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EXISTENCE RESULTS FOR VECTOR SADDLE POINTS PROBLEMS

O. Chadli and H. Mahdioui

Abstract. In this paper, we study the existence of solutions for vector saddle
points problems in a general setting. Our approach, first, is based on the KKM
lemma and a relaxation of the C− lower semicontinuity notion introduced by
T.Tanaka by means of an extension to the vector setting of a Bŕezis-Nirenberg-
Stampacchia condition, and arguments from generalized convexity. This leads
us to generalize and improve some new existence results on vector saddle
points problems. In the second approach, we establish an existence result for
vector saddle point problems under a paracompacity assumption.

1. INTRODUCTION

Let X and Y be two Hausdorff topological vector spaces, Z be an ordered
topological vector space with order associated to a closed convex cone C such that
intC �= ∅ and C �= Z where intC denotes the interior of C. Note that C �= Z if
and only if intC does not contain the zero vector.

We consider the following vector saddle-point problem : find a pair (u0, v0) ∈
U × V such that

(V SP )
{

f(u, v0)− f(u0, v0) /∈ −intC ∀u ∈ U and
f(u0, v0) − f(u0, v) /∈ −intC ∀v ∈ V,

where U and V are two nonempty subsets, not necessarily compacts, of two real
topological vector spaces and f is a vector-valued function from U × V to Z.
Note that when C = IR+, problem (V SP ) is reduced to the problem of finding a
saddle point of a real-valued function, i.e. find (u0, v0) ∈ U × V such that

f(u, v0) ≤ f(u0, v0) ≤ f(u0, v) for all u ∈ U and v ∈ V.

Many studies of vector-valued optimization problems seem to lead, in a natural way,
to the investigation of vector-saddle point problems in a more general setting, see for
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instance [1, 2]. Problem (V SP ) has been investigated by many researchers, see [3-
6]. More precisely, in [6], the authors used a scalarization procedure (see Luc [7])
and some extension to the vector setting of arguments from generalized convexity.
Recently in [8], problem (SV P ) has been considered by an approach based on a
maximal point theorem and some C−continuity and C−convexity notions related
to the cone C.

In this paper and in a first approach, we study problem (V SP ) by a procedure
based on the Fan-KKM Theorem [23], a finite intersection theorem, a relaxation
of the C−lower (upper) semicontinuity notion introduced by T. Tanaka [11] and
arguments from generalized convexity. More precisely, we introduce a condition
which in fact represents an extension to the vector setting of the Brezis-Nirenberg-
Stampacchia condition [15]. This leads us to relax the C−lower (upper) semicon-
tinuity notion due to T. Tanaka. In a second approach, we study problem (V SP )
in a setting of paracompact spaces.

The paper is organized as follows. In section 2, we give some preliminary
notions and results that we will need in the sequel, and we state some definitions
and properties concerned with lower semicontinuity and convexity for vector-valued
functions. In section 3, we show an existence theorem for vector-valued saddle-
point problem by an approach as described above. Section 4 is devoted to vector
saddle point problems under a paracompacity assumption.

2. PRELIMINARIES

In this section, we give some definitions and preliminary results that we will
need in the sequel. For a given set A of X , we shall denote by co(A) the convex
hull of A, int(A) the interior of A and A the closure of A.

Definition 2.1. ([12]). Let X be a topological space, K a nonempty convex
subset of X and Z be an ordered topological vector space with order associated to
a closed convex cone C such that intC �= ∅ and C �= Z. A vector-valued function
f : K → Z is said to be C−properly quasiconvex on K if

f(tu1 + (1− t)u2) ∈ f(u1) − C

or
f(tu1 + (1− t)u2) ∈ f(u2) − C

for all u1, u2 ∈ K and t ∈ [0, 1].

Remark 2.1. A vector-valued function f : K → Z is said to be C−properly
quasiconcave if (−f) is C−properly quasiconvex.

In the following lemma, we give a useful property that we will need in the
sequel.
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Lemma 2.1. Let U and V be two nonempty convex subsets of two topological
vector spaces X and Y respectively, let f : U×V → Z be a vector-valued function
C−properly quasiconvex with respect to the first argument, let y ∈ V and E be
nonempty finite subset of U . For all z ∈ Z, if f(x, y) − z ∈ (−intC) c for some
x ∈ co(E), then there exists x ∈ E such that f(x, y)− z ∈ (−intC)c.

Proof. Let E = {x1, ..., xn} be finite subset of U and

x =
n∑

i=1

λixi, where λi ≥ 0 for all i with
n∑

i=1

λi = 1.

Let z ∈ Z. If n = 2, by assumption, for all y ∈ V , the vector-valued function
f(·, y) is C−properly quasiconvex on U , we have

f(λ1x1 + λ2x2, y)− z ∈ f(x1, y)− z − C

or
f(λ1x1 + λ2x2, y)− z ∈ f(x2, y)− z − C.

If f(x1, y) − z ∈ −intC and f(x2, y) − z ∈ −intC, then we are led to the
contradiction

f(λ1x1 + λ2x2, y)− z ∈ {f(x1, y), f(x2, y)} − z − C ∈ −intC.

Hence f(x1, y)− z ∈ (−intC)c or f(x2, y)− z ∈ (−intC)c.
Now, we shall complete the proof by applying mathematical induction to n. Let

z ∈ Z and assume that f(
n+1∑
i=1

λixi, y)−z ∈ (−intC)c. Let λ =
∑n

i=1 λi = 1−λn+1

and x =
n∑

i=1

λi

λ
xi. Since x = λx + λn+1xn+1, then f(x, y) − z ∈ (−intC)c or

f(xn+1, y) − z ∈ (−intC)c. If f(x, y) − z ∈ (−intC)c , then by the induction
hypothesis f(xi, y)− z ∈ (−intC)c for some i, which completes the proof.

Definition 2.2. ([11]). Let X be a topological space. A vector-valued function
f : X → Z is said to be C−lower semicontinuous on X if it satisfies one of the
following three equivalent conditions:
(i) For each u0 ∈ X and any d ∈ int(C), there exists an open neighborhood U of

u0 such that
f(u) ∈ f(u0)− d + int(C), ∀u ∈ U.

(ii) For all z ∈ Z, f−1(z + int(C)) is open.

(iii) For each u0 ∈ X and any open neighborhood V of f(u0), there exists an open
neighborhood U of u0 such that

f(u) ∈ V + C, ∀u ∈ U.
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Remark 2.2.
1. When Z = R and C = R

+, the C−upper semicontinuity notion is the same
as ordinary upper semicontinuity.

2. Clearly, a vector-valued function f is C-upper semicontinuous if and only
−f is C-lower semicontinuous, and vice versa. It is obvious that every continuous
mapping is C−lower semicontinuous and C−upper semicontinuous. Conversely, if
f is C−lower semicontinuous and C−upper semicontinuous simultaneously, then
it is continuous whenever C has a closed convex bounded base; see Theorem 5.3
on p. 22 of [7].

The next proposition represents a characterization of C−upper (lower) semicon-
tinuity in terms of generalized sequences, see [19].

Proposition 2.1. Let X be a Hausdorff topological space, and let f be a vector-
valued function from X to Z. Then f is C−upper semicontinuous on X if and
only if for every x ∈ X , for every v ∈ intC, and for any generalized sequence
{xα}α∈I in X converging to x, there is an α0 in the index set I such that

{f(xβ) : β � α} ⊂ f(x) + d − intC

for all α � α0.

Proof. Suppose that f is C-upper semicontinuous. For α ∈ I , let Aα =
{f(xβ) : β � α}. Since f is C-upper semicontinuous, then there exists an open
neighborhood U of x such that f(y) ∈ f(x) + 1

2v − int(C) for all y ∈ U . There
is an α0 in the index set I such that

α � α0 =⇒ xα ∈ U and f(xα) ∈ f(x) +
1
2
v − int(C).

This implies that Aα ⊂ f(x) + 1
2v − int(C) and Aα ⊂ f(x) + 1

2v − C whenever
α � α0. Since 1

2v − C = v − 1
2v − C ⊂ v − int(C), then

Aα ⊂ f(x) + v − int(C) for all α � α0.

Conversely, assume that f is not C-upper semicontinuous on X . Then there is a
z0 ∈ Z such that f−1(z0 − int(C)) is not open in X . Hence there is an x0 ∈
f−1(z0 − int(C)) such that every neighborhood of x0 is not contained in f−1(z0−
int(C)). Write f(x0) = z0 − v0 for some v0 ∈ int(C). Then, there exists a
generalized sequence {xα}α∈I in X such that xα → x and every f(xα) does not lie
in z0−int(C) = f(x0)+v0−int(C). Since the complement of f(x0)+v0−int(C)
is closed, then for every α ∈ I ,

Aα ∩ (f(x0) + v0 − int(C)) = ∅,
which is a contradiction. The proof is complete.

The following proposition is important for our later discussion.
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Proposition 2.2. Let X and Y be two Hausdorff topological vector spaces,
let U ⊂ X and V ⊂ Y be two nonempty subsets, and let f : U × V → Z
be a vector-valued function. Assume that, for all u ∈ U and v ∈ V , f(·, v) is
C−lower semicontinuous on U and f(u, ·) C−upper semicontinuous on V . If
for (u, v) ∈ U × V and for any generalized sequence {(uα, vα)}α∈I in U × V

converging to (u0, v0) satisfy

f(tu + (1 − t)u0, v0) − f(uα, v0) �∈ −intC and

f(u0, vα) − f(u0, tv + (1− t)v0) �∈ −intC,

for all t ∈ [0, 1],
then

f(u, v0) − f(u0, v0) ∈ (−intC)c and f(u0, v0) − f(u0, v) ∈ (−intC)c.

Proof. By assumption, we have

f(u, v0) − f(uα, v0) �∈ −intC and

f(u0, vα)− f(u0, v) �∈ −intC .

Set −d = f(u, v0)−f(u0, v0) and suppose, by contradiction, that d ∈ intC. Since
the vector-valued function −f(·, v0) is C−upper semicontinuous at the point u0,
there is an open neighborhood Uu0 of u0 such that −f(w, v0) ∈ −f(u0, v0) + d −
intC for all w ∈ Uu0 . On the other hand, since {uα}α∈I converges to u0, there is
an α0 in the index set I such that

α � α0 ⇒ uα ∈ Uu0 and − f(uα, v0) ∈ −f(u0, v0) + d− intC.

Consequently, f(u, v0) − f(uα, v0) ∈ −intC for all α � α0 and uα ∈ Uu0 . This
contradicts our assumption. Similarly, we can show that f(u0, v0) − f(u0, v) ∈
(−intC)c, for all u ∈ U.

3. EXISTENCE RESULTS FOR VECTOR SADDLE POINTS:
AN INTERSECTION PROPERTY APPROACH

In this section, we derive existence results for the vector-saddle point problem
(V SP ). First we recall the well known Fan-KKM Theorem stated below.

Definition 3.1. (KKM-mapping) Let U be a nonempty subset of a topological
vector space X and F : U → 2X be a set-valued mapping where 2X denotes the
family of all subsets of X . We say that F is a KKM mapping (or the family of sets
{F (x)}x∈U satisfies the KKM principle) if if for any nonempty finite set A ⊂ U

one has
co(A) ⊂

⋃
x∈A

F (x).
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Theorem 3.1. (Fan-KKM Theorem [14]) Let U be a nonempty subset of a
topological vector space X , and let F : U → 2X be a KKM-mapping. If F (x) is
closed in X for every x, and if F (x0) is compact for some x0 ∈ U , then

⋂
x∈U

F (x)

is nonempty.

Now we state the main result of this section.

Theorem 3.2. Let U and V be two nonempty convex subsets of two Hausdorff
topological vector spaces X and Y respectively and let f : U × V → Z be a
vector-valued function satisfying the following conditions:
(i) for every v ∈ V , the function u �→ f(u, v) is C−properly quasiconvex and

C−lower semicontinuous on the convex hull of every nonempty finite subset
of U ;

(ii) for every u ∈ U, the function v �→ f(u, v) is C−properly quasiconcave and
C−upper semicontinuous on the convex hull of every nonempty finite subset
of V ;

(iii) for an arbitrary (u, v) ∈ U×V and for any generalized sequence {(u α, vα)}α∈I

in U × V converging to (u0, v0), if

f(tu + (1− t)u0, tv + (1 − t)v0) − f(uα, tv + (1− t)v0) �∈ −intC and

f(tu + (1 − t)u0, vα) − f(tu + (1 − t)u0, tv + (1− t)v0) �∈ −intC

for all α ∈ I and for 0 ≤ t ≤ 1,

then

f(u, v0) − f(u0, v0) �∈ −intC and

f(u0, v0) − f(u0, v) �∈ −intC;

(iv) (Coercivity) there is a nonempty compact set N × M ⊂ U × V , and there
is a non- empty compact convex set Ñ × M̃ ⊂ U × V such that if (x, y) ∈
(N×M)c∩(U×V ), then f(u, ṽ)−f(ũ, ṽ) ∈ −intC and f(ũ, ṽ)−f(ũ, v) ∈
−intC for some (ũ, ṽ) ∈ Ñ × M̃.

Then there exists (u, v) ∈ U × V such that

f(u, v)− f(u, v) ∈ (−intC)c for all u ∈ U and

f(u, v)− f(u, v) ∈ (−intC)c for all v ∈ V.

To prove this theorem, we need the following lemma.

Lemma 3.1. Let X and Y be two Hausdorff topological vector spaces, U ⊂ X

and V ⊂ Y be two nonempty convex subsets, and f : U × V → Z be a vector-
valued function satisfying the following conditions:
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(i) for every v ∈ V , the function x �→ f(x, v) is C−properly quasiconvex and
C−lower semicontinuous on the convex hull of every finite subset of U ;

(ii) for every u ∈ U, the function y �→ f(u, y) is C−properly quasiconcave and
C−upper semicontinuous on the convex hull of every finite subset of V .

Then for each finite subset E of U and each finite subset F of V , there exist
x0 ∈ co(E) and y0 ∈ co(F ) such that

f(u, y0) − f(x0, y0) ∈ (−intC)c ∀ u ∈ co(E) and

f(x0, y0) − f(x0, v) ∈ (−intC)c ∀v ∈ co(F ).

Proof. Set K := U × V and for (x, y) ∈ K, consider the following subsets

T (x, y) = {u ∈ U : f(x, y)− f(u, y) ∈ (−intC)c}

L(x, y) = {v ∈ V : f(x, v)− f(x, y) ∈ (−intC)c}.
It is obvious that x ∈ T (x, y) and y ∈ L(x, y) for (x, y) ∈ K, therefore the set
T (x, y)× L(x, y) is nonempty. Now, let E and F be two finite subsets of U and
V , respectively. For (x, y) ∈ co(E × F ) consider the following subset

W (x, y) = {(u, v) ∈ co(E × F ) : u ∈ T (x, y) and v ∈ L(x, y)}.

We show that the family of sets {W (x, y)}(x,y)∈co(E×F ) satisfies the KKM princi-
ple. To this aim, we proceed as the following:

(a) First, we show that W (x, y) is closed for each (x, y) ∈ co(E×F ). Indeed,
let {(uα, vα)}α∈I be a generalized sequence of elements of W (x, y) such that uα →
u ∈ co(E) and vα → v ∈ co(F ). Suppose on the contrary that (u, v) is not in
W (x, y), then u �∈ T (x, y) or v �∈ L(x, y). Suppose that u �∈ T (x, y), then by
setting f(x, y)−f(u, y) = −d, one has d ∈ intC. Since the vector-valued function
f(·, y) is C−lower semicontinuous in u, there is an open neighborhood Uu of u
such that ∀d′ ∈ intC there is an α0 in the index set I such that:

α ≥ α0 ⇒ uα ∈ Uu and − f(uα, y) ∈ −f(u, y) + d′ − intC.

For d′ = d, one has
f(x, y)− f(uα, y) ∈ −intC,

which contradicts the fact that uα ∈ T (x, y). Similarly we prove that v /∈ L(x, y)
also leads to a contradiction. Therefore (u, v) ∈ W (x, y).

(b) Note that co(E × F ) is compact since X × Y is a Hausdorff space. Since
the set W (x, y) is closed in co(E × F ), it is compact.
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(c) It remains to show that if {x1, ..., xn} ⊂ co(E) and {y1, ..., ym} ⊂ co(F ),
then

co({x1, ..., xn} × {y1, ..., ym}) ⊂
n,m⋃

i=1,j=1

W (xi, yj).

Suppose, on the contrary, there exists a finite set {x1, ..., xn} × {y1, ..., ym} ⊂
co(E × F ) such that

co({x1, ..., xn} × {y1, ..., ym}) �⊂
n,m⋃

i=1,j=1

W (xi, yj).

Then, there exist u =
∑n

i=1 λixi ∈ co({x1, ..., xn} and v =
∑m

j=1 βjyj ∈ co({y1,

..., ym}) such that u �∈ T (xi, yj) or v �∈ L(xi, yj) for i = 1, 2, ..., n and j =
1, 2, ...,m. Consider the case where u �∈ T (xi, yj) for i = 1, 2, ..., n and j =
1, 2, ...,m. Let j ∈ {1, · · · , m} be fixed. Since u ∈ T (u, yj), we have

f(u, yj) − f(u, yj) �∈ −intC.

Since f(·, y) is C−properly quasiconvex, by Lemma 2.1 there exists xi ∈ {x1, ..., xn}
such that f(xi, yj) − f(u, yj) �∈ −intC, which contradicts the fact that u �∈
T (xi, yj). Similarly, we obtain a contradiction when considering the case v �∈
L(xi, yj) for i = 1, 2, ..., n and j = 1, 2, ..., m. This implies that W is a KKM-
mapping.
Therefore, by the Fan-KKM Theorem one has⋂

(x,y)∈co(E×F )

W (x, y) �= ∅.

Let (u0, v0) ∈ ∩(x,y)∈co(E×F )W (x, y), then we have

(1) u0 ∈ T (x, y) and v0 ∈ L(x, y) for all (x, y) ∈ co(E × F ).

We complete the proof by considering y = v0 and x = u0 in relation (1).

Proof of Theorem 3.2. First we consider the case where K := U × V is a
compact set, i.e. U and V are compact subsets of X and Y respectively. Let F

be the family of all nonempty finite subsets of K. For E × F ∈ F, consider the
following set

ME×F ={(u, v)∈K : u∈T (x, y) and v∈L(x, y), for all (x, y)∈co(E×F )}.
According to Lemma 3.1, ME×F is nonempty for every E × F ∈ F. We shall
prove that ⋂

E×F∈F

ME×F �= ∅.
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Since K is compact, it suffices to show that the family M = {ME×F : E×F ∈ F}
has the finite intersection property. To this end, let E1 × F1, E2 × F2 ∈ F, and let
E × F = (E1 × F1) ∪ (E2 × F2). By definition of the set ME×F , one can easily
see that

ME×F ⊂ ME1×F1 ∩ME2×F2 and therefore ∅ �= ME×F ⊂ ME1×F1 ∩ME2×F2 .

This proves that the family M has the finite intersection property.
Now, let (u0, v0) ∈ ⋂

E×F∈FME×F . For an arbitrary (u, v) ∈ K , let Ŷ =
{(u0, v0), (u, v)}. Since (u0, v0) ∈ M

Ŷ
, then there exists a generalized sequence

{(uα, vα)}α∈I in M
Ŷ

such that uα → u0 and vα → v0.
By the definition of M

Ŷ
, we have

uα ∈ T (tu + (1 − t)u0, tv + (1− t)v0) and

vα ∈ L(tu + (1− t)u0, tv + (1− t)v0),

for all α ∈ I and for 0 ≤ t ≤ 1.

Consequently, for all α ∈ I , we have

f(tu + (1 − t)u0, tv + (1− t)v0) − f(uα, tv + (1 − t)v0) �∈ −intC and

f(tu + (1 − t)u0, vα) − f(tu + (1 − t)u0, tv + (1− t)v0) �∈ −intC

for all α ∈ I and for 0 ≤ t ≤ 1

By conditions (iii),

f(u, v0) − f(u0, v0) �∈ −intC and

f(u0, v0)− f(u0, v) �∈ −intC.

Now, we consider the general case where U and V are not necessarily compact
subsets of X and Y respectively. For every E × F ∈ F, consider the following set

ME×F = {(u, v) ∈ N × M : u ∈ T (x, y)

and v ∈ L(x, y) for all (x, y) ∈ co((E ∪ Ñ) × (F ∪ M̃))}.

Note that co((E ∪ Ñ )× (F ∪ M̃ )) is compact for every E ×F ∈ F. Therefore, by
what has been proved, one deduces that there exists (ũ, ṽ) ∈ co((E∪Ñ)×(F∪M̃))
such that

f(u, ṽ) − f(ũ, ṽ) �∈ −intC for all u ∈ co(E ∪ Ñ) and

f(ũ, ṽ)− f(ũ, v) �∈ −intC for all v ∈ co(F ∪ M̃).
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Since Ñ × M̃ ⊂ co((E ∪ Ñ ) × (F ∪ M̃)), by the coercivity assumption (vi), one
deduce that (x̃, ỹ) ∈ N × M . This proves that ME×F �= ∅ for every E × F ∈ F.
By the same argument as above, one can easily see that the family M = {ME×F :
E × F ∈ F} has the finite intersection property. Hence, by the compactness of
N × M , one deduce that

⋂
E×F∈FME×F �= ∅.

Let (u0, v0) ∈
⋂

E×F∈FME×F . For an arbitrary (u, v) ∈ K , let Ŷ = {(u0, v0), (u, v)}.
Since (u0, v0) ∈ M

Ŷ
, there exists a generalized sequence {(uα, vα)}α∈I in M

Ŷ
such that (uα, vα) → (u0, v0). By the definition of MŶ , we have

uα ∈ T (tu + (1− t)u0, tv + (1 − t)v0)

vα ∈ L(tu + (1− t)u0, tv + (1 − t)v0)

for all α ∈ I and for 0 ≤ t ≤ 1 .

Consequently, for all α ∈ I , we have

f(tu + (1− t)u0, tv + (1 − t)v0) − f(uα, tv + (1− t)v0) �∈ −intC

f(tu + (1 − t)u0, vα) − f(tu + (1 − t)u0, tv + (1− t)v0) �∈ −intC

for all α ∈ I and for 0 ≤ t ≤ 1

By conditions (iii), we conclude

f(u, v0) − f(u0, v0) �∈ −intC and

f(u0, v0)− f(u0, v) �∈ −intC,

which completes the proof.

As a consequence, by taking Z = R and C = R
+, one obtains the following

result on the existence of a saddle-point for a real-valued function.

Corollary 3.1. Let U and V be two nonempty and convex subsets of two
Hausdorff topological vector spaces X and Y respectively and let f : U ×V → R

be a real-valued function satisfying the following conditions:
(i) For every v ∈ V , the function u �→ f(u, v) is quasi convex and lower semicon-

tinuous on the convex hull of every nonempty finite subset of U .
(ii) For every u ∈ U, the function v �→ f(u, v) is quasi concave and upper semi-

continuous on the convex hull of every nonempty finite subset of V .
(iii) For an arbitrary (u, v) ∈ U×V and for any generalized sequence {(u α, vα)}α∈I

in U × V converging to (u0, v0), if

f(uα, tv+(1−t)v0) ≤ f(tu+(1−t)u0, tv+(1−t)v0) ≤ f(tu+(1−t)u0, vα)
for all α ∈ I and for 0 ≤ t ≤ 1,
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then
f(u0, v) ≤ f(u0, v0) ≤ f(u, v0).

(iv) (Coercivity) There is a nonempty compact set N × M ⊂ U × V , and there
is a non- empty compact convex set Ñ × M̃ ⊂ U × V such that if (x, y) ∈
(N × M)c ∩ (U × V ), then f(u, ṽ)− f(ũ, ṽ) < 0 and f(ũ, ṽ)− f(ũ, v) < 0
for some (ũ, ṽ) ∈ Ñ × M̃.

Then there exists (u, v) ∈ U × V such that

f(u, v) ≤ f(u, v) ≤ f(u, v) for all (u, v) ∈ (U × V ).

Remark 3.3. Theorem 3.2 generalizes the results obtained by Kimura-Tanaka
[6], Kimura [8], and notably the ones obtained by Ferro [3] and Kazmi-Khan [4].
We point out that, in the scalar setting, condition (iv) has been considered first
by Brézis-Nirenberg-Stampacchia [15] as a relaxation of the pseudomonotonicity
notion introduced by Brézis (see Theorem 1, condition 4 in [15]). More precisely
as mentioned in Application 3 p. 297 in [15], pseudomonotonicity implies condition
4 in [15, Theorem1]. In our approach and according to Proposition 2.2, condition
(iv) represents in fact a relaxation of the C−lower (upper) semicontinuity notion
introduced by Tanaka [11]. We mention also that the results presented here are in
a general setting of Hausdorff topological vector spaces.

4. EXISTENCE RESULT FOR VECTOR-SADDLE POINT PROBLEMS IN

PARACOMPACT SPACES

Let X and Y be two Hausdorff topological vector spaces. We denote by (X ×
Y )∗ the topological dual of X ×Y . Let U and V are two nonempty convex subsets
of X and Y respectively and let Z be an ordered topological vector space with order
associated to a closed convex cone C such that intC �= ∅ and C �= Z. Let f be a
vector-valued function from U × V to Z.

We consider the following vector saddle-point problem: find a pair (u0, v0) ∈
U × V such that

(V SP )

{
f(u, v0) − f(u0, v0) /∈ −intC ∀u ∈ U and
f(u0, v0) − f(u0, v) /∈ −intC ∀v ∈ V.

Definition 4.1. A Hausdorff space is paracompact if every open cover of the
space has an open locally finite cover, i.e., if X = ∪i∈IVi with {Vi}i∈I a family
of open subsets of X , then there exists {Wα}α∈J a family of open sets of X such
that for all α ∈ J , there exists i ∈ I with Wα ⊂ Vi, X = ∪α∈JWα and ∀x ∈ X ,
there exists a neighborhood U of x such that U meets at most finitely many Wα.
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Remark 4.1. (a) Every compact space is paracompact and every metrizable
space is paracompact; see [22, p.68].

(b) Every closed subset of a paracompact space is paracompact.

Definition 4.2. A family {βi}i∈I of continuous functions defined from X into
[0, +∞) is called a partition of unity associated to an open cover {Vi}i∈I of X , if
(i) Supp(βi) ⊂ Vi for all i ∈ I ;

(ii) the family {Supp(βi)}i∈I is locally finite;
(iii)

∑
i∈I βi(x) = 1, for each x ∈ X.

In the following, we recall a condition that characterizes the paracompact sets
(see, [22, p. 68]).

Theorem 4.1. A Hausdorff space X is paracompact if and only if every open
cover of X has a continuous locally finite partition of unity.

We shall use the following result, see Theorem 10 in [24].

Theorem 4.2. [24]. Let X be a Hausdorff topological vector space, K a closed
convex subset of X and g : K×K → R be a real bifunction satisfying g(x, x) = 0
for each x ∈ K. Suppose that
(i) for each finite subset E of K one has

min
x∈co(E)

max
y∈E

g(x, y) ≥ 0;

(ii) for each y ∈ K, the function x ∈ K �→ g(x, y) is upper semicontinuous;
(iii) there exists a nonempty compact subset A of K, and there is a nonempty

compact convex subset B of K such that for each x ∈ K \ A there exists
y ∈ B, satisfying g(x, y) < 0.

Then there exists x ∈ K such that g(x, y) ≥ 0 for all y ∈ K.

Remark 4.2. If the bifunction g in Theorem 4.2 is convex with respect to the
second argument, then condition (i) of Theorem 4.2 is satisfied.

Now we can state the main result of this section.

Theorem 4.3. Let U and V be two nonempty and convex subsets of two Haus-
dorff topological vector spaces X and Y respectively such that U × V is a para-
compact set in X × Y . Let f : U × V → Z be a vector-valued function satisfying
the following conditions :
(i) for every v ∈ V , f(·, v) is C−properly quasiconvex and C−lower semicontin-

uous;
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(ii) for every u ∈ U, f(u, ·) is C−properly quasiconcave and C−upper semicon-
tinuous;

(iii) (Coercivity) there is a nonempty compact set (N × M) ⊂ (U × V ) , and
there is a non- empty compact convex set (Ñ × M̃) ⊂ (U × V ) such that
if (x, y) ∈ (N × M)c ∩ (U × V ), then f(u, ṽ) − f(ũ, ṽ) ∈ −intC and
f(ũ, ṽ) − f(ũ, v) ∈ −intC for some (ũ, ṽ) ∈ Ñ × M̃.

Then , problem (VSP) has at last one solution.

Proof. Let K := U × V . For (x, y) ∈ K, we consider the following sets

T (x, y) = {u ∈ U : f(x, y)− f(u, y) ∈ (−intC)c}
L(x, y) = {v ∈ V : f(x, v)− f(x, y) ∈ (−intC)c}.

Note that T (x, y) × L(x, y) is nonempty since x ∈ T (x, y) and y ∈ L(x, y). We
consider for (x, y) ∈ K the following set

W (x, y) = {(u, v) ∈ N × M : u ∈ T (x, y) and v ∈ L(x, y)}.

We show that
⋂

(x,y)∈K

W (x, y) �= ∅. Suppose, on the contrary, that this assertion is

false. Then for each (u, v) ∈ K, there exists (x, y) ∈ K such that (u, v) �∈ W (x, y).
By the Hahn-Banach separation Theorem, there exists p ∈ (X × Y )∗ such that

〈p, (u, v)〉 > sup
(w,t)∈W (x,y)

〈p, (w, t)〉,

that is,

(u, v) ∈ Vp={(u, v)∈K :∃ (x, y)∈K/ 〈p, (u, v)〉>〈p, (w, t)〉, ∀(w, t)∈W (x, y)}.
One can easily show that Vp is an open set. Consequently, {Vp}p∈(X×Y )∗ is an open
cover of K. Since K = U × V is paracompact, then there is a continuous partition
of unity {βp}p∈(X×Y )∗ subordinated to this open cover. Consider the following
real-valued function ϕ : K × K → R defined by

ϕ ((u, v), (w, t)) =
∑

p∈(X×Y )∗
βp(u, v)〈p, (w, t)− (u, v)〉.

Note that the last sum is finite because for any (u0, v0) ∈ K there exist a neigh-
borhood V(u0, v0) of (u0, v0) and p1, ..., pn ∈ (X × Y )∗ such that for all (u, v) ∈
V(u0, v0)

ϕ ((u, v), (w, t)) =
n∑

i=1

βpi(u, v)〈pi, (w, t)− (u, v)〉 for all (w, t) ∈ K.
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We see at once that the function ϕ is convex with respect to its second argument,
then the condition (i) in Theorem 4.2 is satisfied. It follows easily that for all
(t, w) ∈ K, the function (u, v) �→ ϕ ((u, v), (w, t)) is continuous, therefore it is
upper semicontinuous on K. Now let us set A = N × M and B = Ñ × M̃ . Then
A is a compact subset of K and B is a compact convex subset of K.
Let (u, v) ∈ A. From assumption (iii), there exists (x0, y0) ∈ B such that u �∈
T (x0, y0) and v ∈ L(x0, y0). Consequently (u, v) �∈ W (x0, y0). Therefore, by the
Hahn-Banach separation Theorem, there exists q ∈ (X ×Y )∗ such that 〈q, (w, t)−
(u, v)〉 < 0 for all (w, t) ∈ W (x0, y0). Let {q, p1, ..., pn} ⊂ (X ×Y )∗ be such that

ϕ ((u, v), (w, t)) = βq(u, v)〈q, (w, t)− (u, v)〉+
n∑

i=1

βpi(u, v)〈pi, (w, t)− (u, v)〉,

for all (w, t) ∈ W (x0, y0). Since {βp}p∈(X×Y )∗ is a partition of unity, βq(u, v) > 0
or βpi(u, v) > 0 for at least one index i ∈ {1, ..., n}. Consequently, ϕ((u, v), (w, t)) <
0 for all (w, t) ∈ W (x0, y0) if βq(u, v) > 0. On the other hand, if βpi(u, v) > 0
for some i, then from (iii) and the definition of the set Vpi, there is (x, y) ∈ K
such that ϕ((u, v), (w, t)) < 0 for all (w, t) ∈ W (x, y). Therefore, from Theorem
4.2, we deduce that there exists (u, v) ∈ K such that

(2) ϕ((u, v), (w, t)) ≥ 0 for all (w, t) ∈ K.

Let {r1, ..., rm} ⊂ (X × Y )∗ be such that

ϕ ((u, v), (w, t)) =
m∑

i=1

βri(u, v)〈ri, (w, t)− (u, v)〉

for all (w, t) ∈ K. If βri(u, v) > 0 for some i, then (u, v) ∈ Vri. Therefore, there
exists (x, y) ∈ K such that 〈ri, (w, t)− (u, v)〉 < 0 for all (w, t) ∈ W (x, y) which
contradicts relation (2). Consequently, the problem (V SP ) must have at least one
solution and the result follows.

5. CONCLUSION

In this paper, we have studied the existence of solutions of a vector saddle-
point problem by different approaches. More precisely, we derive existence results
by means of an extension to the vector setting of a Bŕezis-Nirenberg-Stampacchia
condition, which leads us to relax the C−lower (upper) semicontinuity assumption
due to T.Tanaka when dealing with vector saddle-point problems. In a second
approach, we present a treatment of vector saddle-point problems by means of a
paracompacity assumption. We argue that a similar treatment can be considered for
the following vector saddle-point problems considered in the literature:
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(V SP )1


find a pair (u0, v0) ∈ U × V such that

f(u, v0) − f(u0, v0) ∈ C ∀u ∈ U and

f(u0, v0) − f(u0, v) /∈ −intC ∀v ∈ V,

(V SP )2


find a pair (u0, v0) ∈ U × V such that
f(u, v0) − f(u0, v0) ∈ C ∀u ∈ U and
f(u0, v0) − f(u0, v) ∈ C ∀v ∈ V,

(V SP )3


find a pair (u0, v0) ∈ U × V such that
f(u, v0) − f(u0, v0) ∈ C ∀u ∈ U and
f(u0, v0) − f(u0, v) ∈ C ∀v ∈ V.
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