TAIWANESE JOURNAL OF MATHEMATICS Vol. 16, No. 1, pp. 129-149, February 2012 This paper is available online at http://tjm.math.ntu.edu.tw

GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND BANACH SPACES

Ming-Hsiu Hsu, Wataru Takahashi and Jen-Chih Yao*

Abstract. In this paper, we deal with a broad class of nonlinear mappings in a Hilbert space and a Banach space called generalized hybrid which contains the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings. Then, we prove fixed point theorems for these nonlinear mappings in a Hilbert space and a Banach space. Furthermore, we obtain duality theorems for nonlinear mappings in a Banach space.

1. INTRODUCTION

Let *H* be a real Hilbert space and let *C* be a nonempty subset of *H*. Then a mapping $T: C \to H$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of *T* is denoted by F(T). An important example of nonexpansive mappings in a Hilbert space is a firmly nonexpansive mapping. A mapping *F* is said to be firmly nonexpansive if

$$||Fx - Fy||^2 \le \langle x - y, Fx - Fy \rangle$$

for all $x, y \in C$; see, for instance, Browder [5] and Goebel and Kirk [10]. It is known that a firmly nonexpansive mapping F can be deduced from an equilibrium problem in a Hilbert space; see, for instance, [4] and [8]. Recently, Kohsaka and Takahashi [23], and Takahashi [31] introduced the following nonlinear mappings which are deduced from a firmly nonexpansive mapping in a Hilbert space. A mapping $T: C \to H$ is called nonspreading [23] if

(1.1)
$$2\|Tx - Ty\|^2 \le \|Tx - y\|^2 + \|Ty - x\|^2$$

for all $x, y \in C$. Similarly, a mapping $T : C \to H$ is called hybrid [31] if

(1.2)
$$3\|Tx - Ty\|^2 \le \|x - y\|^2 + \|Tx - y\|^2 + \|Ty - x\|^2$$

Received September 25, 2010.

2010 Mathematics Subject Classification: Primary 47H10; Secondary 47H05.

Key words and phrases: Hilbert space, Banach space, Nonexpansive mapping, Nonspreading mapping, Hybrid mapping, Fixed point.

*Corresponding author.

for all $x, y \in C$. They proved fixed point theorems for such mappings; see also Kohsaka and Takahashi [20], Iemoto and Takahashi [16] and Takahashi and Yao [34]. Motivated by these mappings and results, Aoyama, Iemoto, Kohsaka and Takahashi [2] introduced a class of nonlinear mappings called λ -hybrid containing the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. Kocourek, Takahashi and Yao [21] also introduced a more broad class of nonlinear mappings than the class of λ -hybrid mappings in a Hilbert space. They called such a class the class of generalized hybrid mappings and then proved general fixed point theorems and convergence theorems in a Hilbert space.

In this paper, we deal with a broad class of nonlinear mappings in a Hilbert space and a Banach space called generalized hybrid which contains the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings. Then, we prove fixed point theorems for these nonlinear mappings in a Hilbert space and a Banach space. Furthermore, we obtain duality theorems for nonlinear mappings in a Banach space.

2. PRELIMINARIES

Throughout this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a (real) Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$, respectively. From [30], we know the following basic equalities. For $x, y, u, v \in H$ and $\lambda \in \mathbb{R}$, we have

(2.1)
$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2$$

and

(2.2)
$$2\langle x-y, u-v\rangle = \|x-v\|^2 + \|y-u\|^2 - \|x-u\|^2 - \|y-v\|^2.$$

Let C be a nonempty closed convex subset of H and $x \in H$. Then, we know that there exists a unique nearest point $z \in C$ such that $||x - z|| = \inf_{y \in C} ||x - y||$. We denote such a correspondence by $z = P_C x$. P_C is called the metric projection of H onto C. It is known that P_C is nonexpansive and

$$\langle x - P_C x, P_C x - u \rangle \ge 0$$

for all $x \in H$ and $u \in C$; see [30] for more details.

Let E be a real Banach space with norm $\|\cdot\|$ and let E^* be the topological dual space of E. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. When $\{x_n\}$ is a sequence in E, we denote the strong convergence of $\{x_n\}$ to $x \in E$ by $x_n \to x$ and the weak convergence by $x_n \to x$. The modulus δ of convexity of E is defined by

$$\delta(\epsilon) = \inf\left\{1 - \frac{\|x+y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x-y\| \ge \epsilon\right\}$$

for every ϵ with $0 \le \epsilon \le 2$. A Banach space E is said to be uniformly convex if $\delta(\epsilon) > 0$ for every $\epsilon > 0$. A uniformly convex Banach space is strictly convex and reflexive. Let C be a nonempty subset of a Banach space E. A mapping $T: C \to E$ is nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A mapping $T: C \to E$ is quasi-nonexpansive if $F(T) \ne \emptyset$ and $||Tx - y|| \le ||x - y||$ for all $x \in C$ and $y \in F(T)$, where F(T) is the set of fixed points of T. If C is a nonempty closed convex subset of a strictly convex Banach space E and $T: C \to C$ is quasi-nonexpansive, then F(T) is closed and convex; see Itoh and Takahashi [18]. Let E be a Banach space. The duality mapping J from E into 2^{E^*} is defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for every $x \in E$. Let $U = \{x \in E : ||x|| = 1\}$. The norm of E is said to be Gâteaux differentiable if for each $x, y \in U$, the limit

(2.3)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists. In the case, E is called smooth. We know that E is smooth if and only if J is a single-valued mapping of E into E^* . We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-toone. Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit (2.3) is attained uniformly for $x \in U$. It is also said to be Fréchet differentiable if for each $x \in U$, the limit (2.3) is attained uniformly for $y \in U$. A Banach space E is called uniformly smooth if the limit (2.3) is attained uniformly for $x, y \in U$. It is known that if the norm of Eis uniformly Gâteaux differentiable, then J is uniformly norm to weak^{*} continuous on each bounded subset of E, and if the norm of E is Fréchet differentiable, then J is norm to norm continuous. If E is uniformly smooth, J is uniformly norm to norm continuous on each bounded subset of E. For more details, see [28, 29]. The following results are also in [28, 29].

Theorem 2.1. Let E be a Banach space and let J be the duality mapping on E. Then, for any $x, y \in E$,

$$||x||^2 - ||y||^2 \ge 2\langle x - y, j \rangle,$$

where $j \in Jy$.

Theorem 2.2. Let *E* be a smooth Banach space and let *J* be the duality mapping on *E*. Then, $\langle x - y, Jx - Jy \rangle \ge 0$ for all $x, y \in E$. Further, if *E* is strictly convex and $\langle x - y, Jx - Jy \rangle = 0$, then x = y.

Let E be a smooth Banach space. The function $\phi: E \times E \to (-\infty, \infty)$ is defined by

Ming-Hsiu Hsu, Wataru Takahashi and Jen-Chih Yao

(2.4)
$$\phi(x,y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for $x, y \in E$, where J is the duality mapping of E; see [1] and [19]. We have from the definition of ϕ that

(2.5)
$$\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x-z, Jz - Jy \rangle$$

for all $x, y, z \in E$. From $(||x|| - ||y||)^2 \le \phi(x, y)$ for all $x, y \in E$, we can see that $\phi(x, y) \ge 0$. Further, we can obtain the following equality:

(2.6)
$$2\langle x-y, Jz-Jw\rangle = \phi(x,w) + \phi(y,z) - \phi(x,z) - \phi(y,w)$$

for $x, y, z, w \in E$. If E is additionally assumed to be strictly convex, then

(2.7)
$$\phi(x,y) = 0 \iff x = y.$$

The following result was proved by Xu [36].

Theorem 2.3. (Xu [36]). Let E be a uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g: [0, \infty) \rightarrow [0, \infty)$ such that g(0) = 0 and

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g(\|x-y\|)$$

for all $x, y \in B_r$ and λ with $0 \le \lambda \le 1$, where $B_r = \{z \in E : ||z|| \le r\}$.

Let l^{∞} be the Banach space of bounded sequences with supremum norm. Let μ be an element of $(l^{\infty})^*$ (the dual space of l^{∞}). Then, we denote by $\mu(f)$ the value of μ at $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$. Sometimes, we denote by $\mu_n(x_n)$ the value $\mu(f)$. A linear functional μ on l^{∞} is called a *mean* if $\mu(e) = ||\mu|| = 1$, where $e = (1, 1, 1, \ldots)$. A mean μ is called a *Banach limit* on l^{∞} if $\mu_n(x_{n+1}) = \mu_n(x_n)$. We know that there exists a Banach limit on l^{∞} . If μ is a Banach limit on l^{∞} , then for $f = (x_1, x_2, x_3, \ldots) \in l^{\infty}$,

$$\liminf_{n \to \infty} x_n \le \mu_n(x_n) \le \limsup_{n \to \infty} x_n.$$

In particular, if $f = (x_1, x_2, x_3, ...) \in l^{\infty}$ and $x_n \to a \in \mathbb{R}$, then we have $\mu(f) = \mu_n(x_n) = a$. For a proof of existence of a Banach limit and its other elementary properties, see [28].

3. GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES

Let C be a nonempty subset of a Hilbert space H and let $\lambda \in \mathbb{R}$. Then, a mapping $T: C \to H$ is called λ -hybrid [2] if

Generalized Hybrid Mappings

$$||Tx - Ty||^2 \le ||x - y||^2 + 2(\lambda - 1)\langle x - Tx, y - Ty \rangle$$

for all $x, y \in C$. A mapping $T : C \to H$ is also called generalized hybrid [21] if there are $\alpha, \beta \in \mathbb{R}$ such that

$$\alpha \|Tx - Ty\|^{2} + (1 - \alpha)\|x - Ty\|^{2} \le \beta \|Tx - y\|^{2} + (1 - \beta)\|x - y\|^{2}$$

for all $x, y \in C$. Such a mapping is called an (α, β) -generalized hybrid mapping. Recently, Hojo, Takahashi and Yao [11] proved the following result.

Lemma 3.1. (Hojo, Takahashi and Yao [11]). Let H be a Hilbert space and let C be a nonempty subset of H. Let α and β be in \mathbb{R} . Then, a mapping $T : C \to H$ is (α, β) -generalized hybrid if and only if it satisfies that

$$||Tx - Ty||^{2} \le (\alpha - \beta)||x - y||^{2} + 2(\alpha - 1)\langle x - Tx, y - Ty \rangle - (\alpha - \beta - 1)||y - Tx||^{2}$$

for all $x, y \in C$.

Using Hojo, Takahashi and Yao [11], we obtain that an (α, β) -generalized hybrid mapping with $\alpha - \beta = 1$ is a λ -hybrid mapping. Furthermore, we have the following result for generalized hybrid mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty subset of a Hilbert space H and let T be a generalized hybrid mapping of C into H, i.e., there are $\alpha, \beta \in \mathbb{R}$ such that

(3.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Then, the following hold:

- (i) If $\alpha + \beta < 1$, then T = I, where Ix = x for all $x \in C$;
- (ii) if $\alpha = 0$ and $\beta = 1$, then T satisfies that ||Tx y|| = ||Ty x|| for all $x, y \in C$;
- (iii) if $\alpha = 0$ and $\beta > 1$, then T satisfies that

$$2||x - y||^2 \le ||Tx - y||^2 + ||Ty - x||^2$$

for all $x, y \in C$;

(iv) if $\beta = t\alpha + 1$, $-1 \le t < \infty$ and $\alpha > 0$, then T satisfies that

$$2\|Tx - Ty\|^{2} + 2t\|x - y\|^{2} \le (t+1)\|Tx - y\|^{2} + (t+1)\|Ty - x\|^{2}$$

for all $x, y \in C$. In particular, T is nonexpansive for t = -1, nonspreading for t = 0, and hybrid for $t = -\frac{1}{2}$;

(v) if $\beta = t\alpha + 1$, $-\infty < t < -1$ and $\alpha < 0$, then T satisfies that $2\|Tx - Ty\|^2 + 2t\|x - y\|^2 \ge (t+1)\|Tx - y\|^2 + (t+1)\|Ty - x\|^2$ for all $x, y \in C$.

Proof.

- (i) Putting x = y in the inequality (3.1), we have $(1 \alpha \beta) ||x Tx||^2 \le 0$. So, from $\alpha + \beta < 1$ we have Tx = x for all $x \in C$ and hence T = I.
- (ii) Let $\alpha = 0$ and $\beta = 1$. Then we get that $||x Ty||^2 \le ||Tx y||^2$ for all $x, y \in C$. Replace x, y by y, x, respectively. We also have $||y Tx||^2 \le ||Ty x||^2$. This implies that ||Tx y|| = ||Ty x|| for all $x, y \in C$.
- (iii) Let $\alpha = 0$. Then we have that

$$\|x-Ty\|^2 \leq \beta \|Tx-y\|^2 + (1-\beta)\|x-y\|^2$$

for all $x, y \in C$. Changing the role of x and y again, we also have

$$||y - Tx||^{2} \le \beta ||Ty - x||^{2} + (1 - \beta) ||x - y||^{2}.$$

Summing these two inequalities and then dividing by $1 - \beta$, we have

$$2||x - y||^2 \le ||Tx - y||^2 + ||Ty - x||^2$$

for all $x, y \in C$.

(iv) Let $\beta = t\alpha + 1$. Then we have that

$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le (t\alpha + 1)\|Tx - y\|^2 - t\alpha\|x - y\|^2$$

for all $x, y \in C$. Changing the role of x and y again, we also have

$$\alpha ||Ty - Tx||^{2} + (1 - \alpha) ||y - Tx||^{2} \le (t\alpha + 1) ||Ty - x||^{2} - t\alpha ||y - x||^{2}.$$

Summing these two inequalities, we have

 $2\alpha \|Tx - Ty\|^2 + 2t\alpha \|x - y\|^2 \le (t+1)\alpha \|Tx - y\|^2 + (t+1)\alpha \|Ty - x\|^2.$ Dividing by $\alpha > 0$, we have

$$2\|Tx - Ty\|^2 + 2t\|x - y\|^2 \le (t+1)\|Tx - y\|^2 + (t+1)\|Ty - x\|^2$$

for all $x, y \in C$. In particular, T is nonexpansive for t = -1, nonspreading for t = 0, and hybrid for $t = -\frac{1}{2}$.

(v) By the same argument as in (iv), we have

$$2||Tx - Ty||^{2} + 2t||x - y||^{2} \ge (t + 1)||Tx - y||^{2} + (t + 1)||Ty - x||^{2}$$

if $-\infty < t < -1$ and $\alpha < 0$. This completes the proof.

4. GENERALIZED HYBRID MAPPINGS IN BANACH SPACES

Let E be a Banach space and let C be a nonempty subset of E. Then, a mapping $T: C \to E$ is said to be firmly nonexpansive [6] if

$$||Tx - Ty||^2 \le \langle x - y, j \rangle,$$

for all $x, y \in C$, where $j \in J(Tx - Ty)$. It is known that the resolvent of an accretive operator in a Banach space is a firmly nonexpansive mapping; see [6] and [7]. Using Theorem 2.1, we have that for any $x, y \in C$ and $j \in J(Tx - Ty)$,

$$\begin{aligned} \|Tx - Ty\|^2 &\leq \langle x - y, j \rangle \\ &\iff 0 \leq 2 \langle x - Tx - (y - Ty), j \rangle \\ &\implies 0 \leq \|x - y\|^2 - \|Tx - Ty\|^2 \\ &\iff \|Tx - Ty\|^2 \leq \|x - y\|^2 \\ &\iff \|Tx - Ty\| \leq \|x - y\|. \end{aligned}$$

This implies that T is nonexpansive. We also have that for any $x, y \in C$ and $j \in J(Tx - Ty)$,

$$\begin{aligned} \|Tx - Ty\|^{2} &\leq \langle x - y, j \rangle \\ &\iff 0 \leq 2 \langle x - Tx - (y - Ty), j \rangle \\ &\iff 0 \leq 2 \langle x - Tx, j \rangle + 2 \langle Ty - y, j \rangle \\ &\implies 0 \leq \|x - Ty\|^{2} - \|Tx - Ty\|^{2} + \|Tx - y\|^{2} - \|Tx - Ty\|^{2} \\ &\iff 0 \leq \|x - Ty\|^{2} + \|y - Tx\|^{2} - 2\|Tx - Ty\|^{2} \\ &\iff 2\|Tx - Ty\|^{2} \leq \|x - Ty\|^{2} + \|y - Tx\|^{2}. \end{aligned}$$

This implies that T is a nonspreading mapping in the sense of (1.1). Furthermore we have that for any $x, y \in C$ and $j \in J(Tx - Ty)$,

$$\begin{aligned} \|Tx - Ty\|^{2} &\leq \langle x - y, j \rangle \\ &\iff 0 \leq 4 \langle x - Tx - (y - Ty), j \rangle \\ &\iff 0 \leq 2 \langle x - Tx - (y - Ty), j \rangle + 2 \langle x - Tx - (y - Ty), j \rangle \\ &\implies 0 \leq \|x - y\|^{2} - \|Tx - Ty\|^{2} + \|x - Ty\|^{2} + \|y - Tx\|^{2} - 2\|Tx - Ty\|^{2} \\ &\iff 3\|Tx - Ty\|^{2} \leq \|x - y\|^{2} + \|x - Ty\|^{2} + \|y - Tx\|^{2}. \end{aligned}$$

This implies that T is a hybrid mapping in the sense of (1.2). Thus, it is natural that we extend a generalized hybrid mapping in a Hilbert space by Kocourek, Takahashi

and Yao [21] to that of a Banach space as follows: Let E be a Banach space and let C be a nonempty subset of E. A mapping $T : C \to E$ is called generalized hybrid if there are $\alpha, \beta \in \mathbb{R}$ such that

(4.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. We may also call such a mapping an (α, β) -generalized hybrid mapping in a Banach space. We note that an (α, β) -generalized hybrid mapping is nonexpansive for $\alpha = 1$ and $\beta = 0$, nonspreading for $\alpha = 2$ and $\beta = 1$, and hybrid for $\alpha = \frac{3}{2}$ and $\beta = \frac{1}{2}$.

On the other hand, Kocourek, Takahashi and Yao [22] extended a generalized hybrid mapping in a Hilbert space to that of a Banach space as follows: Let E be a smooth Banach space and let C be a nonempty subset of E. A mapping $T: C \to E$ is called generalized nonspreading [22] if there are $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

(4.2)
$$\begin{aligned} \alpha\phi(Tx,Ty) + (1-\alpha)\phi(x,Ty) + \gamma\{\phi(Ty,Tx) - \phi(Ty,x)\} \\ \leq \beta\phi(Tx,y) + (1-\beta)\phi(x,y) + \delta\{\phi(y,Tx) - \phi(y,x)\} \end{aligned}$$

for all $x, y \in C$, where $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$ for $x, y \in E$. We call such a mapping an $(\alpha, \beta, \gamma, \delta)$ -generalized nonspreading mapping. If E is a Hilbert space, then $\phi(x, y) = ||x - y||^2$ for $x, y \in E$. So, we obtain the following:

(4.3)
$$\begin{aligned} \alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 + \gamma \{\|Tx - Ty\|^2 - \|x - Ty\|^2\} \\ & \leq \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2 + \delta \{\|Tx - y\|^2 - \|x - y\|^2\} \end{aligned}$$

for all $x, y \in C$. This implies that

(4.4)
$$(\alpha + \gamma) \|Tx - Ty\|^2 + \{1 - (\alpha + \gamma)\} \|x - Ty\|^2 \\ \leq (\beta + \delta) \|Tx - y\|^2 + \{1 - (\beta + \delta)\} \|x - y\|^2$$

for all $x, y \in C$. That is, T is a generalized hybrid mapping in a Hilbert space. The following is Kocourek, Takahashi and Yao fixed point theorem [22].

Theorem 4.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed convex subset of E. Let T be a generalized nonspreading mapping of C into itself. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^nx\}$ is bounded for some $x \in C$.

5. FIXED POINT THEOREMS

In this section, we prove a fixed point theorem for generalized hybrid mappings in a Banach space. For proving the theorem, we need the following lemma; see, for instance, [32] and [28].

137

Lemma 5.1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E, let $\{x_n\}$ be a bounded sequence in E and let μ be a mean on l^{∞} . If $g: E \to \mathbb{R}$ is defined by

$$g(z) = \mu_n ||x_n - z||^2, \quad \forall z \in E,$$

then there exists a unique $z_0 \in C$ such that

$$g(z_0) = \min\{g(z) : z \in C\}.$$

Using Lemma 5.1, we can prove the following theorem.

Theorem 5.2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let T be a mapping of C into itself. Let $\{x_n\}$ be a bounded sequence of E and let μ be a mean on l^{∞} . If

$$\mu_n \|x_n - Ty\|^2 \le \mu_n \|x_n - y\|^2$$

for all $y \in C$, then T has a fixed point in C.

Proof. Using the mean μ on l^{∞} , we can define $g: E \to \mathbb{R}$ as follows:

$$g(y) = \mu_n ||x_n - y||^2, \quad \forall y \in E.$$

From Lemma 5.1, there exists a unique $z \in C$ such that

$$g(z) = \min\{g(y) : y \in C\}.$$

So, we have

$$g(Tz) = \mu_n ||x_n - Tz||^2 \le \mu_n ||x_n - z||^2 = g(z).$$

Since a minimizer in C concerning the function g is unique and $Tz \in C$, we have Tz = z and then z is a fixed point of T. This completes the proof.

In the case when E is a Hilbert space, we can also show the following fixed point theorem for non-self mappings by using Lemma 5.1.

Theorem 5.3. Let C be a nonempty closed convex subset of a Hilbert space H and let T be a mapping of C into H such that for any $x \in C$,

$$Tx \in \{x + t(y - x) : y \in C, \ t \ge 1\}.$$

Let $\{x_n\}$ be a bounded sequence of H and let μ be a mean on l^{∞} . If

$$\|\mu_n\|x_n - Ty\|^2 \le \|\mu_n\|x_n - y\|^2$$

for all $y \in C$, then T has a fixed point in C.

Proof. Using the mean μ on l^{∞} , we can define $g: H \to \mathbb{R}$ as follows:

$$g(y) = \mu_n ||x_n - y||^2, \quad \forall y \in H.$$

From Lemma 5.1, there exists a unique $z \in C$ such that

$$g(z) = \min\{g(y) : y \in C\}.$$

So, we have

$$g(Tz) = \mu_n ||x_n - Tz||^2 \le \mu_n ||x_n - z||^2 = g(z).$$

From $Tz \in \{z + t(y - z) : y \in C, t \ge 1\}$, there are $y \in C$ and $t \ge 1$ such that Tz = z + t(y - z). If t = 1, then we have $Tz = y \in C$. Since z is a unique minimizer in C of the function $g : C \to \mathbb{R}$, we have z = y. So, we have Tz = z. In the case of t > 1, we have from (2.1) that

$$\mu_n \|x_n - Tz\|^2 = \mu_n \|x_n - (z + t(y - z))\|^2$$

$$= \mu_n \|x_n - (ty + (1 - t)z)\|^2$$

$$= \mu_n \|t(x_n - y) + (1 - t)(x_n - z)\|^2$$

$$= \mu_n \{t\|x_n - y\|^2 + (1 - t)\|x_n - z\|^2 - t(1 - t)\|y - z\|^2\}$$

$$= t\mu_n \|x_n - y\|^2 + (1 - t)\mu_n \|x_n - z\|^2 - t(1 - t)\mu_n \|y - z\|^2$$

$$\ge t\mu_n \|x_n - z\|^2 + (1 - t)\mu_n \|x_n - z\|^2 - t(1 - t)\|y - z\|^2$$

$$= \mu_n \|x_n - z\|^2 - t(1 - t)\|y - z\|^2$$

and hence

$$-t(1-t)\|y-z\|^{2} \leq \mu_{n}\|x_{n}-Tz\|^{2} - \mu_{n}\|x_{n}-z\|^{2}.$$

From $\mu_n ||x_n - Tz||^2 \le \mu_n ||x_n - z||^2$, we have that $-t(1-t)||y - z||^2 \le 0$. From t > 1, we have $||y - z||^2 \le 0$. This means y = z and hence Tz = z + t(y - z) = z. This completes the proof.

Using Theorem 5.2, we prove a fixed point theorem for generalized hybrid mappings in a Banach space.

Theorem 5.4. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let α and β be in \mathbb{R} . Let $T : C \to C$ be a generalized hybrid mapping. Then the following are equivalent:

(a) $F(T) \neq \emptyset$;

(b) $\{T^nx\}$ is bounded for some $x \in C$.

Proof. Let $T:C\to C$ be a generalized hybrid mapping, i.e., there exists $\alpha,\beta\in\mathbb{R}$ such that

(5.1)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then $\{T^n z\} = \{z\}$ for $z \in F(T)$. So, $\{T^n z\}$ is bounded. We show the reverse. Take $z \in C$ such that $\{T^n z\}$ is bounded. Let μ be a Banach limit. Then, we have that for any $y \in C$ and $n \in \mathbb{N}$,

$$\alpha \|T^{n+1}z - Ty\|^2 + (1-\alpha)\|T^nz - Ty\|^2$$

$$\leq \beta \|T^{n+1}z - y\|^2 + (1-\beta)\|T^nz - y\|^2.$$

Since $\{T^n z\}$ is bounded, we can apply a Banach limit μ to both sides of the inequality. Then, we have

$$\mu_n(\alpha \|T^{n+1}z - Ty\|^2 + (1 - \alpha)\|T^n z - Ty\|^2)$$

$$\leq \mu_n(\beta \|T^{n+1}z - y\|^2 + (1 - \beta)\|T^n z - y\|^2).$$

So, we obtain

$$\begin{aligned} \alpha \mu_n \|T^{n+1}z - Ty\|^2 + (1-\alpha)\mu_n \|T^n z - Ty\|^2 \\ &\leq \beta \mu_n \|T^{n+1}z - y\|^2 + (1-\beta)\mu_n \|T^n z - y\|^2 \end{aligned}$$

and hence

$$\alpha \mu_n \|T^n z - Ty\|^2 + (1 - \alpha) \mu_n \|T^n z - Ty\|^2$$

$$\leq \beta \mu_n \|T^n z - y\|^2 + (1 - \beta) \mu_n \|T^n z - y\|^2.$$

This implies

$$\mu_n \|T^n z - Ty\|^2 \le \mu_n \|T^n z - y\|^2$$

for all $y \in C$. By Theorem 5.2, we have a fixed point in C.

Using Theorem 5.4, we can also prove the following fixed point theorems in a Banach space.

Theorem 5.5. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T : C \to C$ be a nonexpansive mapping, *i.e.*,

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 5.4, a (1, 0)-generalized hybrid mapping of C into itself is nonexpansive. By Theorem 5.4, T has a fixed point in C.

Theorem 5.6. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T : C \to C$ be a nonspreading mapping, *i.e.*,

$$2||Tx - Ty||^2 \le ||Tx - y||^2 + ||Ty - x||^2, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 5.4, a (2, 1)-generalized hybrid mapping of C into itself is nonspreading. By Theorem 5.4, T has a fixed point in C.

Theorem 5.7. Let E be a uniformly convex Banach space and let C be a nonempty closed convex subset of E. Let $T : C \to C$ be a hybrid mapping, i.e.,

$$3||Tx - Ty||^{2} \le ||Tx - y||^{2} + ||Ty - x||^{2} + ||x - y||^{2}, \quad \forall x, y \in C.$$

Suppose that there exists an element $x \in C$ such that $\{T^n x\}$ is bounded. Then, T has a fixed point in C.

Proof. In Theorem 5.4, a $(\frac{3}{2}, \frac{1}{2})$ -generalized hybrid mapping of C into itself is hybrid. By Theorem 5.4, T has a fixed point in C.

6. DUALITY THEOREMS

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into itself. Define a mapping T^* as follows:

$$T^*x^* = JTJ^{-1}x^*, \quad \forall x^* \in JC,$$

where J is the duality mapping on E and J^{-1} is the duality mapping on E^* . The mapping T^* is called the duality mapping of T; see [35] and [12]. It is easy to show that T^* is a mapping of JC into itself. In fact, for $x^* \in JC$, we have $J^{-1}x^* \in C$ and hence $TJ^{-1}x^* \in C$. So, we have

$$T^*x^* = JTJ^{-1}x^* \in JC.$$

Then, T^* is a mapping of JC into itself. Further, we define the duality mapping T^{**} of T^* as follows:

$$T^{**}x = J^{-1}T^*Jx, \quad \forall x \in C.$$

It is easy to show that T^{**} is a mapping of C into itself. In fact, for $x \in C$, we have

$$T^{**}x = J^{-1}T^*Jx = J^{-1}JTJ^{-1}Jx = Tx \in C.$$

So, T^{**} is a mapping of C into itself. We know the following result in a Banach space; see [9] and [35].

Lemma 6.1. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into itself and let T^* be the duality mapping of JC into itself. Then, the following hold:

(1)
$$JF(T) = F(T^*);$$

(2) $||T^n x|| = ||(T^*)^n Jx||$ for each $x \in C$ and $n \in \mathbb{N}$.

Let E be a smooth Banach space, let J be the duality mapping from E into E^* and let C be a nonempty subset of E. A mapping $T : C \to E$ is called skew-generalized nonspreading if there are $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

(6.1)
$$\begin{aligned} \alpha\phi(Ty,Tx) + (1-\alpha)\phi(Ty,x) + \gamma\{\phi(Tx,Ty) - \phi(x,Ty)\} \\ \leq \beta\phi(y,Tx) + (1-\beta)\phi(y,x) + \delta\{\phi(Tx,y) - \phi(x,y)\} \end{aligned}$$

for all $x, y \in C$, where $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$ for $x, y \in E$. We call such a mapping an $(\alpha, \beta, \gamma, \delta)$ -skew-generalized nonspreading mapping. Let T be an $(\alpha, \beta, \gamma, \delta)$ -skew-generalized nonspreading mapping. Observe that if $F(T) \neq \emptyset$, then $\phi(Ty, u) \leq \phi(y, u)$ for all $u \in F(T)$ and $y \in C$. Indeed, putting $x = u \in$ F(T) in (6.1), we obtain

$$\phi(Ty, u) + \gamma \{\phi(u, Ty) - \phi(u, Ty)\} \le \phi(y, u) + \delta \{\phi(u, y) - \phi(u, y)\}.$$

So, we have that

(6.2)
$$\phi(Ty, u) \le \phi(y, u)$$

for all $u \in F(T)$ and $y \in C$. Further, if E is a Hilbert space, then $\phi(x, y) = ||x-y||^2$ for $x, y \in E$. So, from (6.1) we obtain the following:

(6.3)
$$\begin{aligned} \alpha \|Ty - Tx\|^2 + (1 - \alpha)\|Ty - x\|^2 + \gamma\{\|Tx - Ty\|^2 - \|x - Ty\|^2\} \\ & \leq \beta \|y - Tx\|^2 + (1 - \beta)\|y - x\|^2 + \delta\{\|Tx - y\|^2 - \|x - y\|^2\} \end{aligned}$$

for all $x, y \in C$. This implies that

(6.4)
$$\begin{aligned} & (\alpha + \gamma) \|Tx - Ty\|^2 + \{1 - (\alpha + \gamma)\} \|Ty - x\|^2 \\ & \leq (\beta + \delta) \|y - Tx\|^2 + \{1 - (\beta + \delta)\} \|y - x\|^2 \end{aligned}$$

for all $x, y \in C$. That is, T is a generalized hybrid mapping [21] in a Hilbert space. Now, we prove a fixed point theorem for skew-generalized nonspreading mappings in a Banach space. Before proving the theorem, we need the following definition: Let $\phi_* : E^* \times E^* \to (-\infty, \infty)$ be the function defined by

$$\phi_*(x^*, y^*) = \|x^*\|^2 - 2\langle J^{-1}y^*, x^* \rangle + \|y^*\|^2$$

for $x^*, y^* \in E^*$, where J is the duality mapping of E. It is easy to see that

(6.5)
$$\phi(x,y) = \phi_*(Jy,Jx)$$

for $x, y \in E$.

Theorem 6.2. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let T be a skew-generalized nonspreading mapping of C into itselt. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^n x\}$ is bounded for some $x \in C$.

Proof. Let T be a skew-generalized nonspreading mapping of C into itselt. Then, there are $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that

$$\begin{aligned} \alpha\phi(Ty,Tx) + (1-\alpha)\phi(Ty,x) + \gamma\{\phi(Tx,Ty) - \phi(x,Ty)\} \\ &\leq \beta\phi(y,Tx) + (1-\beta)\phi(y,x) + \delta\{\phi(Tx,y) - \phi(x,y)\} \end{aligned}$$

for all $x, y \in C$. If $F(T) \neq \emptyset$, then $\phi(Ty, u) \leq \phi(y, u)$ for all $u \in F(T)$ and $y \in C$. So, if u is a fixed point in C, then we have $\phi(T^nx, u) \leq \phi(x, u)$ for all $n \in \mathbb{N}$ and $x \in C$. This implies (a) \Longrightarrow (b). Let us show (b) \Longrightarrow (a). Suppose that there exists $x \in C$ such that $\{T^nx\}$ is bounded. Then for any $x^*, y^* \in JC$ with $x^* = Jx$ and $y^* = Jy$ and $T^* = JTJ^{-1}$, we have from (6.5) that

$$\begin{aligned} \alpha\phi_*(T^*x^*, T^*y^*) + (1-\alpha)\phi_*(x^*, T^*y^*) + \gamma\{\phi_*(T^*y^*, T^*x^*) - \phi_*(T^*y^*, x^*)\} \\ &= \alpha\phi_*(JTx, JTy) + (1-\alpha)\phi_*(Jx, JTy) + \gamma\{\phi_*(JTy, JTx) - \phi_*(JTy, Jx)\} \\ &= \alpha\phi(Ty, Tx) + (1-\alpha)\phi(Ty, x) + \gamma\{\phi(Tx, Ty) - \phi(x, Ty)\}. \end{aligned}$$

On the other hand, we have

$$\begin{split} \beta\phi_*(T^*x^*, y^*) + (1-\beta)\phi_*(x^*, y^*) + \delta\{\phi_*(y^*, T^*x^*) - \phi_*(y^*, x^*)\} \\ &= \beta\phi_*(JTx, Jy) + (1-\beta)\phi_*(Jx, Jy) + \delta\{\phi_*(Jy, JTx) - \phi_*(Jy, Jx)\} \\ &= \beta\phi(JTx, Jy) + (1-\beta)\phi(y, x) + \delta\{\phi(Tx, y) - \phi(x, y)\}. \end{split}$$

Since T is skew-generalized nonspreading, we have that

$$\begin{aligned} \alpha\phi_*(T^*x^*,T^*y^*) + (1-\alpha)\phi_*(x^*,T^*y^*) + \gamma\{\phi_*(T^*y^*,T^*x^*) - \phi_*(T^*y^*,x^*)\} \\ &\leq \beta\phi_*(T^*x^*,y^*) + (1-\beta)\phi_*(x^*,y^*) + \delta\{\phi_*(y^*,T^*x^*) - \phi_*(y^*,x^*)\}. \end{aligned}$$

This implies that T^* is a generalized nonspreading mapping of JC into itself. We know from Lemma 6.1 and Theorem 4.1 that T^* has a fixed point in JC. We also have from Lemma 6.1 that $F(T^*) = JF(T)$. Therefore F(T) is nonempty. This completes the proof.

Using Theorem 6.2, we have the following fixed point theorems in a Banach space.

Theorem 6.3. (Dhompongsa, Fupinwong, Takahashi and Yao [9]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T : C \to C$ be a skew-nonspreading mapping, i.e.,

$$\phi(Ty,Tx) + \phi(Tx,Ty) \le \phi(y,Tx) + \phi(x,Ty)$$

for all $x, y \in C$. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^n x\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha = \beta = \gamma = 1$ and $\delta = 0$ in (6.1), we obtain that

$$\phi(Ty, Tx) + \phi(Tx, Ty) \le \phi(y, Tx) + \phi(x, Ty)$$

for all $x, y \in C$. So, we have the desired result from Theorem 6.2.

Theorem 6.4. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T : C \to C$ be a mapping such that

$$2\phi(Ty,Tx) + \phi(Tx,Ty) \le \phi(y,Tx) + \phi(x,Ty) + \phi(y,x)$$

for all $x, y \in C$. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^n x\}$ is bounded for some $x \in C$.

Proof. Putting $\alpha = 1$, $\beta = \gamma = \frac{1}{2}$ and $\delta = 0$ in (6.1), we obtain that

$$2\phi(Ty,Tx) + \phi(Tx,Ty) \le \phi(y,Tx) + \phi(x,Ty) + \phi(y,x)$$

for all $x, y \in C$. So, we have the desired result from Theorem 6.2.

Theorem 6.5. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. Let $T : C \to C$ be a mapping such that

$$\alpha\phi(Ty,Tx) + (1-\alpha)\phi(Ty,x) \le \beta\phi(y,Tx) + (1-\beta)\phi(y,x)$$

for all $x, y \in C$. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^n x\}$ is bounded for some $x \in C$.

Proof. Putting $\gamma = \delta = 0$ in (6.1), we obtain that

$$\alpha\phi(Ty,Tx) + (1-\alpha)\phi(Ty,x) \le \beta\phi(y,Tx) + (1-\beta)\phi(y,x)$$

for all $x, y \in C$. So, we have the desired result from Theorem 6.2.

As a direct consequence of Theorem 6.5, we have Kocourek, Takahashi and Yao fixed point theorem [21] in a Hilbert space.

Theorem 6.6. (Kocourek, Takahashi and Yao [21]). Let C be a nonempty closed convex subset of a Hilbert space H and let $T : C \to C$ be a generalized hybrid mapping, i.e., there are $\alpha, \beta \in \mathbb{R}$ such that

(6.6)
$$\alpha \|Tx - Ty\|^2 + (1 - \alpha)\|x - Ty\|^2 \le \beta \|Tx - y\|^2 + (1 - \beta)\|x - y\|^2$$

for all $x, y \in C$. Then, the following are equivalent:

- (a) $F(T) \neq \emptyset$;
- (b) $\{T^n x\}$ is bounded for some $x \in C$.

Proof. We know that $\phi(x, y) = ||x - y||^2$ for all $x, y \in C$ in Theorem 6.5. So, we have the desired result from Theorem 6.5.

7. Some Properties of Skew-generalized Nonspreading Mappings

Let E be a smooth Banach space. Let C be a nonempty subset of E. Let $T: C \to C$ be a mapping. Then, $p \in C$ is called an asymptotic fixed point of T [26] if there exists $\{x_n\} \subset C$ such that $x_n \to p$ and $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. We denote by $\hat{F}(T)$ the set of asymptotic fixed points of T. Matsushita and Takahashi [25] also gave the following definition: An operator $T: C \to C$ is relatively nonexpansive if $F(T) \neq \emptyset$, $\hat{F}(T) = F(T)$ and

$$\phi(y, Tx) \le \phi(y, x)$$

for all $x \in C$ and $y \in F(T)$. The following theorems are also in Kocourek, Takahashi and Yao [22].

Theorem 7.1. Let E be a strictly convex Banach space with a uniformly Gateaux differentiable norm, let C be a nonempty closed convex subset of E and let T be a generalized nonspreading mapping of C into itself. Then $\hat{F}(T) = F(T)$.

Theorem 7.2. Let E be a smooth and strictly convex Banach space, let C be a nonempty closed convex subset of E and let T be a generalized nonspreading mapping of C into itself such that F(T) is nonempty. Then F(T) is closed and convex.

Theorem 7.3. Let E be a strictly convex Banach space with a uniformly Gateaux differentiable norm, let C be a nonempty closed convex subset of E and let T be a generalized nonspreading mapping of C into itself such that F(T) is nonempty. Then, T is relatively nonexpansive.

Let E be a smooth Banach space and let C be a nonempty subset of E. Let $T: C \to C$ be a mapping. Then, $p \in C$ is called a generalized asymptotic fixed point of T [15] if there exists $\{x_n\} \subset C$ such that $Jx_n \to Jp$ and $\lim_{n\to\infty} ||Jx_n - JTx_n|| = 0$. We denote by $\check{F}(T)$ the set of generalized asymptotic fixed points of T. From Takahashi and Yao [35], we also know the following result.

Theorem 7.4. Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty subset of E. Let T be a mapping of C into itself and let T^* be the duality mapping of JC into itself. Then the following hold:

- (1) $J\hat{F}(T) = \check{F}(T^*);$
- (2) $J\check{F}(T) = \hat{F}(T^*).$

Using Theorem 7.1, we have the following result.

Theorem 7.5. Let E be a smooth, strictly convex and reflexive Banach space such that E^* has a uniformly Gâteaux differentiable norm, let C be a nonempty closed subset of E such that JC is closed and convex and let T be a skewgeneralized nonspreading mapping of C into itself. Then $\check{F}(T) = F(T)$.

Proof. The inclusion $F(T) \subset F(T)$ is obvious. Thus we only need to show $\check{F}(T) \subset F(T)$. Let $u \in \check{F}(T)$ be given. Then we have a sequence $\{x_n\}$ of C such that $Jx_n \rightharpoonup Ju$ and $\lim_{n\to\infty} \|Jx_n - JTx_n\| = 0$. Since $T : C \to C$ is a skew-generalized nonspreading mapping, as in the proof of Theorem 6.2, $T^* = JTJ^{-1}$ is a generalized nonspreading mapping of JC into itself. Putting $x_n^* = Jx_n$ and $u^* = Ju$, we have from $Jx_n \rightharpoonup Ju$ and $\lim_{n\to\infty} \|Jx_n - JTx_n\| = 0$ that $x_n^* \to u^*$ and $\lim_{n\to\infty} \|x_n^* - T^*x_n^*\| = 0$. Then, we have $u^* \in F(T^*)$. We know from Theorem 7.1 that $\hat{F}(T^*) = F(T^*)$. So, we have $u^* \in F(T^*)$ and hence $u^* = T^*u^*$. This implies that $Ju = JTJ^{-1}Ju$. So, we have u = Tu and hence $u \in F(T)$. Therefore, $\check{F}(T) = F(T)$. This completes the proof.

From Inthakon, Dhompongsa and Takahashi [17], we also know the following result; see also Ibaraki and Takahashi [15].

Theorem 7.6. (Inthakon, Dhompongsa and Takahashi [17]). Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty closed subset of E such that JC is closed and convex. If $T : C \to C$ is a generalized nonexpansive mapping such that F(T) is nonempty, then F(T) is closed and JF(T) is closed and convex. Using Theorem 7.6 and (6.2), we have the following result.

Theorem 7.7. Let E be a smooth, strictly convex and reflexive Banach space, let C be a nonempty closed subset of E such that JC is closed and convex and let T be a skew-generalized nonspreading mapping of C into itself such that F(T) is nonempty. Then T is generalized nonexpansive. Furthermore, F(T) is closed and JF(T) is closed and convex.

Proof. We have from (6.2) that $\phi(u, Ty) \leq \phi(u, y)$ for all $u \in F(T)$ and $y \in C$. So, T is generalized nonexpansive. From Theorem 7.6, F(T) is closed and JF(T) is closed and convex.

Using Theorems 7.5 and 7.7, we have the following result.

Theorem 7.8. (Takahashi and Yao [35]). Let E be a smooth and reflexive Banach space and E^* has a uniformly Gâteaux differentiable norm. Let C be a closed subset of E such that JC is closed and convex and let $T : C \to C$ be a skew-nonspreading mapping, i.e.,

$$\phi(Tx,Ty) + \phi(Ty,Tx) \le \phi(x,Ty) + \phi(y,Tx)$$

for all $x, y \in C$. If F(T) is nonempty, then the following hold:

- (1) $\check{F}(T) = F(T);$
- (2) JF(T) is closed and convex;
- (3) F(T) is closed;
- (4) T is generalized nonexpansive.

Proof. An $(\alpha, \beta, \gamma, \delta)$ -skew-generalized nonspreading mapping T of C into itself such that $\alpha = \beta = \gamma = 1$ and $\delta = 0$ is a skew-nonspreading mapping. From Theorems 7.5 and 7.7, we have the desired result.

ACKNOWLEDGMENTS

The second author and the third author are partially supported by Grant-in-Aid for Scientific Research No. 19540167 from Japan Society for the Promotion of Science and by the Grant NSC 99-2115-M-110-004-MY3, respectively.

REFERENCES

1. Y. I. Alber, *Metric and generalized projections in Banach spaces: Properties and applications*, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, (A. G. Kartsatos ed.), Marcel Dekker, New York, 1996, pp. 15-50.

- K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, *J. Nonlinear Convex Anal.*, **11** (2010), 335-343.
- 3. J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, *C. R. Acad. Sci. Paris Ser. A-B*, **280** (1975), 1511-1514.
- 4. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, *Math. Student*, **63** (1994), 123-145.
- 5. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, *Math. Z.*, **100** (1967), 201-225.
- R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, *Pacific J. Math.*, 47 (1973), 341-355.
- 7. R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, *Houston J. Math.*, **3** (1977), 459-470.
- P. L. Combettes and A. Hirstoaga, Equilibrium problems in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
- S. Dhompongsa, W. Fupinwong, W. Takahashi and J.-C. Yao, Fixed point theorems for nonlineaqr mappings and strict convexity of Banach spaces, *J. Nonlinear Convex Anal.*, **11** (2010), 45-63.
- 10. K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, Cambridge, 1990.
- 11. M. Hojo, W. Takahashi, and J.-C. Yao, Weak and Strong Mean Convergence Theorems for Super Hybrid Mappings in Hilbert Spaces, *Fixed Point Theory*, **12** (2011), to appear.
- 12. T. Honda, T. Ibaraki and W. Takahashi, Duality theorems and convergence theorems for nonlineaqr mappings in Banach spaces, *Int. J. Math. Statis.*, **6** (2010), 46-64.
- 13. T. Ibaraki and W. Takahashi, Weak convergence theorem for new nonexpansive mappings in Banach spaces and its applications, *Taiwanese J. Math.*, **11** (2007), 929-944.
- 14. T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, *J. Nonlinear Convex Anal.*, **10** (2009), 21-32.
- 15. T. Ibaraki and W. Takahashi, *Generalized nonexpansive mappings and a proximal-type algorithm in Banach spaces*, Contemp. Math., 513, Amer. Math. Soc., Providence, RI, 2010, pp. 169-180.
- S. Iemoto and W. Takahashi, Approximating fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, *Nonlinear Anal.*, **71** (2009), 2082-2089.
- W. Inthakon, S. Dhompongsa and W. Takahashi, Strong convergence theorems for maximal monotone operators and generalized nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal., 11 (2010), 45-64.

- 18. S. Itoh and W. Takahashi, The common fixed point theory of single-valued mappings and multi-valued mappings, *Pacific J. Math.*, **79** (1978), 493-508.
- 19. S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach apace, *SIAM J. Optim.*, **13** (2002), 938-945.
- 20. F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, *SIAM. J. Optim.*, **19** (2008), 824-835.
- 21. P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, *Taiwanese J. Math.*, **6** (2010), 2497-2511.
- 22. P. Kocourek, W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Banach spaces, *Taiwanese J. Math.*, **14** (2010), 2497-2511.
- 23. F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, *Arch. Math.*, **91** (2008), 166-177.
- 24. W. R. Mann, Mean value methods in iteration, *Proc. Amer. Math. Soc.*, **4** (1953), 506-510.
- 25. S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, **134** (2005), 257-266.
- 26. S. Reich, A weak convergence theorem for the alternating method with Bregman distances, in: *Theory and Applications of Nonlinear Operators of Accretive and Monotone Type*, (A. G. Kartsatos ed.), Marcel Dekker, New York, 1996, pp. 313-318.
- 27. W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, *Proc. Amer. Math. Soc.*, **81** (1981), 253-256.
- 28. W. Takahashi, *Nonlinear Functional Analysis*, Yokohoma Publishers, Yokohoma, 2000.
- 29. W. Takahashi, *Convex Analysis and Approximation of Fixed Points (Japanese)*, Yokohama Publishers, Yokohama, 2000.
- 30. W. Takahashi, *Introduction to Nonlinear and Convex Analysis*, Yokohoma Publishers, Yokohoma, 2009.
- 31. W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, *J. Nonlinea Convex Anal.*, **11** (2010), 79-88.
- 32. W. Takahashi and D. H. Jeong, Fixed point theorem for nonexpansive semigroups on Banach space, *Proc. Amer. Math. Soc.*, **122** (1994), 1175-1179.
- 33. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, *J. Optim. Theory Appl.*, **118** (2003), 417-428.
- 34. W. Takahashi and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Hilbert spaces, *Taiwanese J. Math.*, **15** (2011), to appear.

- 35. W. Takahashi and J.-C. Yao, Nonlinear operators of monotone type and convergence theorems with equilibrium problems in Banach spaces, *Taiwanese J. Math.*, to appear.
- 36. H. K. Xu, Inequalities in Banach spaces with applications, *Nonlinear Anal.*, 16 (1981), 1127-1138.

Ming-Hsiu Hsu Department of Applied Mathematics National Sun Yat-sen University Kaohsiung 80424, Taiwan E-mail: hsumh@mail.math.nsysu.edu.tw

Wataru Takahashi Department of Mathematical and Computing Sciences Tokyo Institute of Technology Tokyo 152-8552, Japan and Department of Applied Mathematics National Sun Yat-sen University Kaohsiung 80424, Taiwan E-mail: wataru@is.titech.ac.jp

Jen-Chih Yao Center for General Education Kaohsiung Medical University Kaohsiung 80707, Taiwan E-mail: yaojc@kmu.edu.tw