (1 + 3\cos^2\theta)c]$$

at each point $p \in M$, where θ is the slant angle of the slant surface.

Example 3.5. The explicit representation of the slant surface in $CH^2(-4)$ satisfying the equality case of inequality (3.1) was determined by Chen and Tazawa in [5, Theorem 5.2] as follows:

Let z be the immersion $z: {\mathbf R}^3 \to {\mathbf C}^3_1$ defined by

$$z(u, v, t) = e^{it} \left(1 + \frac{3}{2} \left(\cosh\left(\frac{\sqrt{2}}{\sqrt{3}}v\right) - 1 \right) + \frac{u^2}{6} e^{-\sqrt{\frac{2}{3}}v} - i\frac{u}{\sqrt{6}} (1 + e^{-\sqrt{\frac{2}{3}}v}), \\ \frac{u}{3} \left(1 + 2e^{-\sqrt{\frac{2}{3}}v} \right) + \frac{i}{6\sqrt{6}} e^{-\sqrt{\frac{2}{3}}v} \left(\left(e^{\sqrt{\frac{2}{3}}v} - 1\right) \left(9e^{\sqrt{\frac{2}{3}}v} - 3\right) + 2u^2 \right), \\ \frac{u}{3\sqrt{2}} \left(1 - e^{-\sqrt{\frac{2}{3}}v} \right) + \frac{i}{12\sqrt{3}} \left(6 - 15e^{-\sqrt{\frac{2}{3}}v} + 9e^{\sqrt{\frac{2}{3}}v} + 2e^{-\sqrt{\frac{2}{3}}v} u^2 \right) \right).$$

It was proved in [5] that $\langle z, z \rangle = -1$. Hence, z defines an immersion from \mathbb{R}^3 into the anti-de Sitter spacetime $H_1^5(-1)$. Moreover, it was proved in [5] that the

768

image $z(\mathbf{R}^3)$ in $H_1^5(-1)$ is invariant under the action of $\mathbf{C}^* = \mathbf{C} - \{0\}$. Let $\pi : H_1^4(-1) \to CH^2(-4)$ denote the Hopf fibration. It was shown in [5] that the composition

$$\pi \circ z : \mathbf{R}^3 \to CH_1^2(-4)$$

defines a slant surface with slant angle $\theta = \cos^{-1}(\frac{1}{3})$. Also, it was proved in [5] that $\pi \circ z$ is a *H*-umbilical immersion satisfying $\lambda = 3\mu$. Consequently, this example of slant *H*-umbilical surface satisfies the equality case of inequality (3.1) identically.

ACKNOWLEDGMENTS

The first author's work was supported by the strategic grant POSDRU/89/1.5/S/58852, Project Postdoctoral programme for training scientific researchers, cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. The second author's work was supported by the grant POSDRU/6/1.5/S.12, cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013.

Both authors are very indebted to the referee for valuable suggestions which improved the paper.

References

- 1. B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
- B. Y. Chen, Special slant surfaces and a basic inequality, *Results Math.*, 33 (1998), 65-78.
- 3. B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, *Glasgow Math. J.*, **41** (1999), 33-44.
- B. Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, *Arch. Math.*, 74 (2000), 154-160.
- 5. B. Y. Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, *Glasgow Math. J.*, **42** (2000), 439-454.
- B. Y. Chen and K. Ogiue, On totally real submanifolds, *Trans. Amer. Math. Soc.*, 193 (1974), 257-266.
- S. Deng, An improved Chen-Ricci inequality, Int. Electron. J. Geom., 2 (2009), 39-45.
- 8. K. Matsumoto, I. Mihai and A. Oiaga, Ricci curvature of submanifolds in complex space forms, *Rev. Roum. Math. Pures. Appl.*, **46** (2001), 775-782.
- 9. I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc., 72 (2002), 247-256.

Adela Mihai and Ioana N. Rădulescu

10. I. Mihai, Geometria Subvarietatilor in Varietati Complexe, Univ. Bucuresti, 2002.

11. T. Oprea, On a geometric inequality, arXiv:math.DG/0511088.

Adela Mihai and Ioana N. Rădulescu Department of Mathematics Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei 14 010014 Bucharest Romania E-mail: adela_mihai@fmi.unibuc.ro ioanatoma1982@yahoo.com