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RELAXED EXTRAGRADIENT-LIKE METHOD FOR GENERAL
SYSTEM OF GENERALIZED MIXED EQUILIBRIA AND FIXED POINT
PROBLEM

Lu-Chuan Ceng and Adrian Petrugel*

Abstract. In this paper, we introduce two iterative algorithms based on the
relaxed extragradient-like method for finding a common element of the solution
set of a general system of generalized mixed equilibriaand the fixed point set of
a strictly pseudocontractive mapping in a real Hilbert space. We will prove the
weak convergence of the iterative algorithm under some mild conditions, while
the strong convergence is obtained under some more restrictive conditions.

1. INTRODUCTION

Let H be a real Hilbert space, whose inner product and norm are denoted by
(-,-) and |- ||, respectively. Let C' be a nonempty closed convex subset of H. Recall
that a mapping T : C — H is said to be p-Lipschitz mapping if p > 0 and

[Tz =Tyl < pllz =y, Va,yeC.

In particular, if p € [0,1) then T is called a contraction on C, while if p = 1 then
T is called a nonexpansive mapping on C. Let P be the metric projection of H
onto C. A mapping A of C into H is called monotone if

(Az — Ay,x —y) >0, Vzx,yeC.
The variational inequality problem is to find z € C such that

(1.1) (Az,y —x) >0, VyeC.
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The set of solutions of the variational inequality (1.1) is denoted by VI(A, C).
Variational inequality theory has played an important role in the study of diverse
disciplines, for instance, partial differential equations, optimal control, optimization,
mathematical programming, mechanics, and finance. The variational inequality
problem has been extensively studied in the literature; see [1-7] and the references
therein.

Let C C H be a nonempty set and S : C' — C be a mapping. We denote by
Fix(S) :={z € C | z = S(x)} the set of fixed points of S. For finding an element
of Fix(S) N VI(A, C) under the assumptions that the set C' is nonempty closed and
convex, the mapping S : C — C is nonexpansive and the mapping A : C' — H is
a-inverse strongly monotone, Takahashi and Toyoda [8] introduced the following
iterative scheme:

Tpt1 = ATy + (1 — ap)SPo(x, — A\pAxy,), Yn >0,

where Pc is the metric projection of H onto C, zp = = € C, {a,} is a se-
quence in (0,1), and {\,} is a sequence in (0,2«). It was shown in [8] that
if Fix(S) N VI(A,C) # (), then the sequence {x,} converges weakly to some
z € Fix(S) N VI(A4,C). Recently, motivated by the idea of Korpelevich [11],
Nadezhkina-Takahashi [9] and Zeng-Yao [10] proposed some so-called extragradi-
ent method for finding a common element of the set of fixed points of a nonexpan-
sive mapping and the set of solutions of a variational inequality problem. Further,
these iterative methods were extended in [12] to develop a new iterative method for
finding some elements of Fix(S) N VI(A, C).

On the other hand, let F,G : C x C' — R be two bifunctions, ¢, : C — R
be two functions and A, B : C — H be two nonlinear mappings. Consider the
problem of finding (z, ) € C x C such that

. { F(z,2)+¢(z) —¢(2) +(Ay, 2 —2)+ 1 (Z—g,2—T) >0, Vz €C,

G(7,9)+¢(y) —¢ (@) +(BT,y—5)+(§—7,y—7) >0, VyeC,

where A > 0 and p > 0 are two constants, which is called a general system of
generalized mixed equilibria. Next we present some special cases of problem (1.2)
as follows:

If ¢ = ¢ = 0, then problem (1.2) reduces to the problem of finding (z,y) €
C x C such that

F(z,2)+(Ay, 2 —2)+X(z—g,2-1) >0, VzeC,
(1.3)
G(gv y)+<B‘%7y—g>+%<g—i‘7y_g> Z 07 vy € Cv

This problem is called a general system of generalized equilibria and it was intro-
duced and studied by Ceng and Yao [19]. The set of elements & € C satisfying
problem (1.3) is denoted by 2.



Relaxed Extragradient-like Method for General System of Generalized Mixed Equilibria 447

If F = G and A = B, then problem (1.3) reduces to the problem of finding
(z,y) € C x C such that

F(z,2)+(Ag,a—2)++(z—g,2—1) >0, VYo eC,
F(gv y)+<A‘%7y—g>+%<g—i‘7y_g> Z 07 vy € Cv

where A > 0 and p > 0 are two constants. The above problem is called a new
system of generalized equilibria and it was introduced in [19].

If F =G, A= B andz = , then problem (1.3) reduces to the following gen-
eralized equilibrium problem (introduced and studied by Takahashi and Takahashi
in [20]): find z € C such that

F(z,y)+ (Az,y — 1) >0, VyeC.

The solution set of the above problem is denoted by MEP.
Subsequently, Peng and Yao [23] introduced the following generalized mixed
equilibrium problem: find z € C such that

(1.4) O(z,y) +¢(y) — () + (T'z,y —x) >0, VyeC,

where T' : C' — H is a nonlinear mapping, ¢ : C — R is a function and © :
C x C — R is a bifunction. The set of solutions of problem (1.4) is denoted
by GMEP. Out of question, the generalized mixed equilibrium problem covers
the generalized equilibrium problem as a special case. It is assumed in [23] that
6 : C x C — R is a bifunction satisfying conditions (H1)-(H4) and ¢ : C — R is
a lower semicontinuous and convex function with restriction (A1) or (A2), where
(H1) O(z,z) =0, Yz € C,

(H2) © is monotone, i.e., O(z,y) + O(y,x) <0, Vx,y € C,

(H3) foreach y € C, x — O(z,y) is weakly upper semicontinuous;

(H4) for each z € C, y — O(z,y) is convex and lower semicontinuous;

(A1) for each x € H and r > 0, there exist a bounded subset D, C C' and
Y, € C such that for any z € C'\ D,,

1
O(24z) + ¢(ys) = 9(2) + —{yz — 2,2 = 2) <0;
(A2) C is a bounded set.

If F = G =0, then problem (1.3) reduces to the following general system of
variational inequalities: find (z,y) € C' x C such that

MNij+z—g,2—1)>0, VzreC,
(1.5)
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where A\ > 0 and p > 0 are two constants. The above problem was considered by
Ceng, Wang and Yao [15]. The set of elements z € C satisfying problem (1.5) is
denoted by I".

If A= B in (1.5), then problem (1.5) reduces to the following new system of
variational inequalities (which was proposed by Verma [13], see also [14]): find
(z,y) € C x C such that

My+z—g,2—2)>0, VYrel,
(16) { < >

(AT +y—-2,y—9) >0, VyeC.

Finally, notice that if z = y in (1.6), then problem (1.6) reduces to the classical
variational inequality (1.1).

Very recently, Yao, Liou and Kang [21] proposed and analyzed an iterative
algorithm based on the extragradient method for finding a common element of the
solution set of the general system (1.5) of variational inequalities and the fixed point
set of a strictly pseudocontractive mapping S : C — C in a real Hilbert space H.

Theorem 1.1 ([21, Theorem 3.2]). Let C be a nonempty bounded closed convex
subset of a real Hilbert space H. Let the mappings A, B : C — H be a-inverse
strongly monotone and (-inverse strongly monotone, respectively. Let S: C — C
be a k-strictly pseudocontractive mapping such that Fix(S) N I" # 0. Let Q :
C — C be a p-contraction with p € [0, %). For given xq € C arbitrarily, let the
sequences {x,}, {y,} and {z,} be generated iteratively by

zn = Po(xy, — pBxy,),
(1.7) Yn = anQryn + (1 — ay) Po(zn — AAzy),
Tn+l = ﬁnxn + P)/nPC(zn - )\Azn) + 5nsyn7 vn Z 07

where A € (0,2a), u € (0,208) and {a,}, {Bn}, {7}, {on} are four sequences in
[0, 1] such that

(i) Bn+vn+0n=1and (v, + 0n)k < v, < (1 —2p)d, for all n > 0;

(i) lim a, =0and oy, = oo;

n—oo

n=0
(iii) 0 < liminf 8, <limsupf, < 1 and liminf é,, > 0;
n—00 n—00 n—00
Tn+1 Y

iv) lim — n
( ) n_’oo(l_ﬁn—l—l 1_ﬁn
Then the sequence {x,,} generated by (1.7) converges strongly to =* = Ppiy(s)nr -
Qz* and (z*, y*) is a solution of the general system (1.5) of variational inequalities,
where y* = Po(a* — uBz™).

) =0.
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On the other hand, Ceng and Yao [19] also considered a relaxed extragradient-
like method for finding a common solution of problem (1.3), problem (1.4) and the
fixed point problem of a strictly pseudocontractive mapping S : C — C in a real
Hilbert space H. Notice that for the notations Tf’“"), T and TS in the following
result, we ask the readers to refer to Lemma 2.1 and Remark 2.1 in Section 2.

Theorem 1.2 ([19, Theorem 3.1]). Let C' be a nonempty closed convex subset of
areal Hilbertspace H. Let ©, F, G : C'xC — R be three bifunctions which satisfy
the assumptions (H1)-(H4) and ¢ : C — R be a lower semicontinuous and convex
function with restriction (A1) or (A2). Let the mappings T, A, B : C — H be
n-inverse-strongly monotone, a-inverse-strongly monotone and (3-inverse-strongly
monotone, respectively. Let S : C' — C' be a k-strictly pseudocontractive mapping
such that Fix(S) N GMEP N 2 # (. For fixed u € C and z( € C arbitrary, let
{z,} C C be a sequence generated by

Zp = Tif’w) (xn, — A Txy),
(1.8) Yn = TE (TS (2 — pBzn) — NATS (2 — pB2y)],
Tptl = QpU + ﬁnxn + YnYn + 5nsyn7 Vn > 0,

where A € (0,2a), p € (0,28), and {\,} C [0,279], {an}, {Bn}, {1} {0n} C
[0, 1] satisfy the following conditions:

(i) an+ Bn+vn+0n =1and (v, + 0p)k <, for all n > 0;

o
(i) lim o, =0 and > ay = o0;

n=0
(iii) 0 < liminf 8, <limsupf, < 1 and liminf é,, > 0;
n—00 n—00 n—00
(iv) lim (—2t Ty —o;

n—0o0 1_ﬁn+1 a 1_ﬁn
(v) 0 <liminf ), <limsup\, < 2n and lim (A, — Ap41) = 0.
n—00 N—00 n—00
Then, {z,} converges strongly to # = Priy(s)nameprnou and (z,y) is a solution
of problem (1.3), where § = T¢ (z — uBZ).

Related iterative methods for solving fixed point problems, variational inequal-
ities and optimization problems can be found in [28-45].

In this paper, let C' be a nonempty bounded closed convex subset of a real
Hilbert space H. Suppose F,G : C x C — R are two bifunctions satisfying
conditions (H1)-(H4), ¢,v¢ : C — R are two lower semicontinuous and convex
functions and the mappings A, B : C' — H are a-inverse strongly monotone and
(B-inverse strongly monotone, respectively. Assume S : C — C is a k-strictly
pseudocontractive mapping such that Fix(.S) N = # (), where for the notation = we
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refer to Remark 2.2 in Section 2. Let Q : C — H be a p-Lipschitz mapping. We
first propose the following iterative algorithm.

Algorithm 1. For given zy € C arbitrarily, let the sequences {x,}, {y»} and
{zn} be generated iteratively via the scheme

Zn = T,SG’w) (z, — pBxy),
(1.9) Yo = T [0,Quy + (1= ) (20 — AM2,)),

Zri1 = Bt + 1T (20 — AA2y) + 6,Syn,  Vn > 0,
where X € (0,2a), € (0,20) and {a,}, {Bn}, {n}, {6n} are four sequences in
[0, 1] such that 3,, + vy, + 0, = 1.

It is proven that under some mild conditions {x,, }, {y,} converge weakly to the
same element & € Fix(S)NZE, and {z,} converges weakly to § = EEG’W (z—uBz%)
where (Z, g) is a solution of the general system (1.2) of generalized mixed equilibria.
On the other hand, whenever @) is a p-contraction of C' into itself with p € [0, %),
we consider the following iterative algorithm.

Algorithm I1. For given = € C arbitrarily, let the sequences {z,}, {y,} and
{zn} be generated iteratively via the scheme

2y = T,SG’w) (zn, — pBxy),

(1.10) yn = anQuy + (1 — @) T\ (2, — MAz,),

Tpy1 = BnZn + vnTﬁF’¢)(zn — AMzp) 4 60SYn, Yn >0,
where X € (0,2«a), € (0,20) and {a,}, {Bn}, {n}, {n} are four sequences in
[0, 1] such that 3,, + vy, + 0, = 1.

It is proven that under some appropriate conditions, the sequence {x,,} generated
by (1.10) converges strongly to 2* = Ppiy(s)nz - Q7" and (z*, y*) is a solution of
the general system (1.2) of generalized mixed equilibria, where y* = T,EG’W (z* —
uBx*).

In particular, whenever F' = G = 0 and ¢ = + = 0, our strong convergence
result reduces to Yao, Liu and Kang’s Theorem 3.2 in [21]. Thus, the results

presented in the paper improve and extend the corresponding theorems in Yao, Liu
and Kang [21].

2. PRELIMINARIES

Let H be a real Hilbert space and denote by I the identity mapping of H. If C
is a nonempty closed convex subset of H then, for every point x € H, there exists
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a unique nearest point of C, denoted by Prx, such that ||z — Poz|| < ||z — y|| for
all y € C. The mapping P is called the metric projection of H onto C. We know
that P is a firmly nonexpansive mapping of H onto C, i.e.,

(x —y, Pox — Poy) > ||Pex — Poyl®, Vz,y € H.
It is also known that Pcx is characterized by the following property:
(2.1) (x — Pcx,y— Pcx) <0, VreHandyeC.
In a real Hilbert space H, it is well known that
1Az + (1= Nyl® = Mlz[|* + (1 = N)llyl* = A1 = Nz — y||?

for all z,y € H and X\ € [0, 1]; see Takahashi [27].
Recall that a mapping S : C' — C'is called a strictly pseudocontractive mapping
if there exists a constant k& € [0, 1) such that

(22) ISz = SylP* < llz — yl® + k(I = S)z — (I = S)yll*, Va,yeC.

In this case, we say that S is a k-strict pseudocontraction. A mapping A: C — H
is called a-inverse strongly monotone if there exists a constant « > 0 such that

<fIf-y,A"I,‘—Ay> Z(X”A(I,‘—A:l/”2, vayec-

It is obvious that any inverse strongly monotone mapping is Lipschitz. Furthermore,
observe that (2.2) is equivalent to

1-k
(2:3) (Sz—Sy,z—y) < o~y - —— (I =S)z—(I=S)y|*, Va,yeC.

From [16] we know that if S is a k-strictly pseudocontractive mapping, then S is
ﬁ—k-Lipschitz. Thus, it is clear that the class of strict pseudocontractions strictly
includes the one of nonexpansive mappings.

In order to prove our main results in this paper, we need the following lemmas.

Lemma 2.1. ([22]). Let C' be a nonempty closed convex subset of H. Let
6 : C xC — R be a bifunction satisfying conditions (H1)-(H4) and let o : C' — R
be a lower semicontinuous and convex function. For » > 0 and = € H, define a
mapping 7.\ : H — C as follows:

T 99 () = {z € C: O(z,y) + p(y) — o(2) + %<y —zz—x) 20, Wyel}

for all z € H. Assume that either (A1) or (A2) holds. Then the following assertions
hold:
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(i) 7,99 (x) # 0 for each = € H and T,®*) is single-valued;
(i) 7€) i firmly nonexpansive, i.e., for any xz,y € H,

TP — T Oy (> < (T(O)w — T(OFy, 2 — y);

(iiii) Fix(T\%?) = MEP(6, ¢);
(iv) MEP(6, ) is closed and convex.

Remark 2.1. If o = 0, then 7,'°*) will be denoted by T°.

Lemma 2.2. Let C be a nonempty closed convex subset of H. Let F, G :
C x C — R be two bifunctions satisfying conditions (H1)-(H4), let ¢,¢: C — R
be two lower semicontinuous and convex functions with restriction (A1) or (A2) and
let the mappings A, B : C — H be a-inverse strongly monotone and 3-inverse
strongly monotone, respectively. Let A € (0,2a) and p € (0,203), respectively.
Then, for given z,y € C, (z,y) is a solution of problem (1.2) if and only if z is a
fixed point of the mapping W : C — C defined by

W(z) = T[T (@ — uBx) — NATCV) (z — pBa)], vz € C,

where g = T,EG’w) (z — pBIT).
Proof. Observe that

{ F(z,2)+ ¢(z) — (%) + (Ag, 2 — %) + 1(z — g, 2 —7) >0, Vo eC,
G@.y) +v(y) — (@) + BT,y —7) + 5 0

z = TP (2 — uBz) — AT O (z — uBz)).

Corollary 2.1. ([19, Lemma 2.2]). Let C be a nonempty closed convex subset
of H. Let F, G : CxC — R be two bifunctions satisfying conditions (H1)-(H4) and
let the mappings A, B : C — H be a-inverse strongly monotone and 3-inverse
strongly monotone, respectively. Let A € (0,2a) and p € (0,203), respectively.
Then, for given z,y € C, (z,y) is a solution of problem (1.3) if and only if z is a
fixed point of the mapping W : C — C defined by

W(z) = Tf[TMG(x — puBzx) — )\ATMG(x — uBz)], Yz e,
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where §j = TS (Z — pBI).

Corollary 2.2. ([15, Lemma 2.1]). For given z,5 € C, (z,y) is a solution of
problem (1.5) if and only if z is a fixed point of the mapping W : C' — C' defined
by

W(x) = Po|Po(x — pBz) — MAPo(x — uBx)|, Yz €C,

where §y = Po(z — uBz).

Proof. Putting F = G = 0 and utilizing Lemma 2.1 we deduce that 7} =

TMG = Pc. Thus from Corollary 2.1 we obtain the desired result. |

Remark 2.2. In the conditions of Lemma 2.2., the set of fixed points of the
mapping W is denoted by =.

Lemma 2.3. ([17]). Let {z,,} and {y,} be bounded sequences in a Banach
space X and let {/3,,} be a sequence in [0, 1] with 0 < lim inf 3,, < limsup 3, < 1.

n—oo

Suppose z,+1 = (1 — Bn)yn + Bnay for all integers n > 0 and lim sup (||yn+1 —
n—oo
gnll = |41 = a]) < 0. Then, Tim (g — za = 0.

Lemma 2.4. (Demiclosedness Principle, see [16]). Assume that T" is a k-strictly
pseudocontractive self-mapping on a nonempty closed convex subset C' of a real
Hilbert space H. Then, the mapping I —7 is demiclosed. That is, whenever {z,} is
a sequence in C converging weakly to some z* € C (for short, z,, — z* € C), and
the sequence {(I —T')x,,} converges strongly to some y (for short, (I —T")z,, — y),
it follows that (I — T')z* = y.

Lemma 2.5. ([18]). Assume {a,} is a sequence of nonnegative real numbers
such that
An+1 < (1 - P)/n)an + 5n7 Vn > 17

where {~,,} is a sequence in (0,1) and {4, } is a sequence such that

o
n=1 00
(i) limsupd, /v, <0 or Z |0p| < o0.
n—oo n=1
Then lim a, = 0.
n—oo

The following lemma is an immediate consequence of an inner product.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

lz +yl* < ll2|® +2(y, 2 +y), Vo,yeH.
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Notice that, if {x,,} is a sequence and x is a point in a normed space X, then
the symbols x,, — 2 and x,, — x denote, respectively, strong and weak convergence
to « of the sequence {x,,}. In addition, we use w,(z,) to denote the weak w-limit
set of the sequence {x,}, i.e.,

wy(2n) == {z € X : x,, = & for some subsequence {xy,} of {z,}}.

3. WEak CONVERGENCE THEOREM

We are now in position to state and prove the main result in this section. We
first need a technical lemma whose proof is an immediate consequence of Qpial’s
property [24] of a Hilbert space. Recall that a Banach space X satisfies Opial’s
property [24] provided, for each sequence {x,,} in X, the condition z,, — = implies

limsup ||z, — z|| < limsup ||z, —y|, Yy € X, y# .
n—oo n—oo
It is known [24] that each [P (1 < p < co) enjoys this property, while LP does not

unless p = 2. It is known [25] that any separable Banach space can be equivalently
renormed so that it satisfies Opial’s property.

Lemma 3.1. Let K be a nonempty closed convex subset of a real Hilbert space
H. Let {z,,} be a sequence in H satisfying the properties:
(i) lim ||z, — z|| exists for each z € K;
n—oo

(i) wy(zn) C K.
Then {z,} is weakly convergent to a point in K.

Proof. It is sufficient to show that w,,(x,,) is a singleton. Indeed, let z and &
be two elements in w,,(x,) with & # 2. Then there are two subsequences {z, }
and {x,;} of {z,} such that z,, — z and =,,,, — &. By Opial’s property of H
we reach the following contradiction:

lim ||z, — 2| = lim ||z, — Z|| < lim |z, — 2| = lim |z, — 2|
n—oo 1—00 1— 00 J—00
< lim ||zp, — 2| = lim |z, —z|.
n—oo n—oo

This implies that w,,(z,,) is a singleton. Consequently, {z,} is weakly convergent
to a point in K. ™

We also use the following elementary lemma.

Lemma 3.2. (See [26]). Let {a,} and {b,} be sequences of nonnegative real

numbers such that » b, < 0o and an41 < a, + by for all n > 0. Then lim a,

n—00
n=0

exists.
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Theorem 3.1. Let C' be a nonempty bounded closed convex subset of a real
Hilbert space H. Let F,G : C x C — R be two bifunctions satisfying conditions
(H1)-(H4), let ¢,7 : C — R be two lower semicontinuous and convex functions
and let the mappings A, B : C' — H be a-inverse strongly monotone and G-inverse
strongly monotone, respectively. Let S : C' — C be a k-strictly pseudocontractive
mapping such that Fix(S) N ZE # (. Let Q : C — H be a p-Lipschitz mapping
with constant p > 0. For given zo € C arbitrarily, let the sequences {z,}, {yn}
and {z,} be generated iteratively by

Zn = T,SG’w) (z, — pBxy),
(3.1) Yo = T [0nQuy + (1= ) (20 — A2,)),
Tpg1 = Bpy + 'ynTiF’qﬁ)(zn — ANzp) + 0,50, Vn >0,
where A € (0,2a), u € (0,208) and {a,}, {Bn}, {7}, {on} are four sequences in

[0, 1] such that
(i) Bn+n+ 0, =1and (v, + §,)k <, for all n > 0;

(i) ian < o0,
n=0

(iii) 0 < liminf 8, < limsupf, < 1 and liminf é,, > 0;
n—oo n—oo

n—oo

. . Tn+1 TIn
iv) lim — =0.
( ) n—>oo(1 _ﬁn—l—l 1 _ﬁn)

Then {z,,}, {yn} converge weakly to the same element & € Fix(S) N E, and
{zn} converges weakly to § = T,SG’W (z — uBz) where (z,9) is a solution
of the general system (1.2) of generalized mixed equilibria.

Proof. We divide the proof into several steps.
Step 1. lim ||zp41 — zy| = 0.

n—oo
First, (3.1) can be rewritten as

Lnt1 = /ann + (1 - /Bn)unv vn Z 07
where u,, = =222 It follows that

Un+1 — Un
_ Tn42 — Brnt+1Tn+1 _ Tn41 — BnTn
B 1- ﬁrH—l 1- ﬁn
B ’7n+1T,§F’¢)(Zn+1—)\Azn+1)+5n+1syn+1 ’YnT,iF’(b)(Zn—)\Azn)'i‘(SnSyn
(32) B 1_ﬁn+1 1_ﬁn
_ Int1 [T)(\R(b)(zn-f-l —AAzp11) _T)(\R(b) (2n = AMAzn)] +0n41(SYnt1 — Syn)
1 _ﬁrH—l

Yn+1 Yn (F,¢) 6n+1
+ — T Zn — NAzy) + — SYn -
(1_ﬁn+1 1_ﬁn) A ( ) (1_ﬁn+1 1_ﬁn) 4
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Combining (2.2) with (2.3), we have

V41 (Unt1 = Yn) + Ons1 (Synt1 — Syn)|I”

= Yo i1 lYnt1 = Unll® + 6541 1SYns1 — Synl?
+27n+15n+1 <yn+1 — Yn, Syn+1 - Syn>

<t = val® + 05 g1 llynss = yall* + KNI = S)ynsr = (I = S)yall?]

1-k
+29n10n 1 ([[yn i1 = onl* = —= (7 = S)yms1 = (I = Syl

= (Vg1 + 5n+1)2Hyn+1 - ynHZ + [57%+1k
—(1 = k)Y 16n1 |1 (T = S)ynga — (I = S)ynll®
= (’Yn+1 + 5n+1)2Hyn+1 - ynHZ + 5n+l[(’¥n+1 + 5n+1)k

— Y] 1L = 52)yn+1 - —2S)ynH2
< (’Y?’H—l + 5n+1) Hyn—I—l - yn” s

which implies that

(3:3) a1 (¥na1 — Yn) + g1 (SYna1 — Syn) | < (Ynt1 + Ont1) [Ynr1 — Ynll-
From (3.1) and (3.3) we get

rmﬂ[T;F’@(zn;l
Mzpi1) = T (2, = AA2,)] + 641 (Synt1 — Syn)|

< a1 (Ynt1 — Yn) + 041 (SYnt1 — Sy ||
+ Y1l A (Zn+1 Znt1) = Yn+1] + [Yn A (2n zn)] |l
< 41 (Ynt1 = Yn) + 041 (SYnt1 — Sy ||
F,
11TV (20
F
—AAzpi1) — T>(\ ) [n+1QTn11 + (1 = ant1) (21 — AAzpi1)]||
ot [T [0 Qe+ (1= ) (20 = AA20)] = T\ (2 — AAz,) |
< (7n+1 +5n+1)Hyn+1 - yn”+7n+1an+1”an+1 - (zn—l—l_)‘Azn-f—l)H
+7n+1an”Q$n - (zn - )\Azn)H
Since A, B are a-inverse strongly monotone mapping and g-inverse strongly
monotone mapping, respectively, we have
I(1 = M)z — (I — AA)y|?
(3.5) = [l — ylI* — 2M(Az — Ay, — y) + N*[| Az — Ayl
< llz =yl + A(A — 20)[| Az — Ay]|?,

(3.4)

and

(3.6) (I = pB)z — (I —puB)yl* < & —y|* + u(n — 26)| Bz — Byl|*.
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It is clear that if 0 < A < 2a and 0 < p < 2, then (I — AA) and (I — uB) are
nonexpansive. It follows that

[2n41 = Adznpr — (20 — Az ||
< llzns1 — 2nll
= TS (@ns1 — uBasr) = TSV (@0 — pBay)|
< W@np1 — pBryg1) — (2n — pBxy) ||
< |@ns1 — nl|-

Then,

g1 = gall = 1T [t 1Qnss + (1 = sn) (ns = A1)

—T/{F’qﬁ) [anQxp + (1 — ) (2 — AAzy)]|]

< [lon+1Q@n41 + (1 — ant1) (241
—Azp41)] — [@nQzy + (1 — an) (25, — AAzy)]|]

(3.7) < |lznt1 — AMzpi1 — (zn — ANAzy)||

+n41[|QTnt1 — (2n41 — A2zt
+an||Qrn — (2 — Az, ||

< N@ng1 — zp| + anl|Qen — (20, — XAz ||
+n41[|QTnt1 — (2nt1 — AAzp11) |-

Therefore, from (3.2), (3.4) and (3.7), we have

lunts = wnll < l@ns1 = @all + (1 + 72— )anl|Q@n — (20 — AAz2)|

ﬁn—f—l
Yn41
I+ — — — A
+< +1—ﬁn 1>O‘n+1HQ$n+1 (zn41 — Mz )|l
,‘YTL 1 F
Hi % (1T (20— AAzo)l| + [1Syal)-

11— ﬁn—f—l 1- ﬁn
This implies that

lim sup(||tnt1 — tn| — [[Tnt1 — 20|) <0
n—oo
Hence by Lemma 2.3 we get lim |u, — z,|| = 0. Consequently,
n—oo
(3.8) lim [|2p41 — 2n]| = lim (1= B,)|Jun — zn|| = 0.
n—00 n—00

Step 2. hm ||z, —2*|| exists for each z* € Fix(S)NZ; moreover, lim ||Az,—
n—oo
Ay*||=0 and hm |Bx,, — Bz*|| = 0.

Indeed, take a fixed z* € Fix(S) N = arbitrarily. Then by Lemma 2.2 we have
x* = Sx* and
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¥ = TiF’(b) [TISG’w)(x* — puBx*) — )\AT(G’w) (z* — puBzx™)].

Put y* = T\ (2 — uBx*). Then 2* = T\ (y* — AMAy*). From (3.5) and

(3.6), we have

17559 (20 — AAza) = T\ (5" — AAy")|P?
(3.9) < (20 = Az,) = (" = Ay
<z =y |7 + A = 20) | Az, — Ay*|J?,
and
Iz = y*I1? = 1T (@ — pBay) — TS (2 — pBa*)|?
(3.10) < ||(zn — pBzn) — (z* — pBa*)|?
< |z — 2*||* + (i — 28)|| By, — Bz*||.
It follows from (3.1), (3.9) and (3.10) that
lyn — 2*|?
= 1T\ fanQn + (1 = an) (zn — Az)] = TV (5" — AAy") |
< NanQan + (1 = an) (20 — AMAz)] = (y* = My |?

B11) < || Qrn—(y" = AAY) P+ (1= an)[[(za—AA20) — (" — A AY") |12
< || Qn— (" =AY P+ 120 =y [P+ A(A—20) | Az, — Ay*|?
< anl|Qen — (y* = AAY") ||+ [|l2n — 2|+ p(1—28) | Bry — Ba*||?

+A(\ = 20)|| Az, — Ay*|>.

Utilizing the convexity of || - ||, we have

|21 — 2*||

= [1Bn(n —2%) + (1 = Fn) 7
+0n (Syn — z)]||?

< Ballan — 2" + (1= Bu)llg

On
+— 5 (Syn — )|

[Vn(T(F¢)( 2y — AAzy) — x%)

ﬁn

(T(F¢)( Zn — ANAzp) — z¥)

TL

— Bn
(3.12) i — %) 4 6, (S — 2
= Bullan — a7+ (1 = )| 222 =) 2l =)
+1—ﬁ (T(F¢)( n_)\Azn) _yn)H2
< Ballan — a2 + (1 = g 122l = xi + ZZ(S% — o)

2 I e = A42) = T o

_|_(1 — an)(zn — )\Azn)]m2
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< Bullon — |2+ (1 — gy 2nt o)l = 27

11— ﬁn
2 = M)~ lanQun + (1= an) (= Mz
= Ballam = 212+ (1 = Bu)llyn = | + T2 Qo
—(zn — )‘Azn)H]2

< Ballen — @12 + (1 = Ba)llyn — 2"|I* + Ma,

where M > 0 is some appropriate constant. So, from (3.11) and (3.12) we have

lZns — 212

< Bollzn — 22 + (1 = Bu)llyn — 2*[* + Moy,

< Bullzn — 2** + (1 = Ba)[an||Qun — (y* = XAy > + ||z — 2*||?
+u(p = 28)| Bry — Br* || + MA = 2a) || Az, — Ay*||”] + Mo,

< lan — 2|1 + p(p — 28)(1 = B,)|| Bwn, — Ba*|?
AN = 20)(1 = Bn)[[Azn — Ay*|? + (M +[|Qan — (v — AAy*)[1*) o,

< o = 2 + (M + |Qzn — (y* = Ay |*) .

o0

Utilizing Lemma 3.2 we conclude from » " a,, < oo that lim ||z, — 2| exists for
n—oo
n=0
each z* € Fix(S) N E. In addition, observe that
A2a = A)(1 = Bn) | Azn — Ay*[|* + (28 — p)(1 = Bn)|| By, — Bz*|?
< lwn = 2** = [lapar — 2|2 + (M + [ Qzn — (v — Ay [P
< (lzn—a* [+ llznsr —2* ) Jen —zpan [+ (M + [ Qzn— (y* = AAY") [ *) .

Since lim inf A\(2a—\)(1—03,) > 0, liminf u(26—p)(1=05,) > 0, ||zp—2pi1]] —
0 and «,, — 0, we have

lim ||Az, — Ay*||=0 and lim ||Bx, — Bz*|| =0.
n—00 n—00

Step 3. lim ||Syn, — yn| = 0.
Indeed, set v, = T\ (2, — AAz,). Noting that both T\"**) and 7% are
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firmly nonexpansive, then we have
20 = y*|I* = (TS (2 — pBan) = TV (@ — pBa)|?
< ((#n — pBry) — (2" = pBr"), 2n — y")
1 * * * *
= 5 (lzn — 2" = u(Bzy = Ba")|* + ll2n — y7||* = || (20 — 27)

—p( By, — Bx*) = (20 — y*)|I?)

IN

1 * * * * *
5 len =217 + llzn =y |I* = l(2n = 20) — (B — Ba™) = (2" — "))

1 * * * *
= Sl = 2" + 20 = 1" = llon — 20 — (2" = y7)|?

+2u{zp, — 2 — (2* — y*), Bz, — Bx*) — 1i*|| Bz, — Bx*|?),
and

* F, F, * *
lon — 22 = |75 (20 — AAz,) — T (7 — AAy?)|?

<A{(zn — Azp) — (y" — Ny™), v, — =)

1 * * *
= 5(”271 — Mz, — (" — Ny )H2 + |vn — H2
—|lzn — AMzy — (y* — AAY*) — (v — 2%)|?)
1 * * * *
< 5Ulzn —y 1>+ llon = 2*)1* = 120 — vn + (=% — )|
+2X(Az, — AY*, 2, — vp + (2% — y)) — )\2HAzn — Ay*HQ)

1 * * * *
< S(llzn —2 I+ llon = 21 = |20 — vn + (% — )|
+2X(Az, — AY*, 2z — v + (2F — 7))
(due to (3.10)). Thus, we have
lzn—=y* 1> < llzn—2")* = |20 —z0— (@ —y")|I”

(3.13) . 2 |12
+2ulxy —2zn — (2" —y*), Bxy— Baz*) — p°|| Be,—Bzx™||%,

and

lon—a |1 <l —a* [P~ [|2n—vnt+(z" —y* )| +2]| Az —Ay* ||| 2n—vn+(z"~y ) |
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It follows that
lyn — 2|2
= lyn — [@nQn + (1 — ) TL"? (2, — AA2,)]
+HoanQxy + (1 — an)T)(\F’(b)(zn — Az, — z*||?
< [llyn = [0nQun + (1 — )T\ (2 — Az, )|
Hllon Qe + (1 — an) T (2 — AMAzy)] — %]
< ol Qn =yl + (L =) TN (20 — AAz) =yl + || Qs — 27|
(1 — an) | TS (2 — AMAzy) — 2*)?
B14) < (anllQn — yull + (1 = an)an||Qan — (20 — Mz, + an||Qan — 7|
(1 — an) | TS (2 — AMAzy) — 2*)?
= [O‘nHan - ynH + (1 - O‘n)anHan - (Zn - )‘Azn)H + O‘nHan - x*H
+(1 = ap)llon — 2*|]?
< [O‘nHan_ynH+O‘nHan_(zn_)‘Azn)H+O‘nHan_x*H+an_x*”]2
< Moy + ||v, — 2*|2
< Mag + ||zn — 2|2 = 20 — va + (2 — )2
2| Az, — Ay* |||z — vn + (2% = y)],
where M > 0 is some appropriate constant. From (3.11), (3.12) and (3.13), we
have
(e
< Bullzn — 212 + (1 = Bu)lyn — *|1* + My,
< Bllan — 2*)? + (1 = Bp)an|Qen — (y* — XAy*)|?
+(1 = Bn)l|lzn — y*|1? + Moy,
< Bullzn =224+ (1= Bn) an || Qrn— (y* — XAy*) |2 4+ (1 = Bp)[|lzn — ¥
—[|an—zn— (2" — y*)|IP+20l| 20— 20 — (2* — y*)||| Ben — Ba*||[][+ Moy,
= lzn — 2*]]? = (1 = Bu)ll#n — 20 — (2% — y) |12
+2(1 = Bn)pllzn — 20 — (2* — y*)||[| Bxn — Bz*||
+(M + (1= Bo)||Qzn — (y* — My [|*) .
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It follows that
(1= Bu)llwn — 2zn — (2" —y*)|?
< (llen = 27| + onga — 2D [[2nt1 — @nl
HM + (1= Bo)|Qwn — (y* — Ay")[I*) v
+2(1 = Ba)pllen — 20 — (2" = y*) | Ben — Ba™||.

Note that ||z, +1—2n| — 0, ,, — 0 and || Bz, —Bz*|| — 0. Then we immediately
get

(3.15) m ||z, — 2z, = (2" = y")[| = 0.

ri0o
Also, from (3.12) and (3.14), we have
241 — ¥
< Ballwn — ¥ + (1 = Bo)llyn — 2*|1> + Moy,
< Bullzn — 2|2 + (1 = Bo) (M + wn — 2|2 = |20 — vn + (2" — y*)|
2| Az — Ay*||[lzn — vn + (27 = y)[[] + Moy,
= [lzn — 2*)* = (1 = Ba) 20 — vn + (2" — y)|I?
+2M(1 = o) | Azn — Ay*[[[l2n — vn + (2 = y*)I| + (M + (1 = B) M) .
So, we obtain
(1= Ba)llzn — va + (2" —y)|?
<l — 2*)1* = flapsn — 22+ 20(1 = Bn)|| Azn
—Ay* |20 — va + (@* = y*) | + (M + (1 = B,) M)on,
< ([lzn — 2| + [lzns1 — 2% lzntr — 2|
+2A[ Az — Ay*||[1zn — vn + (2 — v + (M + M) o,
Hence,

lim ||z, — v, + (2% —y")|| = 0.

This together with ||y, — vn|| < an||Qn — (2, — AAz,)|| — 0 implies that
(3.16) Tim ||z, — yo + (% — )| = 0.
Thus, from (3.15) and (3.16), we deduce that

lim ||z, —ynl = 0.
n—oo



Relaxed Extragradient-like Method for General System of Generalized Mixed Equilibria 463

Since
162 (Syn — )|l < @01 — Zall + 7l TS (20 — AAzy) — 2
< N2ns1 = @all + 1l TS (20 — Azn) = gl + Yallyn — zal
< a1 = Zall + 1@l Qan — (20 — AAza) || + Yullyn — Tall-

Therefore,
lim ||Syn — 2|l =0 and lim ||Sy, — yn| = 0.
n—00 n—00

Step 4. wy(zy,) C Fix(S)NE.

Indeed, as {y, } is bounded, we take an element v € w,,(x,) and a subsequence
{yn,} of {yn} such that y,,, — v. First, it is clear from Lemma 2.4 that v € Fix(S).
Next, we prove that v € =. We note that

F, )
Iy = vall = 173" [anQun + (1= @) (20 — AA20)] = T{7 (2 — AAz) |
< |NenQzn + (1 — ) (20, — AAzy)] — (20, — Az ||
= ap||Qxy — (2, — ANAzy)||,
and hence

[y = W (yn) |l
= |lyn — [0nQzn + (1 — an)vn] + [anQxp + (1 — an)vn] — W(yn)||
< | Qzn — ynll + (1 — a)l|vn — ynll + o [|Qun — W (yn)|
+(1 = an)flvn = W (yn) ||
< |l Qrn — Yull + (1 — an)an[|Qun — (20 — Az || + an||Qzr — W (yn) ||
+(1 = an) | T TNE) (2, — pBay) = AT (2, — pBazy)] = W (yn) |
= ap[[|Qp — ynll + (1 — an) |Qzn — (20 — AMAzp)|| + Q. — W (yn)|]
+(1 = an)[W(2n) = W(yn)|l
< a[[|Qzn — ynll + (1 — an) |Qzn — (2 — AAzp)|| + (| Q. — W (yn) ]
+(1 = an)l|zn — yall = 0.

According to Lemma 2.4 we obtain v € Z. Therefore, v € Fix(S) NZ. This shows
that wy, (z,,) C Fix(S)NZE.

Step 5. {z,}, {yn} converge weakly to the same element z € Fix(S) N = and
{zn} converges weakly to § = IﬁG’w) (z — pBz).
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Indeed, since lim ||z, — x| exists for each z* € Fix(S) N = (due to Step 2)
n—oo

and w,,(z,) C Fix(S) N Z (due to Step 4), utilizing Lemma 3.1 we deduce that
{z,,} converges weakly to an element & € Fix(S) N =. Hence it follows from
|z — ynl| — 0 that y,, — & € Fix(S) N E. Note that & € = implies that

i =1 (G- r49)
where ¢ = T,EG’W (z — pBz). Hence from (3.6) it follows that for each f € H

‘<Zn—:l)7f>‘ =\(zn—yn+(56—1)),f>+<yn—fc,fﬂ
< lzn —yn + @ = DI+ Kyn — 2, f)| = 0.

This shows that {z,,} converges weakly to g. [ ]

4. STRONG CONVERGENCE THEOREM

In this section, Yao, Liou and Kang relaxed extragradient method [19] is ex-
tended to develop a new iterative algorithm for finding an element of Fix(S) N =.
Moreover, we derive a strong convergence theorem.

Theorem 4.1. Let C' be a nonempty bounded closed convex subset of a real
Hilbert space H. Let F,G : C x C — R be two bifunctions satisfying conditions
(H1)-(H4), let ¢, : C — R be two lower semicontinuous and convex functions
and let the mappings A, B : C' — H be a-inverse strongly monotone and G-inverse
strongly monotone, respectively. Let S : C' — C be a k-strictly pseudocontractive
mapping such that Fix(S)N=Z # (. Let Q : C — C be a p-contraction with
p € [0,3). For given zo € C arbitrarily, let the sequences {z,,}, {y,} and {z,}

be generated iteratively by

Zp = T,SG’w) (z, — pBxy),
Tpt1 = BnTn + P)/nT)(\F@)(Zn - )‘Azn) + 6nSYn, Vn >0,

where A € (0,2a), u € (0,205) and {a,}, {Bn}, {7}, {on} are four sequences in
[0, 1] such that

(i) Bn+vn+0n=1and (v, + 0n)k < v, < (1 —2p)d, for all n > 0;

(i) lim a, =0and oy, = oo;

n—00
n=0

(iii) 0 < liminf 8, < limsup g, < 1 and liminf d,, > 0;
n—oo

n—00 n—0o0
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. . Tn+1 Tn
iv) lim -
( ) n—>oo( 1- ﬁn—f—l 1— ﬁn

Then the sequence {z,} generated by (4.1) converges strongly to z* =
Prix(s)nz - Q@ and (z*,y*) is a solution of the general system (1.2) of

) = 0.

generalized mixed equilibria, where y* = T,SG’w) (z* — puBx*).

Proof. We divide the proof into several steps.

Step 1. lim ||zp41 — zy| = 0.
n—oo
First, (4.1) can be rewritten as

Tnt1 = Bpn + (1= Bn)un, Yn >0,

where u,, = £2£1=Ju22 It follows that

Unp4+1 — Un
- Tnt2—Bn1Tni1 _xn—i-l_ﬁnxn
B 1_5n+1 1- ﬁn
_ '7n+1T>(\F7¢)(Zn+1_)‘Azn+1)+5n+lsyn+1 'YnT>(\F7¢)(Zn_)‘AZn)+5nSyn
(42) ~ 1—Bns1 B 1-35,
_ In+1 [T)(\F7¢)(Zn+1 —AAzp11) _T>(\F7¢) (20 =AAzn )| 40041 (SYn+1—Syn)
B 1_ﬁn+1
+( Tn+1 Tn )T)(\F,qﬁ)(Zn o )\Azn) +( 5n+1 5n )Syn

1_ﬁn+1_1_5n 1_5n+1_1_ﬁn

Combining (2.2) with (2.3) and repeating the computation in the proof of Theorem
3.1, we have

(4'3) ”7n+1(yn+1 - yn) + Ont1 (Syn—i—l - Syn)H < (’Y?H—l + 5n+1)”yn+1 - ynH

From (4.1) and (4.3) we get

41 [T87 (st =AMz 40) =T (20 = AAZ0)] 4041 (g1 — Sy |
< Vnt1(¥nt1 — Yn) + 6n41(SYnt1 — Sy
e [T (st = Mzni1) = gna] + g0 — TP (20 — 220
< Vnt1(¥nt1 — Yn) + 6n41(SYnt1 — Sy
(4.4) +’7n+1|\T)(\F’¢)(Zn+1 — Mzpq1) — [0 +1QTn41
(1 = )T (g1 — AMznia)]|
i1 [[[0nQn + (1= an) TR (20 = AMz0)] = Ty (20 — A2,
< (Yt +0n40) g1 =Yl + 941 01| Q1 = TN (201 — Az 1) |
+Ynt10m||Qxy — T;\F’(b)(zn — Mzy,)||.
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Since A, B are a-inverse strongly monotone mapping and g-inverse strongly
monotone mapping, respectively, it is known that if 0 < A < 2a and 0 < p < 20,
then (I — A\A) and (I — pB) are nonexpansive. It hence follows that

1T (s = Mznin) = T (20 = AAz) |
< lznst = AMzni1 — (20— AMz)|
< lzns1 — 2
= TS (@ns1 — uBasr) = TSV (@0 — pBay)|
<l (@ng1 — pBngr) = (20 — pBay)|

< l[@ns1 — nl|-

Then,
Y1 — ull
= llens1Qnt1 + (1 = any )T (2001 = Adzp11)]
~[nQan + (1 = )T\ (2 — A2,
s < ITE 2y = AMzog) — TV (2, — Mz,

b1 Qznin — T (2041 — Azp )|
ton|Qzn — T (2, — A2y

< — — T (2, — 2A

= Hxn—f—l an + O‘nHan Y (zn zn)”
i1l Qrnts — TN (zni1 — AMzpi)]|.

Therefore, from (4.2), (4.4) and (4.5), we have

~ 1 1-— ﬁn—f—l r
HU+ T [Qunes = T (2t = Mansa)|
Yn+1 " Tn F,
+] - T (2 = Az |+ [1Syal)-

11— ﬁn—f—l 1- ﬁn
This implies that

limsup(||unt1 — un|| = [[2n41 — zn) < 0.
n—oo
Hence by Lemma 2.3 we get lim |u, — z,|| = 0. Consequently,
n—oo

(4.6) lim [|zp41 — 2| = lim (1 — 8,)|lup — 2] = 0.
n—oo n—oo
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Step 2. lim ||Az, — Ay*|| =0 and lim | Bz, — Bx*|| = 0.
n—oo n—oo
Indeed, take a fixed z* € Fix(S) N E arbitrarily. Then by Lemma 2.2 we have
x* = Sx* and

¥ = T(F’¢) [TISG’w)(x* — puBx*) — )\AT(G’w) (z* — pBzx™)].

Put y* = T\ (2* — uBa*). Then z* = T\"9)(y* — AAy*). From (3.5) and
(3.6), we have

1T (20 = Az) = T (5 — AAy") |2

(4.7) < (20 = AMzp) = (" = Ay |

< llzn =117 + A = 20) [ Az — Ay*||?,
and

20 — )12

= 1755 (@ = pBay) = (O (@" — puBa) |
< |[(wn — pBan) — (¢* — uBz")||?
<l = 2*|* + p(u — 25)|| Bz, — Ba*|*.
It follows from (4.1), (4.7) and (4.8) that

(4.8)

[
= lllnQun + (1 = )Ty (2 = AAz,)] = T (5" = AAy")|?
< anl|Qzn — 2% + (1 — ) | T (2, — AAz,)

(4.9) “TFD (yr — Ay)|?
< an||Qy — 2P + |20 — ¥ + A - 200)[| Az, — Ay*|
< an||Quy — a*|° + |l — 2*| + p(u — 26)|| Bz, — Ba*|?
+A(\ = 20)|| Az, — Ay*||?.
Utilizing the convexity of | - ||, we have
n 1 — 22
= [|Bp(wn — ") + (1 = Bn)
(4.10) +0n(Syn — )17
< Ballan —2* + (1= Bu)llg

(Syn —2)|I?

[Vn(T(F¢)( 2y — AAzyp) — x%)

1—ﬁ

(T(F¢)( Zn — ANAzp) — z¥)

TL

1O
1_ﬁn
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_ﬁn

. Yn(Yn — 2"
= Bnllvn, — H2+(1_ﬁ”)H ( i
+%(T§F’¢)(zn —AMz) = Q)|

* Tn yn_x* + 0, Syn_x*
< Bl — a2+ (1 )| 2 =N =T 2y,

n
< Bullen — x*H2 + (1 = Bn) llyn — x*H2 + Moy,

where M > 0 is some appropriate constant. So, from (4.9) and (4.10) we have
lzns1 —2*||?
< Bullwn = 2*|1* + (1 = Ba) lyn — ™[> + May,
< Bullwn — 2*[1” + (1 = Bo)lanl|Qey — 2*|* + [|lzn — 22
+u(p = 20)|| Bz — Ba* | + A(X = 20)[| Az, — Ay*|*] + May,
< lwn —2*| + p(p — 28)(1 = By) || By, — Ba*||?
FAN = 2a)(1 = B,)[|[ Az — Ay*[IP + (M + [|Qan — 2™ [|*)ctn.
Therefore,
A2a = A)(1=6n) | Azn — Ay* ||+ (28 — ) (1= B)|| Bxy, — Ba*||?
< lzn — 2*)* = llonsr — 21 + (M + [ Qzn — 2*[|*) o
< (e = 2| + lznss — 2 Dllzn = znral + (M + |Qzn — 2*[*) .

Since lim inf A(2a—\)(1—3,,) > 0, Uminf p(28 — p)(1—5y) > 0, ||zn — Tpia ||
— 0 and o, — 0, we have

lim ||Az, — Ay*||=0 and lim ||Bx, — Bz*|| =0.
n—oo n—oo

Step 3. lim ||Syn, — yn| = 0.
n—oo

Indeed, set v, = T\ (2, — AAz,). Noting that both T\"**) and T %) are
firmly nonexpansive, then we have

20 — )12
= |T{“Y (@, — pBay) — TS (@* — pBa")||?
< ((xy — uBxy) — (2" — uBx™), z, — y*)
= 2l — 2" — p(Ba, — Ba*) P
Hzn =y I1* = (20 — %) = p(Brn — Ba*) = (20 — y*)|°)
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< Sz =2 + lzn =y I1* = (@0 — 20) = p(Bwn — Ba™) = (2% = y)|1?)

—N | =

* H2

= 5(lzn — P+ [z = y* P = ll2n — 20 — (2% = y")
+2u(xy, — 2p — (2™ — y*), Bz, — Bx™) — u2Han — Bx*H2),

and
[on — 2%
= |73 (2 — AAz) — T (y* — A Ay*)|?
<A{(zn — Azp) — (y" — Ny"), v, — =)
1 * * *
= 5(”271 — Mz, — (¥ — Ny )H2 + |vn — H2 — |lzn
—Azy — (y* = AAY*) — (va — 29)|?)
1 * * * *
< 5(lzn —y 1>+ llon = 2*)1* = 120 — vn + (=% — )|
+2X(Az, — AY*, 2z, — vp + (2¥ — y7)) — )\2HAzn — Ay*HQ)
1 * * * *
< (llzn —2 1>+ llon = 2*[1* = |20 — vn + (=% — )|

+2M( Az, — AY*, 2n — v + (¥ — y)))

(due to (4.8)). Thus, we have

*

lzn =y [1* < llzn—2" 1P ~llzn = 20 = (&* = 5|

(411) * * * 2 * (12
+2u{xy — 2 — (" —y*), Bey,— Bx™) — u*|| Bx,, — Bx™||,

and
[&

[on = 2*)|? < [|on — 2*)* = |20 — vn + (2" — ¢*)
+2A[ Az — Ay* |20 — vn + (2" — 7).
It follows that
lyn — 2|12
< O‘nHan - x*H2 + (1 - an)an - x*H2

(4.12) < | Qun — 2| + [lon — 2*||?

< an||Qun — 2P + lan — |7 = [l2n — vn + (2" — )2

+2M[Azn — Ay*|lllzn — vn + (2" =y
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From (4.9), (4.10) and (4.11), we have
41 — 2|
< Bollzn — 212 + (1 = B)llyn — 27|* + Moy,
< Bnllzn — x*H2 + (1 = Bn)an || Qrn — x*H2 + (1= Bn)ll2n — y*H2 + Moy,
< Bullzn — 2| + (1 = Bo)an )| Qzn — 2|12 + (1 = o) [[Jan — 2*||?
—llzn = 2 = (&% =y )* + 2pllwn — 20 — (&% = y)|[|| Ban — Bz*|[] + May,
= |l — 2| = (1 = Ba)llzn — 20 — (2" =y
+2(1 = Bo)pllen — zn — (2" —y") ||| Bzn — Ba”|
M + (1= o) |Qzy — 2 |*) .
It follows that
(1= Ba)llzn — 20 — (" = y*)II?
< (lzn = ™| + llzns1 = 2" D znsr = zall + (M + (1 = B)[|Qzn — &™)
+2(1 = Bo)pllen — zn — (2" —y")|[|| Bzn — Ba™|.

Note that ||z, +1—2n| — 0, @, — 0and || Bz, —Bz*|| — 0. Then we immediately
get

(4.13) nli)rgo |xn — 2n — (2% — y*)|| = 0.
Also, from (4.10) and (4.12), we have
41 — 2|
< Bullzn — 2| + (1 = Ba)llyn —2*| + May,
< Ballzn — 2*|* + (1 = B) [l Qr — 2| + [|l2 — 2*||?
~llzn = v+ (@ =y + 2M[| Az — Ay*[[[lz0 — v + (2" = y")I] + Man,
< lwn =22 = (1= Ba)llzn — va + (2" = y*)II?
+2A(L = Ba) [ Az — Ay*[llzn — vn + (2" = y*) | + (M + [|Qan — 2*|*) -
So, we obtain
(1= Ba)llzn — vn + (2" = )|
< lan =[P = |zper =22 +2M(1 = Ba) | Az — Ay* ||| 20— v+ (2" — )|
(M + | Qan — 2*|*) ey
< (zn = 2™ + lznsr — 27D lJ2nra — zall

+2X| Az — Ay*[[[l2n — v + (&* = y*) | + (M + [|Qzp — *[|*) .
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Hence,
lim ||z, — v, + (2" —y")|| = 0.

n—oo
This together with ||y, — v,|| < an||Qzn — va|| — 0 implies that
(4.14) lim ||z, — yn + (2" —y")|| = 0.
n—oo
Thus, from (4.13) and (4.14), we deduce that
lim ||z, —ynl =0.
n—oo
Since
S (St — < - TED (2, — Az,) —
167 (Syn — zn)ll < |Tnt1 — @nll + ¥all A (2n zn) — T
F
< st = 2all 9N T3 (20 = AMzn) =ull +Yallgn — 2]
= Hxn—i—l - xn” + Vnan”an - vn” + Vn”yn - xn”
Therefore,
lim |[Sy, —z,|| =0 and lim [[Sy, —yn|| = 0.
n—oo n—oo
Step 4. limsup(Qz" — 2™, x, — 2¥) < 0 where 2" = Pyiy(s)nz - Q1"
n—oo
Indeed, take a subsequence {ys,, } of {y,} such that

limsup(Qz™ — 2™, yp, — 2*) = lIm (Qz* — 2%, y,, — z™).
n—00 100

As {y,} is bounded, without loss of generality, we may assume that y,,, — v. First,
it is clear from Lemma 2.4 that v € Fix(.S). Next, we prove that v € Z. We note
that

yn — W (yn)ll

< 0| Qan — W(ya)|l + (1 = an) | T[T (2, — pBixy)
“NATCV (2, — pBay)] — W yn)|

= ol Qn — W (yn) | + (1 = ) [[W () = W (yn)|

< anl|Qn — W (yn) | + (1 = an)l|zn — yall — 0.

According to Lemma 2.4 we obtain v € Z. Therefore, v € Fix(S) N =. Hence, it
follows from (2.1) that

lim sup(Qz* — z*, x, — ) = limsup(Qz* — 2%, y, — =*)
n—00 n—00

= lim (Qz* — 2, yp, — ")
1—00
= (Qz* —z*,v—2a¥)

<0.
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Step 5. lim ||z, — 2¥|| = 0 where z* = Ppiy(g)nz - Q2™
n—oo

Indeed, utilizing Lemma 2.6, from (4.1) and the convexity of || - || we have
i1 — 2|

= 1Bn(@n — %) + Yn(yn — 7) + 0n(Syn — z7)
Fmon(T3 (zn — Azn) = Q)|

< 1Ba(@n = &) + yulyn — &) + 8u(Syn — 2|
+27nan<T§F’¢)(zn —ANz,) — Qxp, Ty — )

1
< Bullzn — 2" + (1~ ﬁn)!!m[%(yn — 2%) + 8n(Syn — 2)]|I?

+27nan<T§F’¢)(zn —ANzp) — 2", Ty — )

(4.15)

+2yn00 (2" — Qxp, Ty — ),
which hence implies that
201 —2*[|?
< Bullwn — 212 + (1 = Ba)llyn — 2|
+ 20| T (20 = AAzn) = 2" || 0 41— 2" | +29m0n (5" = Qi 41 — )
< Bllzn — 212+ (1= B)[(1 = an) 20 = v*)1? + 200 (Qy — 2%,y — 2)]
+29mom|lzn — ¥ ||| entr — 27 + 29mam (@™ — Qup, Tp1 — 7).

From (4.8), we note that ||z, — y*|| < ||z, — *||. Hence we have

|zn41 = 2[1* < Bullen — 2*[* + (1 = Ba) (1 — an)[lan — 27|
+20¢n(1 - ﬁn)<an - x*v Yn — 1‘*>
+2’)’n06anL'n—(L'*HH(L‘n+1—(L‘*H+2’)’n06n<$*—Q.’L'n,fL‘n+1—IL'*>.

Repeating the remainder of the proof in Yao, Liou and Kang [19, Theorem 3.2], in
terms of Lemma 2.5 we can obtain the desired conclusion. [

Remark 4.1. It is easy to see that if F = G = 0 and ¢ = ¢ = 0, then
our Theorem 4.1 reduces to Yao, Liou and Kang’s Theorem 3.2 [21]. Hence our
Theorem 4.1 covers Yao, Liou and Kang’s Theorem 3.2 [21] as a special case.

Corollary 4.1. Let C be a nonempty bounded closed convex subset of a real
Hilbert space H. Let F,G : C x C — R be two bifunctions satisfying conditions
(H1)-(H4), let ¢, : C — R be two lower semicontinuous and convex functions
and let the mappings A, B : C' — H be a-inverse strongly monotone and G-inverse
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strongly monotone, respectively. Let S : C' — C be a k-strictly pseudocontractive
mapping such that Fix(S)NZ # (. For fixed w € C and given z( € C arbitrarily,
let the sequences {z,}, {y,} and {z,} be generated iteratively by

Zn = T,SG’w) (zpn, — pBxy),
Yn = apu+ (1 — an)TiF’qﬁ)(zn — Nzy),
Tnt1 = BnTn + 'ynT/{F’qﬁ)(zn — MNzp) + 0,.Syn, Vn >0,
where A € (0,2a), u € (0,208) and {a,}, {Bn}, {1}, {on} are four sequences in

[0, 1] such that
(i) Bn+vn+ 6 =1and (5, + dn)k < v, < &, for all n > 0;

(i) lim a, =0and ) oy, = oo;

n—00
n=0

(iii) 0 < liminf 8, <limsupf, < 1 and liminf d,, > 0;
n—oo n—oo

n—oo
. . Tn+1 TIn
iv) lim —
( ) n_’oo(l_ﬁn—l—l 1_ﬁn
Then the sequence {x,} converges strongly to z* = Ppiy(s)n=u and (z*, y*)
is a solution of the general system (1.2) of generalized mixed equilibria, where

* Ga * *
Y :T,S w)(x — pBx™*).

) = 0.

Corollary 4.2. Let C be a nonempty bounded closed convex subset of a real
Hilbert space H. Let F,G : C x C — R be two bifunctions satisfying conditions
(H1)-(H4), let ¢, : C — R be two lower semicontinuous and convex functions
and let the mappings A, B : C' — H be a-inverse strongly monotone and S-inverse
strongly monotone, respectively. Let S : C' — C be a nonexpansive mapping such
that Fix(S)NE # . Let Q : C — C be a p-contraction with p € [0, 1). For given
xo € C arbitrarily, let the sequences {x,}, {y.} and {z,} be generated iteratively
by

Zn = T;SG’w) (xn — uBwy,),

Yn = nQuy + (1 — an)TiF’qﬁ)(zn — Nz,),

Tpy1 = BnTn + VnT)(\F7¢)(Zn - )\Azn) + 0 Syn, VYn >0,

where A € (0,2a), u € (0,208) and {a,}, {Bn}, {7}, {on} are four sequences in
[0, 1] such that

(i) Bn+vn+ 0, =1and vy, < (1—2p)d, forall n > 0;

(i) lim a, =0and ) oy, = oo;

n—00
n=0
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(iii) 0 < liminf g8, <limsupf, < 1 and liminf -y, > 0;
n—oo n—oo

n—oo

. . Tn+1 Tn
iv) lim -
( ) n—>oo( 1- ﬁn—f—l 1— ﬁn

Then the sequence {z,} converges strongly to z* = Ppiy(s)nz - @2 and
(z*,y*) is a solution of the general system (1.2) of generalized mixed equi-
libria, where y* = T,EG’w) (z* — pBx*).

) = 0.

Corollary 4.3. Let C be a nonempty bounded closed convex subset of a real
Hilbert space H. Let F,G : C x C — R be two bifunctions satisfying conditions
(H1)-(H4), let ¢, : C — R be two lower semicontinuous and convex functions
and let the mappings A, B : C' — H be a-inverse strongly monotone and S-inverse
strongly monotone, respectively. Let S : C' — C be a nonexpansive mapping such
that Fix(S) N E # (. For fixed v € C and given x( € C arbitrarily, let the
sequences {x,}, {y,} and {z,} be generated iteratively by

Zn = T,SG’w) (zp, — pBxy),
Yn = apu + (1 — an)TiF’qﬁ)(zn — Nzy),
Tpy1 = BnTn + P)/nT>(\F7¢)(Zn - )‘Azn) + 0,SYn, Vn >0,

where A € (0,2a), u € (0,208) and {a,}, {Bn}, {7}, {on} are four sequences in
[0, 1] such that

(i) Bn+vn+ 0, =1and vy, < (1—2p)d, forall n > 0;

(i) lim a, =0and ) oy, = oo;

n—oo
n=0
(iii) 0 < liminf g8, <limsupf, < 1 and liminf -y, > 0;
n—00 n—00 n—00
. . Tn+1 TIn
iv) lim — =0.
( ) n_’oo(l_ﬁn—l—l 1_ﬁn)

Then the sequence {z,} converges strongly to z* = Ppiy(s)nz - @2 and
(z*,y*) is a solution of the general system (1.2) of generalized mixed equi-
libria, where y* = T,EG’w) (z* — pBzx*).
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