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AN IMPROVED CHEN-RICCI INEQUALITY FOR KAEHLERIAN SLANT

SUBMANIFOLDS IN COMPLEX SPACE FORMS

Adela Mihai and Ioana N. Rădulescu

Abstract. B. Y. Chen proved in [4] an optimal inequality for Lagrangian

submanifolds in complex space forms in terms of the Ricci curvature and the

squared mean curvature, well-known as the Chen-Ricci inequality. Recently,

the Chen-Ricci inequality was improved in [7, 11] for Lagrangian submanifolds

in complex space forms. In this article we extend the improved Chen-Ricci

inequality to Kaehlerian slant submanifolds in complex space forms. We also

investigate the equality case of the inequality.

1. PRELIMINARIES

Let M̃ be a complex m-dimensional Kaehler manifold, i.e., M̃ is endowed with

an almost complex structure J and with a J-Hermitian metric g̃. By a complex

space form M̃(4c) we mean an m-dimensional Kaehler manifold with constant
holomorphic sectional curvature 4c. A complete simply-connected complex space

form M̃(4c) is holomorphically isometric to the complex Euclidean n-space Cm,

the complex projective m-space CPm(4c), or the complex hyperbolic m-space

CHm(4c), according to c = 0, c > 0 or c < 0, respectively.
Let f : M → M̃ be an isometric immersion of an n-dimensional Riemannian

manifold M into a Kaehler m-manifold M̃ . Then M is called a totally real sub-

manifold if J(TpM) ⊂ T⊥
p M , ∀p ∈ M (cf. [6]). A Lagrangian submanifold is a

totally real submanifold of maximum dimension.

We denote by K(π) the sectional curvature of M associated with a plane section
π ⊂ TpM, p ∈ M , by h the second fundamental form and by R the Riemann

curvature tensor of M. Then the Gauss equation is given by:

R̃(X, Y, Z,W ) = R(X, Y, Z,W )− g(h(X, Z), h(Y, W ))
+ g(h(X, W ), h(Y,Z)),
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for any vectors X,Y,Z,W tangent to M.

Let p ∈ M and {e1, e2, ..., en} be an orthonormal basis of the tangent space
TpM. We denote by H the mean curvature vector, i.e.,

H(p) =
1
n

n∑

i=1

h(ei, ei)

and by

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej))

the squared norm of the second fundamental form.

For any tangent vector X to M, one decomposes JX = PX + FX, where PX
and FX are the tangential and normal components of JX, respectively.

The submanifold M is said to be a slant submanifold if the angle between JX

and the tangent space TpM , for any nonzero vector X tangent to M , called the

Wirtinger angle θ(X) of X , is constant, i.e., is independent of the choice of the

point p and of the vector X (cf. [1]).

Slant submanifolds are characterized by the condition P 2 = λI , for some λ ∈
[−1, 0], where I is the identity transformation of TM . If λ = −1, then θ = 0 and f
is an invariant immersion; if λ = 0, then θ = π

2 and f is an totally real immersion;

if λ = − cos2 θ, with θ 6= 0, π
2 , then f is a proper slant immersion.

A proper slant submanifold is said to be Kaehlerian slant if ∇P = 0 (the
canonical endomorphism P is parallel), where ∇ is the Levi-Civita connection on

M . A Kaehlerian slant submanifold is a Kaehler manifold with respect to the

induced metric and the almost complex structure J̃ = (sec θ)J , where θ is the slant

angle.

Let M be a proper slant submanifold p ∈ M , π ⊂ TpM a 2-plane section and

{e1, e2, ..., en} be an orthonormal basis of tangent space TpM such that e1, e2 ∈ π.
If m = n, an orthonormal basis {e∗1, e∗2, ..., e∗n} of the normal space T⊥

p M is defined

by

e∗k =
1

sin θ
Fek , k = 1, . . . , n.(1.1)

For a Kaehlerian slant submanifold one has (cf. [1])

AFXY = AFY X, ∀X, Y ∈ TpM,

or equivalently,

(1.2) hk
ij = hj

ik = hi
jk ,

where A is the shape operator and

hk
ij = g(h(ei, ej), e∗k), i, j, k = 1, ..., n.(1.3)
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The following propositions give characterizations of submanifolds with ∇P = 0.

Proposition 1.1. [1]. LetM be a submanifold of an almost Hermitian manifold

M̃. Then ∇P = 0 if and only if M is locally the Riemannian productM1× ...×Mk,
where each Mi is either a complex submanifold, a totally real submanifold or a

Kaehlerian slant submanifold of M̃.

Proposition 1.2. [1]. Let M be an irreducible submanifold of an almost

Hermitian manifold M̃ . If M is neither invariant nor totally real, then M is a

Kaehlerian slant submanifold if and only if the endomorphism P is parallel, i.e.,

∇P = 0.

Definition 1.3. A slant H-umbilical submanifold of a Kaehler manifold M̃n

is a slant submanifold for which the second fundamental form takes the following

forms:

h(e1, e1) = λe∗1, h(e2, e2) = · · · = h(en, en) = µe∗1,

h(e1, ej) = µe∗j , h(ej , ek) = 0, 2 ≤ j 6= k ≤ n,

where e∗1, . . . , e
∗
n are defined by (1.1).

2. RICCI CURVATURE OF SUBMANIFOLDS

In [3], B. Y. Chen established a sharp relationship between the Ricci curvature

and the squared mean curvature for any n-dimensional Riemannian submanifold of
a real space form M̃(c) of constant sectional curvature c; namely,

Ric(X) ≤ (n − 1)c +
n2

4
‖H‖2 ,

which is well-known as the Chen-Ricci inequality. The same inequality holds for

Lagrangian submanifolds in a complex space form M̃(4c) as well (see [4]).
I. Mihai proved a similar inequality in [9] for certain submanifolds of Sasakian

space forms.

In [8], Matsumoto, Mihai and Oiaga extended the Chen-Ricci equality to the

following inequality for submanifolds in complex space forms.

Theorem 2.1. [8]. Let M be an n-dimensional submanifold of a complex
m-dimensional complex space form M̃(4c). Then:
(i) For each vector X ∈ TpM we have

Ric(X) ≤ (n − 1)c +
n2

4
‖H‖2 + 3c ‖PX‖2 .

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and
only if X ∈ kerhp;
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(iii) The equality case holds identically for all unit tangent vectors at p if and only

if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

In particular, for θ-slant submanifolds, the following result holds.

Corollary 2.2. [8]. Let M be an n-dimensional θ-slant submanifold of a
complex space form M̃(4c). Then:
(i) For each vector X ∈ TpM we have

Ric(X) ≤ (n − 1)c +
n2

4
‖H‖2 + 3c cos2 θ.

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case if and
only if X ∈ kerhp;
(iii) The equality case holds identically for all unit tangent vectors at p if and only

if p is a totally geodesic point or n = 2 and p is a totally umbilical point.

The Chen-Ricci inequality was further improved to the following for Lagrangian

submanifolds (cf. [7, 11]).

Theorem 2.3. Let M be a Lagrangian submanifold of dimension n ≥ 2 in a
complex space form M̃(4c) of constant holomorphic sectional curvature 4c and X

a unit tangent vector in TpM , p ∈ M . Then, we have

Ric(X) ≤ (n − 1)
(
c +

n

4
‖H‖2

)
.

The equality sign holds for any unit tangent vector at p if and only if either:
(i) p is a totally geodesic point, or

(ii) n = 2 and p is an H-umbilical point with λ = 3µ.

Lagrangian submanifolds in complex space forms satisfying the equality case

of the inequality were determined by Deng in [7]. More precisely, he proved the

following.

Corollary 2.4. Let M be a Lagrangian submanifold of real dimension n ≥ 2
in a complex space form M̃(4c). If

Ric(X) = (n − 1)
(
c +

n

4
‖H‖2

)
,

for any unit tangent vector X of M, then either
(i) M is a totally geodesic submanifold in M̃(4c) or,
(ii) n = 2 andM is a Lagrangian H-umbilical submanifold of M̃(4c) with λ = 3µ.

3. RICCI CURVATURE OF KAEHLERIAN SLANT SUBMANIFOLDS

In this section, we extend Theorem 2.3 to Kaehlerian slant submanifolds in

complex space forms. We shall apply the following two Lemmas from [7].
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Lemma 3.1. Let f1(x1, x2, ..., xn) be a function in Rn defined by:

f1(x1, x2, ..., xn) = x1

n∑

j=2

xj −
n∑

j=2

x2
j .

If x1 + x2 + ... + xn = 2na, then we have

f1(x1, x2, ..., xn) ≤
n − 1
4n

(x1 + x2 + ... + xn)2 ,

with the equality sign holding if and only if 1
n+1x1 = x2 = ... = xn = a.

Lemma 3.2. Let f2(x1, x2, ..., xn) be a function in Rn defined by:

f2(x1, x2, ..., xn) = x1

n∑

j=2

xj − x2
1.

If x1 + x2 + ... + xn = 4a, then we have

f2(x1, x2, ..., xn) ≤
1
8

(x1 + x2 + ... + xn)2 ,

with the equality sign holding if and only if x1 = a and x2 + ... + xn = 3a.

The main result of this section is the following theorem.

Theorem 3.3. Let M be an n-dimensional Kaehlerian proper θ-slant sub-

manifold in a complex n-dimensional complex space form M̃(4c) of constant
holomorphic sectional curvature 4c. Then for any unit tangent vector X to M we

have

(3.1) Ric(X) ≤ (n − 1)
(
c +

n

4
‖H‖2

)
+ 3c cos2 θ.

The equality sign of (3.1) holds identically if and only if either
(i) c = 0 and M is totally geodesic, or

(ii) n = 2, c < 0 and M is a slant H-umbilical surface with λ = 3µ.

Proof. For a given point p ∈ M and a given unit vector X ∈ TpM , we choose

an orthonormal basis {e1 = X, e2, . . . , en} ⊂ TpM and
{

e∗1 =
Fe1

sin θ
, . . . , e∗n =

Fen

sin θ

}
⊂ T⊥

p M.

For that X = Z = e1 and Y = W = ej , j = 2, .., n, Gauss’ equation gives

R̃(e1, ej , e1, ej) = R(e1, ej , e1, ej)−g(h(e1, e1), h(ej, ej))+g(h(e1, ej), h(e1, ej)),

or equivalently,

R̃(e1, ej, e1, ej) = R(e1, ej, e1, ej) −
n∑

r=1

(hr
11h

r
jj − (hr

1j)
2), ∀j ∈ 2, n.
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Since the Riemannian curvature tensor of M̃(4c) is given by

R̃(X, Y, Z,W ) = c{g(X, Z)g(Y,W )− g(X, W )g(Y, Z)

+g(JX, Z)g(JY, W )− g(JX, W )g(JY, Z)+ 2g(JX, Y )g(JZ, W )},

we find

(3.2) R̃(e1, ej, e1, ej) = c[1 + 3g2(Je1, ej)].

By summing after j = 2, n, we get

(n − 1 + 3 ‖PX‖2)c = Ric(X)−
n∑

r=1

n∑

j=2

[
hr

11h
r
jj − (hr

1j)
2
]
,

or,

(n − 1 + 3 cos2 θ)c = Ric(X)−
n∑

r=1

n∑

j=2

[
hr

11h
r
jj − (hr

1j)
2
]
.

It follows that

(3.3) Ric(X)− (n − 1 + 3 cos2 θ)c =
n∑

r=1

n∑

j=2

[
hr

11h
r
jj − (hr

1j)
2
]

≤
n∑

r=1

n∑

j=2

hr
11h

r
jj −

n∑

j=2

(h1
1j)

2 −
n∑

j=2

(hj
1j)

2.

Since M is a Kaehlerian slant submanifold, we have the relations (1.2) and

(3.4) Ric(X)−(n−1+ 3 cos2 θ)c ≤
n∑

r=1

n∑

j=2

hr
11h

r
jj −

n∑

j=2

(hj
11)

2 −
n∑

j=2

(h1
jj)

2.

Now we put

f1(h1
11, h

1
22, ..., h

1
nn) = h1

11

n∑

j=2

h1
jj −

n∑

j=2

(h1
jj)

2

and

fr(hr
11, h

r
22, ..., h

r
nn) = hr

11

n∑

j=2

hr
jj − (hr

11)
2, ∀r ∈ 2, n.

Since nH1 = h1
11 + h1

22 + ... + h1
nn, we obtain by using Lemma 3.1 that

(3.5) f1(h1
11, h

1
22, ..., h

1
nn) ≤

n − 1
4n

(nH1)2 =
n(n − 1)

4
(H1)2.

By applying Lemma 3.2 for 2 ≤ r ≤ n, we get

(3.6) fr(hr
11, h

r
22, ..., h

r
nn) ≤

1
8
(nHr)2 =

n2

8
(Hr)2 ≤ n(n − 1)

4
(Hr)2.
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From (3.4), (3.5) and (3.6), we obtain

Ric(X)− (n − 1 + 3 cos2 θ)c ≤ n(n − 1)
4

n∑

r=1

(Hr)2 =
n(n − 1)

4
‖H‖2 .

Thus we have

Ric(X) ≤ (n − 1 + 3 cos2 θ)c +
n(n − 1)

4
‖H‖2 ,

which implies (3.1).

Next, we shall study the equality case. For n ≥ 3, we choose Fe1 parallel to

H . Then we have Hr = 0, for r ≥ 2. Thus, by Lemma 3.2, we get

h1
1j = hj

11 =
nHj

4
= 0, ∀j ≥ 2,

and
h1

jk = 0, ∀j, k ≥ 2, j 6= k.

From Lemma 3.1, we have h1
11 = (n + 1)a and h1

jj = a, ∀j ≥ 2, with a = H1

2 .

In (3.3) we compute Ric(X) = Ric(e1). Similarly, by computing Ric(e2) and
using the equality, we get

hr
2j = h2

jr = 0, ∀r 6= 2, j 6= 2, r 6= j.

Then we obtain h2
11

n + 1
= h2

22 = ... = h2
nn =

H2

2
= 0.

The argument is also true for matrices
(
hr

jk

)
because the equality holds for all unit

tangent vectors; so, h2
2j = hj

22 = Hj

2 = 0, ∀j ≥ 3.

The matrix
(
h2

jk

)
(respectively the matrix

(
hr

jk

)
) has only two possible nonzero

entries h2
12 = h2

21 = h1
22 = H1

2 (respectively hr
1r = hr

r1 = h1
rr = H1

2 , ∀r ≥ 3).
Now, after puttingX = Z = e2 and Y = W = ej , j = 3, . . . , n, in Gauss’ eqution,

we obtain

R̃(e2, ej, e2, ej) = R(e2, ej, e2, ej) −
(

H1

2

)2

, ∀j ≥ 3.

If we put X = Z = e2 and Y = W = e1 in Gauss’ eqution, we get

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1) − (n + 1)
(

H1

2

)2

+
(

H1

2

)2

.

After combining the last two relations, we find

Ric(e2) − (n − 1 + 3 cos2 θ)c = 2(n − 1)
(

H1

2

)2

.

On the other hand, the equality case of (3.1) implies that

Ric(e2) − (n − 1 + 3 cos2 θ)c =
n(n − 1)

4
‖H‖2 = n(n − 1)

(
H1

2

)2

.
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Since n 6= 1, 2, by equating the last 2 equations we find H1 = 0. Thus,
(
hr

jk

)

are all zero, i.e., M is a totally geodesic submanifold in M̃ (4c). In particular, M
is a curvature-invariant submanifold of M̃(4c). Therefore, when c 6= 0, it follows
from a result of Chen and Ogiue [6] that M is either a complex submanifold or a

Lagrangian submanifold of M̃(4c). Hence, M is a non-proper θ-slant submanifold,

which is a contradiction. Consequently, we have either

(1) c = 0 and M is totally geodesic, or,

(2) n = 2.
If (1) occurs, we obtain (i) of the theorem. Now, let us assume that n = 2. Let

us recall a result of Chen from [2] states that if M is a proper slant surface in a

complex 2-dimensional complex space form M̃2(4c) satisfying the equality case of
(3.1) identically, then M is either totally geodesic or c < 0. In particular, when M

is not totally geodesic, one has

h(e1, e1) = λe∗1, h(e2, e2) = µe∗1, h(e1, e2) = µe∗2,

with λ = 3µ = 3H1

2 , i.e., M is H-umbilical. This gives case (ii) of the theorem.

Since a proper slant surface is Kaehlerian slant automatically (cf. [1]), we

rediscover the following result of [2] from Theorem 3.3.

Theorem 3.4. If M is a proper slant surface in a complex space form

M̃(4c) of complex dimension 2, then the squared mean curvature and the Gaussian
curvature of M satisfy:

‖H‖2 ≥ 2[G− (1 + 3 cos2 θ)c]

at each point p ∈ M, where θ is the slant angle of the slant surface.

Example 3.5. The explicit representation of the slant surface in CH2(−4)
satisfying the equality case of inequality (3.1) was determined by Chen and Tazawa

in [5, Theorem 5.2] as follows:

Let z be the immersion z : R3 → C3
1 defined by

(3.7)

z(u, v, t)

= eit

(
1 +

3
2

(
cosh

(√
2√
3
v
)
− 1
)

+
u2

6
e−

√
2
3 v − i

u√
6
(1 + e−

√
2
3 v),

u

3

(
1 + 2e−

√
2
3 v
)

+
i

6
√

6
e−

√
2
3 v
((

e
√

2
3 v − 1

)(
9e
√

2
3 v − 3

)
+ 2u2

)
,

u

3
√

2

(
1 − e−

√
2
3 v
)

+
i

12
√

3

(
6 − 15e−

√
2
3 v + 9e

√
2
3 v + 2e−

√
2
3 vu2

))
.

It was proved in [5] that 〈z, z〉 = −1. Hence, z defines an immersion from R3

into the anti-de Sitter spacetime H5
1(−1). Moreover, it was proved in [5] that the
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image z(R3) in H5
1(−1) is invariant under the action of C∗ = C − {0}. Let

π : H4
1(−1) → CH2(−4) denote the Hopf fibration. It was shown in [5] that the

composition

π ◦ z : R3 → CH2
1 (−4)

defines a slant surface with slant angle θ = cos−1(1
3). Also, it was proved in

[5] that π ◦ z is a H-umbilical immersion satisfying λ = 3µ. Consequently, this
example of slant H-umbilical surface satisfies the equality case of inequality (3.1)

identically.
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