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COPIES OF c0 AND �∞ INTO A REGULAR OPERATOR SPACE

Yongjin Li, Donghai Ji and Qingying Bu

Abstract. For an Orlicz function ϕ and a Banach lattice X, let �ϕ denote
the Orlicz sequence space associated to ϕ, Lr(�ϕ, X) denote the space of
regular operators from �ϕ to X, and Kr(�ϕ, X) denote the linear span of
positive compact operators from �ϕ to X. In this paper, we show that if ϕ and
its complementary function ϕ∗ satisfy the ∆2-condition, then (a) Kr(�ϕ, X)
contains no copy of �∞ if and only if X contains no copy of �∞; and (b)
Kr(�ϕ, X) contains no copy of c0 if and only if Lr(�ϕ, X) contains no copy
of �∞ if and only if X contains no copy of c0 and each positive linear operator
from �ϕ to X is compact.

1. INTRODUCTION

The copies of c0 and �∞ into the space of bounded linear operators and the
space of compact operators on Banach spaces are discussed in many papers, for
instance, see papers [6, 7, 8, 9] and reference in these papers. It is also interesting
to discuss the copies of c0 and �∞ into the space of regular operators and the space
of compact regular operators on Banach lattices. When Bu, Buskes, and Lai [1] dis-
cussed inheritance of geometric properties of Banach lattices by their positive tensor
products, they introduced Banach lattice-valued Orlicz sequence spaces �εϕ(X) and
�ε,0ϕ (X). Then they related �εϕ(X) and �ε,0ϕ (X) to the space of regular operators
from an Orlicz sequence space �ϕ to a Banach lattice X . In this paper, we will
use this relationship to discuss the copies of c0 and �∞ into the space of regular
operators and the space of compact regular operators from an Orlicz sequence space
�ϕ to a Banach lattice X .

All vector spaces in this paper are over R, the set of real numbers. For an
ordered set X , the usual order on XN is defined by (xi)i ≥ 0 ⇐⇒ xi ≥ 0 for
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each i ∈ N. For a Banach lattice X , X∗ denotes its topological dual space, BX

denotes its closed unit ball, and X+ denotes its positive cone. For Banach lattices
X and Y , Lr(X, Y ) denotes the space of regular operators from X to Y , and
Kr(X, Y ) denotes the linear span of compact positive operators from X to Y . For
each T ∈ Lr(X, Y ), the r-norm of T is given by

‖T‖r = inf
{‖S‖ : S ∈ L(X, Y )+, |T (x)| ≤ S(x) ∀ x ∈ X+

}
.

Then (Lr(X, Y ), ‖ · ‖r) is a Banach space. Moreover, if Y is Dedekind complete
then (Lr(X, Y ), ‖ · ‖r) is a Banach lattice (see [11, §1.3]).

2. ORLICZ SEQUENCE SPACES

An function ϕ : R −→ R is called an Orlicz function if (i) ϕ is even, continuous,
and convex, (ii) ϕ(0) = 0 and ϕ(u) > 0 for all u 	= 0, and (iii) limu→0 ϕ(u)/u = 0
and limu→∞ ϕ(u)/u = ∞. Every Orlicz function ϕ has a right derivative p and

ϕ(u) =
∫ |u|

0

p(t)dt.

The right derivative p of ϕ is a right-continuous and non-decreasing function such
that p(0) = 0, p(t) > 0 whenever t > 0, and limt→∞ p(t) = ∞. The right inverse
q of p,

q(s) = sup{t : p(t) ≤ s}, s ≥ 0,

is a right-continuous and non-decreasing function such that q(0) = 0, q(s) > 0
whenever s > 0, and lims→∞ q(s) = ∞. Define

ϕ∗(v) =
∫ |v|

0
q(s)ds.

Then ϕ∗ is also an Orlicz function and q is its right derivative. ϕ∗ is called the
complementary function of ϕ. Obviously, ϕ is the complementary function of ϕ∗,
i.e., ϕ∗∗ = ϕ. An Orlicz function ϕ is said to satisfy the ∆2-condition (at zero) if
there exist K > 2 and u0 > 0 such that ϕ(2u) ≤ Kϕ(u) whenever |u| ≤ u0.

An Orlicz sequence space �ϕ associated to an Orlicz function ϕ is a sequence
space defined by

�ϕ =

{
a = (ai)i ∈ R

N :
∞∑
i=1

ϕ(|λai|) <∞ for some λ > 0

}
.

Let hϕ denote the order continuous part of �ϕ, i.e.,

hϕ =

{
a = (ai)i ∈ R

N :
∞∑
i=1

ϕ(|λai|) <∞ for all λ > 0

}
.
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Then �ϕ = hϕ if and only if ϕ satisfies the ∆2-condition. The Luxemburg norm
and the Orlicz norm on �ϕ are, respectively, defined to be

‖a‖ϕ = inf

{
λ > 0 :

∞∑
i=1

ϕ(|ai/λ|) ≤ 1

}
, a = (ai)i ∈ �ϕ

and

‖a‖oϕ = inf

{
1
λ

(
1 +

∞∑
i=1

ϕ(|λai|)
)

: λ > 0

}
, a = (ai)i ∈ �ϕ.

Then the space �ϕ with both two norms are Banach spaces, denoted by �ϕ and �oϕ

respectively. Moreover,

‖a‖ϕ ≤ ‖a‖oϕ ≤ 2‖a‖ϕ, a = (ai)i ∈ �ϕ,

and

〈a, b〉 :=
∞∑
i=1

aibi ≤ ‖a‖ϕ · ‖b‖oϕ∗, a = (ai)i ∈ �ϕ, b = (bi)i ∈ �ϕ∗ .

It is known that hϕ is a closed subspace of �ϕ under both Luxemburg norm and
Orlicz norm and the standard unit vectors {en}∞1 form an unconditional basis of
hϕ. Moreover, (hϕ, ‖ · ‖ϕ)∗ = �oϕ∗ and (hϕ, ‖ · ‖oϕ)∗ = �ϕ∗ isometrically. About
Orlicz functions ϕ and Orlicz sequence spaces �ϕ, we refer to [10, chapter 4] and
[4, chapter 1].

3. BANACH LATTICE-VALUED ORLICZ SEQUENCE SPACES

For a Banach lattice X , let

�εϕ(X) =
{
x̄ = (xi)i ∈ XN :

(
x∗(|xi|)

)
i
∈ �ϕ, ∀x∗ ∈ X∗+

}
.

The Luxemburg norm and the Orlicz norm on �εϕ(X) are, respectively, defined to
be

‖x̄‖�ε
ϕ(X) = sup

{∥∥∥(x∗(|xi|)
)
i

∥∥∥
ϕ

: x∗ ∈ BX∗+

}
, x̄ = (xi)i ∈ �εϕ(X)

and

‖x̄‖�ε
oϕ(X) = sup

{∥∥∥(x∗(|xi|)
)
i

∥∥∥
oϕ

: x∗ ∈ BX∗+

}
, x̄ = (xi)i ∈ �εϕ(X).

Then �εϕ(X) with both two norms are Banach lattices (see [1]), denoted by �εϕ(X)
and �εoϕ(X) respectively. Let
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�ε,0ϕ (X) =
{
(xi)i ∈ �εϕ(X) : lim

n
‖(0, · · · , 0, xn, xn+1, · · · )‖�ε

ϕ(X) = 0
}
.

Then �ε,0ϕ (X) is a closed sublattice of �εϕ(X). Let

K = inf {λ > 0 : ϕ(1/λ) ≤ 1} .
Then it is easy to see that ‖en‖ϕ =K for every n∈N and ‖(0,· · · ,0, x, 0, 0,· · · )‖�ε

ϕ(X)

= K‖x‖ for every x ∈ X . We need the following two propositions to obtain our
main result in next section.

Proposition 1. ([1]). If ϕ satisfies the ∆2-condition, then �ε
ϕ(X) is isometrically

isomorphic and lattice homomorphic to L r((hϕ∗, ‖ · ‖oϕ∗), X) under the mapping:
x̄ −→ Tx̄, where Tx̄ is defined by Tx̄(t) =

∑∞
i=1 tixi for each t = (ti)i ∈ hϕ∗ and

each x̄ = (xi)i ∈ �εϕ(X). Moreover, Tx̄ ∈ Kr(hϕ∗ , X) if and only if x̄ ∈ �ε,0
ϕ (X).

Proposition 2. ([2]).Assume that ϕ∗ satisfies the ∆2-condition. Let x̄(n) =
(x(n)

i )i, x̄
(0) = (x(0)

i )i ∈ �ε,0ϕ (X) for each n ∈ N. Then limn x̄
(n) = x̄(0)

weakly in �ε,0ϕ (X) if and only if limn x
(n)
i = x

(0)
i weakly in X for all i ∈ N

and supn ‖x̄(n)‖�ε
ϕ(X) <∞.

4. MAIN RESULTS

Recall that we say that a Banach space contains a copy of c0 (or �∞) if it
contains a subspace isomorphic to c0 (or �∞). Note that if a Banach lattice X
contains a subspace isomorphic to c0, by [11, p. 104, Theorem 2.5.6], X is not
a KB-space, and hence, by [11, p. 92, Theorem 2.4.12], X contains a sublattice
isomorphic to c0. By the proof of [11, p. 92, Theorem 2.4.12] and the proof of
[11, p. 82, Lemma 2.3.10], this isomorphism is also a lattice homomorphism. We
summarize this fact as follows.

Lemma 3. A Banach lattice contains a subspace isomorphic to c 0 if and only
if it contains a sublattice isomorphic and lattice homomorphic to c 0.

To get the main result in this section, we need a characterization of non-
containment of a copy of �∞ in Banach spaces which was due to Rosenthal [12]
and was summarized by Cembranos and Mendoza in [3, p. 12, Theorem 1.3.1] as
follows.

Lemma 4. Let Z be a Banach space. Then the following statements are
equivalent:

(a) Z contains a copy of �∞.
(b) There exists a bounded linear operator T : �∞ −→ Z such that limn T (en) 	=

0 in Z.
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(c) There exists a bounded linear operator T : �∞ −→ Z which is not weakly
compact.

For an infinite subset M of N, let �∞(M) denote the subspace of �∞ consisting
of all (ξn)n ∈ �∞ with ξn = 0 for n 	∈M . It is known from [3, p. 13, Remark 1.3.2]
that if an operator T : �∞ −→ Z is weakly compact, then for all ξ = (ξn)n ∈ �∞,
the series

∑
n ξnT (en) converges in Z. But its limit

∑∞
n=1 ξnT (en) and T (ξ) may

not coincide. To get the main result in this section, we also need the following
result due to Drewnowski [6] (also see [3, p. 14, Corollary 1.3.3]).

Lemma 5. ([6]). Let Ti : �∞ −→ Z be weakly compact operators for each
i ∈ N. Then there exists an infinite subset M of N such tat T i(ξ) =

∑∞
n=1 ξnTi(en)

for all ξ = (ξn)n ∈ �∞(M) and all i ∈ N.

Theorem 6. If ϕ∗ satisfies the ∆2-condition, then �ε,0
ϕ (X) contains no copy

of �∞ if and only if X contains no copy of �∞.
Proof. Since X is a closed subspace of �ε,0ϕ (X), �ε,0ϕ (X) contains a copy of �∞

wheneverX contains a copy of �∞. Now assume thatX contains no copy of �∞. We
want to show that �ε,0ϕ (X) contains no copy of �∞. Suppose that �ε,0ϕ (X) contains
a copy of �∞, that is, there is an isomorphism T : �∞ −→ T (�∞) ↪→ �ε,0ϕ (X). For
each i ∈ N, define a bounded linear operator Ti : �∞ −→ X by Ti(ξ) = T (ξ)i for
each ξ ∈ �∞, where T (ξ)i denotes the i-th coordinate of T (ξ). Since X contains
no copy of �∞, by Lemma 4, each Ti is weakly compact and hence, by Lemma 5,
there exists an infinite subset M of N such that for all ξ = (ξn)n ∈ �∞(M),

T (ξ)i = Ti(ξ) =
∞∑

n=1

ξnTi(en) =
∞∑

n=1

ξnT (en)i, ∀i ∈ N.

Thus the series
∑

n ξnT (en)i converges to T (ξ)i in X and hence, weakly in X for
each i ∈ N. Note that for each m ∈ N,

∥∥∥ m∑
n=1

ξnT (en)
∥∥∥

�ε
ϕ(X)

=
∥∥∥T((ξ1, · · · , ξm, 0, 0, · · ·))∥∥∥

�ε
ϕ(X)

≤ ‖T‖ · ‖(ξ1, · · · , ξm, 0, 0, · · · )‖�∞

≤ ‖T‖ · ‖ξ‖�∞ .

By Proposition 2, the series
∑

n ξnT (en) converges to T (ξ) weakly in �ε,0ϕ (X) for all
ξ ∈ �∞(M). It follows that the series

∑
n∈M T (en) is weakly subseries convergent

and hence subseries convergent in �ε,0ϕ (X). Thus T (en) −→ 0 in �ε,0ϕ (X) as n ∈M

and n → ∞. But for each n ∈ N, ‖T (en)‖�ε
ϕ(X) ≥ ‖en‖�∞/‖T−1‖ = 1/‖T−1‖.

This contradiction shows that �ε,0
ϕ (X) contains no copy of �∞.
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Lemma 7. If �εϕ(X) contains no copy of �∞, then both X and �ε,0
ϕ (X) contain

no copy of c0.
Proof. For each ξ = (ξi)i ∈ �∞ and each η = (ηi)i ∈ �+1 ,

∞∑
i=1

∥∥∥〈|ξiei|, η〉ei∥∥∥
�ϕ

=
∞∑
i=1

〈|ξiei|, η〉‖ei‖�ϕ = K ·
∞∑
i=1

|ξi|ηi <∞.

Thus (〈|ξiei|, η〉)i =
∑∞

i=1〈|ξiei|, η〉ei ∈ �ϕ and hence, (ξiei)i ∈ �εϕ(c0). Define
T : �∞ −→ �εϕ(c0) by T (ξ) = (ξiei)i for each ξ = (ξi)i ∈ �∞. Then

∥∥∥T (ξ)
∥∥∥

�ε
ϕ(c0)

= sup
{∥∥∥(〈|ξiei|, η〉)i

∥∥∥
�ϕ

: η = (ηi)i ∈ B�+1

}

= sup

{∥∥∥ ∞∑
i=1

〈|ξiei|, η〉ei
∥∥∥

�ϕ

: η = (ηi)i ∈ B�+1

}

≤ sup

{
K ·

∞∑
i=1

|ξi|ηi : η = (ηi)i ∈ B�+1

}

≤ K · ‖ξ‖�∞

and hence, T is a bounded linear operator. Moreover,

‖T (en)‖�ε
ϕ(c0) = ‖(0, · · · , 0, en, 0, 0, · · · )‖�ε

ϕ(c0) = K · ‖en‖c0 = K.

It follows from Lemma 4 that �εϕ(c0) contains a copy of �∞.
If X contains a copy of c0, then by Lemma 3, X contains a sublattice isomorphic

and lattice homomorphic to c0. Thus �εϕ(X) contains a sublattice isomorphic and
lattice homomorphic to �εϕ(c0) and hence, �εϕ(X) contains a copy of �∞. This
contradiction shows that X contains no copy of c0.

Now suppose that �ε,0ϕ (X) contains a copy of c0. By Lemma 3, �ε,0ϕ (X) contains
a sublattice isomorphic and lattice homomorphic to c0. That is, there is an isomor-
phism and lattice homomorphism ψ : c0 −→ ψ(c0) ↪→ �ε,0ϕ (X). Note that the series∑

n en is a weakly unconditionally Cauchy series in c0. So the series
∑

n ψ(en) is
a weakly unconditionally Cauchy series in �ε,0ϕ (X). Thus for each i ∈ N, the series∑

n ψ(en)i is a weakly unconditionally Cauchy series in X . It is known from the
first part that X contains no copy of c0. Therefore, the series

∑
n ψ(en)i is an

unconditionally convergent series in X and hence, for every ξ = (ξn)n ∈ �∞, the
series

∑
n ξnψ(en)i converges in X .

Take any (ti)i ∈ h+
ϕ∗ and any x∗ ∈ X∗+. Then (tix∗)i ∈ �ε,0ϕ (X)∗. Note that
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each ψ(en) is positive. We have

∞∑
i=1

ti〈x∗, |
∞∑

n=1

ξnψ(en)i|〉 ≤
∞∑
i=1

∞∑
n=1

|ξn|〈tix∗, ψ(en)i〉

=
∞∑

n=1

|ξn|〈(tix∗)i, ψ(en)〉

≤ ‖ξ‖�∞

∞∑
n=1

〈(tix∗)i, ψ(en)〉 <∞.

Thus (〈x∗, |∑∞
n=1 ξnψ(en)i|〉)i ∈ (hϕ∗)∗ = �ϕ and hence, (

∑∞
n=1 ξnψ(en)i)i ∈

�εϕ(X). Define T : �∞ −→ �εϕ(X) by T (ξ) = (
∑∞

n=1 ξnψ(en)i)i. Then∥∥∥T (ξ)
∥∥∥

�ε
ϕ(X)

= sup

{∥∥∥(〈x∗, | ∞∑
n=1

ξnψ(en)i|〉
)

i

∥∥∥
�ϕ

: x∗ ∈ BX∗+

}

= sup

{ ∞∑
i=1

ti〈x∗, |
∞∑

n=1

ξnψ(en)i|〉 : x∗ ∈ BX∗+, (ti)i ∈ Bh+
oϕ∗

}

≤ sup

{ ∞∑
n=1

|ξn|〈(tix∗)i, ψ(en)〉 : x∗ ∈ BX∗+ , (ti)i ∈ Bh+
oϕ∗

}

= sup

{
m∑

n=1

|ξn|〈(tix∗)i, ψ(en)〉 : x∗ ∈ BX∗+ , (ti)i ∈ Bh+
oϕ∗
, m ∈ N

}

= sup
{
〈(tix∗)i, ψ(θ)〉 : x∗ ∈ BX∗+ , (ti)i ∈ Bh+

oϕ∗ , m ∈ N

}
≤ sup

{∥∥∥(tix∗)i

∥∥∥
�ε,0
ϕ (X)∗

·
∥∥∥ψ(θ)

∥∥∥
�ε,0
ϕ (X)

: x∗ ∈ BX∗+ , (ti)i ∈ Bh+
oϕ∗
, m ∈ N

}
≤ sup {‖ψ‖ · ‖θ‖c0 : m ∈ N}
= ‖ψ‖ · ‖ξ‖�∞ , where θ = (|ξ1|, · · · , |ξm|, 0, 0, · · ·),

and hence, T is a bounded linear operator. Note that limn en 	= 0 in c0 and ψ is an
isomorphism. So limn T (en) = limn ψ(en) 	= 0 in �εϕ(X). It follows from Lemma
4 that �εϕ(X) contains a copy of �∞. This contradiction shows that �ε,0ϕ (X) contains
no copy of c0.

Theorem 8. If ϕ∗ satisfies the ∆2-condition, then the following statements are
equivalent.

(i) �εϕ(X) contains no copy of �∞.
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(ii) �ε,0ϕ (X) contains no copy of c0.
(iii) X contains no copy of c0 and �εϕ(X) = �

ε,0
ϕ (X).

Proof. (iii) =⇒ (i). It follows from Theorem 6.
(i) =⇒ (ii). It follows from Lemma 7.
(ii) =⇒ (iii). SinceX is a closed subspace of �ε,0ϕ (X), X contains no copy of c0.

Take any x̄ = (xi)i ∈ �εϕ(X). For each i ∈ N, let x̄(i) = (0, · · · , 0, xi, 0, 0, · · ·).
Then for each (ti)i ∈ c0, tix̄(i) ∈ �ε,0ϕ (X) and for each n ∈ N,

∥∥∥ ∞∑
i=n

tix̄(i)
∥∥∥

�ε
ϕ(X)

=
∥∥∥(0, · · · , 0, tnxn, tn+1xn+1, · · · )

∥∥∥
�ε
ϕ(X)

≤ sup
i≥n

|ti| ·
∥∥x̄∥∥

�ε
ϕ(X)

−→ 0 as n→ ∞.

Thus the series
∑

i tix̄(i) converges in �ε,0ϕ (X) for each (ti)i ∈ c0. It follows
from [5, p.44, Theorem 6] that

∑
i x̄(i) is a weakly unconditionally Cauchy series

in �ε,0ϕ (X). Note that �ε,0ϕ (X) contains no copy of c0. By Bessaga-Pelczynski
Theorem (see [5, p.45, Theorem 8],

∑
i x̄(i) is an unconditionally convergent series

in �ε,0ϕ (X) and hence x̄ = limn
∑n

i=1 x̄(i) ∈ �ε,0ϕ (X). Thus (iii) follows.

By Proposition 1, we have our main result of this section as follows.

Theorem 9. Let ϕ be an Orlicz function and ϕ∗ be its complementary function
such that both ϕ and ϕ∗ satisfy the ∆2-condition (in this case, �ϕ is reflexive). Then
we have the following statements (a) and (b).

(a) Kr(�ϕ, X) contains no copy of �∞ if and only if X contains no copy of �∞.
(b) The following assertions are equivalent:

(i) Lr(�ϕ, X) contains no copy of �∞.
(ii) Kr(�ϕ, X) contains no copy of c0.
(iii) X contains no copy of c0 and each positive linear operator from � ϕ to

X is compact.
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