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CODERIVATIVE AND MONOTONICITY OF CONTINUOUS MAPPINGS

N. H. Chieu and N. T. Q. Trang

Abstract. Sufficient conditions for a norm-to-weak∗ continuous mapping
f : X → X∗ being monotone or submonotone are established by its Fŕechet
and normal coderivatives, where X is an Asplund space with its dual space
X∗. Under some additional assumptions, they are also necessary conditions.
Among other things, we obtain a criterion for the monotonicity of continuous
mappings which extends the following classical result: a differentiable map-
ping F : Rn → Rn is monotone if and only if for each x ∈ Rn the Jacobian
matrix ∇F (x) is positive semi-definite; see [22, Proposition 12.3]. As a by-
product, sufficient conditions for a function being convex or approximately
convex are given.

1. INTRODUCTION

Monotonicity plays a remarkable role in studying algorithm theory, operator
theory, variational inequality, and many important mappings in variational analysis
such as gradient and subgradient mappings, solution mappings, ect.; see [2, 18, 20,
21, 22].

A classical result on characterizing the monotonicity reads as follows: a differ-
entiable mapping F : Rn → Rn is monotone if and only if for each x ∈ Rn the
Jacobian matrix ∇F (x) is positive semi-definite; see [22, Proposition 12.3]. This
criterion is useful in checking the monotonicity of differentiable functions. Thus,
it is natural to hope that such a criterion is still valid for wider classes of map-
pings with the Jacobian matrix ∇F (x) being replaced by some kind of generalized
differentiation.

The coderivative of set-valued mappings originated by Mordukhovich [11] is a
kind of generalized differentiation which has been well recognized as a convenient
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tool to study many important issues in variational analysis and optimization; see [11-
15, 19, 22] and the references therein.

Our first aim is to extend the result cited above to the class of continuous
mappings by using coderivativies in place of the Jacobian matrix.

A concept closely related to monotonicity is that of submonotonicity introduced
by Spingarn [23]. It is well-known that a proper lower semicontinuous extended-
real-valued function is convex if and only if its subdifferential is monotone. Like
that, recently, Daniilidis et.al. [8] and Ngai, Penot [17] independently proved that the
submonotonicity of subdifferentials of a proper lower semicontinuous extended-real-
valued function can characterize the approximate convexity of the function under
consideration. Due to the analogy between the monotonicity and the submonotonic-
ity, it is reasonable to pose the question about recognizing the submonotonicity of a
mapping by its coderivatives.

The second aim is to answer partially this question.
In this paper we establish sufficient conditions for the monotonicity and sub-

monotonicity of norm-to-weak∗ continuous mappings f : X → X∗ from an As-
plund space X into its dual space X ∗ via the Fréchet and normal coderivatives.
Under some additional assumptions, they are also necessary conditions. Among
other things, we obtain a criterion for the monotonicity of continuous mappings
which extends the classical result cited above in this direction. Besides, sufficient
conditions for a function being convex or approximately convex are given.

The rest of the paper is organized as follows. Section 2 collects some definitions
and results which are used in the sequel. Section 3 is devoted to the results relating
to the monotonicity. The sufficient conditions for the submonotonicity and for
approximate convexity are presented in Section 4.

2. PRELIMINARIES

Let X be a real Banach space with its dual topological space X ∗ and let Ω be a
nonempty subset of X . Denote the weak-star topology in X∗ (resp., the canonical
pairing between X∗ and X) by w∗ (resp., 〈x∗, x〉). The closed unit ball of X is
denoted by BX .

For a set-valued mapping Φ : X ⇒ X∗, the expression Lim sup
x→x̄

Φ(x) stands

for the sequential Kuratowski-Painlevé upper limit of Φ with respect to the norm
topology of X and the weak∗ topology of X∗, i.e.,

Lim sup
x→x̄

Φ(x) = {x∗ ∈ X∗ | ∃ sequences xk → x̄, x∗k
w∗−−→ x∗,

with x∗k ∈ Φ(xk) for all k = 1, 2, . . .}.
Normal cones to sets, coderivatives of set-valued mappings, and subdifferentials

of extended-real-valued functions are defined [12] as follows.
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The set of Fréchet ε-normals to Ω at x ∈ Ω is given by

N̂ε(x; Ω) =


x∗ ∈ X∗ | lim sup

u
Ω−→x

〈x∗, u− x〉
‖u− x‖ ≤ ε


 ,

where u Ω−→ x means u → x with u ∈ Ω. If x /∈ Ω, we put N̂ε(x; Ω) = ∅ for
all ε ≥ 0. For ε = 0, the set N̂0(x; Ω) is called the Fréchet normal cone to Ω
at x and is denoted by N̂(x; Ω). The normal cone to Ω at x̄ ∈ Ω in the sense of
Mordukhovich is the set N (x̄; Ω) defined by

N (x̄; Ω) = Lim sup
x→x̄,ε↓0

N̂ε(x; Ω).

If x̄ /∈ Ω, N (x̄; Ω) = ∅ by convention.
For any (x̄, ȳ) ∈ gph Φ, the set-valued mapping D∗Φ(x̄, ȳ) : Y ∗ ⇒ X∗ defined

by

D∗Φ(x̄, ȳ)(y∗) =
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N ((x̄, ȳ); gphΦ)

}
(2.1)

is said to be the normal coderivative (called also the limiting coderivative and the
coderivative in the sense of Mordukhovich) of Φ at (x̄, ȳ). We put D ∗Φ(x̄, ȳ)(y∗) =
∅ for any y∗ ∈ Y ∗ if (x̄, ȳ) /∈ gph Φ. The Fréchet coderivative D̂∗Φ(x̄, ȳ) : Y ∗ ⇒
X∗ of Φ at (x̄, ȳ) is defined similarly, provided that N ((x̄, ȳ); gphΦ) in (2.1) is
replaced by N̂((x̄, ȳ); gphΦ). If Φ is a single-valued and ȳ = Φ(x̄), it is customary
to write D∗Φ(x̄) for D∗Φ(x̄, ȳ) and D̂∗Φ(x̄) for D̂∗Φ(x̄, ȳ). If Φ : X → Y is
strictly differentiable at x̄ with the derivative ∇Φ(x̄), that is ∇Φ(x̄) : X → Y is a
continuous linear operator and

lim
x→x̄,u→x̄

Φ(x) − Φ(u) −∇Φ(x̄)(x− u)
‖x− u‖ = 0,

then

D∗Φ(x̄)(y∗) = D̂∗Φ(x̄)(y∗) =
{
(∇Φ(x̄))∗y∗

} ∀y∗ ∈ Y ∗(2.2)

(see [12, Theorem 1.38]). It is well known that the second equality in (2.2) is
valid if Φ is Fréchet differentiable at x̄. Formula (2.2) and this fact show that the
normal coderivative (resp., the Fréchet coderivative) of set-valued mappings is a
natural extension of the adjoint operator of the strict derivative (resp., the Fréchet
derivative) of single-valued maps.

Let ϕ : X → R̄ := R∪{+∞} be a proper function from a Banach space X into
R̄. As usual, ϕ is said to be lower semicontinuous (l.s.c.) at x̄ ∈ domϕ provided
that lim inf

x→x̄
ϕ(x) ≥ ϕ(x̄); ϕ is said to be lower semicontinuous if it is l.s.c. at any
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x̄ ∈ domϕ; where domϕ := {x ∈ X | ϕ(x) ∈ R}. The limiting subdifferential of
ϕ at x̄ ∈ domϕ is the set

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)},

where epiϕ := {(x, µ) ∈ X × R | µ ≥ ϕ(x)}. The Fréchet subdifferential of ϕ at
x̄ ∈ domϕ is defined by

∂̂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂ ((x̄, ϕ(x̄)); epiϕ)}.

If x̄ /∈ domϕ then ∂ϕ(x̄) = ∂̂ϕ(x̄) = ∅ by convention.
It is not hard to see that ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) and ∂̂ϕ(x̄) is a closed convex set (may

be empty). If ϕ is strictly differentiable at x̄, then ∂ϕ(x̄) = ∂̂ϕ(x̄) = {∇ϕ(x̄)};
see [12]. In particular, for C1−functions, i.e., continuously differentiable functions,
one has ∂ϕ(x̄) = ∂̂ϕ(x̄) = {∇ϕ(x̄)}.

The following statement, which is a special case of the approximate mean value
theorem established by Mordukhovich and Shao [15], plays a crucial role in proving
our main results.

Theorem 2.1. (see [12, Theorem 3.49] or [15, Theorem 8.2]). Let ϕ : X → R̄

be a proper l.s.c. function from an Asplund space X into R̄ finite at two given
points a �= b. Suppose ϕ(a) = ϕ(b) and x̄ ∈ (a, b) is a point at which ϕ attains its
minimum on [a, b]. Then there are sequences xk

ϕ→ x̄ and x∗k ∈ ∂̂ϕ(xk) satisfying
lim

k→∞
〈x∗k, b− a〉 = 0.

Note that the first mean value theorem of the approximate type was introduced by
Zagrodny [24]. The reader interested in this subject should consult [1, 8, 12, 15, 24].

Let ϕ : X → R̄ be a function finite at x̄ ∈ X and let ȳ ∈ ∂ϕ(x̄). The
normal second-order subdifferential of ϕ at x̄ relative to ȳ is the set-valued mapping
∂2ϕ(x̄, ȳ) : X∗∗ ⇒ X∗ defined by

∂2ϕ(x̄, ȳ)(u) = (D∗∂ϕ)(x̄, ȳ)(u)

for all u ∈ X∗∗; see [12]. For any ȳ ∈ ∂̂ϕ(x̄), the set-valued mapping ∂̂2ϕ(x̄, ȳ) :
X∗∗ ⇒ X∗ with the values

∂̂2ϕ(x̄, ȳ)(u) := (D̂∗∂̂ϕ)(x̄, ȳ)(u) (u ∈ X∗∗)

is said to be the Fréchet second-order subdifferential of ϕ at x̄ relative to ȳ. If ∂ϕ(x̄)
is singleton, then we write ∂2ϕ(x̄) for ∂2ϕ(x̄, ȳ). Similarly, we write ∂̂2ϕ(x̄) for
∂̂2ϕ(x̄, ȳ) if ∂̂ϕ(x̄) is singleton. We refer the reader to [3, 4, 5, 10, 12, 14, 19, 22]
for more information on the second-order subdifferentials and their applications.
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3. CODERIVATIVE AND MONOTONICITY

We recall from [18] that a set-valued map T : X ⇒ X ∗ is said to be a monotone
operator, if 〈x∗ − y∗, x − y〉 ≥ 0 for all x, y ∈ X, x∗ ∈ T (x), y∗ ∈ T (y); T
is said to be maximal monotone if T is a monotone operator and gphT is not a
proper subset of the graph of any other monotone operator. The reader is referred
to [2, 18, 21, 22] for many results on monotone operators and their applications.

Our first result is stated as follows.

Theorem 3.1. Let X be an Asplund space with its dual space X ∗ and let f :
X → X∗ be a norm-to-weak∗ continuous mapping. Consider the two properties:

(i) For any x ∈ X , one has

(3.1) 〈u∗, u〉 ≥ 0 ∀u ∈ X, u∗ ∈ D̂∗f(x)(u).

(ii) f is a monotone operator.
Then one has (i) ⇒ (ii). The implication (ii) ⇒ (i) is also valid if f is locally

Lipschitz or X is a Hilbert space.

As can be seen from the following example, removing the continuity of f may
make the implication (i) ⇒ (ii) invalid.

Example 3.2. Let us consider the function f : R → R defined by setting
f(x) = 0 if x ∈ Q and f(x) = 1 otherwise. Note that f is discontinuous and non-
monotone. By the definitions of the Fréchet normal cone and the Fréchet coderiva-
tive, N̂ ((x, f(x)); gphf) = {0}×R and D̂∗f(x)(u) = {0} for all x, u ∈ R. Hence
(3.1) is satisfied.

To prove Theorem 3.1, we need the following lemma which was given in [4].
For sake of completeness we will provide the proof of this result.

Lemma 3.3. If T : X ⇒ X is a maximal monotone operator from a Hilbert
space X into itself, then for every point (x̄, ȳ) ∈ gphT , it holds

〈z, u〉 ≥ 0 whenever u ∈ D̂∗T (x̄, ȳ)(z).

Proof. We follow the scheme given in [19, Theorem 2.1]. Take any (x̄, ȳ) ∈
gphT . Consider the linear function J : X × X → X × X with J(x, y) = (y +
x, y − x) for all (x, y) ∈ X × X. Let S : X ⇒ X be the set-valued mapping
defined by gphS = J(gphT ). Put (z̄, w̄) = J(x̄, ȳ). Since (x̄, ȳ) ∈ gphT , it
follows that (z̄, w̄) ∈ gphS. Note that Proposition 12.11 in [22] is also valid if Rn

is replaced by a Hilbert space X . Since T is a maximal monotone operator, by [22,
Proposition 12.11], S is a single-valued mapping from all of X into itself that is
Lipschitzian with constant 1. Hence, by [13, Proposition 3.5],

(3.2) D̂∗S(x̃)(ỹ) = ∂̂〈ỹ, S〉(x̃) ∀x̃, ỹ ∈ X.
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Observe that gphT = J−1(gphS) and J is strictly differentiable at (x̄, ȳ) with its
derivative ∇J((x̄, ȳ)) = J being surjective. It is not hard to see that

∇J((x̄, ȳ))∗(x, y) = (x− y, x+ y) ∀ (x, y) ∈ X ×X.

Hence, by [12, Corollary 1.15],

(z,−u) ∈ N̂ ((x̄, ȳ); gphT ) ⇐⇒ (z − u,−z − u) ∈ N̂ ((z̄, w̄); gphS).

This means that

z ∈ D̂∗T (x̄, ȳ)(u) ⇐⇒ z − u ∈ D̂∗S(z̄, w̄)(z + u).

For each ỹ ∈ X , due to the fact that S is Lipschitzian with constant 1, the mapping
〈ỹ, S〉 is Lipschitzian with constant ‖ỹ‖. Hence ‖ũ‖ ≤ ‖ỹ‖ for all ũ ∈ ∂̂〈ỹ, S〉(z̄).
By (3.2), ‖ũ‖ ≤ ‖ỹ‖ whenever ũ ∈ D̂∗S(z̄, w̄)(ỹ). Applying this to ũ = z − u and
ỹ = z + u in the case of an arbitrary pair (u, z) with z ∈ D̂∗T (x̄, ȳ)(u), we obtain
‖z − u‖ ≤ ‖z + u‖. Hence 〈z, u〉 = 4−1(‖z + u‖2 − ‖z − u‖2) ≥ 0.

Lemma 3.4. (see [6, Theorem 2.5]). Let X be a Hilbert space let f : X → X
be a norm-to-weak continuous monotone mapping. Then f is maximal monotone.

Proof of Theorem 3.1. (i) ⇒ (ii): The proof is based on the scheme given
in [4]. On the contrary, suppose that one could find a norm-to-weak∗ continuous
nonmonotone mapping f : X → X∗ satisfying condition (3.1). Then there exist
a, b ∈ X such that

(3.3) 〈f(b)− f(a), b− a〉 < 0.

Put ψ(x) = 〈f(a)−f(b), x〉+〈f(x), b−a〉. Since ψ(a) = ψ(b) and ψ is continuous,
there exists x̄ ∈ (a, b) satisfying ψ(x̄) = min

x∈[a,b]
ψ(x) or ψ(x̄) = max

x∈[a,b]
ψ(x).

Case 1. ψ(x̄) = min
x∈[a,b]

ψ(x). By Theorem 2.1, there are sequences xk → x̄

and x∗k ∈ ∂̂ψ(xk) satisfying

lim
k→∞

〈x∗k, b− a〉 = ψ(b)− ψ(a) = 0.

Since
x∗k ∈ ∂̂ψ(xk) = f(a) − f(b) + ∂̂〈f(·), b− a〉(xk)

and
∂̂〈f(·), b− a〉(xk) ⊂ D̂∗f(xk)(b− a) ∀k,

it follows that
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f(b)− f(a) + x∗k ∈ D̂∗f(xk)(b− a) ∀k.
According to (3.1),

〈f(b)− f(a) + x∗k, b− a〉 ≥ 0 ∀k.
Taking the limits as k → ∞ yields 〈f(b)−f(a), b−a〉 ≥ 0. This contradicts (3.3).

Case 2. ψ(x̄) = max
x∈[a,b]

ψ(x). Using the same arguments as in case 1 for −ψ,

we obtain 〈f(a)− f(b), a− b〉 ≥ 0, which contradicts (3.3).
(ii) ⇒ (i): (a) Suppose that f is monotone and locally Lipschitz. If (i) is

invalid, then one could find x0 ∈ X , u0 ∈ X and u∗0 ∈ D̂∗f(x0)(u0) such that
〈u∗0, u0〉 < 0. Since u∗0 ∈ D̂∗f(x0)(u0), it holds

(3.4) lim sup
x→x0

〈u∗0, x− x0〉 − 〈f(x) − f(x0), u0〉
‖x− x0‖ + ‖f(x) − f(x0)‖ ≤ 0.

Let � > 0 be a Lipschitz constant of f on some neighborhood of x0. We have

lim sup
x→x0

〈u∗0, x− x0〉 − 〈f(x)− f(x0), u0〉
‖x− x0‖ + ‖f(x)− f(x0)‖

≥ lim sup
n→∞

〈u∗0,−n−1u0〉 − 〈f(x0 − n−1u0) − f(x0), u0〉
n−1‖u0‖+ ‖f(x0 − n−1u0) − f(x0)‖

≥ lim sup
n→∞

〈u∗0,−n−1u0〉 − 〈f(x0 − n−1u0) − f(x0), u0〉
n−1‖u0‖ + �‖ − n−1u0‖

≥ lim sup
n→∞

〈u∗0,−n−1u0〉
n−1‖u0‖ + �‖ − n−1u0‖ =

−〈u∗0, u0〉
(1 + �)‖u0‖ > 0.

This contradicts (3.4). Hence (i) is valid.
(b) Suppose that X is a Hilbert space and (ii) holds. Since f is a monotone

mapping continuous with respect to the norm topology of X and the weak-star
topology of X∗, by Lemma 3.4, f is maximal monotone. According to Lemma 3.3,
(i) is valid. The proof is complete.

Corollary 3.5. ([22, Proposition 12.3]). A differentiable mapping F : R n → Rn

is monotone if and only if for each x ∈ R n the Jacobian matrix ∇F (x) is positive
semi-definite.

Proof. Since F is differentiable, by [12, Theorem 1.38], D̂∗F (x)(u)={∇F (x)∗u}
for all u ∈ Rn. Hence (3.1) amounts to the fact that for each x ∈ Rn the Jacobian
matrix ∇F (x) is positive semi-definite. By Theorem 3.1, we obtain the desired
conclusion. This finishes the proof.
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Remark 3.6. Since D̂∗f(x)(u) ⊂ D∗f(x)(u) for all x ∈ X and u ∈ X , the
implication (i) ⇒ (ii) in Theorem 3.1 holds if the Fréchet coderivative is replaced
by the normal coderivative.

Corollary 3.7. Suppose that f : Rn → Rn is a continuous mapping. Then the
following properties are equivalent:

(i) For any x ∈ Rn, one has 〈u∗, u〉 ≥ 0 ∀u ∈ Rn, u∗ ∈ D∗f(x)(u).
(ii) For any x ∈ Rn, one has 〈u∗, u〉 ≥ 0 ∀u ∈ Rn, u∗ ∈ D̂∗f(x)(u).
(iii) f is a monotone operator.

Proof. By Theorem 3.1, we have (ii) ⇔ (iii). According to Remark 4.2, the
implication (i) ⇒ (iii) holds. The validity of the reverse implication is due to [19,
Theorem 2.1]. This finishes the proof.

Corollary 3.8. Let ϕ : X → R be a Fréchet differentiable function from an
Asplund space X to R. Suppose that the derivative ∇ϕ : X → X ∗ is norm-to-
weak∗ continuous. Consider the following properties:

(i) For every x ∈ X , 〈u∗, u〉 ≥ 0 for all u ∈ X and u∗ ∈ ∂2ϕ(x)(u).
(ii) For every x ∈ X , 〈u∗, u〉 ≥ 0 for all u ∈ X and u∗ ∈ ∂̂2ϕ(x)(u).
(iii) The function ϕ is convex.

Then (ii) ⇒ (iii). When ∇ϕ is locally Lipschitz or X is a Hilbert space, the
implication (iii) ⇒ (ii) is also valid. If in addition that the derivative ∇ϕ : X →
X∗ is norm-to-norm continuous, then (i) ⇒ (ii) ⇒ (iii). In the case where X is
finite-dimensional, one has (i) ⇔ (ii) ⇔ (iii).

Proof. Suppose that ϕ : X → R is a Fréchet differentiable function and the
derivative ∇ϕ : X → X∗ is norm-to-weak∗ continuous. Put f(x) = ∇ϕ(x) for
all x ∈ X. Then f : X → X ∗ is a norm-to-weak∗ continuous mapping. Since
ϕ : X → R is continuous, by [12, Theorem 3.56], f is monotone if and only if ϕ is
convex. Observe that ∂̂2ϕ(x)(u) = D̂∗∇ϕ(x)(u) for all x ∈ X and u ∈ X. Hence
(ii) amounts to the fact that for every x ∈ X (3.1) holds for the mapping f := ∇ϕ.
According to Theorem 3.1, if (ii) is valid then f is monotone; and thus ϕ is convex.
Suppose now that either f is locally Lipschitz or X is a Hilbert space. If ϕ is
convex then f is monotone. By Theorem 3.1, (ii) is valid. Note that if the derivative
∇ϕ : X → X∗ is norm-to-norm continuous, then ∂ϕ(x) = ∂̂ϕ(x) = {∇ϕ(x)} and
thus ∂̂2ϕ(x)(u) ⊂ ∂2ϕ(x)(u) for all x ∈ X and u ∈ X . Hence (i) ⇒ (ii) ⇒ (iii).
In the case where X is finite-dimensional, by using Corollary 3.7, we obtain that
(i) ⇔ (ii) ⇔ (iii).

Let T : X ⇒ X be a set-valued mapping from a Hilbert space X into itself.
Recall from [22] that T is said to be strong monotone if there exists σ > 0 such
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that T − σI is monotone. T is said to be hypomonotone if there exists σ > 0 such
that T + σI is monotone. Here I is the identity mapping on X .

Proposition 3.9. Let X be a Hilbert space and f : X → X a norm-to-weak
continuous mapping. Consider the following properties:

(i) f is a strongly monotone operator;
(ii) there exists σ > 0 such that for each x ∈ X ,

〈u∗, u〉 ≥ σ‖u‖2 ∀u ∈ X, u∗ ∈ D̂∗f(x)(u);

(iii) there exists σ > 0 such that for each x ∈ X ,

〈u∗, u〉 ≥ −σ‖u‖2 ∀u ∈ X, u∗ ∈ D̂∗f(x)(u);

(iv) f is a hypomonotone operator.
Then one has (i) ⇔ (ii) ⇒ (iii) ⇔ (iv).

Proof. The implication (ii) ⇒ (iii) is trivial. Our task now is to prove that
(i) ⇔ (ii) ((iii) ⇔ (iv) is proved similarly). By the definition of the strong
monotonicity, the property (i) is valid if and only if there exists σ > 0 such that
g := f − σI is monotone. According to Theorem 3.1, the latter is equivalent to the
fact that for each x ∈ X ,

(3.5) 〈u∗, u〉 ≥ 0 ∀u ∈ X, u∗ ∈ D̂∗g(x)(u).

By [12, Theorem 1.62],

D̂∗g(x)(u) = D̂∗f(x)(u)− σu ∀x ∈ X, u ∈ X.

Combining this fact with (3.5), we obtain the desired conclusion.

Corollary 3.10. Suppose that f : Rn → Rn is a continuous mapping. Consider
the following properties:

(i) f is a strongly monotone operator;
(ii) there exists σ > 0 such that for each x ∈ Rn,

〈u∗, u〉 ≥ σ‖u‖2 ∀u ∈ Rn, u∗ ∈ D∗f(x)(u);

(iii) there exists σ > 0 such that for each x ∈ Rn,

〈u∗, u〉 ≥ σ‖u‖2 ∀u ∈ Rn, u∗ ∈ D̂∗f(x)(u);

(iv) there exists σ > 0 such that for each x ∈ Rn,

〈u∗, u〉 ≥ −σ‖u‖2 ∀u ∈ Rn, u∗ ∈ D̂∗f(x)(u);
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(v) there exists σ > 0 such that for each x ∈ Rn,

〈u∗, u〉 ≥ −σ‖u‖2 ∀u ∈ Rn, u∗ ∈ D∗f(x)(u);

(vi) f is a hypomonotone operator.
Then one has (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v) ⇔ (vi).

Proof. Follows Corollary 3.7 and the scheme of the proof of Corollary 3.9.

4. CODERIVATIVE AND SUBMONOTONICITY

Recall [8] that a set-valued operator T : X ⇒ X ∗ from a Banach space X
into its dual space X ∗ is said to be submonotone at x0 ∈ X if for each ε > 0
there exists ρ > 0 such that 〈x∗

1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖ for all xi ∈
x0 + ρBX and all x∗i ∈ T (xi) (i = 1, 2). This concept, which is known also as
the approximate monotonicity [17], was introduced by Spingarn [23] who called
it the strict submonotonicity. Here we follow Daniilidis et.al. [8] in using the
terminology the “submonotonicity.” The reader interested in submonotone operators
should consult [7, 8, 9, 17, 23].

We now present the sufficient condition for the submonotonicity of a continuous
mapping via the Fréchet coderivative.

Theorem 4.1. Let X be an Asplund space with its dual space X ∗ and let
f : X → X∗ be a mapping norm-to-weak∗ continuous around x0 ∈ X . Suppose
that for any ε > 0 there exists ρ > 0 such that for every x ∈ x 0 + ρBX , one has

(4.1) 〈u∗, u〉 ≥ −ε‖u‖ ∀u ∈ ρBX , u
∗ ∈ D̂∗f(x)(u).

Then f is submonotone at x0.

Proof. Suppose that (4.1) is valid but f is nonsubmonotone at x0. Then there
exists ε > 0 such that for each ρ > 0,

(4.2) 〈f(b)− f(a), b− a〉 < −ε‖b− a‖
for some a, b ∈ x0 + 2−1ρBX . Let us choose ρ > 0 and a, b ∈ x0 + 2−1ρBX such
that (4.1) and (4.2) are satisfied. Consider the function ψ(x) := 〈f(a)− f(b), x〉+
〈f(x), b− a〉 for all x ∈ X. We have ψ(a) = ψ(b) and ψ is continuous. Thus,
there exists x̄ ∈ (a, b) satisfying ψ(x̄) = min

x∈[a,b]
ψ(x) or ψ(x̄) = max

x∈[a,b]
ψ(x).

Case 1. ψ(x̄) = min
x∈[a,b]

ψ(x). As in the proof of Theorem 3.1, we can find

sequences xk → x̄ and x∗k ∈ ∂̂ψ(xk) such that

lim
k→∞

〈x∗k, b− a〉 = 0 and f(b)− f(a) + x∗k ∈ D̂∗f(xk)(b− a).
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Note that ‖b− a‖ ≤ ρ and ‖x̄− x0‖ < ρ. By virtual of (4.1),

〈f(b)− f(a) + x∗k, b− a〉 ≥ −ε‖b− a‖
for k sufficiently large. Letting k → ∞ in both side of this inequality, we obtain

〈f(b)− f(a), b− a〉 ≥ −ε‖b− a‖,
which contradicts (4.2).

Case 2. ψ(x̄) = max
x∈[a,b]

ψ(x). Using the same arguments as in case 1 for −ψ,

we arrive at a contradiction. This finishes the proof.

Remark 4.2. Since D̂∗f(x)(u) ⊂ D∗f(x)(u) for all x ∈ X and u ∈ X , the
conclusion of Theorem 4.1 is also valid if the Fréchet coderivative is replaced by
the normal coderivative.

Recall [16] that a function ϕ : X → R ∪ {+∞} is said to be approximately
convex at x0 ∈ X , if for any ε > 0 there exists ρ > 0 such that for all x1, x2 ∈
x0 + ρBX and t ∈ (0, 1), one has

ϕ((1− t)x1 + tx2) ≤ (1 − t)ϕ(x1) + tϕ(x2) + εt(1 − t)‖x1 − x2‖.
Corollary 4.3. Let ϕ : X → R be a Fréchet differentiable function from an

Asplund space X to R. Suppose that the derivative ∇ϕ : X → X ∗ is norm-to-
weak∗ continuous around x0 ∈ X . Then ϕ is approximately convex at x0 if for any
ε > 0 there exists ρ > 0 such that

(4.3) 〈u∗, u〉 ≥ −ε‖u‖ for all u ∈ ρBX , u
∗ ∈ ∂̂2ϕ(x)(u) with x ∈ x0 + ρBX .

Proof. Suppose that ϕ : X → R is a Fréchet differentiable function with
its the derivative ∇ϕ being continuous around x0 ∈ X with respect to the norm
topology of X and the weak∗ topology of X∗, and suppose that (4.3) is valid. Put
f(x) = ∇ϕ(x) for all x ∈ X. Then f : X → X∗ is a mapping continuous around
x0 ∈ X with respect to the norm topology of X and the weak∗ topology of X∗. By
the definition of the Fréchet second-order subdifferential,

∂̂2ϕ(x)(u) = D̂∗∇ϕ(x)(u) ∀ x ∈ X, u ∈ X.

Hence (4.3) implies that (4.1) is valid for the mapping f = ∇ϕ. We have already
shown that the mapping f satisfies all the assumptions of Theorem 4.1. According to
Theorem 4.1, f is submonotone at x0. Since the function ϕ : X → R is continuous
and its derivative f(·) = ∇ϕ(·) is submonotone at x0, by [8, Theorem 2], ϕ is an
approximately convex function at x0. The proof is complete.
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