
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 16, No. 2, pp. 605-619, April 2012
This paper is available online at http://journal.taiwanmathsoc.org.tw

(2,1)-TOTAL NUMBER OF JOINS OF PATHS AND CYCLES

Weifan Wang*, Jing Huang, Sun Haina and Danjun Huang

Abstract. The (2, 1)-total number λt
2(G) of a graph G is the width of the

smallest range of integers that suffices to label the vertices and edges of G
such that no two adjacent vertices or two adjacent edges have the same label
and the difference between the label of a vertex and its incident edges is at
least 2. In this paper, we characterize completely the (2, 1)-total number of
the join of two paths and the join of two cycles.

1. INTRODUCTION

Motivated by the Frequency Channel Assignment problem, Griggs and Yeh [7]
introduced the L(2, 1)-labelling of graphs. This notion was subsequently generalized
to the L(p, q)-labelling problem of graphs. Let p and q be two nonnegative integers.
An L(p, q)-labelling of a graph G is a function f from its vertex set V (G) to the set
{0, 1, . . . , k} for some positive integer k such that |f(x)−f(y)| ≥ p if x and y are
adjacent, and |f(x)− f(y)| ≥ q if x and y are at distance 2. The L(p, q)-labelling
number λp,q(G) of G is the smallest k such that G has an L(p, q)-labelling f with
max{f(v) | v ∈ V (G)} = k.

The L(p, q)-labelling of graphs have been studied rather extensively in recent
years [3, 4, 13, 15, 16, 17, 18]. Whittlesey, Georges and Mauro investigated the
L(2, 1)-labelling of incidence graphs [21]. The incidence graph of a graph G is the
graph obtained from G by replacing each edge by a path of length 2. The L(2, 1)-
labelling of the incidence graph of G is equivalent to an assignment of integers
to each element of V (G) ∪ E(G) such that adjacent vertices have different labels,
adjacent edges have different labels, and incident vertex and edge have labels that
differ by at least 2. Such a labelling is called a (2, 1)-total labelling of G, which
was introduced by Havet and Yu and generalized to the (d, 1)-total labelling [8].
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Let d ≥ 1 be an integer. A k-(d, 1)-total labelling of a graph G is a function
f from V (G) ∪ E(G) to the set {0, 1, . . . , k} such that f(u) �= f(v) if u and
v are two adjacent vertices, f(e) �= f(e′) if e and e′ are two adjacent edges, and
|f(u)−f(e)| ≥ d if vertex u is incident to edge e. The (d, 1)-total number, denoted
by λt

d(G), is the least k such that G has a k-(d, 1)-total labelling.
When d = 1, the (1, 1)-total labelling is the well-known total coloring of a

graph, which has been extensively studied [2, 10, 12, 19].
Let ∆(G) (or simply ∆) denote the maximum degree of a graph G. Havet and

Yu [8] proposed the following conjecture.

(d, 1)-Total Labelling Conjecture. λt
d(G) ≤ min{∆ + 2d − 1, 2∆ + d − 1}.

In [8], it was shown that for any graph G, (i) λt
d(G) ≤ 2∆ + d − 1; (ii)

λt
d(G) ≤ 2∆ − 2log(∆ + 2) + 2log(16d− 8) + d − 1, (iii) λt

2(G) ≤ 2∆; and (iv)
λt

2(G) ≤ 2∆−1 if ∆ ≥ 5 is odd. The (d, 1)-total labelling for a few special graphs
has been studied, e.g., complete graphs [8], complete bipartite graphs [11], planar
graphs [1], outerplanar graphs [5], trees [9, 20], products of graphs [6], graphs with
a given maximum average degree [14], etc.

The join G ∨ H of two vertex-disjoint graphs G and H is the graph obtained
by joining each vertex of G to each vertex of H . If Cm = u1u2 . . . umu1 and
Cn = v1v2 . . . vnv1, with n, m ≥ 3, are vertex-disjoint cycles, then

V (Cm ∨ Cn) = V (Cm) ∪ V (Cn),
E(Cm ∨ Cn) = E(Cm) ∪ E(Cn) ∪ {uivj : i = 1, 2, . . . , m; j = 1, 2, . . . , n}.

If Pm = u1u2 . . .um and Pn = v1v2 . . . vn, n, m ≥ 1, are vertex-disjoint paths,
then

V (Pm ∨ Pn) = V (Pm) ∪ V (Pn),
E(Pm ∨ Pn) = E(Pm) ∪ E(Pn) ∪ {uivj : i = 1, 2, . . . , m; j = 1, 2, . . . , n}.
In this paper, we will characterize completely the (2, 1)-total number of the join

of two paths and the join of two cycles.

2. JOIN OF CYCLES

The following two lemmas appeared in [8]:

Lemma 1. Let G be a graph. Then

(1) λt
2(G) ≥ ∆ + 1.

(2) For any (∆+1)-(2, 1)-total labelling f of G using the labels 0, 1, . . . , ∆+1,
every vertex of maximum degree of G is assigned 0 or ∆ + 1.

(3) If H is a subgraph of G, then λ t
2(H) ≤ λt

2(G).
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Lemma 2. Let n ≥ 3 be any integer. Then

λt
2(Kn) =

{
n + 1, if n = 6, 8 or n is odd;
n + 2, otherwise.

Let G∆ denote the subgraph induced by all vertices of maximum degree in G.
Chen and Wang [5] proved the following result:

Lemma 3. If ∆(G∆) ≥ ∆ − 1, then λt
2(G) ≥ ∆ + 2.

Lemma 4. If G∆ is not bipartite, then λ t
2(G) ≥ ∆ + 2.

Proof. By Lemma 1, we may assume to the contrary that λt
2(G) = ∆+1. Let

f be a (∆ + 1)-(2, 1)-total labelling of G using 0, 1, . . . , ∆ + 1. Thus, every vertex
v of maximum degree of G has f(v) = 0 or f(v) = ∆ + 1. This implies that f is
a 2-coloring restricted on G∆, hence G∆ is bipartite, contradicting the assumption
on G∆.

Given a k-(2, 1)-total labelling f of the graph G using the label set B =
{0, 1, . . . , k}, let σi and βi denote the number of vertices and edges having the label
i, respectively. Moreover, {x1, x2, . . . , xs} → (b1, b2, . . . , bl) denotes that the se-
quences of vertices or edges x1, x2, . . . , xs are alternately labelled with repeated uses
of the sequences of labels b1, b2, . . . , bl. For example, {v1, e1, v2, e2, v3, e3, v4, e4, v5}
→ (1, 2, 3, 4) means that all elements in the subset {v1, v3, v5} are labelled with
1, {e1, e3} with 2, {v2, v4} with 3, and {e2, e4} with 4, respectively. For a subset
S ⊆ V (G) ∪ E(G) and a label i ∈ B, let f(S) = i denote that all the elements in
S are assigned label i, i.e., f(x) = i for each x ∈ S. In particular, we simply write
to indicate f(x) = i for each x ∈ {a, b, . . . , c}.

Theorem 5. Let n, m be integers with n ≥ m ≥ 3. Then

λt
2(Cm ∨ Cn) =




n + 3 if either n ≥ m + 2 and m is even,
or n = m + 1 and m ≡ 2, 4 (mod 12);

n + 4 otherwise.

Proof. Let G = Cm∨Cn and write ∆ = ∆(G). Since n ≥ m ≥ 3, we see that
∆ = n + 2 by definition. We assume that all indices are taken modulo m for ui

and modulo n for vj in the following argument. The proof is split into two cases.

Case 1. m is even.

Subcase 1.1. n ≥ m + 3.

By Lemma 1(1), λt
2(G) ≥ ∆ + 1 = n + 3. It thus suffices to establish an

(n + 3)-(2, 1)-total labelling f of G using the labels 0, 1, . . . , n + 3:
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{u1, u1u2, u2, u2u3, . . . , um−1um, um, umu1} → (0, 2, n + 3, 3),
f(v1) = f(v3) = 1, f(v2) = 2,
f(vj) = j − 2 for 4 ≤ j ≤ n − m + 2, f(vj) = j for n − m + 3 ≤ j ≤ n,
f(vjvj+1) = m + 3 + j for j = 1, 2, 3,
f(vjvj+1) = j + 1 for 4 ≤ j ≤ n − m + 1,
f(vn−m+2vn−m+3) = 0.
Let n − m + 3 ≤ j ≤ n.
If n is odd, we set f(vjvj+1) = 2 when j is even, and f(vjvj+1) = 3 when j

is odd.
If n is even, we set f(vjvj+1) = 3 when j is even, and f(vjvj+1) = 2 when j

is odd.
For all i, j with i + j ≥ 3, if i + j + 1 ≤ n + 3, we set f(uivj) = i + j + 1;

otherwise, f(uivj) = p + 3, where i + j + 1 ≡ p (mod (n + 3)) and p ≥ 1.
We relabel umvn−m+1 with 0, umvn−m+2 with 1 and u1v1 with n + 3. For

i = 2, 4, . . . , m − 2, the edge uivj with f(uivj) = n + 2 is relabelled 1, and the
edge uivj+1 with f(uivj+1) = n + 3 is relabelled 0.

For example, a 14-(2, 1)-total labelling of C8 ∨ C11 is given in Table 1.

Table 1: A 14-(2,1)-total labelling of C8 ∨ C11.

1 2 1 2 3 6 7 8 9 10 11
0 14 4 5 6 7 8 9 10 11 12 13

14 4 5 6 7 8 9 10 11 12 1 0
0 5 6 7 8 9 10 11 12 13 14 4

14 6 7 8 9 10 11 12 1 0 4 5
0 7 8 9 10 11 12 13 14 4 5 6

14 8 9 10 11 12 1 0 4 5 6 7
0 9 10 11 12 13 14 4 5 6 7 8

14 10 11 12 0 1 4 5 6 7 8 9

���C11C8

12 13 14 5 0 2 3 2 3 2

3

2
3
2
3
2
3
2

3

In Table 1, the label 3 in the first row is assigned to the edge v11v1. The
sequence of labels 12, 13, 14, . . . , 3, 2 in the second row are assigned to edges
v1v2, v2v3, v3v4, . . ., v9v10, v10v11, respectively. The sequence of labels 1, 2, 1, . . . ,
10, 11 in the third row are assigned to vertices v1, v2, v3, . . . , v10, v11, respectively.
The label 3 in the first column is assigned to the edge u8u1. The sequence of la-
bels 2, 3, 2, . . . , 3, 2 in the second column are assigned to edges u1u2, u2u3, u3u4,
. . . , u6u7, u7u8, respectively. The sequence of labels 0, 14, 0, . . . , 0, 14 in the third
column are assigned to vertices u1, u2, u3, . . . , u7, u8, respectively. Other labels in
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the table are assigned to edges uivj for i = 1, 2, . . . , 8 and j = 1, 2, . . . , 11.

Subcase 1.2. n = m + 2.

Since λt
2(G) ≥ 
 + 1 = n + 3 by Lemma 1, it suffices to give an (n + 3)-

(2, 1)-total labelling f of G using the labels 0, 1, . . . , n + 3:
f(ui) = 0 if i ≥ 1 is odd, f(ui) = n + 3 if i ≥ 2 is even.
f(uiui+1) = i + 1 for i = 1, 2, . . . , m− 1, f(umu1) = m + 1.
f(v1v2) = n + 2, f(vnv1) = n + 1.
f(vj) = j if 1 ≤ j ≤ m − 2, f(vm−1) = m, f(vj) = j − 1 if m ≤ j ≤ n.
For all i, j ≥ 1, if i + j + 1 ≤ n + 3, we set f(uivj) = i + j + 1; otherwise,

f(uivj) = p + 1, where i + j + 1 ≡ p (mod (n + 3)) and p ≥ 1.
For i = 3, 7, 11, . . . , the edge uivj with f(uivj) = n + 2 is relabelled n + 3,

and uivj with f(uivj) = n + 3 is relabelled n + 2.
Afterwards, we consider two subcases:

(a) If m = 0 (mod 4), we set {v2v3, v3v4, . . . , vn−1vn} → (0, n + 2, 1, n + 3).
For i = 2, 6, 10, . . . , the edge uivj with f(uivj) = n + 2 is relabelled 0, and
uivj with f(uivj) = n + 3 is relabelled 1.
For i = 4, 8, 12, . . . , the edge uivj with f(uivj) = n + 2 is relabelled 1, and
uivj with f(uivj) = n + 3 is relabelled 0.
Finally, we relabel u1v3 with n+3, u1uj with j−2 for all j = 7, 11, 15, . . . , n−
3.

(b) If m = 2 (mod 4), we set {v2v3, v3v4, . . . , vn−1vn} → (0, n + 3, 1, n + 2).
For i = 4, 8, 12, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 0, and
uivj with f(uivj) = n + 3 is relabelled 1.
For i = 2, 6, 10, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 1, and
uivj with f(uivj) = n + 3 is relabelled 0.
Finally, we relabel u1v1 with n+3, u1vj with j−2 for all j=5, 9, 13, . . . , n−3.

Subcase 1.3. n = m + 1.
Subcase 1.3.1. m �≡ 2, 4 (mod 12).

First, we give an (n + 4)-(2, 1)-total labelling f of G using 0, 1, . . . , n + 4:
f(u1) = 0, f(u1u2) = n + 3, f(u2) = 1, f(u2u3) = n + 4,
{u3, u3u4, . . . , um, umu1} → (0, 3, 1, 4).
f(v1) = n + 4, f(v1v2) = n + 2, f(v2) = 1, f(v2v3) = n + 3, f(v3) = 2,
{v3v4, v4, . . . , vn, vnv1} → (0, 3, 1, 4).
For all i, j ≥ 1, if i + j ≤ n + 4, we set f(uivj) = i + j; otherwise, f(uivj) =

p + 4, where i + j ≡ p (mod (n + 4)) and p ≥ 1.
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For i = 5, 7, 9, . . . , the edge uivj with f(uivj) = 5 is relabelled 2. Moreover,
we relabel u1v3 with n + 4.

To show that λt
2(G) ≥ n + 4 = m + 5, we suppose to the contrary that

λt
2(G) ≤ n + 3 = m + 4. Let f be an (m + 4)-(2, 1)-total labelling using B =

{0, 1, . . . , m + 4}. We may, by Lemma 1(2), assume that f(ui) = 0 if i is odd,
and f(ui) = m + 4 if i is even. This implies that σ0 = σm+4 = m

2 . Since
|V (G)| = 2m+1 and |E(G)| = m(m+1)+m+m+1 = m2 +3m+1, we have

(1)
m+4∑
i=0

σi = 2m + 1,

and

(2)
m+4∑
i=0

βi = m2 + 3m + 1.

From (1), we conclude that σ1 + σ2 + · · ·+ σm+3 = m + 1. Let Si = σi−1 +
σi + σi+1 for each i ∈ B, where σ−1 = σm+5 = 0. Thus,

(3) βi ≤ �2m + 1 − Si

2
� ≤ m +

1
2
− 1

2
Si.

Further,

m+4∑
i=0

βi ≤ (m + 5)(m +
1
2
) − 1

2

m+4∑
i=0

Si

= (m + 5)(m +
1
2
) − 1

2
[2σ0 + 3(σ1 + σ2 + · · ·+ σm+3) + 2σm+4]

= m2 +
11
2

m +
5
2
− 1

2
(2m + 3m + 3)

= m2 + 3m + 1.

By (2) and (3),
m+4∑
i=0

βi = m2 + 3m + 1 if and only if βi = 2m+1−Si
2 for all

i ∈ B. So, all Si’s must be odd. Since m is even, to finish the proof, we have two
possibilities as follows:

(i) Assume that m ≡ 0 (mod 4). In this case, σ0 = σm+4 = m
2 is even. Since

S0 = σ0 +σ1 is odd, it follows that σ1 = S0 −σ0 is odd. Since S1 = σ0 +σ1 +σ2

is odd, it follows that σ2 = S1 − σ0 − σ1 is even. Since S2 = σ1 + σ2 + σ3 is
odd, it follows that σ3 = S2 − σ1 − σ2 is even. Continuing this process, we derive
that σ1, σ4, σ7, . . . , σm, σm+3 are odd, and σ0, σ2, σ3, σ5, σ6, σm+1, σm+2, σm+4

are even. This implies that m + 5 ≡ 0 (mod 3), so m = 3k1 + 1 for some integer
k1 ≥ 1. Note that m ≡ 0 (mod 4), i.e., m = 4k2 for some integer k2 ≥ 2.
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Combining these two facts, we obtain that m ≡ 4 (mod 12), which contradicts the
assumption.

(ii) Assume that m ≡ 2 (mod 4). We note that σ0 = σm+4 = m
2 is odd.

Since S0 = σ0 + σ1 is odd, similar to discussion for (i), σi is odd for precisely
i = 0, 3, 6, 9, . . . , m + 1, m + 4, where m + 4 divides 3. This implies that m ≡ 2
(mod 3) and (by assumption) m ≡ 2 (mod 4), so we have a contradiction that m ≡ 2
(mod 12).

Subcase 1.3.2. m ≡ 2 (mod 12).

It suffices to give an (n + 3)-(2, 1)-total labelling f of G using 0, 1, . . . , n + 3:
f(ui) = 0 if i ≥ 1 is odd, f(ui) = n + 3 if i ≥ 2 is even.
f(uiui+1) = i + 1 for i = 1, 2, . . . , m− 1, f(umu1) = m + 1.
f(vj) = j − 1 if j ≡ 0 (mod 3); otherwise, we set f(vj) = j + 1.
f(v1v2) = 0, f(v2v3) = n + 2, f(vnv1) = n + 3,
{v3v4, v4v5, . . . , vn−1vn} → (0, n + 3, 1, n + 2).
For all i, j ≥ 1, if i + j + 1 ≤ n + 3, we set f(uivj) = i + j + 1; otherwise,

f(uivj) = p + 1, where i + j + 1 ≡ p (mod (n + 3)) and p ≥ 1.
For i ≡ 1 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled n + 3, and

uivj with f(uivj) = n + 3 is relabelled n + 2.
For i ≡ 2 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled 0, and

uivj with f(uivj) = n + 3 is relabelled 1.
For i ≡ 0 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled 1, and

uivj with f(uivj) = n + 3 is relabelled 0.
Finally, we relabel u1v1 with n + 2, u1v2 with n + 3, u1vn with n + 1, and

u1vj with j − 1 for all j �≡ 0 (mod 3) and j ≥ 4. Relabel umvn with 0, umv2 with
1, and umvj with j + 1 for all j ≡ 0 (mod 3) and 3 ≤ j < n.

Subcase 1.3.3. m ≡ 4 (mod 12).

It suffices to give an (n + 3)-(2, 1)-total labelling f of G using 0, 1, . . . , n + 3:
f(ui) = 0 if i ≥ 1 is odd, f(ui) = n + 3 if i ≥ 2 is even.
f(u1u2) = 3, f(uiui+1) = i for i = 2, 3, . . . , m− 1, f(umu1) = m.
f(v1) = 1, f(v2) = n+2, f(vj) = j−2 if j ≡ 2 (mod 3) and j ≥ 3; otherwise,

we set f(vj) = j.
f(v1v2) = 3, {v2v3, v3v4, . . . , vn−1vn, vnv1} → (0, n + 3, 1, n + 2).
For all i, j ≥ 1, if i + j ≤ n + 3, we set f(uivj) = i + j; otherwise, f(uivj) =

p + 1, where i + j ≡ p (mod (n + 3)) and p ≥ 1.
For i ≡ 1 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled n + 3, and

uivj with f(uivj) = n + 3 is relabelled n + 2.
For i ≡ 2 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled 0, and
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uivj with f(uivj) = n + 3 is relabelled 1.
For i ≡ 0 (mod 4), the edge uivj with f(uivj) = n + 2 is relabelled 1, and

uivj with f(uivj) = n + 3 is relabelled 0.
Then, we relabel u1v1 with n, u1v2 with n+3, u1v3 with n+2, and u1vj with

j − 2 for all j �≡ 2 (mod 3) and j ≥ 4. Relabel u2v1 with 1, umv1 with 2, umv2

with n + 1, and umvj with j for all j ≡ 2 (mod 3) and j ≥ 5. Finally, we need to
exchange the obtained labels of uiv1 and uiv2 for all i = 1, 2, . . . , m.

Subcase 1.4. n = m.

This means that G is an (n+2)-regular graph. By Lemma 3, λt
2(G) ≥ ∆+2 =

n + 4. It thus suffices to give an (n + 4)-(2, 1)-total labelling f of G using the
labels 0, 1, . . . , n + 4:

{u1, u1u2, u2, u2u3, . . . , un−1un, un, unu1} → (1, 3, 0, 4).
{v1, v1v2, v2, v2v3, . . . , vn−1vn, vn, vnv1} → (3, 1, 4, 0).
For all i, j = 1, 2, . . . , n, if i + j + 1 ≤ n + 4, we set f(uivj) = i + j + 1;

otherwise, f(uivj) = p + 4, where i + j + 1 ≡ p (mod (n + 4)) and p ≥ 1.
We relabel u1v1 with n + 3, both u1v2 and u2v1 with n + 4, and uivj with 2

if j is even and f(uivj) = 5.

Case 2. m is odd.

Subcase 2.1. n ≥ m + 1.

Since Cm is an odd cycle and G∆ = Cm, Lemma 4 shows that λt
2(G) ≥

∆+2 = n+4. It suffices to establish an (n+4)-(2, 1)-total labelling f of G using
0, 1, . . . , n + 4:

f(u1) = n + 4, f(u1u2) = 2, {u2, u2u3, . . . , um, umu1} → (0, 3, 1, 4).
f(v1) = m + 4, f(v2) = 3, f(v3) = 2, f(v2v3) = m + 5.
For all i, j ≥ 1, if i + j + 1 ≤ n + 4, we set f(uivj) = i + j + 1; otherwise,

f(uivj) = p + 4, where i + j + 1 ≡ p (mod (n + 4)) and p ≥ 1. Afterwards, when
i ≥ 4 is even, the edge uivj with f(uivj) = 5 is relabelled 2.

If n is odd, we set f(v1v2) = 1 and relabel u1v2 with 0, and
{v3v4, v4, v4v5, . . . , vn−1vn, vn, vnv1} → (0, 3, 1, 4).
If n is even, we set f(v1v2) = 0 and relabel u1v2 with 1, and
{v3v4, v4, v4v5, . . . , vn−1vn, vn, vnv1} → (0, 4, 1, 3).

Subcase 2.2. n = m.

Since C3 ∨ C3 is just K6, λt
2(K6) = 7 by Lemma 2. Thus, we only need to

consider the case for n = m ≥ 5. It is obvious that λt
2(G) ≥ ∆ + 2 = n + 4 by

Lemma 4. It suffices to give an (n+4)-(2, 1)-total labelling f of G using the labels
0, 1, . . . , n + 4:
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f(un) = n + 1, f(vn) = n, f(u1u2) = n + 2, f(v1v2) = 2,
f(ui) = 1 if 1 ≤ i ≤ n − 2 is odd, f(ui) = 0 if 2 ≤ i ≤ n − 1 is even,
f(vj) = n + 3 if 1≤j≤n − 2 is odd, f(vj)=n+4 if 2≤j≤n−1 is even,
{u2u3, u3u4, . . . , un−1un, unu1} → (n + 3, n + 4),
{v2v3, v3v4, . . . , vn−1vn, vnv1} → (0, 1),
f(u1vn) = n + 3, f(u2vn) = n + 4, f(un−1vn) = n + 2, f(unvn) = 2,
f(uivn) = i for 3 ≤ i ≤ n − 2.
For odd j, if i+ j ≤ n+1, we set f(uivj) = i+ j; otherwise, f(uivj) = p+1,

where i + j ≡ p (mod (n + 1)), p ≥ 1 and j ≤ n − 2.
For even j, if i+j ≤ n+2, we set f(uivj) = i+j; otherwise, f(uivj) = p+2,

where i + j ≡ p (mod (n + 2)), p ≥ 1 and j ≤ n − 1.
Finally, we relabel u1v1 with n + 1, unv1 with 0, unv2 with 1.
This completes the proof.

3. JOIN OF PATHS

In this section, we give a complete classification for the join of two paths
according to their (2, 1)-total numbers. More precisely, we obtain the following
result:

Theorem 6. Let n, m be integers with n ≥ m ≥ 1. Then

λt
2(Pm ∨ Pn) =




n + 1 if m = 1 and n ≥ 4;
n + 2 if m = 1 and 1 ≤ n ≤ 3, or m = 2 and n ≥ 4;
n + 3 if m = 2 and n = 3, or m ≥ 3 and n ≥ m + 1;
n + 4 if m = n ≥ 2.

Proof. We write simply G = Pm ∨Pn and ∆ = ∆(G). In the following proof,
all indices are taken modulo m for ui and modulo n for vj . We consider several
cases, depending on the values of m and n.

Case 1. m = 1.

In this case, G is a fan with ∆ = n. If n = 1, then it is easy to check that
G = K2 and λt

2(G) = 3 = n + 2. If n = 2, then G = K3 and λt
2(G) = 4 = n + 2.

If n = 3, then G is the graph obtained by removing an edge of K4. It is not difficult
to verify that λt

2(G) = 5 = n + 2.
Assume that n ≥ 4. On the one hand, λt

2(G) ≥ ∆ + 1 = n + 1 by Lemma
1(1). On the other hand, an (n + 1)-(2, 1)-total labelling f of G using the labels
0, 1, . . . , n + 1 is constructed as follows:

f(u1, v1v2, v4v5) = 0, f(v3) = 1, f(v2, v4, u1v1) = 2, f(u1v3) = 3,
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f(v5, v3v4, u1v2) = 4, f(v1, v2v3) = 5, {v5v6, v6, . . . , vn−1vn, vn} → (1, 3, 5),
f(u1vj) = j + 1 for j = 4, 5, . . . , n.

Case 2. m = 2.

If n = 2, then G is K4 and λt
2(G) = 6 = n + 4 by Lemma 2.

If n = 4, to show that λt
2(G) = 6 = n + 2, it suffices to give a 6-(2, 1)-total

labelling f of G using the labels 0, 1, . . . , 6 as follows:
f(u1, v1v2, u2v4)=0, f(v3, u2v1)=1, f(v2, u1u2)=2, f(v4, u1v1, u2v3)=3,
f(u2v2, u1v3) = 4, f(v1, u1v4, v2v3) = 5, f(u2, u1v2, v3v4) = 6.
Assume that n = 3. Since G contains a 3-cycle consisting of three vertices,

u1, u2, v2, of maximum degree, we have λt
2(G) ≥ ∆+2 = 6 = n+3 by Lemma 4.

Since P2 ∨ P3 is a subgraph of P2 ∨ P4, λt
2(P2 ∨ P3) ≤ λt

2(P2 ∨ P4) = 6 = n + 3
by Lemma 1(3) and the previous proof. Thus, λt

2(G) = 6 = n + 3.
Assume that n ≥ 5. Since λt

2(G) ≥ ∆ + 1 = n + 2, it suffices to give an
(n + 2)-(2, 1)-total labelling f of G using the labels 0, 1, . . . , n + 2:

f(u1, vn−3vn−2, u2vn−1) = 0, f(vn−1vn, u2vn−2) = 1.
f(u1u2) = 2, f(u2vn) = 3, f(u2, vn−2vn−3) = n + 2.
f(vj) = j for j = 1, 2, . . . , n.
f(u1vj) = j + 2 for j = 1, 2, . . . , n.
f(u2vj) = j + 3 for j = 1, 2, . . . , n − 3.
f(vjvj+1) = j + 5 for j = 1, 2, . . . , n − 4.

Case 3. m ≥ 3.

Subcase 3.1. n = m = 3.

Our goal is to show that λt
2(G) = n + 4 = 7. Since G ⊆ K6 and λt

2(G) ≤
λt

2(K6) = 7 by Lemmas 1(3) and 2, it suffices to prove that λt
2(G) ≥ 7. Assume

to the contrary that G has a 6-(2, 1)-total labelling f using the label set B =
{0, 1, . . . , 6}. Since G has 6 vertices and 13 edges, we derive

(4)
6∑

i=0

σi = 6,

and

(5)
6∑

i=0

βi = 13.

Since u2 and v2 are vertices of maximum degree, {f(u2), f(v2)} = {0, 6}
by Lemma 1(2), say f(u2) = 0 and f(v2) = 6. Hence, f(x) /∈ {0, 6} for all
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x ∈ V (G) \ {u2, v2}. This implies that σ0 = σ6 = 1. Since only u1 and u3, or v1

and v3, may have the same label, it follows that σi ≤ 2 for all 1 ≤ i ≤ 5.

Claim 1. For each i ∈ B, βi ≤ �6−σi−1−σi−σi+1

2 �, where σ−1 = σ7 = 0.
Claim 1 implies that βi ≤ 3 for all i ∈ B. Furthermore, since σ0 = σ6 = 1, we

have βi ≤ 2 for i = 0, 1, 5, 6. We consider two cases as follows:

Case (i). There is some k ∈ B such that βk = 3.

We notice that k ∈ {2, 3, 4}. By symmetry, we consider two subcases:
• β2 = 3. Then σ1 = σ2 = σ3 = 0, and f(u1) = f(u3) = i1 and f(v1) =

f(v3) = i2 with {i1, i2} = {4, 5}. It is easy to see that β5 = 0, β4, β6 ≤ 1, β3 ≤ 2
by Claim 1. Thus,

6∑
i=0

βi ≤ 2 + 2 + 3 + 2 + 1 + 0 + 1 = 11,

which contradicts (5).
• β3 = 3. We note that σ2 = σ3 = σ4 = 0, and f(u1) = f(u3) = i1 and

f(v1) = f(v3) = i2 with {i1, i2} = {1, 5}. It follows that β0, β1, β5, β6 ≤ 1,
β2, β4 ≤ 2 and hence

6∑
i=0

βi ≤ 3 + 2× 2 + 4 × 1 = 11,

again contradicting (5).

Case (ii). For all i ∈ B, βi ≤ 2.

If σi ≤ 1 for all i ∈ B, then there must exist two distinct labels p, q ∈
{1, 2, . . . , 5} such that σp−1 = σp = σp+1 = 1 and σq−1 = σq = σq+1 = 1,
which implies that βp = βq = 1 by Claim 1 and therefore

6∑
i=0

βi ≤ 2 × 1 + 5 × 2 = 12,

which contradicts (5).
Suppose that σi0 = 2 for some i0 ∈ B. It is immediate to derive that i0 ∈

{1, 2, . . . , 5}. By symmetry, it suffices to handle the case for i0 ∈ {1, 2, 3}.
If i0 = 1, then σ0+σ1 = 1+2 = 3 and β0 = β1 = 1 by Claim 1. Consequently,

6∑
i=0

βi ≤ 2 × 1 + 5× 2 = 12.

Assume that i0 = 2. Since σ0 = 1 and σ2 = 2, β1 ≤ �(6 − 1 − 2)/2� = 1. If

σ1 ≥ 1 or σ3 ≥ 1, then σ1 + σ2 + σ3 ≥ 3 to make that β2 = 1 and
6∑

i=0
βi ≤ 12. If

σ1 = σ3 = 0, then σ4 +σ5+σ6 = 6−1−2 = 3, and hence β5 = 1 and
6∑

i=0
βi ≤ 12.
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Assume that i0 = 3. If σ2 ≥ 1 or σ4 ≥ 1, then β3 = 1 and at least one of

β2 and β4 is equal to 1, thus
6∑

i=0
βi ≤ 12. If σ2 = σ4 = 0, then σ1 + σ5 = 2. If

σ1 = σ5 = 1, then β2 = β4 = 1 and
6∑

i=0
βi ≤ 12. If σ1 = 2 or σ5 = 2, then we

may assume that σ1 = 2 (up to symmetry). Since this is the case that i0 = 1, we

can obtain that
6∑

i=0
βi ≤ 12.

Since each assumption yields the contradiction
6∑

i=0
βi ≤ 12, Subcase 3.1 is

concluded.

Subcase 3.2. n = m ≥ 4.

Since G contains a 3-cycle consisting of three vertices of maximum degree,
λt

2(G) ≥ ∆ + 2 = n + 4 by Lemma 4. Since Pn ∨ Pn is a subgraph of Cn ∨ Cn,
we derive λt

2(G) ≤ n + 4 by Lemma 1, Subcases 1.3 and 2.2 in Theorem 5.
Consequently, λt

2(G) = n + 4.

Subcase 3.3. n = m + 1.

It is obvious that λt
2(G) ≥ ∆ + 1 = n + 3 by Lemma 1. It suffices to establish

an (n + 3)-(2, 1)-total labelling f of G using the labels 0, 1, . . . , n + 3:
f(ui) = 0 if i ≥ 1 is odd, f(ui) = n + 3 if i ≥ 2 is even.
f(v1) = n + 2, f(vj) = j − 1 for j = 2, 3, . . . , n.
f(u1u2) = 3, f(uiui+1) = i for i = 2, 3, . . . , m− 1.
For all i, j ≥ 1, if i + j ≤ n + 3, we set f(uivj) = i + j; otherwise, f(uivj) =

p + 1, where i + j ≡ p (mod (n + 3)) and p ≥ 1.
f(v1v2) = 3, f(v2v3) = n + 2.
If m is odd, then {v3v4, v4v5, . . . , vn−1vn} → (0, n + 2, 1, n + 3).
If m is even, then {v3v4, v4v5, . . . , vn−1vn} → (n + 3, 0, n + 2, 1).
To relabel some edges, we need to consider two cases as follows:

(a) If m≡0 or 3 (mod 4), we relabel u1v2 with n+3, u2v1 with 0, u2vn with 1.
For i = 4, 8, 12, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 0, and
uivj+1 with f(uivj+1) = n + 3 is relabelled 1.
For i = 6, 10, 14, . . ., the edge uivj with f(uivj) = n+2 is relabelled 1, and
uivj+1 with f(uivj+1) = n + 3 is relabelled 0.
For i = 5, 9, 13, . . ., the edge uivj with f(uivj) = n + 2 is relabelled n + 3,
and uivj+1 with f(uivj+1) = n + 3 is relabelled n + 2.

(b) If m ≡ 1 or 2 (mod 4), we relabel u1v2 with n + 3, u2v1 with 1, u2vn with
0.
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For i = 4, 8, 12, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 1, and
uivj+1 with f(uivj+1) = n + 3 is relabelled 0.

For i = 6, 10, 14, . . ., the edge uivj with f(uivj) = n+2 is relabelled 0, and
uivj+1 with f(uivj+1) = n + 3 is relabelled 1.

For i = 3, 7, . . ., the edge uivj with f(uivj) = n + 2 is relabelled n + 3, and
uivj+1 with f(uivj+1) = n + 3 is relabelled n + 2.

Subcase 3.4. n = m + 2.

By Lemma 1(1), λt
2(Pm ∨ Pn) ≥ ∆ + 1 = n + 3.

If m is even, the result follows from Subcase 1.2 in Theorem 5.
If m is odd, we only need to give an (n + 3)-(2, 1)-total labelling f of G using

the labels 0, 1, . . . , n + 3:
f(ui) = 0 if i ≥ 1 is odd, f(ui) = n + 3 if i ≥ 2 is even.
f(v1) = n + 1, f(vj) = j − 1 for j = 2, 3, . . . , n.
f(u1u2) = 3, f(uiui+1) = i for i = 2, 3, . . . , m− 1.
f(v1v2) = 3, f(v2v3) = n + 2, f(v3v4) = n + 3.
If m ≡ 1 (mod 4), then {v4v5, v5v6, . . . , vn−1vn} → (1, n + 2, 0, n + 3).
If m ≡ 3 (mod 4), then {v4v5, v5v6, . . . , vn−1vn} → (0, n + 2, 1, n + 3).
For all i, j ≥ 1, if i + j ≤ n + 3, we set f(uivj) = i + j; otherwise, f(uivj) =

p + 1, where i + j ≡ p (mod (n + 3)) and p ≥ 1.
If m ≡ 1 (mod 4), for i = 3, 7, 11, . . ., the edge uivj with f(uivj) = n + 2 is

relabelled n + 3, and uivj+1 with f(uivj+1) = n + 3 is relabelled n + 2.
If m ≡3 (mod 4), for i = 5, 9, 13, . . ., the edge uivj with f(uivj) = n + 2 is

relabelled n + 3, and uivj+1 with f(uivj+1) = n + 3 is relabelled n + 2.
We relabel u1v2 with n + 3, u2v1 with 0, u2vn with 1.
For i = 4, 8, 12, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 0, and

uivj+1 with f(uivj+1) = n + 3 is relabelled 1.
For i = 6, 10, 14, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 1, and

uivj+1 with f(uivj+1) = n + 3 is relabelled 0.

Subcase 3.5. n ≥ m + 3.

By Lemma 1(1), λt
2(Pm ∨ Pn) ≥ ∆ + 1 = n + 3. It suffices to give an

(n + 3)-(2, 1)-total labelling f of G using 0, 1, . . . , n + 3:
f(v1v2) = m + 4, f(v2v3) = m + 5, f(v3v4) = m + 6.
{u1, u1u2, u2, u2u3, . . . , um−1um, um} → (0, 2, n + 3, 3).
f(vj) = j for j = 1, 2, . . . , n, {v4v5, v5v6, . . . , vn−1vn} → (2, 3).
For all i, j ≥ 1, if i + j + 1 ≤ n + 3, we set f(uivj) = i + j + 1; otherwise,

f(uivj) = p + 3, where i + j + 1 ≡ p (mod (n + 3)) and p ≥ 1.
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For i = 2, 4, 6, . . ., the edge uivj with f(uivj) = n + 2 is relabelled 0, and
uivj+1 with f(uivj+1) = n + 3 is relabelled 1.
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