(2,1)-TOTAL NUMBER OF JOINS OF PATHS AND CYCLES

Weifan Wang*, Jing Huang, Sun Haina and Danjun Huang

Abstract

The $(2,1)$-total number $\lambda_{2}^{t}(G)$ of a graph G is the width of the smallest range of integers that suffices to label the vertices and edges of G such that no two adjacent vertices or two adjacent edges have the same label and the difference between the label of a vertex and its incident edges is at least 2 . In this paper, we characterize completely the $(2,1)$-total number of the join of two paths and the join of two cycles.

1. Introduction

Motivated by the Frequency Channel Assignment problem, Griggs and Yeh [7] introduced the $L(2,1)$-labelling of graphs. This notion was subsequently generalized to the $L(p, q)$-labelling problem of graphs. Let p and q be two nonnegative integers. An $L(p, q)$-labelling of a graph G is a function f from its vertex set $V(G)$ to the set $\{0,1, \ldots, k\}$ for some positive integer k such that $|f(x)-f(y)| \geq p$ if x and y are adjacent, and $|f(x)-f(y)| \geq q$ if x and y are at distance 2. The $L(p, q)$-labelling number $\lambda_{p, q}(G)$ of G is the smallest k such that G has an $L(p, q)$-labelling f with $\max \{f(v) \mid v \in V(G)\}=k$.

The $L(p, q)$-labelling of graphs have been studied rather extensively in recent years [3, 4, 13, 15, 16, 17, 18]. Whittlesey, Georges and Mauro investigated the $L(2,1)$-labelling of incidence graphs [21]. The incidence graph of a graph G is the graph obtained from G by replacing each edge by a path of length 2 . The $L(2,1)$ labelling of the incidence graph of G is equivalent to an assignment of integers to each element of $V(G) \cup E(G)$ such that adjacent vertices have different labels, adjacent edges have different labels, and incident vertex and edge have labels that differ by at least 2 . Such a labelling is called a $(2,1)$-total labelling of G , which was introduced by Havet and Yu and generalized to the $(d, 1)$-total labelling [8].

[^0]Let $d \geq 1$ be an integer. A k - $(d, 1)$-total labelling of a graph G is a function f from $V(G) \cup E(G)$ to the set $\{0,1, \ldots, k\}$ such that $f(u) \neq f(v)$ if u and v are two adjacent vertices, $f(e) \neq f\left(e^{\prime}\right)$ if e and e^{\prime} are two adjacent edges, and $|f(u)-f(e)| \geq d$ if vertex u is incident to edge e. The $(d, 1)$-total number, denoted by $\lambda_{d}^{t}(G)$, is the least k such that G has a k - $(d, 1)$-total labelling.

When $d=1$, the $(1,1)$-total labelling is the well-known total coloring of a graph, which has been extensively studied [2, 10, 12, 19].

Let $\Delta(G)$ (or simply Δ) denote the maximum degree of a graph G. Havet and $\mathrm{Yu}[8]$ proposed the following conjecture.
$(d, 1)$-Total Labelling Conjecture. $\lambda_{d}^{t}(G) \leq \min \{\Delta+2 d-1,2 \Delta+d-1\}$.
In [8], it was shown that for any graph G, (i) $\lambda_{d}^{t}(G) \leq 2 \Delta+d-1$; (ii) $\lambda_{d}^{t}(G) \leq 2 \Delta-2 \log (\Delta+2)+2 \log (16 d-8)+d-1$, (iii) $\lambda_{2}^{t}(G) \leq 2 \Delta$; and (iv) $\lambda_{2}^{t}(G) \leq 2 \Delta-1$ if $\Delta \geq 5$ is odd. The ($d, 1$)-total labelling for a few special graphs has been studied, e.g., complete graphs [8], complete bipartite graphs [11], planar graphs [1], outerplanar graphs [5], trees [9, 20], products of graphs [6], graphs with a given maximum average degree [14], etc.

The join $G \vee H$ of two vertex-disjoint graphs G and H is the graph obtained by joining each vertex of G to each vertex of H. If $C_{m}=u_{1} u_{2} \ldots u_{m} u_{1}$ and $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$, with $n, m \geq 3$, are vertex-disjoint cycles, then

$$
\begin{aligned}
& V\left(C_{m} \vee C_{n}\right)=V\left(C_{m}\right) \cup V\left(C_{n}\right), \\
& E\left(C_{m} \vee C_{n}\right)=E\left(C_{m}\right) \cup E\left(C_{n}\right) \cup\left\{u_{i} v_{j}: i=1,2, \ldots, m ; j=1,2, \ldots, n\right\} .
\end{aligned}
$$

If $P_{m}=u_{1} u_{2} \ldots u_{m}$ and $P_{n}=v_{1} v_{2} \ldots v_{n}, n, m \geq 1$, are vertex-disjoint paths, then

$$
\begin{aligned}
& V\left(P_{m} \vee P_{n}\right)=V\left(P_{m}\right) \cup V\left(P_{n}\right), \\
& E\left(P_{m} \vee P_{n}\right)=E\left(P_{m}\right) \cup E\left(P_{n}\right) \cup\left\{u_{i} v_{j}: i=1,2, \ldots, m ; j=1,2, \ldots, n\right\} .
\end{aligned}
$$

In this paper, we will characterize completely the $(2,1)$-total number of the join of two paths and the join of two cycles.

2. Join of Cycles

The following two lemmas appeared in [8]:
Lemma 1. Let G be a graph. Then
(1) $\lambda_{2}^{t}(G) \geq \Delta+1$.
(2) For any $(\Delta+1)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, \Delta+1$, every vertex of maximum degree of G is assigned 0 or $\Delta+1$.
(3) If H is a subgraph of G, then $\lambda_{2}^{t}(H) \leq \lambda_{2}^{t}(G)$.

Lemma 2. Let $n \geq 3$ be any integer. Then

$$
\lambda_{2}^{t}\left(K_{n}\right)= \begin{cases}n+1, & \text { if } n=6,8 \text { or } n \text { is odd; } \\ n+2, & \text { otherwise } .\end{cases}
$$

Let G_{Δ} denote the subgraph induced by all vertices of maximum degree in G. Chen and Wang [5] proved the following result:

Lemma 3. If $\Delta\left(G_{\Delta}\right) \geq \Delta-1$, then $\lambda_{2}^{t}(G) \geq \Delta+2$.
Lemma 4. If G_{Δ} is not bipartite, then $\lambda_{2}^{t}(G) \geq \Delta+2$.
Proof. By Lemma 1, we may assume to the contrary that $\lambda_{2}^{t}(G)=\Delta+1$. Let f be a $(\Delta+1)-(2,1)$-total labelling of G using $0,1, \ldots, \Delta+1$. Thus, every vertex v of maximum degree of G has $f(v)=0$ or $f(v)=\Delta+1$. This implies that f is a 2-coloring restricted on G_{Δ}, hence G_{Δ} is bipartite, contradicting the assumption on G_{Δ}.

Given a k - $(2,1)$-total labelling f of the graph G using the label set $B=$ $\{0,1, \ldots, k\}$, let σ_{i} and β_{i} denote the number of vertices and edges having the label i, respectively. Moreover, $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \rightarrow\left(b_{1}, b_{2}, \ldots, b_{l}\right)$ denotes that the sequences of vertices or edges $x_{1}, x_{2}, \ldots, x_{s}$ are alternately labelled with repeated uses of the sequences of labels $b_{1}, b_{2}, \ldots, b_{l}$. For example, $\left\{v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, v_{4}, e_{4}, v_{5}\right\}$ $\rightarrow(1,2,3,4)$ means that all elements in the subset $\left\{v_{1}, v_{3}, v_{5}\right\}$ are labelled with 1 , $\left\{e_{1}, e_{3}\right\}$ with $2,\left\{v_{2}, v_{4}\right\}$ with 3 , and $\left\{e_{2}, e_{4}\right\}$ with 4 , respectively. For a subset $S \subseteq V(G) \cup E(G)$ and a label $i \in B$, let $f(S)=i$ denote that all the elements in S are assigned label i, i.e., $f(x)=i$ for each $x \in S$. In particular, we simply write to indicate $f(x)=i$ for each $x \in\{a, b, \ldots, c\}$.

Theorem 5. Let n, m be integers with $n \geq m \geq 3$. Then

$$
\lambda_{2}^{t}\left(C_{m} \vee C_{n}\right)= \begin{cases}n+3 & \text { if either } n \geq m+2 \text { and } m \text { is even, } \\ & \text { or } n=m+1 \text { and } m \equiv 2,4(\bmod 12) ; \\ n+4 & \text { otherwise } .\end{cases}
$$

Proof. Let $G=C_{m} \vee C_{n}$ and write $\Delta=\Delta(G)$. Since $n \geq m \geq 3$, we see that $\Delta=n+2$ by definition. We assume that all indices are taken modulo m for u_{i} and modulo n for v_{j} in the following argument. The proof is split into two cases.
Case 1. m is even.
Subcase 1.1. $n \geq m+3$.
By Lemma $1(1), \lambda_{2}^{t}(G) \geq \Delta+1=n+3$. It thus suffices to establish an $(n+3)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+3$:
$\left\{u_{1}, u_{1} u_{2}, u_{2}, u_{2} u_{3}, \ldots, u_{m-1} u_{m}, u_{m}, u_{m} u_{1}\right\} \rightarrow(0,2, n+3,3)$,
$f\left(v_{1}\right)=f\left(v_{3}\right)=1, f\left(v_{2}\right)=2$,
$f\left(v_{j}\right)=j-2$ for $4 \leq j \leq n-m+2, \quad f\left(v_{j}\right)=j$ for $n-m+3 \leq j \leq n$,
$f\left(v_{j} v_{j+1}\right)=m+3+j$ for $j=1,2,3$,
$f\left(v_{j} v_{j+1}\right)=j+1$ for $4 \leq j \leq n-m+1$,
$f\left(v_{n-m+2} v_{n-m+3}\right)=0$.
Let $n-m+3 \leq j \leq n$.
If n is odd, we set $f\left(v_{j} v_{j+1}\right)=2$ when j is even, and $f\left(v_{j} v_{j+1}\right)=3$ when j is odd.

If n is even, we set $f\left(v_{j} v_{j+1}\right)=3$ when j is even, and $f\left(v_{j} v_{j+1}\right)=2$ when j is odd.

For all i, j with $i+j \geq 3$, if $i+j+1 \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+3$, where $i+j+1 \equiv p(\bmod (n+3))$ and $p \geq 1$.

We relabel $u_{m} v_{n-m+1}$ with $0, u_{m} v_{n-m+2}$ with 1 and $u_{1} v_{1}$ with $n+3$. For $i=2,4, \ldots, m-2$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and the edge $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 0 .

For example, a 14-(2,1)-total labelling of $C_{8} \vee C_{11}$ is given in Table 1.
Table 1: A 14-(2,1)-total labelling of $C_{8} \vee C_{11}$.

3			3										
			12		13	14	5	0	2	3	2	3	2
			1	2	1	2	3	6	7	8	9	10	11
			14	4	5	6	7	8	9	10	11	12	13
	2	14	4	5	6	7	8	9	10	11	12	1	0
	3	0	5	6	7	8	9	10	11	12	13	14	4
	2	14	6	7	8	9	10	11	12	1	0	4	5
	3	0	7	8	9	10	11	12	13	14	4	5	6
	2	14	8	9	10	11	12	1	0	4	5	6	7
	3	0	9	10	11	12	13	14	4	5	6	7	8
	2	14	10	11	12	0	1	4	5	6	7	8	9

In Table 1 , the label 3 in the first row is assigned to the edge $v_{11} v_{1}$. The sequence of labels $12,13,14, \ldots, 3,2$ in the second row are assigned to edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{9} v_{10}, v_{10} v_{11}$, respectively. The sequence of labels $1,2,1, \ldots$, 10,11 in the third row are assigned to vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{10}, v_{11}$, respectively. The label 3 in the first column is assigned to the edge $u_{8} u_{1}$. The sequence of labels $2,3,2, \ldots, 3,2$ in the second column are assigned to edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$, $\ldots, u_{6} u_{7}, u_{7} u_{8}$, respectively. The sequence of labels $0,14,0, \ldots, 0,14$ in the third column are assigned to vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{7}, u_{8}$, respectively. Other labels in
the table are assigned to edges $u_{i} v_{j}$ for $i=1,2, \ldots, 8$ and $j=1,2, \ldots, 11$.
Subcase 1.2. $n=m+2$.
Since $\lambda_{2}^{t}(G) \geq \triangle+1=n+3$ by Lemma 1, it suffices to give an $(n+3)$ (2, 1)-total labelling f of G using the labels $0,1, \ldots, n+3$:
$f\left(u_{i}\right)=0$ if $i \geq 1$ is odd, $f\left(u_{i}\right)=n+3$ if $i \geq 2$ is even.
$f\left(u_{i} u_{i+1}\right)=i+1$ for $i=1,2, \ldots, m-1, f\left(u_{m} u_{1}\right)=m+1$.
$f\left(v_{1} v_{2}\right)=n+2, f\left(v_{n} v_{1}\right)=n+1$.
$f\left(v_{j}\right)=j$ if $1 \leq j \leq m-2, f\left(v_{m-1}\right)=m, f\left(v_{j}\right)=j-1$ if $m \leq j \leq n$.
For all $i, j \geq 1$, if $i+j+1 \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+1$, where $i+j+1 \equiv p(\bmod (n+3))$ and $p \geq 1$.

For $i=3,7,11, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled $n+2$.

Afterwards, we consider two subcases:
(a) If $m=0(\bmod 4)$, we set $\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(0, n+2,1, n+3)$.

For $i=2,6,10, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 1 .
For $i=4,8,12, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 0 .
Finally, we relabel $u_{1} v_{3}$ with $n+3, u_{1} u_{j}$ with $j-2$ for all $j=7,11,15, \ldots, n-$ 3.
(b) If $m=2(\bmod 4)$, we set $\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(0, n+3,1, n+2)$. For $i=4,8,12, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 1 .
For $i=2,6,10, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 0 .
Finally, we relabel $u_{1} v_{1}$ with $n+3, u_{1} v_{j}$ with $j-2$ for all $j=5,9,13, \ldots, n-3$.
Subcase 1.3. $n=m+1$.
Subcase 1.3.1. $m \not \equiv 2,4(\bmod 12)$.
First, we give an $(n+4)-(2,1)$-total labelling f of G using $0,1, \ldots, n+4$:
$f\left(u_{1}\right)=0, f\left(u_{1} u_{2}\right)=n+3, f\left(u_{2}\right)=1, f\left(u_{2} u_{3}\right)=n+4$,
$\left\{u_{3}, u_{3} u_{4}, \ldots, u_{m}, u_{m} u_{1}\right\} \rightarrow(0,3,1,4)$.
$f\left(v_{1}\right)=n+4, f\left(v_{1} v_{2}\right)=n+2, f\left(v_{2}\right)=1, f\left(v_{2} v_{3}\right)=n+3, f\left(v_{3}\right)=2$,
$\left\{v_{3} v_{4}, v_{4}, \ldots, v_{n}, v_{n} v_{1}\right\} \rightarrow(0,3,1,4)$.
For all $i, j \geq 1$, if $i+j \leq n+4$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=$ $p+4$, where $i+j \equiv p(\bmod (n+4))$ and $p \geq 1$.

For $i=5,7,9, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=5$ is relabelled 2. Moreover, we relabel $u_{1} v_{3}$ with $n+4$.

To show that $\lambda_{2}^{t}(G) \geq n+4=m+5$, we suppose to the contrary that $\lambda_{2}^{t}(G) \leq n+3=m+4$. Let f be an $(m+4)-(2,1)$-total labelling using $B=$ $\{0,1, \ldots, m+4\}$. We may, by Lemma $1(2)$, assume that $f\left(u_{i}\right)=0$ if i is odd, and $f\left(u_{i}\right)=m+4$ if i is even. This implies that $\sigma_{0}=\sigma_{m+4}=\frac{m}{2}$. Since $|V(G)|=2 m+1$ and $|E(G)|=m(m+1)+m+m+1=m^{2}+3 m+1$, we have

$$
\begin{equation*}
\sum_{i=0}^{m+4} \sigma_{i}=2 m+1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{m+4} \beta_{i}=m^{2}+3 m+1 \tag{2}
\end{equation*}
$$

From (1), we conclude that $\sigma_{1}+\sigma_{2}+\cdots+\sigma_{m+3}=m+1$. Let $S_{i}=\sigma_{i-1}+$ $\sigma_{i}+\sigma_{i+1}$ for each $i \in B$, where $\sigma_{-1}=\sigma_{m+5}=0$. Thus,

$$
\begin{equation*}
\beta_{i} \leq\left\lfloor\frac{2 m+1-S_{i}}{2}\right\rfloor \leq m+\frac{1}{2}-\frac{1}{2} S_{i} . \tag{3}
\end{equation*}
$$

Further,

$$
\begin{aligned}
\sum_{i=0}^{m+4} \beta_{i} & \leq(m+5)\left(m+\frac{1}{2}\right)-\frac{1}{2} \sum_{i=0}^{m+4} S_{i} \\
& =(m+5)\left(m+\frac{1}{2}\right)-\frac{1}{2}\left[2 \sigma_{0}+3\left(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{m+3}\right)+2 \sigma_{m+4}\right] \\
& =m^{2}+\frac{11}{2} m+\frac{5}{2}-\frac{1}{2}(2 m+3 m+3) \\
& =m^{2}+3 m+1
\end{aligned}
$$

By (2) and (3), $\sum_{i=0}^{m+4} \beta_{i}=m^{2}+3 m+1$ if and only if $\beta_{i}=\frac{2 m+1-S_{i}}{2}$ for all $i \in B$. So, all S_{i} 's must be odd. Since m is even, to finish the proof, we have two possibilities as follows:
(i) Assume that $m \equiv 0(\bmod 4)$. In this case, $\sigma_{0}=\sigma_{m+4}=\frac{m}{2}$ is even. Since $S_{0}=\sigma_{0}+\sigma_{1}$ is odd, it follows that $\sigma_{1}=S_{0}-\sigma_{0}$ is odd. Since $S_{1}=\sigma_{0}+\sigma_{1}+\sigma_{2}$ is odd, it follows that $\sigma_{2}=S_{1}-\sigma_{0}-\sigma_{1}$ is even. Since $S_{2}=\sigma_{1}+\sigma_{2}+\sigma_{3}$ is odd, it follows that $\sigma_{3}=S_{2}-\sigma_{1}-\sigma_{2}$ is even. Continuing this process, we derive that $\sigma_{1}, \sigma_{4}, \sigma_{7}, \ldots, \sigma_{m}, \sigma_{m+3}$ are odd, and $\sigma_{0}, \sigma_{2}, \sigma_{3}, \sigma_{5}, \sigma_{6}, \sigma_{m+1}, \sigma_{m+2}, \sigma_{m+4}$ are even. This implies that $m+5 \equiv 0(\bmod 3)$, so $m=3 k_{1}+1$ for some integer $k_{1} \geq 1$. Note that $m \equiv 0(\bmod 4)$, i.e., $m=4 k_{2}$ for some integer $k_{2} \geq 2$.

Combining these two facts, we obtain that $m \equiv 4(\bmod 12)$, which contradicts the assumption.
(ii) Assume that $m \equiv 2(\bmod 4)$. We note that $\sigma_{0}=\sigma_{m+4}=\frac{m}{2}$ is odd. Since $S_{0}=\sigma_{0}+\sigma_{1}$ is odd, similar to discussion for (i), σ_{i} is odd for precisely $i=0,3,6,9, \ldots, m+1, m+4$, where $m+4$ divides 3 . This implies that $m \equiv 2$ $(\bmod 3)$ and $($ by assumption $) m \equiv 2(\bmod 4)$, so we have a contradiction that $m \equiv 2$ $(\bmod 12)$.
Subcase 1.3.2. $m \equiv 2(\bmod 12)$.
It suffices to give an $(n+3)-(2,1)$-total labelling f of G using $0,1, \ldots, n+3$:
$f\left(u_{i}\right)=0$ if $i \geq 1$ is odd, $f\left(u_{i}\right)=n+3$ if $i \geq 2$ is even.
$f\left(u_{i} u_{i+1}\right)=i+1$ for $i=1,2, \ldots, m-1, f\left(u_{m} u_{1}\right)=m+1$.
$f\left(v_{j}\right)=j-1$ if $j \equiv 0(\bmod 3)$; otherwise, we set $f\left(v_{j}\right)=j+1$.
$f\left(v_{1} v_{2}\right)=0, f\left(v_{2} v_{3}\right)=n+2, f\left(v_{n} v_{1}\right)=n+3$,
$\left\{v_{3} v_{4}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(0, n+3,1, n+2)$.
For all $i, j \geq 1$, if $i+j+1 \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+1$, where $i+j+1 \equiv p(\bmod (n+3))$ and $p \geq 1$.

For $i \equiv 1(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled $n+2$.

For $i \equiv 2(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 1 .

For $i \equiv 0(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 0 .

Finally, we relabel $u_{1} v_{1}$ with $n+2, u_{1} v_{2}$ with $n+3, u_{1} v_{n}$ with $n+1$, and $u_{1} v_{j}$ with $j-1$ for all $j \not \equiv 0(\bmod 3)$ and $j \geq 4$. Relabel $u_{m} v_{n}$ with $0, u_{m} v_{2}$ with 1 , and $u_{m} v_{j}$ with $j+1$ for all $j \equiv 0(\bmod 3)$ and $3 \leq j<n$.

Subcase 1.3.3. $m \equiv 4(\bmod 12)$.
It suffices to give an $(n+3)-(2,1)$-total labelling f of G using $0,1, \ldots, n+3$:
$f\left(u_{i}\right)=0$ if $i \geq 1$ is odd, $f\left(u_{i}\right)=n+3$ if $i \geq 2$ is even.
$f\left(u_{1} u_{2}\right)=3, f\left(u_{i} u_{i+1}\right)=i$ for $i=2,3, \ldots, m-1, f\left(u_{m} u_{1}\right)=m$.
$f\left(v_{1}\right)=1, f\left(v_{2}\right)=n+2, f\left(v_{j}\right)=j-2$ if $j \equiv 2(\bmod 3)$ and $j \geq 3$; otherwise, we set $f\left(v_{j}\right)=j$.
$f\left(v_{1} v_{2}\right)=3,\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\} \rightarrow(0, n+3,1, n+2)$.
For all $i, j \geq 1$, if $i+j \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=$ $p+1$, where $i+j \equiv p(\bmod (n+3))$ and $p \geq 1$.

For $i \equiv 1(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled $n+2$.

For $i \equiv 2(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and
$u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 1.
For $i \equiv 0(\bmod 4)$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+3$ is relabelled 0 .

Then, we relabel $u_{1} v_{1}$ with $n, u_{1} v_{2}$ with $n+3, u_{1} v_{3}$ with $n+2$, and $u_{1} v_{j}$ with $j-2$ for all $j \not \equiv 2(\bmod 3)$ and $j \geq 4$. Relabel $u_{2} v_{1}$ with $1, u_{m} v_{1}$ with $2, u_{m} v_{2}$ with $n+1$, and $u_{m} v_{j}$ with j for all $j \equiv 2(\bmod 3)$ and $j \geq 5$. Finally, we need to exchange the obtained labels of $u_{i} v_{1}$ and $u_{i} v_{2}$ for all $i=1,2, \ldots, m$.

Subcase 1.4. $n=m$.
This means that G is an $(n+2)$-regular graph. By Lemma 3, $\lambda_{2}^{t}(G) \geq \Delta+2=$ $n+4$. It thus suffices to give an $(n+4)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+4$:
$\left\{u_{1}, u_{1} u_{2}, u_{2}, u_{2} u_{3}, \ldots, u_{n-1} u_{n}, u_{n}, u_{n} u_{1}\right\} \rightarrow(1,3,0,4)$.
$\left\{v_{1}, v_{1} v_{2}, v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n}, v_{n} v_{1}\right\} \rightarrow(3,1,4,0)$.
For all $i, j=1,2, \ldots, n$, if $i+j+1 \leq n+4$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+4$, where $i+j+1 \equiv p(\bmod (n+4))$ and $p \geq 1$.

We relabel $u_{1} v_{1}$ with $n+3$, both $u_{1} v_{2}$ and $u_{2} v_{1}$ with $n+4$, and $u_{i} v_{j}$ with 2 if j is even and $f\left(u_{i} v_{j}\right)=5$.
Case 2. m is odd.
Subcase 2.1. $n \geq m+1$.
Since C_{m} is an odd cycle and $G_{\Delta}=C_{m}$, Lemma 4 shows that $\lambda_{2}^{t}(G) \geq$ $\Delta+2=n+4$. It suffices to establish an $(n+4)-(2,1)$-total labelling f of G using $0,1, \ldots, n+4$:
$f\left(u_{1}\right)=n+4, f\left(u_{1} u_{2}\right)=2,\left\{u_{2}, u_{2} u_{3}, \ldots, u_{m}, u_{m} u_{1}\right\} \rightarrow(0,3,1,4)$.
$f\left(v_{1}\right)=m+4, f\left(v_{2}\right)=3, f\left(v_{3}\right)=2, f\left(v_{2} v_{3}\right)=m+5$.
For all $i, j \geq 1$, if $i+j+1 \leq n+4$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+4$, where $i+j+1 \equiv p(\bmod (n+4))$ and $p \geq 1$. Afterwards, when $i \geq 4$ is even, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=5$ is relabelled 2.

If n is odd, we set $f\left(v_{1} v_{2}\right)=1$ and relabel $u_{1} v_{2}$ with 0 , and
$\left\{v_{3} v_{4}, v_{4}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}, v_{n}, v_{n} v_{1}\right\} \rightarrow(0,3,1,4)$.
If n is even, we set $f\left(v_{1} v_{2}\right)=0$ and relabel $u_{1} v_{2}$ with 1 , and
$\left\{v_{3} v_{4}, v_{4}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}, v_{n}, v_{n} v_{1}\right\} \rightarrow(0,4,1,3)$.
Subcase 2.2. $n=m$.
Since $C_{3} \vee C_{3}$ is just $K_{6}, \lambda_{2}^{t}\left(K_{6}\right)=7$ by Lemma 2. Thus, we only need to consider the case for $n=m \geq 5$. It is obvious that $\lambda_{2}^{t}(G) \geq \Delta+2=n+4$ by Lemma 4. It suffices to give an $(n+4)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+4$:

```
\(f\left(u_{n}\right)=n+1, f\left(v_{n}\right)=n, f\left(u_{1} u_{2}\right)=n+2, f\left(v_{1} v_{2}\right)=2\),
\(f\left(u_{i}\right)=1\) if \(1 \leq i \leq n-2\) is odd, \(f\left(u_{i}\right)=0\) if \(2 \leq i \leq n-1\) is even,
\(f\left(v_{j}\right)=n+3\) if \(1 \leq j \leq n-2\) is odd, \(f\left(v_{j}\right)=n+4\) if \(2 \leq j \leq n-1\) is even,
\(\left\{u_{2} u_{3}, u_{3} u_{4}, \ldots, u_{n-1} u_{n}, u_{n} u_{1}\right\} \rightarrow(n+3, n+4)\),
\(\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\} \rightarrow(0,1)\),
\(f\left(u_{1} v_{n}\right)=n+3, f\left(u_{2} v_{n}\right)=n+4, f\left(u_{n-1} v_{n}\right)=n+2, f\left(u_{n} v_{n}\right)=2\),
\(f\left(u_{i} v_{n}\right)=i\) for \(3 \leq i \leq n-2\).
```

For odd j, if $i+j \leq n+1$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=p+1$, where $i+j \equiv p(\bmod (n+1)), p \geq 1$ and $j \leq n-2$.

For even j, if $i+j \leq n+2$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=p+2$, where $i+j \equiv p(\bmod (n+2)), p \geq 1$ and $j \leq n-1$.

Finally, we relabel $u_{1} v_{1}$ with $n+1, u_{n} v_{1}$ with $0, u_{n} v_{2}$ with 1 .
This completes the proof.

3. Join of Paths

In this section, we give a complete classification for the join of two paths according to their $(2,1)$-total numbers. More precisely, we obtain the following result:

Theorem 6. Let n, m be integers with $n \geq m \geq 1$. Then

$$
\lambda_{2}^{t}\left(P_{m} \vee P_{n}\right)= \begin{cases}n+1 & \text { if } m=1 \text { and } n \geq 4 \\ n+2 & \text { if } m=1 \text { and } 1 \leq n \leq 3, \text { or } m=2 \text { and } n \geq 4 \\ n+3 & \text { if } m=2 \text { and } n=3, \text { or } m \geq 3 \text { and } n \geq m+1 \\ n+4 & \text { if } m=n \geq 2\end{cases}
$$

Proof. We write simply $G=P_{m} \vee P_{n}$ and $\Delta=\Delta(G)$. In the following proof, all indices are taken modulo m for u_{i} and modulo n for v_{j}. We consider several cases, depending on the values of m and n.

Case 1. $m=1$.
In this case, G is a fan with $\Delta=n$. If $n=1$, then it is easy to check that $G=K_{2}$ and $\lambda_{2}^{t}(G)=3=n+2$. If $n=2$, then $G=K_{3}$ and $\lambda_{2}^{t}(G)=4=n+2$. If $n=3$, then G is the graph obtained by removing an edge of K_{4}. It is not difficult to verify that $\lambda_{2}^{t}(G)=5=n+2$.

Assume that $n \geq 4$. On the one hand, $\lambda_{2}^{t}(G) \geq \Delta+1=n+1$ by Lemma 1 (1). On the other hand, an $(n+1)$ - $(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+1$ is constructed as follows:

$$
f\left(u_{1}, v_{1} v_{2}, v_{4} v_{5}\right)=0, f\left(v_{3}\right)=1, f\left(v_{2}, v_{4}, u_{1} v_{1}\right)=2, f\left(u_{1} v_{3}\right)=3
$$

$f\left(v_{5}, v_{3} v_{4}, u_{1} v_{2}\right)=4, f\left(v_{1}, v_{2} v_{3}\right)=5,\left\{v_{5} v_{6}, v_{6}, \ldots, v_{n-1} v_{n}, v_{n}\right\} \rightarrow(1,3,5)$,
$f\left(u_{1} v_{j}\right)=j+1$ for $j=4,5, \ldots, n$.
Case 2. $m=2$.
If $n=2$, then G is K_{4} and $\lambda_{2}^{t}(G)=6=n+4$ by Lemma 2.
If $n=4$, to show that $\lambda_{2}^{t}(G)=6=n+2$, it suffices to give a 6 - $(2,1)$-total labelling f of G using the labels $0,1, \ldots, 6$ as follows:
$f\left(u_{1}, v_{1} v_{2}, u_{2} v_{4}\right)=0, f\left(v_{3}, u_{2} v_{1}\right)=1, f\left(v_{2}, u_{1} u_{2}\right)=2, f\left(v_{4}, u_{1} v_{1}, u_{2} v_{3}\right)=3$,
$f\left(u_{2} v_{2}, u_{1} v_{3}\right)=4, f\left(v_{1}, u_{1} v_{4}, v_{2} v_{3}\right)=5, f\left(u_{2}, u_{1} v_{2}, v_{3} v_{4}\right)=6$.
Assume that $n=3$. Since G contains a 3-cycle consisting of three vertices, u_{1}, u_{2}, v_{2}, of maximum degree, we have $\lambda_{2}^{t}(G) \geq \Delta+2=6=n+3$ by Lemma 4 . Since $P_{2} \vee P_{3}$ is a subgraph of $P_{2} \vee P_{4}, \lambda_{2}^{t}\left(P_{2} \vee P_{3}\right) \leq \lambda_{2}^{t}\left(P_{2} \vee P_{4}\right)=6=n+3$ by Lemma 1(3) and the previous proof. Thus, $\lambda_{2}^{t}(G)=6=n+3$.

Assume that $n \geq 5$. Since $\lambda_{2}^{t}(G) \geq \Delta+1=n+2$, it suffices to give an $(n+2)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+2$:

$$
\begin{aligned}
& f\left(u_{1}, v_{n-3} v_{n-2}, u_{2} v_{n-1}\right)=0, f\left(v_{n-1} v_{n}, u_{2} v_{n-2}\right)=1 . \\
& f\left(u_{1} u_{2}\right)=2, f\left(u_{2} v_{n}\right)=3, f\left(u_{2}, v_{n-2} v_{n-3}\right)=n+2 . \\
& f\left(v_{j}\right)=j \text { for } j=1,2, \ldots, n . \\
& f\left(u_{1} v_{j}\right)=j+2 \text { for } j=1,2, \ldots, n . \\
& f\left(u_{2} v_{j}\right)=j+3 \text { for } j=1,2, \ldots, n-3 . \\
& f\left(v_{j} v_{j+1}\right)=j+5 \text { for } j=1,2, \ldots, n-4 .
\end{aligned}
$$

Case 3. $m \geq 3$.
Subcase 3.1. $n=m=3$.
Our goal is to show that $\lambda_{2}^{t}(G)=n+4=7$. Since $G \subseteq K_{6}$ and $\lambda_{2}^{t}(G) \leq$ $\lambda_{2}^{t}\left(K_{6}\right)=7$ by Lemmas 1 (3) and 2, it suffices to prove that $\lambda_{2}^{t}(G) \geq 7$. Assume to the contrary that G has a 6 - $(2,1)$-total labelling f using the label set $B=$ $\{0,1, \ldots, 6\}$. Since G has 6 vertices and 13 edges, we derive

$$
\begin{equation*}
\sum_{i=0}^{6} \sigma_{i}=6 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=0}^{6} \beta_{i}=13 \tag{5}
\end{equation*}
$$

Since u_{2} and v_{2} are vertices of maximum degree, $\left\{f\left(u_{2}\right), f\left(v_{2}\right)\right\}=\{0,6\}$ by Lemma $1(2)$, say $f\left(u_{2}\right)=0$ and $f\left(v_{2}\right)=6$. Hence, $f(x) \notin\{0,6\}$ for all
$x \in V(G) \backslash\left\{u_{2}, v_{2}\right\}$. This implies that $\sigma_{0}=\sigma_{6}=1$. Since only u_{1} and u_{3}, or v_{1} and v_{3}, may have the same label, it follows that $\sigma_{i} \leq 2$ for all $1 \leq i \leq 5$.

Claim 1. For each $i \in B, \beta_{i} \leq\left\lfloor\frac{6-\sigma_{i-1}-\sigma_{i}-\sigma_{i+1}}{2}\right\rfloor$, where $\sigma_{-1}=\sigma_{7}=0$.
Claim 1 implies that $\beta_{i} \leq 3$ for all $i \in B$. Furthermore, since $\sigma_{0}=\sigma_{6}=1$, we have $\beta_{i} \leq 2$ for $i=0,1,5,6$. We consider two cases as follows:
Case (i). There is some $k \in B$ such that $\beta_{k}=3$.
We notice that $k \in\{2,3,4\}$. By symmetry, we consider two subcases:

- $\beta_{2}=3$. Then $\sigma_{1}=\sigma_{2}=\sigma_{3}=0$, and $f\left(u_{1}\right)=f\left(u_{3}\right)=i_{1}$ and $f\left(v_{1}\right)=$ $f\left(v_{3}\right)=i_{2}$ with $\left\{i_{1}, i_{2}\right\}=\{4,5\}$. It is easy to see that $\beta_{5}=0, \beta_{4}, \beta_{6} \leq 1, \beta_{3} \leq 2$ by Claim 1. Thus,

$$
\sum_{i=0}^{6} \beta_{i} \leq 2+2+3+2+1+0+1=11
$$

which contradicts (5).

- $\beta_{3}=3$. We note that $\sigma_{2}=\sigma_{3}=\sigma_{4}=0$, and $f\left(u_{1}\right)=f\left(u_{3}\right)=i_{1}$ and $f\left(v_{1}\right)=f\left(v_{3}\right)=i_{2}$ with $\left\{i_{1}, i_{2}\right\}=\{1,5\}$. It follows that $\beta_{0}, \beta_{1}, \beta_{5}, \beta_{6} \leq 1$, $\beta_{2}, \beta_{4} \leq 2$ and hence

$$
\sum_{i=0}^{6} \beta_{i} \leq 3+2 \times 2+4 \times 1=11
$$

again contradicting (5).
Case (ii). For all $i \in B, \beta_{i} \leq 2$.
If $\sigma_{i} \leq 1$ for all $i \in B$, then there must exist two distinct labels $p, q \in$ $\{1,2, \ldots, 5\}$ such that $\sigma_{p-1}=\sigma_{p}=\sigma_{p+1}=1$ and $\sigma_{q-1}=\sigma_{q}=\sigma_{q+1}=1$, which implies that $\beta_{p}=\beta_{q}=1$ by Claim 1 and therefore

$$
\sum_{i=0}^{6} \beta_{i} \leq 2 \times 1+5 \times 2=12
$$

which contradicts (5).
Suppose that $\sigma_{i_{0}}=2$ for some $i_{0} \in B$. It is immediate to derive that $i_{0} \in$ $\{1,2, \ldots, 5\}$. By symmetry, it suffices to handle the case for $i_{0} \in\{1,2,3\}$.

If $i_{0}=1$, then $\sigma_{0}+\sigma_{1}=1+2=3$ and $\beta_{0}=\beta_{1}=1$ by Claim 1. Consequently, $\sum_{i=0}^{6} \beta_{i} \leq 2 \times 1+5 \times 2=12$.

Assume that $i_{0}=2$. Since $\sigma_{0}=1$ and $\sigma_{2}=2, \beta_{1} \leq\lfloor(6-1-2) / 2\rfloor=1$. If $\sigma_{1} \geq 1$ or $\sigma_{3} \geq 1$, then $\sigma_{1}+\sigma_{2}+\sigma_{3} \geq 3$ to make that $\beta_{2}=1$ and $\sum_{i=0}^{6} \beta_{i} \leq 12$. If $\sigma_{1}=\sigma_{3}=0$, then $\sigma_{4}+\sigma_{5}+\sigma_{6}=6-1-2=3$, and hence $\beta_{5}=1$ and $\sum_{i=0}^{6} \beta_{i} \leq 12$.

Assume that $i_{0}=3$. If $\sigma_{2} \geq 1$ or $\sigma_{4} \geq 1$, then $\beta_{3}=1$ and at least one of β_{2} and β_{4} is equal to 1 , thus $\sum_{i=0}^{6} \beta_{i} \leq 12$. If $\sigma_{2}=\sigma_{4}=0$, then $\sigma_{1}+\sigma_{5}=2$. If $\sigma_{1}=\sigma_{5}=1$, then $\beta_{2}=\beta_{4}=1$ and $\sum_{i=0}^{6} \beta_{i} \leq 12$. If $\sigma_{1}=2$ or $\sigma_{5}=2$, then we may assume that $\sigma_{1}=2$ (up to symmetry). Since this is the case that $i_{0}=1$, we can obtain that $\sum_{i=0}^{6} \beta_{i} \leq 12$.

Since each assumption yields the contradiction $\sum_{i=0}^{6} \beta_{i} \leq 12$, Subcase 3.1 is concluded.

Subcase 3.2. $n=m \geq 4$.
Since G contains a 3-cycle consisting of three vertices of maximum degree, $\lambda_{2}^{t}(G) \geq \Delta+2=n+4$ by Lemma 4. Since $P_{n} \vee P_{n}$ is a subgraph of $C_{n} \vee C_{n}$, we derive $\lambda_{2}^{t}(G) \leq n+4$ by Lemma 1 , Subcases 1.3 and 2.2 in Theorem 5. Consequently, $\lambda_{2}^{t}(G)=n+4$.
Subcase 3.3. $n=m+1$.
It is obvious that $\lambda_{2}^{t}(G) \geq \Delta+1=n+3$ by Lemma 1 . It suffices to establish an $(n+3)$-(2,1)-total labelling f of G using the labels $0,1, \ldots, n+3$:
$f\left(u_{i}\right)=0$ if $i \geq 1$ is odd, $f\left(u_{i}\right)=n+3$ if $i \geq 2$ is even.
$f\left(v_{1}\right)=n+2, f\left(v_{j}\right)=j-1$ for $j=2,3, \ldots, n$.
$f\left(u_{1} u_{2}\right)=3, f\left(u_{i} u_{i+1}\right)=i$ for $i=2,3, \ldots, m-1$.
For all $i, j \geq 1$, if $i+j \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=$ $p+1$, where $i+j \equiv p(\bmod (n+3))$ and $p \geq 1$.
$f\left(v_{1} v_{2}\right)=3, f\left(v_{2} v_{3}\right)=n+2$.
If m is odd, then $\left\{v_{3} v_{4}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(0, n+2,1, n+3)$.
If m is even, then $\left\{v_{3} v_{4}, v_{4} v_{5}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(n+3,0, n+2,1)$.
To relabel some edges, we need to consider two cases as follows:
(a) If $m \equiv 0$ or $3(\bmod 4)$, we relabel $u_{1} v_{2}$ with $n+3, u_{2} v_{1}$ with $0, u_{2} v_{n}$ with 1 . For $i=4,8,12, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 1 .
For $i=6,10,14, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 0 .
For $i=5,9,13, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled $n+2$.
(b) If $m \equiv 1$ or $2(\bmod 4)$, we relabel $u_{1} v_{2}$ with $n+3, u_{2} v_{1}$ with $1, u_{2} v_{n}$ with 0.

For $i=4,8,12, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 0 .
For $i=6,10,14, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 1 .
For $i=3,7, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled $n+2$.

Subcase 3.4. $n=m+2$.
By Lemma $1(1), \lambda_{2}^{t}\left(P_{m} \vee P_{n}\right) \geq \Delta+1=n+3$.
If m is even, the result follows from Subcase 1.2 in Theorem 5.
If m is odd, we only need to give an $(n+3)-(2,1)$-total labelling f of G using the labels $0,1, \ldots, n+3$:
$f\left(u_{i}\right)=0$ if $i \geq 1$ is odd, $f\left(u_{i}\right)=n+3$ if $i \geq 2$ is even.
$f\left(v_{1}\right)=n+1, f\left(v_{j}\right)=j-1$ for $j=2,3, \ldots, n$.
$f\left(u_{1} u_{2}\right)=3, f\left(u_{i} u_{i+1}\right)=i$ for $i=2,3, \ldots, m-1$.
$f\left(v_{1} v_{2}\right)=3, f\left(v_{2} v_{3}\right)=n+2, f\left(v_{3} v_{4}\right)=n+3$.
If $m \equiv 1(\bmod 4)$, then $\left\{v_{4} v_{5}, v_{5} v_{6}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(1, n+2,0, n+3)$.
If $m \equiv 3(\bmod 4)$, then $\left\{v_{4} v_{5}, v_{5} v_{6}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(0, n+2,1, n+3)$.
For all $i, j \geq 1$, if $i+j \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j$; otherwise, $f\left(u_{i} v_{j}\right)=$ $p+1$, where $i+j \equiv p(\bmod (n+3))$ and $p \geq 1$.

If $m \equiv 1(\bmod 4)$, for $i=3,7,11, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled $n+2$.

If $m \equiv 3(\bmod 4)$, for $i=5,9,13, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled $n+3$, and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled $n+2$.

We relabel $u_{1} v_{2}$ with $n+3, u_{2} v_{1}$ with $0, u_{2} v_{n}$ with 1 .
For $i=4,8,12, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 1 .

For $i=6,10,14, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 1 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 0 .

Subcase 3.5. $n \geq m+3$.
By Lemma $1(1), \lambda_{2}^{t}\left(P_{m} \vee P_{n}\right) \geq \Delta+1=n+3$. It suffices to give an $(n+3)-(2,1)$-total labelling f of G using $0,1, \ldots, n+3$:
$f\left(v_{1} v_{2}\right)=m+4, f\left(v_{2} v_{3}\right)=m+5, f\left(v_{3} v_{4}\right)=m+6$.
$\left\{u_{1}, u_{1} u_{2}, u_{2}, u_{2} u_{3}, \ldots, u_{m-1} u_{m}, u_{m}\right\} \rightarrow(0,2, n+3,3)$.
$f\left(v_{j}\right)=j$ for $j=1,2, \ldots, n,\left\{v_{4} v_{5}, v_{5} v_{6}, \ldots, v_{n-1} v_{n}\right\} \rightarrow(2,3)$.
For all $i, j \geq 1$, if $i+j+1 \leq n+3$, we set $f\left(u_{i} v_{j}\right)=i+j+1$; otherwise, $f\left(u_{i} v_{j}\right)=p+3$, where $i+j+1 \equiv p(\bmod (n+3))$ and $p \geq 1$.

For $i=2,4,6, \ldots$, the edge $u_{i} v_{j}$ with $f\left(u_{i} v_{j}\right)=n+2$ is relabelled 0 , and $u_{i} v_{j+1}$ with $f\left(u_{i} v_{j+1}\right)=n+3$ is relabelled 1 .

Acknowledgments

The authors would like to thank the referees for their valuable suggestions to improve this work.

References

1. F. Bazzaro, M. Montassier and A. Raspaud, $(d, 1)$-Total labelling of planar graphs with large girth and high maximum degree, Discrete Math., 307 (2007), 2141-2151.
2. O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total coloring of multigraphs, J. Combin. Theory Ser. B, 71 (1997), 184-204.
3. G. J. Chang and D. Kuo, The $L(2,1)$-labelling problem on graphs, SIAM J. Discrete Math., 9 (1996), 309-316.
4. G. J. Chang, W.-T. Ke, D. Kuo, Daphne D.-F. Liu and R. K. Yeh, On $L(d, 1)$-labelling of graphs, Discrete Math., 220 (2000), 57-66.
5. D. Chen and W. Wang, $(2,1)$-Total labelling of outerplanar graphs, Discrete Appl. Math., 155 (2007), 2585-2593.
6. D. Chen and W. Wang, $(2,1)$-Total labelling products of two kind of graphs, J. Zhejiang Normal Univ. (Natural Sci.), 29(1) (2006), 26-31.
7. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math., 5 (1992), 586-595.
8. F. Havet and M.-L. Yu, ($p, 1$)-Total labelling of graphs, Discrete Math., 308 (2008), 496-513.
9. J. Huang, H. Sun, W. Wang and D. Chen, (2, 1)-Total labelling of trees with sparse vertices of maximum degree, Inform. Process. Lett., 109 (2009), 199-203.
10. A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math., 162 (1996), 199-214.
11. K.-W. Lih, Daphne D.-F. Liu and W. Wang, On (d, 1)-total numbers of graphs, Discrete Math., 309 (2009), 3767-3773.
12. M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica, 18 (1998), 241-280.
13. M. Molloy and M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B, 94 (2005), 189-213.
14. M. Montassier and A. Raspaud, $(d, 1)$-Total labelling of graphs with a given maximum average degree, J. Graph Theory, 51 (2006), 93-109.
15. D. Sakai, Labelling chordal graphs: distance two condition, SIAM J. Discrete Math., 7 (1994), 133-140.
16. C. Schwarz and D. S. Troxell, $L(2,1)$-labelling of products of two cycels, Discrete Appl. Math., 154 (2006), 1522-1540.
17. W. Wang and K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math., 17 (2004), 264-275.
18. W. Wang, The $L(2,1)$-labelling of trees, Discrete Appl. Math., 154 (2006), 598-603.
19. W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory, 54 (2007), 91-102.
20. W. Wang and D. Chen, $(2,1)$-Total number of trees with maximum degree three, Inform. Process. Lett., 109 (2009), 805-810
21. M. A. Whittlesey, J. P. Georges and D. W. Mauro, On the λ-number of Q_{n} and related graphs, SIAM J. Discrete Math., 8 (1995), 499-506.

Weifan Wang, Jing Huang and Danjun Huang
Department of Mathematics
Zhejiang Normal University
Jinhua 321004
P. R. China

E-mail: wwf@zjnu.cn
Sun Haina
Department of Fundamental Courses
Ningbo Institute of Technology
Zhejiang University
Ningbo 315100
P. R. China

[^0]: Received March 5, 2009, accepted December 24, 2010.
 Communicated by Hung-Lin Fu.
 2010 Mathematics Subject Classification: 05C15.
 Key words and phrases: (2,1)-Total number, Path, Cycle, Join, Maximum degree.
 *Supported partially by NSFC (No. 11071223) and ZJNSF (No. Z6090150).
 *Corresponding author.

