TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 1, pp. 207-215, February 2012 This paper is available online at http://tjm.math.ntu.edu.tw

# COPIES OF $c_0$ AND $\ell_\infty$ INTO A REGULAR OPERATOR SPACE

Yongjin Li, Donghai Ji and Qingying Bu

Abstract. For an Orlicz function  $\varphi$  and a Banach lattice X, let  $\ell_{\varphi}$  denote the Orlicz sequence space associated to  $\varphi$ ,  $\mathcal{L}^r(\ell_{\varphi}, X)$  denote the space of regular operators from  $\ell_{\varphi}$  to X, and  $\mathcal{K}^r(\ell_{\varphi}, X)$  denote the linear span of positive compact operators from  $\ell_{\varphi}$  to X. In this paper, we show that if  $\varphi$  and its complementary function  $\varphi^*$  satisfy the  $\Delta_2$ -condition, then (a)  $\mathcal{K}^r(\ell_{\varphi}, X)$ contains no copy of  $\ell_{\infty}$  if and only if X contains no copy of  $\ell_{\infty}$ ; and (b)  $\mathcal{K}^r(\ell_{\varphi}, X)$  contains no copy of  $c_0$  if and only if  $\mathcal{L}^r(\ell_{\varphi}, X)$  contains no copy of  $\ell_{\infty}$  if and only if X contains no copy of  $c_0$  and each positive linear operator from  $\ell_{\varphi}$  to X is compact.

### 1. INTRODUCTION

The copies of  $c_0$  and  $\ell_{\infty}$  into the space of bounded linear operators and the space of compact operators on Banach spaces are discussed in many papers, for instance, see papers [6, 7, 8, 9] and reference in these papers. It is also interesting to discuss the copies of  $c_0$  and  $\ell_{\infty}$  into the space of regular operators and the space of compact regular operators on Banach lattices. When Bu, Buskes, and Lai [1] discussed inheritance of geometric properties of Banach lattices by their positive tensor products, they introduced Banach lattice-valued Orlicz sequence spaces  $\ell_{\varphi}^{\varepsilon}(X)$  and  $\ell_{\varphi}^{\varepsilon,0}(X)$ . Then they related  $\ell_{\varphi}^{\varepsilon}(X)$  and  $\ell_{\varphi}^{\varepsilon,0}(X)$  to the space of regular operators from an Orlicz sequence space  $\ell_{\varphi}$  to a Banach lattice X. In this paper, we will use this relationship to discuss the copies of  $c_0$  and  $\ell_{\infty}$  into the space of regular operators and the space  $\ell_{\varphi}$  to a Banach lattice X.

All vector spaces in this paper are over  $\mathbb{R}$ , the set of real numbers. For an ordered set X, the usual order on  $X^{\mathbb{N}}$  is defined by  $(x_i)_i \ge 0 \iff x_i \ge 0$  for

Communicated by Bor-Luh Lin.

Key words and phrases: Orlicz sequence space, Regular operator space, Copies of  $c_0$  and  $\ell_{\infty}$ .

Received January 14, 2010, accepted October 16, 2010.

<sup>2010</sup> Mathematics Subject Classification: 46B42, 46B20.

The first author is supported by the NSF of China (10871213), the second author is the corresponding author, and the third author is supported by Shanghai Leading Academic Discipline Project (J50101).

each  $i \in \mathbb{N}$ . For a Banach lattice  $X, X^*$  denotes its topological dual space,  $B_X$  denotes its closed unit ball, and  $X^+$  denotes its positive cone. For Banach lattices X and  $Y, \mathcal{L}^r(X, Y)$  denotes the space of regular operators from X to Y, and  $\mathcal{K}^r(X, Y)$  denotes the linear span of compact positive operators from X to Y. For each  $T \in \mathcal{L}^r(X, Y)$ , the r-norm of T is given by

$$||T||_r = \inf \{ ||S|| : S \in \mathcal{L}(X, Y)^+, |T(x)| \le S(x) \ \forall \ x \in X^+ \}$$

Then  $(\mathcal{L}^r(X, Y), \|\cdot\|_r)$  is a Banach space. Moreover, if Y is Dedekind complete then  $(\mathcal{L}^r(X, Y), \|\cdot\|_r)$  is a Banach lattice (see [11, §1.3]).

# 2. Orlicz Sequence Spaces

An function  $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$  is called an *Orlicz function* if (i)  $\varphi$  is even, continuous, and convex, (ii)  $\varphi(0) = 0$  and  $\varphi(u) > 0$  for all  $u \neq 0$ , and (iii)  $\lim_{u \to 0} \varphi(u)/u = 0$  and  $\lim_{u \to \infty} \varphi(u)/u = \infty$ . Every Orlicz function  $\varphi$  has a right derivative p and

$$\varphi(u) = \int_0^{|u|} p(t) dt$$

The right derivative p of  $\varphi$  is a right-continuous and non-decreasing function such that p(0) = 0, p(t) > 0 whenever t > 0, and  $\lim_{t\to\infty} p(t) = \infty$ . The right inverse q of p,

$$q(s) = \sup\{t : p(t) \le s\}, \qquad s \ge 0,$$

is a right-continuous and non-decreasing function such that q(0) = 0, q(s) > 0whenever s > 0, and  $\lim_{s\to\infty} q(s) = \infty$ . Define

$$\varphi^*(v) = \int_0^{|v|} q(s) ds.$$

Then  $\varphi^*$  is also an Orlicz function and q is its right derivative.  $\varphi^*$  is called the *complementary function* of  $\varphi$ . Obviously,  $\varphi$  is the complementary function of  $\varphi^*$ , i.e.,  $\varphi^{**} = \varphi$ . An Orlicz function  $\varphi$  is said to satisfy the  $\Delta_2$ -condition (at zero) if there exist K > 2 and  $u_0 > 0$  such that  $\varphi(2u) \le K\varphi(u)$  whenever  $|u| \le u_0$ .

An Orlicz sequence space  $\ell_{\varphi}$  associated to an Orlicz function  $\varphi$  is a sequence space defined by

$$\ell_{\varphi} = \left\{ a = (a_i)_i \in \mathbb{R}^{\mathbb{N}} : \sum_{i=1}^{\infty} \varphi(|\lambda a_i|) < \infty \text{ for some } \lambda > 0 \right\}.$$

Let  $h_{\varphi}$  denote the order continuous part of  $\ell_{\varphi}$ , i.e.,

$$h_{\varphi} = \left\{ a = (a_i)_i \in \mathbb{R}^{\mathbb{N}} : \sum_{i=1}^{\infty} \varphi(|\lambda a_i|) < \infty \text{ for all } \lambda > 0 \right\}.$$

Then  $\ell_{\varphi} = h_{\varphi}$  if and only if  $\varphi$  satisfies the  $\Delta_2$ -condition. The Luxemburg norm and the Orlicz norm on  $\ell_{\varphi}$  are, respectively, defined to be

$$||a||_{\varphi} = \inf\left\{\lambda > 0 : \sum_{i=1}^{\infty} \varphi(|a_i/\lambda|) \le 1\right\}, \qquad a = (a_i)_i \in \ell_{\varphi}$$

and

$$\|a\|_{o\varphi} = \inf\left\{\frac{1}{\lambda}\left(1 + \sum_{i=1}^{\infty}\varphi(|\lambda a_i|)\right) : \lambda > 0\right\}, \qquad a = (a_i)_i \in \ell_{\varphi}.$$

Then the space  $\ell_{\varphi}$  with both two norms are Banach spaces, denoted by  $\ell_{\varphi}$  and  $\ell_{o\varphi}$  respectively. Moreover,

$$||a||_{\varphi} \le ||a||_{o\varphi} \le 2||a||_{\varphi}, \qquad a = (a_i)_i \in \ell_{\varphi},$$

and

$$\langle a,b\rangle := \sum_{i=1}^{\infty} a_i b_i \le ||a||_{\varphi} \cdot ||b||_{o\varphi^*}, \qquad a = (a_i)_i \in \ell_{\varphi}, \ b = (b_i)_i \in \ell_{\varphi^*}.$$

It is known that  $h_{\varphi}$  is a closed subspace of  $\ell_{\varphi}$  under both Luxemburg norm and Orlicz norm and the standard unit vectors  $\{e_n\}_1^{\infty}$  form an unconditional basis of  $h_{\varphi}$ . Moreover,  $(h_{\varphi}, \|\cdot\|_{\varphi})^* = \ell_{o\varphi^*}$  and  $(h_{\varphi}, \|\cdot\|_{o\varphi})^* = \ell_{\varphi^*}$  isometrically. About Orlicz functions  $\varphi$  and Orlicz sequence spaces  $\ell_{\varphi}$ , we refer to [10, chapter 4] and [4, chapter 1].

## 3. BANACH LATTICE-VALUED ORLICZ SEQUENCE SPACES

For a Banach lattice X, let

$$\ell_{\varphi}^{\varepsilon}(X) = \left\{ \bar{x} = (x_i)_i \in X^{\mathbb{N}} : \left( x^*(|x_i|) \right)_i \in \ell_{\varphi}, \ \forall \, x^* \in X^{*+} \right\}.$$

The Luxemburg norm and the Orlicz norm on  $\ell_{\varphi}^{\varepsilon}(X)$  are, respectively, defined to be

$$\|\bar{x}\|_{\ell^{\varepsilon}_{\varphi}(X)} = \sup\left\{ \left\| \left( x^*(|x_i|) \right)_i \right\|_{\varphi} : x^* \in B_{X^{*+}} \right\}, \qquad \bar{x} = (x_i)_i \in \ell^{\varepsilon}_{\varphi}(X)$$

and

$$\|\bar{x}\|_{\ell^{\varepsilon}_{o\varphi}(X)} = \sup\left\{\left\|\left(x^*(|x_i|)\right)_i\right\|_{o\varphi} : x^* \in B_{X^{*+}}\right\}, \qquad \bar{x} = (x_i)_i \in \ell^{\varepsilon}_{\varphi}(X).$$

Then  $\ell_{\varphi}^{\varepsilon}(X)$  with both two norms are Banach lattices (see [1]), denoted by  $\ell_{\varphi}^{\varepsilon}(X)$  and  $\ell_{o\varphi}^{\varepsilon}(X)$  respectively. Let

Yongjin Li, Donghai Ji and Qingying Bu

$$\ell_{\varphi}^{\varepsilon,0}(X) = \left\{ (x_i)_i \in \ell_{\varphi}^{\varepsilon}(X) : \lim_n \| (0,\cdots,0,x_n,x_{n+1},\cdots) \|_{\ell_{\varphi}^{\varepsilon}(X)} = 0 \right\}.$$

Then  $\ell_{\varphi}^{\varepsilon,0}(X)$  is a closed sublattice of  $\ell_{\varphi}^{\varepsilon}(X)$ . Let

$$K = \inf \left\{ \lambda > 0 : \varphi(1/\lambda) \le 1 \right\}.$$

Then it is easy to see that  $||e_n||_{\varphi} = K$  for every  $n \in \mathbb{N}$  and  $||(0, \dots, 0, x, 0, 0, \dots)||_{\ell_{\varphi}^{\varepsilon}(X)} = K||x||$  for every  $x \in X$ . We need the following two propositions to obtain our main result in next section.

**Proposition 1.** ([1]). If  $\varphi$  satisfies the  $\Delta_2$ -condition, then  $\ell_{\varphi}^{\varepsilon}(X)$  is isometrically isomorphic and lattice homomorphic to  $\mathcal{L}^r((h_{\varphi^*}, \|\cdot\|_{o\varphi^*}), X)$  under the mapping:  $\bar{x} \longrightarrow T_{\bar{x}}$ , where  $T_{\bar{x}}$  is defined by  $T_{\bar{x}}(t) = \sum_{i=1}^{\infty} t_i x_i$  for each  $t = (t_i)_i \in h_{\varphi^*}$  and each  $\bar{x} = (x_i)_i \in \ell_{\varphi}^{\varepsilon}(X)$ . Moreover,  $T_{\bar{x}} \in \mathcal{K}^r(h_{\varphi^*}, X)$  if and only if  $\bar{x} \in \ell_{\varphi}^{\varepsilon,0}(X)$ .

**Proposition 2.** ([2]).Assume that  $\varphi^*$  satisfies the  $\Delta_2$ -condition. Let  $\bar{x}^{(n)} = (x_i^{(n)})_i, \bar{x}^{(0)} = (x_i^{(0)})_i \in \ell_{\varphi}^{\varepsilon,0}(X)$  for each  $n \in \mathbb{N}$ . Then  $\lim_n \bar{x}^{(n)} = \bar{x}^{(0)}$  weakly in  $\ell_{\varphi}^{\varepsilon,0}(X)$  if and only if  $\lim_n x_i^{(n)} = x_i^{(0)}$  weakly in X for all  $i \in \mathbb{N}$  and  $\sup_n \|\bar{x}^{(n)}\|_{\ell_{\varphi}^{\varepsilon}(X)} < \infty$ .

# 4. MAIN RESULTS

Recall that we say that a Banach space contains a copy of  $c_0$  (or  $\ell_{\infty}$ ) if it contains a subspace isomorphic to  $c_0$  (or  $\ell_{\infty}$ ). Note that if a Banach lattice X contains a subspace isomorphic to  $c_0$ , by [11, p. 104, Theorem 2.5.6], X is not a KB-space, and hence, by [11, p. 92, Theorem 2.4.12], X contains a sublattice isomorphic to  $c_0$ . By the proof of [11, p. 92, Theorem 2.4.12] and the proof of [11, p. 82, Lemma 2.3.10], this isomorphism is also a lattice homomorphism. We summarize this fact as follows.

**Lemma 3.** A Banach lattice contains a subspace isomorphic to  $c_0$  if and only if it contains a sublattice isomorphic and lattice homomorphic to  $c_0$ .

To get the main result in this section, we need a characterization of noncontainment of a copy of  $\ell_{\infty}$  in Banach spaces which was due to Rosenthal [12] and was summarized by Cembranos and Mendoza in [3, p. 12, Theorem 1.3.1] as follows.

**Lemma 4.** Let Z be a Banach space. Then the following statements are equivalent:

- (a) Z contains a copy of  $\ell_{\infty}$ .
- (b) There exists a bounded linear operator  $T : \ell_{\infty} \longrightarrow Z$  such that  $\lim_{n} T(e_{n}) \neq 0$  in Z.

210

(c) There exists a bounded linear operator  $T : \ell_{\infty} \longrightarrow Z$  which is not weakly compact.

For an infinite subset M of  $\mathbb{N}$ , let  $\ell_{\infty}(M)$  denote the subspace of  $\ell_{\infty}$  consisting of all  $(\xi_n)_n \in \ell_{\infty}$  with  $\xi_n = 0$  for  $n \notin M$ . It is known from [3, p. 13, Remark 1.3.2] that if an operator  $T : \ell_{\infty} \longrightarrow Z$  is weakly compact, then for all  $\xi = (\xi_n)_n \in \ell_{\infty}$ , the series  $\sum_n \xi_n T(e_n)$  converges in Z. But its limit  $\sum_{n=1}^{\infty} \xi_n T(e_n)$  and  $T(\xi)$  may not coincide. To get the main result in this section, we also need the following result due to Drewnowski [6] (also see [3, p. 14, Corollary 1.3.3]).

**Lemma 5.** ([6]). Let  $T_i : \ell_{\infty} \longrightarrow Z$  be weakly compact operators for each  $i \in \mathbb{N}$ . Then there exists an infinite subset M of  $\mathbb{N}$  such tat  $T_i(\xi) = \sum_{n=1}^{\infty} \xi_n T_i(e_n)$  for all  $\xi = (\xi_n)_n \in \ell_{\infty}(M)$  and all  $i \in \mathbb{N}$ .

**Theorem 6.** If  $\varphi^*$  satisfies the  $\Delta_2$ -condition, then  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $\ell_{\infty}$  if and only if X contains no copy of  $\ell_{\infty}$ .

*Proof.* Since X is a closed subspace of  $\ell_{\varphi}^{\varepsilon,0}(X)$ ,  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains a copy of  $\ell_{\infty}$ whenever X contains a copy of  $\ell_{\infty}$ . Now assume that X contains no copy of  $\ell_{\infty}$ . We want to show that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $\ell_{\infty}$ . Suppose that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains a copy of  $\ell_{\infty}$ , that is, there is an isomorphism  $T : \ell_{\infty} \longrightarrow T(\ell_{\infty}) \hookrightarrow \ell_{\varphi}^{\varepsilon,0}(X)$ . For each  $i \in \mathbb{N}$ , define a bounded linear operator  $T_i : \ell_{\infty} \longrightarrow X$  by  $T_i(\xi) = T(\xi)_i$  for each  $\xi \in \ell_{\infty}$ , where  $T(\xi)_i$  denotes the i-th coordinate of  $T(\xi)$ . Since X contains no copy of  $\ell_{\infty}$ , by Lemma 4, each  $T_i$  is weakly compact and hence, by Lemma 5, there exists an infinite subset M of  $\mathbb{N}$  such that for all  $\xi = (\xi_n)_n \in \ell_{\infty}(M)$ ,

$$T(\xi)_i = T_i(\xi) = \sum_{n=1}^{\infty} \xi_n T_i(e_n) = \sum_{n=1}^{\infty} \xi_n T(e_n)_i, \qquad \forall i \in \mathbb{N}.$$

Thus the series  $\sum_{n} \xi_n T(e_n)_i$  converges to  $T(\xi)_i$  in X and hence, weakly in X for each  $i \in \mathbb{N}$ . Note that for each  $m \in \mathbb{N}$ ,

$$\left\|\sum_{n=1}^{m} \xi_n T(e_n)\right\|_{\ell_{\varphi}^{\varepsilon}(X)} = \left\|T\left((\xi_1, \cdots, \xi_m, 0, 0, \cdots)\right)\right\|_{\ell_{\varphi}^{\varepsilon}(X)}$$
$$\leq \|T\| \cdot \|(\xi_1, \cdots, \xi_m, 0, 0, \cdots)\|_{\ell_{\infty}}$$
$$\leq \|T\| \cdot \|\xi\|_{\ell_{\infty}}.$$

By Proposition 2, the series  $\sum_{n} \xi_n T(e_n)$  converges to  $T(\xi)$  weakly in  $\ell_{\varphi}^{\varepsilon,0}(X)$  for all  $\xi \in \ell_{\infty}(M)$ . It follows that the series  $\sum_{n \in M} T(e_n)$  is weakly subseries convergent and hence subseries convergent in  $\ell_{\varphi}^{\varepsilon,0}(X)$ . Thus  $T(e_n) \longrightarrow 0$  in  $\ell_{\varphi}^{\varepsilon,0}(X)$  as  $n \in M$  and  $n \to \infty$ . But for each  $n \in \mathbb{N}$ ,  $||T(e_n)||_{\ell_{\varphi}^{\varepsilon}(X)} \ge ||e_n||_{\ell_{\infty}}/||T^{-1}|| = 1/||T^{-1}||$ . This contradiction shows that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $\ell_{\infty}$ .

**Lemma 7.** If  $\ell_{\varphi}^{\varepsilon}(X)$  contains no copy of  $\ell_{\infty}$ , then both X and  $\ell_{\varphi}^{\varepsilon,0}(X)$  contain no copy of  $c_0$ .

*Proof.* For each  $\xi = (\xi_i)_i \in \ell_\infty$  and each  $\eta = (\eta_i)_i \in \ell_1^+$ ,

$$\sum_{i=1}^{\infty} \left\| \langle |\xi_i e_i|, \eta \rangle e_i \right\|_{\ell_{\varphi}} = \sum_{i=1}^{\infty} \langle |\xi_i e_i|, \eta \rangle \|e_i\|_{\ell_{\varphi}} = K \cdot \sum_{i=1}^{\infty} |\xi_i| \eta_i < \infty$$

Thus  $(\langle |\xi_i e_i|, \eta \rangle)_i = \sum_{i=1}^{\infty} \langle |\xi_i e_i|, \eta \rangle e_i \in \ell_{\varphi}$  and hence,  $(\xi_i e_i)_i \in \ell_{\varphi}^{\varepsilon}(c_0)$ . Define  $T : \ell_{\infty} \longrightarrow \ell_{\varphi}^{\varepsilon}(c_0)$  by  $T(\xi) = (\xi_i e_i)_i$  for each  $\xi = (\xi_i)_i \in \ell_{\infty}$ . Then

$$\begin{split} \left\| T(\xi) \right\|_{\ell^{\varepsilon}_{\varphi}(c_{0})} &= \sup \left\{ \left\| (\langle |\xi_{i}e_{i}|, \eta \rangle)_{i} \right\|_{\ell_{\varphi}} : \ \eta = (\eta_{i})_{i} \in B_{\ell^{+}_{1}} \right\} \\ &= \sup \left\{ \left\| \sum_{i=1}^{\infty} \langle |\xi_{i}e_{i}|, \eta \rangle e_{i} \right\|_{\ell_{\varphi}} : \ \eta = (\eta_{i})_{i} \in B_{\ell^{+}_{1}} \right\} \\ &\leq \sup \left\{ K \cdot \sum_{i=1}^{\infty} |\xi_{i}| \eta_{i} : \ \eta = (\eta_{i})_{i} \in B_{\ell^{+}_{1}} \right\} \\ &\leq K \cdot \|\xi\|_{\ell_{\infty}} \end{split}$$

and hence, T is a bounded linear operator. Moreover,

$$||T(e_n)||_{\ell^{\varepsilon}_{\varphi}(c_0)} = ||(0, \cdots, 0, e_n, 0, 0, \cdots)||_{\ell^{\varepsilon}_{\varphi}(c_0)} = K \cdot ||e_n||_{c_0} = K.$$

It follows from Lemma 4 that  $\ell_{\omega}^{\varepsilon}(c_0)$  contains a copy of  $\ell_{\infty}$ .

If X contains a copy of  $c_0$ , then by Lemma 3, X contains a sublattice isomorphic and lattice homomorphic to  $c_0$ . Thus  $\ell_{\varphi}^{\varepsilon}(X)$  contains a sublattice isomorphic and lattice homomorphic to  $\ell_{\varphi}^{\varepsilon}(c_0)$  and hence,  $\ell_{\varphi}^{\varepsilon}(X)$  contains a copy of  $\ell_{\infty}$ . This contradiction shows that X contains no copy of  $c_0$ .

Now suppose that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains a copy of  $c_0$ . By Lemma 3,  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains a sublattice isomorphic and lattice homomorphic to  $c_0$ . That is, there is an isomorphism and lattice homomorphism  $\psi : c_0 \longrightarrow \psi(c_0) \hookrightarrow \ell_{\varphi}^{\varepsilon,0}(X)$ . Note that the series  $\sum_n e_n$  is a weakly unconditionally Cauchy series in  $c_0$ . So the series  $\sum_n \psi(e_n)$  is a weakly unconditionally Cauchy series in  $\ell_{\varphi}^{\varepsilon,0}(X)$ . Thus for each  $i \in \mathbb{N}$ , the series  $\sum_n \psi(e_n)_i$  is a weakly unconditionally Cauchy series in X. It is known from the first part that X contains no copy of  $c_0$ . Therefore, the series  $\sum_n \psi(e_n)_i$  is an unconditionally convergent series in X and hence, for every  $\xi = (\xi_n)_n \in \ell_{\infty}$ , the series  $\sum_n \xi_n \psi(e_n)_i$  converges in X.

Take any  $(t_i)_i \in h_{\varphi^*}^+$  and any  $x^* \in X^{*+}$ . Then  $(t_i x^*)_i \in \ell_{\varphi}^{\varepsilon,0}(X)^*$ . Note that

each  $\psi(e_n)$  is positive. We have

$$\sum_{i=1}^{\infty} t_i \langle x^*, | \sum_{n=1}^{\infty} \xi_n \psi(e_n)_i | \rangle \leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\xi_n| \langle t_i x^*, \psi(e_n)_i \rangle$$
$$= \sum_{n=1}^{\infty} |\xi_n| \langle (t_i x^*)_i, \psi(e_n) \rangle$$
$$\leq \|\xi\|_{\ell_{\infty}} \sum_{n=1}^{\infty} \langle (t_i x^*)_i, \psi(e_n) \rangle < \infty.$$

Thus  $(\langle x^*, |\sum_{n=1}^{\infty} \xi_n \psi(e_n)_i | \rangle)_i \in (h_{\varphi^*})^* = \ell_{\varphi}$  and hence,  $(\sum_{n=1}^{\infty} \xi_n \psi(e_n)_i)_i \in \ell_{\varphi}^{\varepsilon}(X)$ . Define  $T: \ell_{\infty} \longrightarrow \ell_{\varphi}^{\varepsilon}(X)$  by  $T(\xi) = (\sum_{n=1}^{\infty} \xi_n \psi(e_n)_i)_i$ . Then

$$\begin{split} \left\| T(\xi) \right\|_{\ell_{\varphi}^{\varepsilon}(X)} &= \sup \left\{ \left\| \left( \langle x^{*}, | \sum_{n=1}^{\infty} \xi_{n} \psi(e_{n})_{i} | \rangle \right)_{i} \right\|_{\ell_{\varphi}} : x^{*} \in B_{X^{*}+} \right\} \\ &= \sup \left\{ \sum_{i=1}^{\infty} t_{i} \langle x^{*}, | \sum_{n=1}^{\infty} \xi_{n} \psi(e_{n})_{i} | \rangle : x^{*} \in B_{X^{*}+}, (t_{i})_{i} \in B_{h_{o\varphi^{*}}^{+}} \right\} \\ &\leq \sup \left\{ \sum_{n=1}^{\infty} |\xi_{n}| \langle (t_{i}x^{*})_{i}, \psi(e_{n}) \rangle : x^{*} \in B_{X^{*}+}, (t_{i})_{i} \in B_{h_{o\varphi^{*}}^{+}}, m \in \mathbb{N} \right\} \\ &= \sup \left\{ \langle (t_{i}x^{*})_{i}, \psi(\theta) \rangle : x^{*} \in B_{X^{*}+}, (t_{i})_{i} \in B_{h_{o\varphi^{*}}^{+}}, m \in \mathbb{N} \right\} \\ &= \sup \left\{ \langle (t_{i}x^{*})_{i}, \psi(\theta) \rangle : x^{*} \in B_{X^{*}+}, (t_{i})_{i} \in B_{h_{o\varphi^{*}}^{+}}, m \in \mathbb{N} \right\} \\ &\leq \sup \left\{ \left\| (t_{i}x^{*})_{i} \right\|_{\ell_{\varphi}^{\varepsilon,0}(X)^{*}} \cdot \left\| \psi(\theta) \right\|_{\ell_{\varphi}^{\varepsilon,0}(X)} : x^{*} \in B_{X^{*}+}, (t_{i})_{i} \in B_{h_{o\varphi^{*}}^{+}}, m \in \mathbb{N} \right\} \\ &\leq \sup \left\{ \| \psi \| \cdot \| \theta \|_{c_{0}} : m \in \mathbb{N} \right\} \\ &= \| \psi \| \cdot \| \xi \|_{\ell_{\infty}}, \quad \text{where } \theta = (|\xi_{1}|, \cdots, |\xi_{m}|, 0, 0, \cdots), \end{split}$$

and hence, T is a bounded linear operator. Note that  $\lim_n e_n \neq 0$  in  $c_0$  and  $\psi$  is an isomorphism. So  $\lim_n T(e_n) = \lim_n \psi(e_n) \neq 0$  in  $\ell_{\varphi}^{\varepsilon}(X)$ . It follows from Lemma 4 that  $\ell_{\varphi}^{\varepsilon}(X)$  contains a copy of  $\ell_{\infty}$ . This contradiction shows that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $c_0$ .

**Theorem 8.** If  $\varphi^*$  satisfies the  $\Delta_2$ -condition, then the following statements are equivalent.

(i)  $\ell_{\varphi}^{\varepsilon}(X)$  contains no copy of  $\ell_{\infty}$ .

(ii)  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $c_0$ .

(iii) X contains no copy of  $c_0$  and  $\ell_{\varphi}^{\varepsilon}(X) = \ell_{\varphi}^{\varepsilon,0}(X)$ .

*Proof.* (iii)  $\implies$  (i). It follows from Theorem 6.

(i)  $\implies$  (ii). It follows from Lemma 7.

(ii)  $\Longrightarrow$  (iii). Since X is a closed subspace of  $\ell_{\varphi}^{\varepsilon,0}(X)$ , X contains no copy of  $c_0$ . Take any  $\bar{x} = (x_i)_i \in \ell_{\varphi}^{\varepsilon}(X)$ . For each  $i \in \mathbb{N}$ , let  $\bar{x}(i) = (0, \dots, 0, x_i, 0, 0, \dots)$ . Then for each  $(t_i)_i \in c_0$ ,  $t_i \bar{x}(i) \in \ell_{\varphi}^{\varepsilon,0}(X)$  and for each  $n \in \mathbb{N}$ ,

$$\left\|\sum_{i=n}^{\infty} t_i \bar{x}(i)\right\|_{\ell^{\varepsilon}_{\varphi}(X)} = \left\| (0, \cdots, 0, t_n x_n, t_{n+1} x_{n+1}, \cdots) \right\|_{\ell^{\varepsilon}_{\varphi}(X)}$$
$$\leq \sup_{i \geq n} |t_i| \cdot \left\| \bar{x} \right\|_{\ell^{\varepsilon}_{\varphi}(X)} \longrightarrow 0 \text{ as } n \to \infty.$$

Thus the series  $\sum_i t_i \bar{x}(i)$  converges in  $\ell_{\varphi}^{\varepsilon,0}(X)$  for each  $(t_i)_i \in c_0$ . It follows from [5, p.44, Theorem 6] that  $\sum_i \bar{x}(i)$  is a weakly unconditionally Cauchy series in  $\ell_{\varphi}^{\varepsilon,0}(X)$ . Note that  $\ell_{\varphi}^{\varepsilon,0}(X)$  contains no copy of  $c_0$ . By Bessaga-Pelczynski Theorem (see [5, p.45, Theorem 8],  $\sum_i \bar{x}(i)$  is an unconditionally convergent series in  $\ell_{\varphi}^{\varepsilon,0}(X)$  and hence  $\bar{x} = \lim_n \sum_{i=1}^n \bar{x}(i) \in \ell_{\varphi}^{\varepsilon,0}(X)$ . Thus (iii) follows.

By Proposition 1, we have our main result of this section as follows.

**Theorem 9.** Let  $\varphi$  be an Orlicz function and  $\varphi^*$  be its complementary function such that both  $\varphi$  and  $\varphi^*$  satisfy the  $\Delta_2$ -condition (in this case,  $\ell_{\varphi}$  is reflexive). Then we have the following statements (a) and (b).

- (a)  $\mathcal{K}^r(\ell_{\varphi}, X)$  contains no copy of  $\ell_{\infty}$  if and only if X contains no copy of  $\ell_{\infty}$ .
- (b) The following assertions are equivalent:
  - (i)  $\mathcal{L}^r(\ell_{\varphi}, X)$  contains no copy of  $\ell_{\infty}$ .
  - (*ii*)  $\mathcal{K}^r(\ell_{\varphi}, X)$  contains no copy of  $c_0$ .
  - (*iii*) X contains no copy of  $c_0$  and each positive linear operator from  $\ell_{\varphi}$  to X is compact.

#### REFERENCES

- Q. Bu, G. Buskes and W. K. Lai, The Radon-Nikodym property for tensor products of Banach lattices II, *Positivity*, 12 (2008), 45-54.
- Q. Bu, M. Craddock and D. Ji, Reflexivity and the Grothendieck property for positive tensor products of Banach lattices-II, *Quaest. Math.*, 32 (2009), 339-350.
- P. Cembranos and J. Mendoza, Banach Spaces of Vector-Valued Functions, Springer-Verlag, 1997.

- 4. S. Chen, Geometry of Orlicz Spaces, Dissertaions Math., 356, Warszawa, 1996.
- 5. J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, 1984.
- 6. L. Drewnowski, Copies of  $\ell_{\infty}$  in an operator space, *Math. Proc. Camb. Phil. Soc.*, **108** (1990), 523-526.
- 7. G. Emmanuele, A remark on the containment of  $c_0$  in spaces of compact operators, *Math. Proc. Cambridge Philos. Soc.*, **111** (1992), 331-335.
- 8. I. Ghenciu and P. Lewis, The embeddability of  $c_0$  in spaces of operators, *Bull. Pol. Acad. Sci. Math.*, **56** (2008), 239-256.
- 9. N. Kalton, Spaces of compact operators, Math. Ann., 208 (1974), 267-278.
- J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I*, Sequence Spaces, Springer-Verlag, 1977.
- 11. P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.
- 12. H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, *Studia Math.*, **37** (1970), 13-36.

Yongjin Li Department of Mathematics Sun Yat-sen University Guangzhou 510275 P. R. China E-mail: stslyj@mail.sysu.edu.cn

Donghai Ji Department of Mathematics Harbin University of Science and Technology Harbin 150080 P. R. China E-mail: jidonghai@126.com

Qingying Bu Department of Mathematics University of Mississippi University, MS 38677 U.S.A. E-mail: qbu@olemiss.edu