AN IMPROVED CHEN-RICCI INEQUALITY FOR KAEHLERIAN SLANT SUBMANIFOLDS IN COMPLEX SPACE FORMS

Adela Mihai and Ioana N. Rădulescu

Abstract

B. Y. Chen proved in [4] an optimal inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature, well-known as the Chen-Ricci inequality. Recently, the Chen-Ricci inequality was improved in [7, 11] for Lagrangian submanifolds in complex space forms. In this article we extend the improved Chen-Ricci inequality to Kaehlerian slant submanifolds in complex space forms. We also investigate the equality case of the inequality.

1. Preliminaries

Let \widetilde{M} be a complex m-dimensional Kaehler manifold, i.e., \widetilde{M} is endowed with an almost complex structure J and with a J-Hermitian metric \widetilde{g}. By a complex space form $\widetilde{M}(4 c)$ we mean an m-dimensional Kaehler manifold with constant holomorphic sectional curvature $4 c$. A complete simply-connected complex space form $\widetilde{M}(4 c)$ is holomorphically isometric to the complex Euclidean n-space \mathbf{C}^{m}, the complex projective m-space $C P^{m}(4 c)$, or the complex hyperbolic m-space $C H^{m}(4 c)$, according to $c=0, c>0$ or $c<0$, respectively.

Let $f: M \rightarrow \widetilde{M}$ be an isometric immersion of an n-dimensional Riemannian manifold M into a Kaehler m-manifold \widetilde{M}. Then M is called a totally real submanifold if $J\left(T_{p} M\right) \subset T_{p}^{\perp} M, \forall p \in M$ (cf. [6]). A Lagrangian submanifold is a totally real submanifold of maximum dimension.

We denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$, by h the second fundamental form and by R the Riemann curvature tensor of M. Then the Gauss equation is given by:

$$
\begin{aligned}
\widetilde{R}(X, Y, Z, W)= & R(X, Y, Z, W)-g(h(X, Z), h(Y, W)) \\
& +g(h(X, W), h(Y, Z))
\end{aligned}
$$

Received July 23, 2010, accepted January 20, 2011.
Communicated by Bang-Yen Chen.
2010 Mathematics Subject Classification: 53C40, 53C15.
Key words and phrases: Kaehlerian slant submanifolds, Complex space forms, Chen-Ricci inequality, Ricci curvature.
for any vectors X, Y, Z, W tangent to M.
Let $p \in M$ and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent space $T_{p} M$. We denote by H the mean curvature vector, i.e.,

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

and by

$$
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)
$$

the squared norm of the second fundamental form.
For any tangent vector X to M, one decomposes $J X=P X+F X$, where $P X$ and $F X$ are the tangential and normal components of $J X$, respectively.

The submanifold M is said to be a slant submanifold if the angle between $J X$ and the tangent space $T_{p} M$, for any nonzero vector X tangent to M, called the Wirtinger angle $\theta(X)$ of X, is constant, i.e., is independent of the choice of the point p and of the vector X (cf. [1]).

Slant submanifolds are characterized by the condition $P^{2}=\lambda I$, for some $\lambda \in$ $[-1,0]$, where I is the identity transformation of $T M$. If $\lambda=-1$, then $\theta=0$ and f is an invariant immersion; if $\lambda=0$, then $\theta=\frac{\pi}{2}$ and f is an totally real immersion; if $\lambda=-\cos ^{2} \theta$, with $\theta \neq 0, \frac{\pi}{2}$, then f is a proper slant immersion.

A proper slant submanifold is said to be Kaehlerian slant if $\nabla P=0$ (the canonical endomorphism P is parallel), where ∇ is the Levi-Civita connection on M. A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost complex structure $\widetilde{J}=(\sec \theta) J$, where θ is the slant angle.

Let M be a proper slant submanifold $p \in M, \pi \subset T_{p} M$ a 2 -plane section and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an orthonormal basis of tangent space $T_{p} M$ such that $e_{1}, e_{2} \in \pi$. If $m=n$, an orthonormal basis $\left\{e_{1}^{*}, e_{2}^{*}, \ldots, e_{n}^{*}\right\}$ of the normal space $T_{p}^{\perp} M$ is defined by

$$
\begin{equation*}
e_{k}^{*}=\frac{1}{\sin \theta} F e_{k}, \quad k=1, \ldots, n . \tag{1.1}
\end{equation*}
$$

For a Kaehlerian slant submanifold one has (cf. [1])

$$
A_{F X} Y=A_{F Y} X, \quad \forall X, Y \in T_{p} M
$$

or equivalently,

$$
\begin{equation*}
h_{i j}^{k}=h_{i k}^{j}=h_{j k}^{i}, \tag{1.2}
\end{equation*}
$$

where A is the shape operator and

$$
\begin{equation*}
h_{i j}^{k}=g\left(h\left(e_{i}, e_{j}\right), e_{k}^{*}\right), \quad i, j, k=1, \ldots, n . \tag{1.3}
\end{equation*}
$$

The following propositions give characterizations of submanifolds with $\nabla P=0$.
Proposition 1.1. [1]. Let M be a submanifold of an almost Hermitian manifold \widetilde{M}. Then $\nabla P=0$ if and only if M is locally the Riemannian product $M_{1} \times \ldots \times M_{k}$, where each M_{i} is either a complex submanifold, a totally real submanifold or a Kaehlerian slant submanifold of \widetilde{M}.

Proposition 1.2. [1]. Let M be an irreducible submanifold of an almost Hermitian manifold \widetilde{M}. If M is neither invariant nor totally real, then M is a Kaehlerian slant submanifold if and only if the endomorphism P is parallel, i.e., $\nabla P=0$.

Definition 1.3. A slant H-umbilical submanifold of a Kaehler manifold \widetilde{M}^{n} is a slant submanifold for which the second fundamental form takes the following forms:

$$
\begin{array}{r}
h\left(e_{1}, e_{1}\right)=\lambda e_{1}^{*}, \quad h\left(e_{2}, e_{2}\right)=\cdots=h\left(e_{n}, e_{n}\right)=\mu e_{1}^{*} \\
h\left(e_{1}, e_{j}\right)=\mu e_{j}^{*}, \quad h\left(e_{j}, e_{k}\right)=0, \quad 2 \leq j \neq k \leq n
\end{array}
$$

where $e_{1}^{*}, \ldots, e_{n}^{*}$ are defined by (1.1).

2. Ricci Curvature of Submanifolds

In [3], B. Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for any n-dimensional Riemannian submanifold of a real space form $\widetilde{M}(c)$ of constant sectional curvature c; namely,

$$
\operatorname{Ric}(X) \leq(n-1) c+\frac{n^{2}}{4}\|H\|^{2}
$$

which is well-known as the Chen-Ricci inequality. The same inequality holds for Lagrangian submanifolds in a complex space form $\widetilde{M}(4 c)$ as well (see [4]).
I. Mihai proved a similar inequality in [9] for certain submanifolds of Sasakian space forms.

In [8], Matsumoto, Mihai and Oiaga extended the Chen-Ricci equality to the following inequality for submanifolds in complex space forms.

Theorem 2.1. [8]. Let M be an n-dimensional submanifold of a complex m-dimensional complex space form $\widetilde{M}(4 c)$. Then:
(i) For each vector $X \in T_{p} M$ we have

$$
\operatorname{Ric}(X) \leq(n-1) c+\frac{n^{2}}{4}\|H\|^{2}+3 c\|P X\|^{2}
$$

(ii) If $H(p)=0$, then a unit tangent vector X at p satisfies the equality case if and only if $X \in \operatorname{ker} h_{p}$;
(iii) The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point or $n=2$ and p is a totally umbilical point.

In particular, for θ-slant submanifolds, the following result holds.
Corollary 2.2. [8]. Let M be an n-dimensional θ-slant submanifold of a complex space form $\widetilde{M}(4 c)$. Then:
(i) For each vector $X \in T_{p} M$ we have

$$
\operatorname{Ric}(X) \leq(n-1) c+\frac{n^{2}}{4}\|H\|^{2}+3 c \cos ^{2} \theta
$$

(ii) If $H(p)=0$, then a unit tangent vector X at p satisfies the equality case if and only if $X \in \operatorname{ker} h_{p}$;
(iii) The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point or $n=2$ and p is a totally umbilical point.

The Chen-Ricci inequality was further improved to the following for Lagrangian submanifolds (cf. [7, 11]).

Theorem 2.3. Let M be a Lagrangian submanifold of dimension $n \geq 2$ in a complex space form $\widetilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$ and X a unit tangent vector in $T_{p} M, p \in M$. Then, we have

$$
\operatorname{Ric}(X) \leq(n-1)\left(c+\frac{n}{4}\|H\|^{2}\right)
$$

The equality sign holds for any unit tangent vector at p if and only if either:
(i) p is a totally geodesic point, or
(ii) $n=2$ and p is an H-umbilical point with $\lambda=3 \mu$.

Lagrangian submanifolds in complex space forms satisfying the equality case of the inequality were determined by Deng in [7]. More precisely, he proved the following.

Corollary 2.4. Let M be a Lagrangian submanifold of real dimension $n \geq 2$ in a complex space form $\widetilde{M}(4 c)$. If

$$
\operatorname{Ric}(X)=(n-1)\left(c+\frac{n}{4}\|H\|^{2}\right)
$$

for any unit tangent vector X of M, then either
(i) M is a totally geodesic submanifold in $\widetilde{M}(4 c)$ or,
(ii) $n=2$ and M is a Lagrangian H-umbilical submanifold of $\widetilde{M}(4 c)$ with $\lambda=3 \mu$.

3. Ricci Curvature of Kaehlerian Slant Submanifolds

In this section, we extend Theorem 2.3 to Kaehlerian slant submanifolds in complex space forms. We shall apply the following two Lemmas from [7].

Lemma 3.1. Let $f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function in \mathbf{R}^{n} defined by:

$$
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \sum_{j=2}^{n} x_{j}-\sum_{j=2}^{n} x_{j}^{2}
$$

If $x_{1}+x_{2}+\ldots+x_{n}=2 n a$, then we have

$$
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \frac{n-1}{4 n}\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}
$$

with the equality sign holding if and only if $\frac{1}{n+1} x_{1}=x_{2}=\ldots=x_{n}=a$.
Lemma 3.2. Let $f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function in \mathbf{R}^{n} defined by:

$$
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \sum_{j=2}^{n} x_{j}-x_{1}^{2}
$$

If $x_{1}+x_{2}+\ldots+x_{n}=4 a$, then we have

$$
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq \frac{1}{8}\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}
$$

with the equality sign holding if and only if $x_{1}=a$ and $x_{2}+\ldots+x_{n}=3 a$.
The main result of this section is the following theorem.
Theorem 3.3. Let M be an n-dimensional Kaehlerian proper θ-slant submanifold in a complex n-dimensional complex space form $\widetilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then for any unit tangent vector X to M we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq(n-1)\left(c+\frac{n}{4}\|H\|^{2}\right)+3 c \cos ^{2} \theta \tag{3.1}
\end{equation*}
$$

The equality sign of (3.1) holds identically if and only if either (i) $c=0$ and M is totally geodesic, or
(ii) $n=2, c<0$ and M is a slant H-umbilical surface with $\lambda=3 \mu$.

Proof. For a given point $p \in M$ and a given unit vector $X \in T_{p} M$, we choose an orthonormal basis $\left\{e_{1}=X, e_{2}, \ldots, e_{n}\right\} \subset T_{p} M$ and

$$
\left\{e_{1}^{*}=\frac{F e_{1}}{\sin \theta}, \ldots, e_{n}^{*}=\frac{F e_{n}}{\sin \theta}\right\} \subset T_{p}^{\perp} M
$$

For that $X=Z=e_{1}$ and $Y=W=e_{j}, j=2, . ., n$, Gauss' equation gives $\widetilde{R}\left(e_{1}, e_{j}, e_{1}, e_{j}\right)=R\left(e_{1}, e_{j}, e_{1}, e_{j}\right)-g\left(h\left(e_{1}, e_{1}\right), h\left(e_{j}, e_{j}\right)\right)+g\left(h\left(e_{1}, e_{j}\right), h\left(e_{1}, e_{j}\right)\right)$, or equivalently,

$$
\widetilde{R}\left(e_{1}, e_{j}, e_{1}, e_{j}\right)=R\left(e_{1}, e_{j}, e_{1}, e_{j}\right)-\sum_{r=1}^{n}\left(h_{11}^{r} h_{j j}^{r}-\left(h_{1 j}^{r}\right)^{2}\right), \quad \forall j \in \overline{2, n}
$$

Since the Riemannian curvature tensor of $\widetilde{M}(4 c)$ is given by

$$
\begin{gathered}
\widetilde{R}(X, Y, Z, W)=c\{g(X, Z) g(Y, W)-g(X, W) g(Y, Z) \\
+g(J X, Z) g(J Y, W)-g(J X, W) g(J Y, Z)+2 g(J X, Y) g(J Z, W)\}
\end{gathered}
$$

we find

$$
\begin{equation*}
\widetilde{R}\left(e_{1}, e_{j}, e_{1}, e_{j}\right)=c\left[1+3 g^{2}\left(J e_{1}, e_{j}\right)\right] \tag{3.2}
\end{equation*}
$$

By summing after $j=\overline{2, n}$, we get

$$
\left(n-1+3\|P X\|^{2}\right) c=\operatorname{Ric}(X)-\sum_{r=1}^{n} \sum_{j=2}^{n}\left[h_{11}^{r} h_{j j}^{r}-\left(h_{1 j}^{r}\right)^{2}\right]
$$

or,

$$
\left(n-1+3 \cos ^{2} \theta\right) c=\operatorname{Ric}(X)-\sum_{r=1}^{n} \sum_{j=2}^{n}\left[h_{11}^{r} h_{j j}^{r}-\left(h_{1 j}^{r}\right)^{2}\right]
$$

It follows that

$$
\begin{align*}
\operatorname{Ric}(X) & -\left(n-1+3 \cos ^{2} \theta\right) c=\sum_{r=1}^{n} \sum_{j=2}^{n}\left[h_{11}^{r} h_{j j}^{r}-\left(h_{1 j}^{r}\right)^{2}\right] \tag{3.3}\\
& \leq \sum_{r=1}^{n} \sum_{j=2}^{n} h_{11}^{r} h_{j j}^{r}-\sum_{j=2}^{n}\left(h_{1 j}^{1}\right)^{2}-\sum_{j=2}^{n}\left(h_{1 j}^{j}\right)^{2}
\end{align*}
$$

Since M is a Kaehlerian slant submanifold, we have the relations (1.2) and

$$
\begin{equation*}
\operatorname{Ric}(X)-\left(n-1+3 \cos ^{2} \theta\right) c \leq \sum_{r=1}^{n} \sum_{j=2}^{n} h_{11}^{r} h_{j j}^{r}-\sum_{j=2}^{n}\left(h_{11}^{j}\right)^{2}-\sum_{j=2}^{n}\left(h_{j j}^{1}\right)^{2} \tag{3.4}
\end{equation*}
$$

Now we put

$$
f_{1}\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right)=h_{11}^{1} \sum_{j=2}^{n} h_{j j}^{1}-\sum_{j=2}^{n}\left(h_{j j}^{1}\right)^{2}
$$

and

$$
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right)=h_{11}^{r} \sum_{j=2}^{n} h_{j j}^{r}-\left(h_{11}^{r}\right)^{2}, \quad \forall r \in \overline{2, n}
$$

Since $n H^{1}=h_{11}^{1}+h_{22}^{1}+\ldots+h_{n n}^{1}$, we obtain by using Lemma 3.1 that

$$
\begin{equation*}
f_{1}\left(h_{11}^{1}, h_{22}^{1}, \ldots, h_{n n}^{1}\right) \leq \frac{n-1}{4 n}\left(n H^{1}\right)^{2}=\frac{n(n-1)}{4}\left(H^{1}\right)^{2} \tag{3.5}
\end{equation*}
$$

By applying Lemma 3.2 for $2 \leq r \leq n$, we get

$$
\begin{equation*}
f_{r}\left(h_{11}^{r}, h_{22}^{r}, \ldots, h_{n n}^{r}\right) \leq \frac{1}{8}\left(n H^{r}\right)^{2}=\frac{n^{2}}{8}\left(H^{r}\right)^{2} \leq \frac{n(n-1)}{4}\left(H^{r}\right)^{2} \tag{3.6}
\end{equation*}
$$

From (3.4), (3.5) and (3.6), we obtain

$$
\operatorname{Ric}(X)-\left(n-1+3 \cos ^{2} \theta\right) c \leq \frac{n(n-1)}{4} \sum_{r=1}^{n}\left(H^{r}\right)^{2}=\frac{n(n-1)}{4}\|H\|^{2}
$$

Thus we have

$$
\operatorname{Ric}(X) \leq\left(n-1+3 \cos ^{2} \theta\right) c+\frac{n(n-1)}{4}\|H\|^{2}
$$

which implies (3.1).
Next, we shall study the equality case. For $n \geq 3$, we choose $F e_{1}$ parallel to H. Then we have $H^{r}=0$, for $r \geq 2$. Thus, by Lemma 3.2, we get

$$
h_{1 j}^{1}=h_{11}^{j}=\frac{n H^{j}}{4}=0, \quad \forall j \geq 2
$$

and

$$
h_{j k}^{1}=0, \quad \forall j, k \geq 2, \quad j \neq k
$$

From Lemma 3.1, we have $h_{11}^{1}=(n+1) a$ and $h_{j j}^{1}=a, \forall j \geq 2$, with $a=\frac{H^{1}}{2}$.
In (3.3) we compute $\operatorname{Ric}(X)=\operatorname{Ric}\left(e_{1}\right)$. Similarly, by computing $\operatorname{Ric}\left(e_{2}\right)$ and using the equality, we get

$$
h_{2 j}^{r}=h_{j r}^{2}=0, \quad \forall r \neq 2, \quad j \neq 2, \quad r \neq j
$$

Then we obtain

$$
\frac{h_{11}^{2}}{n+1}=h_{22}^{2}=\ldots=h_{n n}^{2}=\frac{H^{2}}{2}=0
$$

The argument is also true for matrices $\left(h_{j k}^{r}\right)$ because the equality holds for all unit tangent vectors; so, $h_{2 j}^{2}=h_{22}^{j}=\frac{H^{j}}{2}=0, \quad \forall j \geq 3$.

The matrix $\left(h_{j k}^{2}\right)$ (respectively the matrix $\left(h_{j k}^{r}\right)$) has only two possible nonzero entries $h_{12}^{2}=h_{21}^{2}=h_{22}^{1}=\frac{H^{1}}{2}$ (respectively $h_{1 r}^{r}=h_{r 1}^{r}=h_{r r}^{1}=\frac{H^{1}}{2}, \forall r \geq 3$). Now, after putting $X=Z=e_{2}$ and $Y=W=e_{j}, j=3, \ldots, n$, in Gauss' eqution, we obtain

$$
\widetilde{R}\left(e_{2}, e_{j}, e_{2}, e_{j}\right)=R\left(e_{2}, e_{j}, e_{2}, e_{j}\right)-\left(\frac{H^{1}}{2}\right)^{2}, \quad \forall j \geq 3
$$

If we put $X=Z=e_{2}$ and $Y=W=e_{1}$ in Gauss' eqution, we get

$$
\widetilde{R}\left(e_{2}, e_{1}, e_{2}, e_{1}\right)=R\left(e_{2}, e_{1}, e_{2}, e_{1}\right)-(n+1)\left(\frac{H^{1}}{2}\right)^{2}+\left(\frac{H^{1}}{2}\right)^{2}
$$

After combining the last two relations, we find

$$
\operatorname{Ric}\left(e_{2}\right)-\left(n-1+3 \cos ^{2} \theta\right) c=2(n-1)\left(\frac{H^{1}}{2}\right)^{2}
$$

On the other hand, the equality case of (3.1) implies that

$$
\operatorname{Ric}\left(e_{2}\right)-\left(n-1+3 \cos ^{2} \theta\right) c=\frac{n(n-1)}{4}\|H\|^{2}=n(n-1)\left(\frac{H^{1}}{2}\right)^{2}
$$

Since $n \neq 1,2$, by equating the last 2 equations we find $H^{1}=0$. Thus, $\left(h_{j k}^{r}\right)$ are all zero, i.e., M is a totally geodesic submanifold in $\widetilde{M}(4 c)$. In particular, M is a curvature-invariant submanifold of $\widetilde{M}(4 c)$. Therefore, when $c \neq 0$, it follows from a result of Chen and Ogiue [6] that M is either a complex submanifold or a Lagrangian submanifold of $\widetilde{M}(4 c)$. Hence, M is a non-proper θ-slant submanifold, which is a contradiction. Consequently, we have either
(1) $c=0$ and M is totally geodesic, or,
(2) $n=2$.

If (1) occurs, we obtain (i) of the theorem. Now, let us assume that $n=2$. Let us recall a result of Chen from [2] states that if M is a proper slant surface in a complex 2-dimensional complex space form $\widetilde{M}^{2}(4 c)$ satisfying the equality case of (3.1) identically, then M is either totally geodesic or $c<0$. In particular, when M is not totally geodesic, one has

$$
h\left(e_{1}, e_{1}\right)=\lambda e_{1}^{*}, \quad h\left(e_{2}, e_{2}\right)=\mu e_{1}^{*}, \quad h\left(e_{1}, e_{2}\right)=\mu e_{2}^{*}
$$

with $\lambda=3 \mu=\frac{3 H^{1}}{2}$, i.e., M is H-umbilical. This gives case (ii) of the theorem.
Since a proper slant surface is Kaehlerian slant automatically (cf. [1]), we rediscover the following result of [2] from Theorem 3.3.

Theorem 3.4. If M is a proper slant surface in a complex space form $\widetilde{M}(4 c)$ of complex dimension 2 , then the squared mean curvature and the Gaussian curvature of M satisfy:

$$
\|H\|^{2} \geq 2\left[G-\left(1+3 \cos ^{2} \theta\right) c\right]
$$

at each point $p \in M$, where θ is the slant angle of the slant surface.
Example 3.5. The explicit representation of the slant surface in $\mathrm{CH}^{2}(-4)$ satisfying the equality case of inequality (3.1) was determined by Chen and Tazawa in [5, Theorem 5.2] as follows:

Let z be the immersion $z: \mathbf{R}^{3} \rightarrow \mathbf{C}_{1}^{3}$ defined by

$$
\begin{align*}
& z(u, v, t) \\
= & e^{i t}\left(1+\frac{3}{2}\left(\cosh \left(\frac{\sqrt{2}}{\sqrt{3}} v\right)-1\right)+\frac{u^{2}}{6} e^{-\sqrt{\frac{2}{3} v}}-i \frac{u}{\sqrt{6}}\left(1+e^{-\sqrt{\frac{2}{3}} v}\right),\right. \\
& \frac{u}{3}\left(1+2 e^{-\sqrt{\frac{2}{3}} v}\right)+\frac{i}{6 \sqrt{6}} e^{-\sqrt{\frac{2}{3}} v}\left(\left(e^{\sqrt{\frac{2}{3}} v}-1\right)\left(9 e^{\sqrt{\frac{2}{3} v}}-3\right)+2 u^{2}\right), \tag{3.7}\\
& \left.\frac{u}{3 \sqrt{2}}\left(1-e^{-\sqrt{\frac{2}{3} v}}\right)+\frac{i}{12 \sqrt{3}}\left(6-15 e^{-\sqrt{\frac{2}{3} v}}+9 e^{\sqrt{\frac{2}{3} v}}+2 e^{-\sqrt{\frac{2}{3}} v} u^{2}\right)\right) .
\end{align*}
$$

It was proved in [5] that $\langle z, z\rangle=-1$. Hence, z defines an immersion from \mathbf{R}^{3} into the anti-de Sitter spacetime $H_{1}^{5}(-1)$. Moreover, it was proved in [5] that the
image $z\left(\mathbf{R}^{3}\right)$ in $H_{1}^{5}(-1)$ is invariant under the action of $\mathbf{C}^{*}=\mathbf{C}-\{0\}$. Let $\pi: H_{1}^{4}(-1) \rightarrow C H^{2}(-4)$ denote the Hopf fibration. It was shown in [5] that the composition

$$
\pi \circ z: \mathbf{R}^{3} \rightarrow C H_{1}^{2}(-4)
$$

defines a slant surface with slant angle $\theta=\cos ^{-1}\left(\frac{1}{3}\right)$. Also, it was proved in [5] that $\pi \circ z$ is a H-umbilical immersion satisfying $\lambda=3 \mu$. Consequently, this example of slant H-umbilical surface satisfies the equality case of inequality (3.1) identically.

Acknowledgments

The first author's work was supported by the strategic grant POSDRU/89/1.5/S $/ 58852$, Project Postdoctoral programme for training scientific researchers, cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. The second author's work was supported by the grant POSDRU/6/1.5/S.12, cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013.

Both authors are very indebted to the referee for valuable suggestions which improved the paper.

References

1. B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit, Leuven, 1990.
2. B. Y. Chen, Special slant surfaces and a basic inequality, Results Math., 33 (1998), 65-78.
3. B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J., 41 (1999), 33-44.
4. B. Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Arch. Math., 74 (2000), 154-160.
5. B. Y. Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow Math. J., 42 (2000), 439-454.
6. B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
7. S. Deng, An improved Chen-Ricci inequality, Int. Electron. J. Geom., 2 (2009), 3945.
8. K. Matsumoto, I. Mihai and A. Oiaga, Ricci curvature of submanifolds in complex space forms, Rev. Roum. Math. Pures. Appl., 46 (2001), 775-782.
9. I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc., 72 (2002), 247-256.
10. I. Mihai, Geometria Subvarietatilor in Varietati Complexe, Univ. Bucuresti, 2002.
11. T. Oprea, On a geometric inequality, arXiv:math.DG/0511088.

Adela Mihai and Ioana N. Rădulescu
Department of Mathematics
Faculty of Mathematics and Computer Science
University of Bucharest
Str. Academiei 14
010014 Bucharest
Romania
E-mail: adela_mihai@fmi.unibuc.ro
ioanatoma1982@yahoo.com

