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THE SEGAL-BARGMANN TRANSFORM FOR COMPACT QUOTIENTS
OF SYMMETRIC SPACES OF THE COMPLEX TYPE

Brian C. Hall and Jeffrey J. Mitchell

Abstract. Let G/K be a Riemannian symmetric space of the complex type,
meaning that G is complex semisimple and K is a compact real form. Now let
Γ be a discrete subgroup of G that acts freely and cocompactly on G/K. We
consider the Segal-Bargmann transform, defined in terms of the heat equation,
on the compact quotient Γ\G/K. We obtain isometry and inversion formulas
precisely parallel to the results we obtained previously for globally symmetric
spaces of the complex type. Our results are as parallel as possible to the
results one has in the dual compact case. Since there is no known Gutzmer
formula in this setting, our proofs make use of double coset integrals and a
holomorphic change of variable.

1. INTRODUCTION

1.1. Segal-Bargmann transforms

The Segal-Bargmann transform, in the form that we are considering in this paper,
consists of applying the heat operator to a function on a certain Riemannian manifold
M and then analytically continuing the result to an appropriate complexification of
M. An isometry formula shows that the L2 norm of the original function is equal
to an appropriate norm on the Segal-Bargmann transform, and an inversion formula
shows how to recover the original function from its Segal-Bargmann transform. So
far, this program has been carried out for Euclidean and compact Riemannian sym-
metric spaces [18, 19, 52] and more recently for noncompact Riemannian symmetric
spaces [29, 30, 36, 47], the Heisenberg group [39], and nilmanifolds [40].

The original motivation for this work came from quantum mechanics, in the work
of Segal [48-50] and Bargmann [2]. The Segal-Bargmann transform can be viewed
as a sort of “phase space wave function” associated to the original “configuration
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space wave function.” Introduction of the phase space wave function allows for
several important new constructions, including coherent states, the Berezin-Toeplitz
quantization scheme, and the Berezin transform.

On the other hand, one can consider the Segal-Bargmann transform as a geomet-
ric study of the heat operator. From this point of view, the question would be to try
to characterize the range of the heat operator (for some fixed time t > 0). See [27].
Since applying the heat operator always gives a real-analytic function, it is natural to
try to characterize functions in the range in terms of appropriate conditions on their
analytic continuations (the isometry formula). Once the range of the heat operator is
characterized, the inversion formula is then a formula for computing the backward
heat equation as an integral involving the analytic continuation of a function in the
range.

1.2. Compact Lie groups
We now review briefly the Segal-Bargmann transform for a compact Lie group

with a bi-invariant metric, which is a very special case of a compact symmetric
space. The main results of this paper are for compact quotients of symmetric spaces
of the “complex type.” Noncompact symmetric spaces of the complex type are simply
the duals (in the usual duality for symmetric spaces) of compact Lie groups. The
formulas for the complex case, and compact quotients thereof, are very similar to
those for the compact group case, except that we will have to deal with singularities,
which do not arise in the compact case.

Let K be a compact Lie group and KC its complexification. Let ∆ be the
Laplacian on K with respect to a bi-invariant metric, taken to be a negative operator,
and let et∆/2 be the associated (forward) heat operator. We fix t > 0 and define the
Segal-Bargmann transform for K as the map taking f ∈ L 2(K) to the holomorphic
extension to KC of et∆/2(f).

For each x ∈ K, the geometric exponential map expx : Tx(K) → K admits
an extension to a holomorphic map of the complexified tangent space Tx(K)C into
KC. It can be shown (see [52, Sec. 2] and also [42, Sec. 8]) that every point
z ∈ KC can be expressed uniquely as

z = expx iY, x ∈ K, Y ∈ Tx(K),

where expx iY is defined by the just-described holomorphic extension. Let jx be
the Jacobian of expx and let

jnc
x (Y ) = jx(iY ).

The function jnc
x may be thought of as the Jacobian of the exponential mapping for

the noncompact symmetric space dual to K. (The superscript “nc” stands for “non-
compact.”) Let ρ denote half the sum (with multiplicities) of the positive restricted
roots for U/K. Then the main results [18, 19] concerning the Segal-Bargmann
transform for K may be described as follows.
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Theorem 1. Let K be a compact Lie group with a bi-invariant metric. Then
we have the following results.

The isometry formula. Fix f in L2(K) and t > 0. Then F := et∆/2f has a
holomorphic extension to KC satisfying

(1)

∫
K
|f(x)|2 dx

= e−|ρ|2t

∫
x∈K

∫
Y ∈Tx(K)

|F (expx iY )|2 jnc
x (2Y )1/2 e

−|Y |2/t

(πt)d/2
dY dx.

The surjectivity theorem. Given any holomorphic function F on K C for which
the right-hand side of (1) is finite, there exists a unique f ∈ L 2(K) with F |K =
et∆/2f.

The inversion formula. If f ∈ L2(K) is sufficiently regular and F := e t∆/2f,

then

(2) f(x) = e−|ρ|2t/2

∫
Tx(K)

F (expx iY )jnc
x (Y )1/2e

−|Y |2/2t

(2πt)d/2
dY.

Note that we have e−|Y |2/t and jnc
x (2Y ) in the isometry formula but e−|Y |2/2t

and jc
x(Y ) in the inversion formula. The same results for the the Euclidean sym-

metric space Rd hold, with jnc
x (Y ) ≡ 1 and |ρ| = 0. The Rd result is the

Segal-Bargmann transform for Euclidean spaces developed by Segal and Bargmann
[2, 50], with somewhat different normalization conventions. (See [27, 21] for more
information).

For general compact symmetric spaces U/K, the isometry and inversion formu-
las developed by Stenzel [52] involve the heat kernel measure on the dual noncom-
pact symmetric space. In the case where U/K is isometric to a compact Lie group
with a bi-invariant metric, the dual noncompact symmetric space is of the “complex
type,” where there is an explicit formula [14] for the heat kernel, accounting for the
simple explicit form of Theorem 1.

The group case is also special because of connections to geometric quantization
[12, 13, 25, 35] and the quantization of (1 + 1)-dimensional Yang-Mills theory
[6, 22, 59].

1.3. Quotients of noncompact symmetric spaces of the complex type

In this paper, we consider a compact quotient of a noncompact Riemannian sym-
metric space of the “complex type.” Suppose G is a connected complex semisimple
group and K a maximal compact subgroup of G. Then the manifoldG/K , equipped
with a fixed G-invariant Riemannian metric, is a noncompact symmetric space of
the complex type. Symmetric space of the noncompact type are nothing but the
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noncompact duals, under the usual duality between symmetric spaces of compact
and noncompact types, of compact semisimple Lie groups. The simplest example
of a symmetric space of the complex type is hyperbolic 3-space.

In [29, 30], we have developed a Segal-Bargmann transform for a noncompact
symmetric space G/K of the complex type. (See also [27] further discussion of
conceptual issues involved.) In the present paper, we wish to extend that theory
to a compact quotient Γ\G/K, where Γ is a discrete subgroup of G acting freely
and cocompactly on G/K. (Examples of such quotients include compact hyperbolic
3-manifolds.) Although the formulas in the quotient case are essentially identical
to the formulas for G/K itself, the proofs, particularly of the isometry formula, are
different.

At the intuitive level, the results about the Segal-Bargmann transform for Γ\G/K
(with G complex) should be obtained from the results for the compact group case
by dualizing. This means that we should replace K in Theorem 1 with Γ\G/K
and jnc with jc, the Jacobian of the exponential map for the compact symmetric
space dual to G/K. We also replace |ρ|2 with − |ρ|2 in the exponential factors in
front of the integrals, where |ρ|2 is related to the scalar curvature, which is positive
in the compact case and negative in the noncompact case.

The challenge on the noncompact side (whether for G/K or for Γ\G/K) is
to make sense of the dualized formulas. The main difficulty is the appearance of
singularities that do not appear on the compact side. If f is a function on Γ\G/K
and we set F = et∆/2f for some fixed t, then the function

Y �−→ F (expx Y ), Y ∈ Tx(Γ\G/K)

does not admit an entire analytic holomorphic extension in Y. Specifically, the
function F (expx(iY )) will develop singularities once Y gets large enough. (By
contrast, in the compact case, if F is of the form F = et∆/2f, then F (expx(iY ))
is nonsingular for all Y.) To make sense of the isometry formula or the inversion
formula for Γ\G/K, we need a cancellation of singularities.

The inversion formula for Γ\G/K is as follows. Let f be a sufficiently smooth
function in L2(Γ\G/K) and let F = et∆/2f. Then we have

(3) f(x) = “ lim
R→∞

” e|ρ|
2t/2

∫
Y ∈Tx(Γ\G/K)

|Y |≤R

F (expx iY )jcx(Y )1/2 e
−|Y |2/2t

(2πt)d/2
dY.

Here, “limR→∞” means the limit as R tends to infinity of the real-analytic extension
of the indicated quantity. That is to say, the integral on the right-hand side of (3) is
well-defined for all sufficiently small R and admits a real-analytic continuation in R
to (0,∞). The right-hand side of (3) then is equal to the limit as R tends to infinity
of this analytic continuation. (See also Stenzel’s work [53] for a different sort
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of inversion formula for noncompact symmetric spaces.) Meanwhile, the isometry
formula for Γ\G/K reads

(4)

∫
Γ\G/K

|f(x)|2 dx

= “ lim
R→∞

”e|ρ|
2t

∫
x∈Γ\G/K

∫
Y ∈Tx(Γ\G/K)

|Y |≤R

|F (expx iY )|2 jcx(2Y )1/2 e
−|Y |2/t

(πt)d/2
dY dx.

In both the inversion formula and the isometry formula, there is a cancellation
of singularities that allows the real-analytic extension with respect to R to exist,
even though F (expx iY ) becomes singular for large Y. In the inversion formula,
for example, integral on the right-hand side of (3) is unchanged if we average
the function Y �−→ F (expx iY ) with respect to the action of Kx, the group of
local isometries of Γ\G/K fixing x. This averaging process cancels many of the
singularities in F (expx iY ); the remaining singularities are canceled by the zeros
of the function jc(Y ).

Our inversion and isometry formulas for the Segal-Bargmann transform on
Γ\G/K are the same as the ones developed in [29, 30] for G/K, except for replac-
ing G/K with Γ\G/K in the obvious places in the formulas. (In both cases, still
assuming that G is complex!) In the G/K case, our isometry formula does not coin-
cide with the isometry formula developed by B. Krötz, G. Ólafsson, and R. Stanton
[36]. The results of [36] have the advantage of working for arbitrary symmetric
spaces of the noncompact type (not just the complex case); our results, meanwhile,
have the advantage of being more parallel to what one has in the compact case.
(See [46] a Segal-Bargmann transform for radial functions on noncompact symmet-
ric spaces. See also [47] for a refinement of the isometry formula in [36], which
also differs from the isometry formula of [30] when specialized to the complex
case.)

1.4. Remarks on the methods used

We conclude this introduction by discussing the methods of proof. At least
conceptually, the proof of the inversion formula on Γ\G/K should be similar to the
proof of the inversion formula on G/K. After all, a function f on Γ\G/K lifts to a
Γ-invariant function f̃ on G/K. To be sure, f̃ is not square-integrable on G/K, but
this matters little, since the inversion formula involves no integration over the base
manifold. As a result, our proof of the inversion formula for Γ\G/K is similar to
the proof for G/K. The key ingredient is an “intertwining formula,” specific to the
complex case, between the Euclidean and non-Euclidean Laplacians.

In the case of the isometry formula, lifting to G/K is not helpful, since the lack
of square-integrability of f̃ prevents us from formulating the isometry “upstairs” on
G/K. Meanwhile, the Gutzmer-type formula of J. Faraut [8, 9], which is the key
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ingredient in the proofs in [29, 30] and also in [36], has no analog (so far as we
know) on Γ\G/K. This means that our proof of the isometry formula for Γ\G/K
must use methods that are completely different from those in the [29, 30]. Our
proof uses a double coset integral along with a holomorphic change of variable to
reduce the isometry formula to the inversion formula. This approach parallels one
method of establishing the isometry formula in the compact case, in work of Hall
[19] and Stenzel [52].

The proof of the holomorphic change of variable (Theorem 8) applies to compact
quotients of general symmetric spaces of the noncompact type, not just those of
the complex type. Meanwhile, in cases where the relevant singularities can be
understood fairly easily (say, the rank-one case or the even-multiplicity case), it
may be possible to develop an inversion formula involving integration against a
suitably “unwrapped” version of the heat kernel on the dual compact symmetric
space. Thus, it may be possible to develop results similar to those of this paper and
[29, 30] for other noncompact symmetric spaces and compact quotients thereof.

2. SET-UP

We begin this section by recalling certain basic facts about symmetric spaces.
A standard reference for this material is [32]. We consider a connected complex
semisimple group G, a fixed maximal compact subgroup K of G, and the quotient
manifold G/K. We will assume, with no loss of generality, that G acts effectively
on G/K, which is equivalent to assuming that the Lie algebra k of K contains no
nonzero ideal of g and that the center ofG is trivial. There is then a unique involution
of G whose fixed-point subgroup is K. The Lie algebra g then decomposes as
g = k + p, where p is the space on which the associated Lie algebra involution acts
as −I. (Since G is complex, p will be equal to ik.) We now choose on p an inner
product invariant under the adjoint action of K. We consider the manifold G/K and
we identify the tangent space at the identity coset x0 with p. There is then a unique
G-invariant Riemannian structure on G/K whose restriction to Tx0(G/K) = p

is the chosen Ad-K-invariant inner product. The manifold G/K , together with a
Riemannian structure of this form, is what we will call a noncompact symmetric
space of the complex type.

We let a be a maximal commutative subspace of p and we let R ⊂ a∗ denote
the set of (restricted) roots for the (g, k). We fix a set of positive roots, which we
denote by R+. We then let a+ denote the closed fundamental Weyl chamber, that
is, the set of Y ∈ a such that α(Y ) ≥ 0 for all α ∈ R+. It is known that every
element of p can be moved into a+ by the adjoint action of K.

We will also consider the compact dual to G/K. Let GC be the complexification
of G, which containsG as a closed subgroup, in which case the Lie algebra of GC is
gC = g+ig. We define u to be the subalgebra of gC given by u := k+ip and we let



Segal-Bargmann Transform for Compact Quotients 19

U be the corresponding connected Lie subgroup of GC, which is compact. We then
consider the manifold U/K. We think of the tangent space at the identity coset in
U/K as ip. The chosen inner product on p then determines an inner product on ip in
the obvious way. There is then a unique U -invariant Riemannian structure on U/K
whose restriction to the tangent space at the identity coset is this inner product. The
manifold U/K, with this Riemannian structure, is a simply connected symmetric
space of the compact type in the notation of [32], and is called the compact dual
of the symmetric space G/K. Since G/K is of the complex type, U/K will be
isometric to a compact Lie group with a bi-invariant metric.

We then consider a discrete subgroup Γ of G with the property that Γ acts
freely and cocompactly on G/K. The action of Γ is then automatically properly
discontinuous. It is not obvious but true that such subgroups always exist. The
manifold X := Γ\G/K is then what we mean by a compact quotient of G/K. We
let π denote the quotient map from G/K to Γ\G/K; this map is a covering map.
Because the action of Γ ⊂ G on G/K is isometric, the metric on G/K descends
unambiguously toX. In the case thatG/K is hyperbolic 3-space, a compact quotient
is nothing but a hyperbolic 3-manifold, that is, an orientable closed 3-manifold of
constant negative curvature.

For R > 0, let TR(X) denote the set of pairs (x, Y ) in T (X) with |Y | < R.
Let SR denote the strip in the complex plane given by

(5) SR = {u+ iv ∈ C| |v| < R} .
If γ is a unit-speed geodesic in X, consider the map τ : SR → TR(X) given by

τ(u+ iv) = (γ(u), vγ̇(u)).

In the terminology of Lempert and Sz′′oke [43, 54], a complex structure on TR(X)
is called “adapted” (to the given metric on X) if for each geodesic γ, the map τ is
holomorphic as a map of SR ⊂ C into TR(X). Lempert and Sz ′′oke show that for
any R > 0 there exists at most one adapted complex structure and that if R is small
enough then an adapted complex structure does exist. (These results hold more
generally for any compact, real-analytic Riemannian manifold.) The same complex
structure was constructed independently, from a different but equivalent point of
view, by Guillemin and Stenzel [16, 17].

Given x ∈ X, we may consider the geometric exponential map

expx : Tx(X) → X ⊂ T (X).

This map can be analytically continued into a holomorphic map of a neighborhood of
the identity in the complexified tangent space Tx(X)C into T (X). This analytically
continued exponential map satisfies

(6) expx(iY ) = (x, Y ),
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as may easily be verified from the holomorphicity of the map τ.
If F is a real-analytic function on X, it will have an analytic continuation, also

called F, to some TR′
(X), for some R′ ≤ R. In light of (6), we may write the

value of F at a point (x, Y ) ∈ TR′
(X) as F (expx iY ). This notation is suggestive,

because we may alternatively consider the map

(7) Y → F (expx Y )

as a real-analytic map of Tx(X) into C. Then the expression F (expx iY ) may be
thought of equivalently as the analytic continuation of F evaluated at the point
expx(iY ) = (x, Y ), or as the analytic continuation of the map (7), evaluated at the
point iY.

For each x ∈ X, we have also the Jacobian jx of the exponential map expx .

To compute jx, we choose some x̃ ∈ G/K that maps to x under quotienting by
Γ. Then we choose some g ∈ G with g · x0 = x̃, where x0 is the identity coset
in G/K. The action of g serves to identify Tx0(G/K) with Tx̃(G/K), which is
then naturally identifiable with Tx(X) by the differential of the covering map from
G/K to Γ\G/K . Finally, Tx0(G/K) is naturally identifiable with p. In this way,
we obtain an identification of Tx(X) with p. The identification is not unique, but it
is unique up to the adjoint action of K on p. Under any identification of this sort,
jx is invariant under the adjoint action of K on p, and the restriction of jx to a ⊂ p

is given by

jx(H) =
∏

α∈R+

(
sinhα(H)
α(H)

)2

.

This formula is the same as the formula for the Jacobian of the exponential map on
G/K and reflects that in the complex case, all the (restricted) roots for G/K have
multiplicity 2.

From this formula, one can verify that the function jx on Tx(X) admits an entire
holomorphic extension to the complexification of Tx(X), which may be identified
with pC. Now consider the function jc

x on Tx(X) given by

jcx(Y ) = jx(iY ).

Under our identification of Tx(X) with p, we have that jc
x is invariant under the

adjoint action of K and its restriction to a is given by

jcx(H) =
∏

α∈R+

(
sinα(H)
α(H)

)2

.

The superscript “c” in the formula reflects that j c
x coincides with the Jacobian of

the exponential mapping for the compact symmetric space U/K.
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Note that the formula for jcx, under any identification of Tx(X) with p of the
above sort, is independent of x. Thus, in a certain sense, jc

x is “the same” function
for each x, reflecting that any point in X can be mapped to any other point by a local
isometry. For example, in the case of a hyperbolic 3-manifold (with an appropriate
normalization of the metric), we have jcx(Y ) = (sin |Y | / |Y |)2 for every x ∈ X.

We now let jc
x(Y )1/2 be (under our identification of Tx(X) with p) the Ad-K-

invariant function whose restriction to a is given by

(8) jcx(H)1/2 =
∏

α∈R+

sinα(H)
α(H)

.

Note that jc
x(Y )1/2 is not the positive square root of jc

x(Y ). Rather, jcx(Y )1/2 is
chosen so as to be real analytic and positive near the origin. We then let j c

x(Y )−1/2

be the reciprocal of jcx(Y )1/2, defined away from the points where jcx(Y ) is zero.

3. THE INVERSION FORMULA

The key result of this section is the partial inversion formula (Theorem 3), which
is proved using an intertwining formula that relates the Laplacian on G/K to the
Euclidean Laplacian. Once Theorem 3 is proved, the desired “global” inversion
formulas follow by a fairly straightforward limit as the radius tends to infinity.

For each x ∈ Γ\G/K, consider (as in [29, 30]) the function

νc
t,x(Y ) := et|ρ|

2/2jcx(Y )−1/2 e
−|Y |2/2t

(2πt)d/2
, Y ∈ Tx(X)

and the associated signed measure

(9) νc
t,x(Y )jcx(Y ) dY = et|ρ|

2/2jcx(Y )1/2 e
−|Y |2/2t

(2πt)d/2
dY.

Here, again, the superscript “c” is supposed to denote quantities associated to the
compact symmetric space U/K dual to G/K. The measure in (9) is an “unwrapped”
form of the heat kernel measure on U/K. This means that the push-forward of this
measure under the exponential mapping for U/K is precisely the heat kernel measure
at the identity coset on U/K [29, Thm. 5]. (Note that because U/K is isometric
to a compact Lie group with a bi-invariant metric, the heat kernel formula of Èskin
([7]; see also [58]) applies. From this formula it is easy to see that the signed
measure in (9) pushes forward to the heat kernel on U/K.)

We introduce the operator

(10)

At,R(f)(x) =
∫

T R
x (X)

F (expx iY )νc
t,x(Y )jcx(Y ) dY

= et|ρ|
2/2

∫
T R

x (X)
F (expx iY )jcx(Y )1/2 e

−|Y |2/2t

(2πt)d/2
dY,
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where as usual, F is the analytic continuation of et∆/2f and where TR
x (X) denotes

the vectors in Tx(X) with length less than R. The operator At,R consists of applying
the time-t heat operator and then doing a “partial inversion,” in which we integrate
only over a ball of radius R in the tangent space. We will seek a way to allow
R to tend to infinity, by means of an appropriate analytic continuation, with the
expectation that At,R tends to the identity operator as R tends to infinity.

We now state the results of this section, before turning to the proofs.

Proposition 2. There exists R0 > 0 such that for all f ∈ L2(X), the function
F := et∆/2f has a holomorphic extension to T R0(X), with respect to the adapted
complex structure. Furthermore, for each fixed z ∈ T R0(X), the map f → F (z)
is a bounded linear functional on L 2(X), with norm a locally bounded function of
z.

This proposition shows that the operator At,R is well defined and bounded for
all sufficiently small R.

Theorem 3. ([Partial Inversion Formula]). Let R0 be as in Proposition 2. For
all R < R0, let At,R be the operator defined by (10). Then At,R is a bounded
operator on L2(X) and is given by

At,R = αt,R(−∆),

where αt,R : [0,∞) → R is given by

(11) αt,R(λ) = e−tλ/2et|ρ|
2/2

∫
Y ∈Rd

|Y |≤R

exp
(√

λ− |ρ|2 y1
)
e−|Y |2/2t

(2πt)d/2
dY.

Here
√
λ− |ρ|2 is either of the two square roots of λ− |ρ| 2 .

On G/K, the spectrum of −∆ is the interval [|ρ|2 ,∞). By contrast, on X =
Γ\G/K, the spectrum of −∆ includes points in the interval [0, |ρ|2); for example,
the constant function 1 is an eigenvector for −∆ with eigenvalue 0. For λ ∈ [0, |ρ|2),√
λ− |ρ|2 will be pure imaginary. Nevertheless, because the domain of integration

in (11) is invariant under y → −y, the value of αt,R(λ) is still a real number.
For each fixed value of R and t, the integral in (11) is bounded by a constant

times exp(
√
λR). Thus, because of the factor of e−tλ/2 in front of the integral,

αt,R(λ) is a bounded function of λ for each R and t.
Although the definition of At,R in (10) makes sense only for small R, the

function in (11) is a well defined and bounded function of λ for every R > 0.
Furthermore, if we let R tend to infinity in the definition of αt,R we obtain (by
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Dominated Convergence) an integral over all of Rd. This integral is an easily eval-
uated Gaussian integral, whose value turns out to be 1 for all λ. That is to say,

(12) lim
R→∞

αt,R(λ) = 1

for all t and λ. This suggests that At,R(f) should tend to f as R tends to infinity;
proving this will yield a global inversion formula. We present two versions of the
formula, an L2 version valid for all f ∈ L2(X) and a pointwise version valid for
sufficiently smooth f.

Theorem 4. ([Global Inversion Formula, L2 Version]). Let R0 be as in Propo-
sition 2. For all R < R0, let At,R be as in (10). Then the map R → At,R has
a weakly analytic extension, also denoted A t,R, to a map of (0,∞) into the space
of bounded operators on L2(X). This analytic extension has the property that for
each f ∈ L2(X) we have

(13) f = lim
R→∞

At,Rf,

with the limit being in the norm topology of L 2(X). In light of the original expres-
sion for At,R, we may express (13) informally as

f(x) = “ lim
R→∞

”et|ρ|
2/2

∫
T R

x (X)

F (expx iY )jcx(Y )1/2e
−|Y |2/2t

(2πt)d/2
dY,

with the limit in the L2 sense.

Recall that a map α of (0,∞) into the space of bounded operators on a Hilbert
space H is weakly analytic if the map R → 〈f, α(R)g〉 is a real-analytic function
of R for each f and g in H. Of course, the analytic extension of the map R → At,R

is given by αt,R(−∆), where αt,R is defined (for all R > 0) by (11).

Theorem 5. ([Global Inversion Formula, Pointwise Version]). Let R0 be as in
Proposition 2. For all R < R 0, let At,R be as in (10). Assume that f ∈ L2(X) is
in the domain of ∆ l for some positive real number with l > (3d 2 − d)/4. Then for
each x ∈ X, the function Lx,f(F ) given by

Lx,f(R) = (At,Rf)(x)

has a real-analytic extension, also denoted L x,f , from R ∈ (0, R0) to R ∈ (0,∞).
Furthermore, we have

(14a) f(x) = lim
R→∞

Lx,f(R),
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with the limit being uniform in x. In light of the original expression for A t,R, we
may express (13) informally as

f(x) = “ lim
R→∞

”et|ρ|
2/2

∫
T R

x (X)

F (expx iY )jcx(Y )1/2e
−|Y |2/2t

(2πt)d/2
dY,

for f in Dom(∆l), with the limit being uniform in x.

These inversion formulas are as parallel as possible to the inversion formula
(2) in the dual compact group case. Specifically, the inversion formulas above
are obtained by “dualizing” (2) (changing jnc

x to jcx and e−t|ρ|2/2 to et|ρ|
2/2) and

inserting an analytic continuation in R, which is unnecessary in the compact group
case.

Proof of Proposition 2. Let k t(·, ·) denote the heat kernel for X. A result of
Nelson [44, Thm. 8] shows that for any fixed positive time t, kt is a real-analytic
function on X ×X. As a result, kt will have an analytic continuation, also denoted
kt, to TR0(X)×TR0(X) for some sufficiently small R0. Then the function defined
by

z →
∫

X
kt(z, y)f(y) dy, z ∈ TR0(X),

is the desired holomorphic extension of F := et∆/2f. The desired properties of the
pointwise evaluation functional are then easy to read off.

Now, Nelson’s result leaves open the possibility that the radius R0 could depend
on t, which is harmless in our case, since we work with one fixed t throughout.
Nevertheless, using a result of Guillemin and Stenzel [17, Thm. 5.2], it is not hard
to see that R0 can be chosen to be independent of t.

Proof of Theorem 3. Now that At,R is known to be a bounded operator, we
can compute it by evaluating it on an orthonormal basis for L2(X) consisting of
eigenfunctions of the Laplacian. So let φ be an eigenfunction of −∆ on X with
eigenvalue λ ≥ 0. Our goal is to show that At,R(φ) is a certain constant multiple
of φ, with the constant depending only on λ. This will show that At,R is a specific
function of the Laplacian.

Applying et∆/2 to φ gives e−tλ/2φ. This means that we want to compute

e−tλ/2

∫
T R

x (X)
φ(expx iY )νc

t,x(Y )jcx(Y ) dY,

for a fixed x in X = Γ\G/K. Let Kx denote the identity component of the group of
local isometries of X that fix x. Then the key point is that the function ν c

t,x(Y )jcx(Y )
is invariant under the action of Kx on Tx(X). (This invariance can be seen by
observing that under our identification of Tx(X) with p, jc

x is an Ad-K-invariant
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function on p.) Thus averaging the function Y �−→ φ(expx iY ) over the action of
Kx has no effect on the integral. This averaging cancels out many of the singularities
in φ(expx iY ).

Let x̃ be a preimage of x in G/K and let Φ be the lift of φ to G/K. Let Φ(x̃)

denote the radialization of Φ about x̃, that is, the average of Φ over the action of
Kx̃, where Kx̃ is the stabilizer of x̃ in G. Because νc

t,x(Y )jcx(Y ) is invariant under
the action of Kx, we have

(15)

e−tλ/2

∫
T R

x (X)
φ(expx iY )νc

t,x(Y )jcx(Y ) dY

= e−tλ/2

∫
T R

x̃ (G/K)
Φ(x̃)(expx̃ iY )νc

t,x(Y )jcx(Y ) dY

= e−tλ/2et|ρ|
2/2

∫
T R

x̃ (G/K)
Φ(x̃)(expx̃ iY )jcx(Y )1/2 e

−|Y |2/2t

(2πτ)n/2
dY.

Now, Φ(x̃) is a Kx̃-invariant eigenfunction for ∆ on G/K with eigenvalue λ.
We now use an “intertwining formula” that relates the Laplacian on G/K to the
Euclidean Laplacian on p, when applied to K-invariant functions. See the proof of
Theorem 2 in [29] Proposition V.5.1 in [34] and the calculations in the complex
case on p. 484. The intertwining formula tells us that the function

Y → Φ(x̃)(expx̃ Y )jx(Y )1/2

is an eigenfunction for the Euclidean Laplacian on p with eigenvalue −(λ− |ρ|2).
Therefore, if we analytically continue and replace Y by iY , we conclude that the
function

Ψ(Y ) := Φ(x̃)(expx̃ iY )jcx(Y )1/2

is an eigenfunction for ∆ on p with eigenvalue (λ − |ρ|2). (Recall that jc
x(Y ) =

jx(iY ).)
We now make use of the following elementary result, which was Lemma 5 of

[30]. (We have replaced 2R by R in the statement of [30, Lem. 5].)

Lemma 6. Let Ψ be a smooth function on the ball B(R 0, 0) in R
d satisfying

∆Ψ = σΨ for some constant σ ∈ R, where ∆ is the Euclidean Laplacian. Let β
be a bounded, measurable, rotationally invariant function on B(R 0, 0). Then for
all R < R0 we have

(16)
∫
|Y |≤R

Ψ(Y )β(Y ) dY = Ψ(0)
∫
|Y |≤R

e
√

σy1β(Y ) dY.

Here Y = (y1, . . . , yd) and
√
σ is either of the two square roots of σ.
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Lemma 6 therefore tells us that the last line in (15) is equal to

Φ(x̃)(x̃)e−tλ/2et|ρ|
2/2

∫
Y ∈Rd

|Y |≤R

exp
(√

λ− |ρ|2 y1
)
e−|Y |2/2t

(2πτ)d/2
dY.

Since Φ(x̃)(x̃) = Φ(x̃) = φ(x), this establishes that At,Rφ = αt,R(−∆)φ. Since
At,R is known to be bounded and since there exists an orthonormal basis for L2(X)
consisting of eigenfunctions of −∆, the partial inversion formula follows.

We now turn to the proof of the global inversion formula, in two versions.
Ultimately, the global inversion formula derives from the partial inversion formula
(Theorem 3) together with the observation that limR→∞ αt,R(λ) = 1 (see (12)).

Proofof Theorem 4. For all R > 0, we define At,R to be αt,R(−∆), where
αt,R is defined by (11). The partial inversion formula (Theorem 3) tells us that for
R < R0, At,R coincides with the operator defined in (10). We need to establish,
then, that the operator αt,R(−∆) is weakly analytic as a function of R for fixed t.
We choose an orthonormal basis {ψn} for L2(X) consisting of eigenvectors for −∆,
with corresponding eigenvalues λn. Since −∆ has non-negative discrete spectrum,
there is some N with λn ≥ |ρ|2 for all n ≥ N. Given f, g ∈ L2(X), we write
f =

∑
anψn and g =

∑
bnψn. Then

〈f, αt,R(−∆)g〉L2(X) =
∞∑

n=1

anbnαt,R(λn).

We use the integral expression (11) for αt,R and we wish to interchange the
integral with the sum over n. To do this we split off the first N terms and we want
to show that Fubini’s Theorem applies to the remaining infinite sum. Note that the
exponential in the definition of αt,R is positive provided that λn ≥ |ρ|2 . Thus, if we
the integral over |Y | ≤ R is bounded by the integral over all of Rd, which we have
already remarked is an easy Gaussian integral (see (12)). Thus, if we put absolute
values inside and then interchange the sum and integral, we get an expression that
is bounded by

(17)

∞∑
n=N

|an| |bn| e−tλn/2et|ρ|
2/2

∫
Rd

exp
(√

λn − |ρ|2 y1
)
e−|Y |2/2t

(2πt)d/2
dY

=
∞∑

n=N

|an| |bn| ≤ ‖f‖L2(X) ‖g‖L2(X) <∞.

We may therefore write
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(18)

〈f, αt,R(−∆)g〉L2(X)

=
∫

Y ∈Rd

|Y |≤R

[ ∞∑
n=1

anbne
−tλn/2et|ρ|

2/2 exp
(√

λn−|ρ|2 y1
)]

e−|Y |2/2t

(2πt)d/2
dY.

It is not hard to show, using Fubini’s and Morera’s Theorems, that the expression
in square brackets admits an entire holomorphic extension in y1, given by the same
formula. From this, it then follows easily that the integral on the right-hand side
of (18) is a real-analytic function of R. This shows that the operator αt,R(−∆) is
weakly analytic as a function of R, which is therefore (in light of Theorem 3) the
desired weakly analytic extension of At,R.

Now that we know that the weakly analytic extension of At,R is given by
αt,R(−∆), we need to show that αt,R(−∆)f tends to f in the norm topology of
L2(X), for any f ∈ L2(X). As above, write f =

∑
anψn, so that αt,R(−∆)f =∑∞

n=1 anαt,R(λn)ψn, because αt,R(−∆) is bounded. (In both cases, convergence
is in L2(X).) Then

(19) ‖f−αt,R(−∆)f‖2=
N∑

n=1

(1−αt,R(λn))2 |an|2+
∞∑

n=N+1

(1−αt,R(λn))2 |an|2 ,

where again λn ≥ |ρ|2 for n > N. From (11), we can see that αt,R(λ) is non-
negative and monotone in R for fixed t and λ, provided that λ ≥ |ρ|2 . Since
limR→∞ αt,R(λ) = 1 (see (12)) this means that 0 < αt,R(λ) ≤ 1 for λ ≥ |ρ|2 .
Thus Dominated Convergence shows that the second term on the right-hand side of
(19) tends to zero as R tends to infinity. The first term also tends to zero by (12),
since it is a finite sum. Thus the left-hand side of (19) tends to zero as R tends to
infinity (with t fixed), establishing the L2 form of the global inversion formula.

We turn now to the pointwise version of the global inversion formula.

Proof of Theorem 5. As in the previous proof, write f =
∑∞

n=1 anψn, with
convergence in L2. We now assume that the eigenvectors ψn are ordered so that
the corresponding eigenvalues are nondecreasing with n. According to Weyl’s Law,
λn behaves asymptotically like a constant times n2/d as n tends to infinity, where
d = dimX, as usual. It is also known (e.g., [51] and the references therein) that
there is a constant C, depending only on the choice of X, such that if φ is an
eigenfunction of the Laplacian with eigenvalue λ and normalized to have L2 norm
1, then

‖φ‖L∞ ≤ C1λ
(d−1)/4.

Thus,

(20) ‖ψn‖L∞ ≤ C2(n2/d)(d−1)/4 = C2n
(d−1)/2d.
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On the other hand, if f is in the domain of the lth power of ∆, then
∞∑

n=1

|an|2 λ2l
n <∞,

which implies (using Weyl’s Law again) that |an| ≤ Cn−2l/d. If, then, l is large
enough that

ε :=
2l
d
− d− 1

2d
− 1 > 0

(which is equivalent to l > (3d2 − d)/4) we will have

(21)

∞∑
n=1

|an| sup |ψn| ≤ C3

∞∑
n=1

n−2l/dn(d−1)/2d

= C3

∞∑
n=1

n−(1+ε) <∞.

Thus by the Weierstrass M -test, the series
∑
anψn converges uniformly as well as

in L2 to f.
Meanwhile, αt,R(−∆)f =

∑
n αt,R(λn)anψn, with convergence in L2. Since

0 ≤ αt,R(λn) ≤ 1 for n > N, this series also converges uniformly (to αt,R(−∆)f ).
We now plug in the integral formula (11) for αt,R and we wish to interchange (for
each fixed x) the sum over n in

∑
n αt,R(λn)anψn with the integral in (11). To do

this, we again split off the terms with n ≤ N and argue as in (17) for the applicability
of Fubini’s Theorem in the remaining terms, substituting the convergence result (21)
for

∑ |an| |bn| <∞.
We obtain, then,

(αt,R(−∆)f) (x)

=
∞∑

n=1

αt,R(λn)anψn(x)

=
∫

Y ∈Rd

|Y |≤R

[ ∞∑
n=1

e−tλn/2et|ρ|
2/2 exp

(√
λn − |ρ|2 y1

)
anψn(x)

]
e−|Y |2/2t

(2πt)d/2
dY

As in the previous proof, the expression in square brackets is an entire function of
y1 and the whole integral is a real-analytic function of R.

Meanwhile

(22)

f(x) − (αt,R(−∆)f) (x)

=
N∑

n=1

(1− αt,R(λn))anψn(x) +
∞∑

n=N+1

(1− αt,R(λn))anψn(x).
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Because αt,R(λ) → 1 as R → ∞, the first term on the right-hand side of (22)
tends to zero uniformly as R tends to infinity. Since 0 ≤ αt,R(λn) ≤ 1 for n > N,
the absolute value of the second term on the right-hand side of (22) is bounded by

(23)
∞∑

n=N+1

(1 − αt,R(λn)) |an| sup |ψn| ,

independently of x. This expression tends to zero by Dominated Convergence, in
light of (21). This establishes the desired uniform pointwise convergence result.

4. THE ISOMETRY FORMULA

4.1. Strategy for the isometry formula

We continue to assume that G/K is a noncompact symmetric space of the
complex type (i.e., G is complex) and that X = Γ\G/K is a compact quotient of
G/K of the sort described in Section 2.

To obtain the isometry formula for X, we will write (heuristically)

〈f, f〉L2(X) =
〈
e−t∆/2et∆/2f, e−t∆/2et∆/2f

〉
L2(X)

=
〈
F, e−t∆F

〉
L2(X)

.

Note that to compute e−t∆F (where F = et∆/2f ), we want to apply the backward
heat operator for time 2t, rather than just for time t. Reasoning as in the previous
section, we may compute this backward heat operator by the following integral

(24) e−t∆F = lim
R→∞

et|ρ|
2
∫

T 2R
x (X)

F (expx iY )jcx(Y )1/2 e
−|Y |2/4t

(4πt)d/2
dY.

Here it is convenient to integrate over a ball of radius 2R rather than radius R,
simply to avoid a factor of 2 later on. Heuristically, then, we should have

〈f, f〉L2(X) = lim
R→∞

et|ρ|
2
∫

X

F (x)
∫

T 2R
x (X)

F (expx iY )jcx(Y )1/2 e
−|Y |2/4t

(4πt)d/2
dY dx.

The crucial next step is a “holomorphic change of variable,” which will show
that (at least for small R)

(25)
et|ρ|

2
∫

X
F (x)

∫
T 2R

x (X)
F (expx iY )jc(Y )1/2 e

−|Y |2/4t

(4πt)d/2
dY

= et|ρ|
2
∫

X

∫
T 2R

x (X)
F (expx iY/2)F (expx iY/2)jc(Y )1/2 e

−|Y |2/4t

(4πt)d/2
dY dx.
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(Compare Lemma 9 of [19] and Section 4 of [52] in the compact case.) Making
the change of variable Y → 2Y (for sake of convenience) we obtain a proposal for
the form that the isometry theorem should take:

〈f, f〉L2(X) = lim
R→∞

et|ρ|
2
∫

X

∫
T R

x (X)
|F (expx iY )|2 jcx(2Y )

e−|Y |2/t

(πt)d/2
dY dx.

This formula is precisely analogous to what we obtained [30, Thm. 7] for globally
symmetric spaces of the complex type, and is as parallel as possible to the isometry
formula for the dual compact group case (Eq. (1)).

4.2. The holomorphic change of variable and the partial isometry formula

To proceed rigorously, we consider, for a fixed small value of R, the integral
on the right-hand side of (24). We evaluate this integral by a simple modification
of Theorem 3. Then we will establish the holomorphic change of variable in (25),
which will lead to a rigorous version of the isometry formula.

Theorem 7. Let R0 be as in Proposition 2. For all R < R 0/2, let Bt,R be the
operator defined by

Bt,R(f)(x) = et|ρ|
2
∫

T 2R
x (X)

F (expx iY )jcx(Y )1/2e
−|Y |2/4t

(4πt)d/2
dY,

where F := et∆/2f. Then Bt,R is a bounded operator on L2(X) and is given by

Bt,R = βt,R(−∆),

where βt,R : [0,∞) → R is given by

(26) βt,R(λ) = e−tλ/2et|ρ|
2
∫

Y ∈Rd

|Y |≤2R

exp
(√

λ− |ρ|2 y1
)
e−|Y |2/4t

(4πt)d/2
dY.

Here
√
λ− |ρ|2 is either of the two square roots of λ− |ρ| 2 .

The proof of this is the same as the proof of Theorem 3, except that t is replaced
by 2t and R by 2R in the appropriate places. Note that if we let R tend to infinity
in the definition of βt,R, we obtain an easily evaluated Gaussian integral, which
gives

(27) lim
R→∞

βt,R(λ) = etλ/2.

This reflects the idea that Bt,Rf is an approximation to the backward heat operator
at time 2t, applied to the function F := et∆/2f. Note that although the right-hand
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side of (27) is an unbounded function of λ, βt,R is a bounded function of λ for
each fixed finite value of R, as is easily seen from (26).

As in Section 2, for each x in X = Γ\G/K, we can pick x̃ ∈ G/K mapping
to x under quotienting by the action of Γ. We can then pick g ∈ G with g · x0 = x̃,
where x0 is the identity coset in G/K. Having made these choices, we get an
identification of Tx(X) with Tx0(G/K) = p. Two identifications of this sort differ
only by the action of K on p. This means that if we have some K-invariant function
on p, we can transfer this function in an unambiguous way to each Tx(X).

Theorem 8. ([Holomorphic Change of Variable]). Let F1 and F2 be holomor-
phic functions on T R0(X) for some R0 > 0. Let α be a bounded, measurable,
K-invariant function on pR0. Then for all R < R0/2 we have

(28)

∫
X
F1(x)

∫
T 2R

x (X)
F2(expx iY )α(Y ) dY dx

=
∫

X

∫
T 2R

x (X)

F1(expx(iY/2))F2(expx(iY/2))α(Y ) dY dx.

Note that although the right-hand side of (28) is defined for all R < R0, the
left-hand side is defined only for R < R0/2. Once this result is established, we will
apply Theorem 7 and the holomorphic change of variable with α given by

(29) α(Y ) = νc
2t(Y )jc(Y ) = et|ρ|

2

jc(Y )1/2 e
−|Y |2/4t

(4πt)d/2
.

After making the change of variable Y → 2Y , for convenience, we will obtain the
following result, which is the main result of this subsection.

Theorem 9. ([Partial Isometry Formula]). Given f1, f2 ∈ L2(X), let F1 =
et∆/2f1 and F2 = et∆/2f2. Let R0 be as in Proposition 2. Then for all R < R 0,

(30)
et|ρ|

2
∫

X

∫
T R

x (X)
F1(expx(iY ))F2(expx(iY ))jc(2Y )1/2 e

−|Y |2/t

(πt)d/2
dY dx

=
〈
f1, e

t∆/2βt,R(−∆)f2
〉

L2(X)
,

where βt,R is the function defined in (26).

The analogous result on the globally symmetric space G/K (G complex) was
obtained in [30]; see Theorem 6 and Equations (38) and (39). We will prove (30)
directly from the holomorphic change of variable for R < R0/2 and then extend
the result to R < R0 by analytic continuation.

From the formula (8), we see that jc(2Y ) is positive for all sufficiently small
Y. (Actually, it is not hard to show that jc(2Y ) is positive on the maximal domain
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in T (X) on which the adapted complex structure exists, but we do not require
this result.) This means that the left-hand side of (30) is strictly positive whenever
f1 = f2 = f, where f is nonzero. If follows that βt,R(−∆) is a strictly positive
operator, for all sufficiently small R, something that can also be obtained from the
formula for βt,R. However, because the spectrum of −∆ contains points in the
interval [0, |ρ|2), it is not clear whether positivity holds for all R.

Note that the operator Bt,R in Theorem 7 incorporates the et∆/2 applied to
f1, but not the et∆/2 applied to f2. This, along with the self-adjointness of et∆/2,
accounts for the expression on the right-hand side of (30).

To understand what is going on in Theorem 8, it is helpful to consider the
following prototype calculation on the (Euclidean) symmetric space S1 = R/Z.
Then T (R/Z), with the adapted complex structure, is identified with C/Z in such
a way that expx(iy) = x+ iy. Suppose F1 and F2 are holomorphic functions on a
strip in R/Z. Let F̃1 be the holomorphic function whose restriction to R/Z is F1;
equivalently, F̃1(x+ iy) = F1(x− iy). Then using Fubini and a change of variable
we have ∫

R/Z

F1(x)
∫ 2R

−2R

F2(x+ iy)α(y) dy dx

=
∫ 2R

−2R

∫
R/Z

F̃1(x− a)F2(x− a + iy) dx α(y) dy

for any a ∈ R. Since F̃1 and F2 are holomorphic, this equality remains valid for a
in a strip in C. Taking a = iy/2 and using Fubini again gives

∫
R/Z

F1(x)
∫ 2R

−2R
F2(x+ iy)α(y) dy dx

=
∫

R/Z

∫ 2R

−2R
F1(x+ iy/2)F2(x+ iy/2)α(y) dy dx.

This is just the analog of Theorem 8 for R/Z and the method of proof (the “change
of variable” x → x − iy/2) motivates the terminology “holomorphic change of
variable”.

The remainder of this subsection is devoted to the proof of Theorem 8. The
first step is to express the two sides of (28) in terms of “double orbital integrals,”
with the integration being over Γ\G with respect to the natural right-G-invariant
measure. Then a “holomorphic change of variable” in the double orbital integrals,
similar to that in the previous paragraph, will show that the integrals are equal.

Let π : G/K → X = Γ\G/K be the quotient map and let x0 denote the
identity coset in G/K. For each x ∈ X, we choose gx ∈ G so that π(gx · x0) = x.

We arrange for the gx’s to depend measurably on x, and we will make one other
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technical restriction on the choice of gx later. We then identify each Tx(X) with
Tgx·x0(G/K) by means of π−1∗ and then with p = Tx0(G/K) by the action of g−1

x .
This identification of Tx(X) with p is of the same sort as we have been using all
along in this paper, but we now have one particular such identification for each x.

We have now measurably identifiedT (X) withX×p. We use this identification
on both sides of the desired equality (28), along with generalized polar coordinates
on p with respect to the adjoint action of K. Recall (from (6)) that expx(iY ) is
simply another way of writing the point (x, Y ) ∈ T (X). Let us now switch back
to the (x, Y ) notation. Then, using our identification of T (X) with X × p and
generalized polar coordinates on p, the desired equality (28) is equivalent to

(31)

∫
a+
2R

∫
X

∫
K
F1(x)F2((x,AdkY )) dk dx α(Y )µ(Y ) dY

=
∫

a+
2R

∫
X

∫
K
F1((x,AdkY/2))F2((x,AdkY/2)) dk dx α(Y )µ(Y ) dY.

Here, dx denotes the Riemannian volume measure on X , µ is the density that
appears in the generalized polar coordinates formula (e.g., [33, Thm. I.5.17]), and
a+
2R is the set of vectors in a+ with norm less than 2R.

Clearly, for (31) to hold, it is sufficient to verify that

(32)

∫
X

∫
K

F1(x)F2((x,AdkY )) dk dx

=
∫

X

∫
K
F1((x,AdkY/2))F2((x,AdkY/2)) dk dx

for all Y ∈ a+
2R.

Our goal now is to show that both integrals in (32) can be written as “double or-
bital integrals.” Let F̃1 be the function on TR0(X) given by F̃1(x, Y ) = F1(x,−Y )
(or, by (6), F̃1(expx iY ) = F1(expx(−iY ))). Since the map (x, Y ) → (x,−Y ) is
antiholomorphic [16, p. 568], F̃1 is holomorphic. Now, it is known that TR(G/K)
has its own adapted complex structure for all sufficiently small R (see [30] and the
references therein). Furthermore, the map π∗ : TR(G/K) → TR(Γ\G/K) is easily
seen to be holomorphic. Thus, we can define holomorphic functions Φ1 and Φ2 on
TR(G/K) by

Φ1 = F̃1 ◦ π∗
Φ2 = F2 ◦ π∗.

By construction, these functions satisfy Φj(γ · a) for all γ ∈ Γ and a ∈ TR(G/K),
where γ · a refers to the action of Γ on TR(G/K) induced from the action of Γ on
G/K.

We now consider “double orbital integral,” namely, integrals of the form
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(33)
∫

Γ\G
Φ1(g · a)Φ2(g · b) dg,

where dg is an appropriately normalized version of the right-G-invariant measure
on Γ\G and a and b are fixed points in TR(G/K). Observe that although g · a and
g · b are defined for g ∈ G (not Γ\G), the invariance property of the Φj’s means
that the integrand in (33) descends to a function on Γ\G.

Lemma 10. The left-hand side of (32) is an integral of the form (33) with
a = x0 and b = (x0, Y ). The right-hand side of (32) is an integral of the form (33)
with a = (x0,−Y/2) and b = (x0, Y/2).

Proof. Let E denote the following set in G:

E = {gxk ∈ G|x ∈ X, k ∈ K} .
We assume that the mapping x→ gx is chosen in such a way that E is a measurable
subset of G.

Now consider the map from X×K to Γ\G given by (x, k) → Γgxk. This map
is measurable because the map x→ gx was chosen to be measurable. Given Γg ∈
Γ\G, let x be the point ΓgK ∈ Γ\G/K = X and then consider gx ∈ G, which
has the property that ΓgxK = x. Then there exists k ∈ K with Γgxk = Γg. To see
that k is unique, suppose γ1gxk1 = γ2gxk2 for some γ1, γ2 ∈ Γ and k1, k2 ∈ K.
Then because Γ acts freely on G/K, we must have γ1 = γ2 and therefore k1 = k2.

This argument shows that the map (x, k) → Γgxk is a bijection of X ×K onto
Γ\G. We may therefore identify Γ\G with the set E ⊂ G defined above. Consider
on X×K the product of the Riemannian volume measure on X and the normalized
Haar measure on K. The push-forward of this measure to E is easily seen to be the
restriction to E of a (bi-invariant) Haar measure on G. (Specifically, arguing as in
the proof of Proposition 4 in [30], the push-forward measure is the restriction to E
of a left Haar measure on G, which is also right invariant since G is unimodular.)
It is then easy to see that if we identify E with Γ\G, the resulting measure on Γ\G
is invariant under the right action of G.

All of this is to say that if we write points in Γ\G as Γgxk, with x ∈ X and
k ∈ K, then the measure dg on Γ\G decomposes as dx dk. Meanwhile, in light of
the identifications we are making,

π∗[(gxk) · (x0, Z)] = (x,AdkZ), Z ∈ p.

The lemma then follows by plugging in Z=0, Z=Y, Z=−Y/2, and Z=Y/2.

Lemma 11.

(1) Integrals of the form (33) satisfy∫
Γ\G

Φ1(g · (h · a))Φ2(g · (h · b)) dg =
∫

Γ\G
Φ1(g · a)Φ2(g · b) dg
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for all h ∈ G and a, b ∈ T R(G/K).

(2) The integral in (33) depends holomorphically on a and b (with F 1 and F2

and hence Φ1 and Φ2 fixed).

Proof. The first point follows from the associativity property of the action
and the right-G-invariance of the measure on Γ\G. The second point follows from
Morera’s Theorem.

We are now ready to give the proof of the holomorphic change of variable.

Proof of Theorem 8. It suffices to prove (32), which, by Lemma 10 amounts to
showing that the (double) orbital integral with a = x0 and b = (x0, Y ) is the same
as the orbital integral with a = (x0,−Y/2) and b = (x0, Y/2). The idea is to use
invariance of the orbital integral under (a, b) → (etY · a, etY · b) and then plug in
t = −i/2, using Lemma 11.

There is nothing to prove in (32) if Y = 0. If Y �= 0, let r = |Y | (with
r < R0) and let X = Y/r be the associated unit vector. Let γ be the corresponding
unit-speed geodesic in G/K, namely, γ(t) = etX · x0. Then consider the map
τ : SR → T (G/K) given by

τ(u+ iv) = (γ(u), vγ̇(u)),

where SR ⊂ C is the strip defined in (5). According to the definition of the adapted
complex structure on T (G/K), the map τ is holomorphic. Note that

d

dt
etX · x0 =

d

dε
e(t+ε)X · x0

∣∣∣
ε=0

=
d

dε
etX · (eεX · x0)

∣∣
ε=0

= etX · (x0, X),

where in the last expression we have the induced action of etX on T (G/K). It
follows that

τ(u+ iv) = euX · (x0, vX).
By the first part of Lemma 11, the orbital integral with a = x0 and b = (x0, rX)

is the same as the orbital integral with a = etX · x and b = etX · (x0, rX), for
all t ∈ R. That is, the orbital integral associated to a = τ(t) and b = τ(t+ ir) is
independent of t for t ∈ R. Since τ is holomorphic, the second part of Lemma 11
tells us the same result for all t ∈ C such that both t and t+ ir belong to the strip
SR. Equating the orbital integral with (a, b) = (τ(0), τ(ir)) (i.e., t = 0) to the one
with (a, b) = (τ(−ir/2), τ(ir/2)) (i.e., t = −ir/2) gives the desired result.

Proof of Theorem 9. For R < R0/2, this result follows from applying the
holomorphic change of variable with α as in (29) (and then making the cosmetic
change of variable Y → 2Y ). The result will hold for all R < R0, provided we can
show that both sides of (30) are real-analytic in R. The analyticity of the right-hand
side of (30) is established as part of the proof of Theorem 13 in Section 4.3. The
analyticity of the left-hand side is established in the following lemma.
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Lemma 12. Let R1 be any positive real number such that the adapted complex
structure exists on T R1(X). Let F be a holomorphic function on T R1(X) and let α
be a real-analytic, Ad-K-invariant function on p 2R1. Then the function GF defined
by

GF (R) =
∫

X

∫
T 2R

x (X)

F1(expx(iY/2))F2(expx(iY/2))α(Y ) dY dx

is real-analytic on the interval (0, R 1).

Proof. We measurably identify T (X) with X×p and then decompose GF (R)
as in the right-hand side of (31). We let Φ1 = F̃1 ◦ π∗ and we let Φ2 = F2 ◦ π∗, as
before. In light of Lemma 11, we can then write our function as

GF (R)

=
∫

a+
2R

∫
Γ\G

Φ1(g · (x0, Y/2))Φ2(g · (x0,−Y/2)) dg α(Y )µ(Y ) dY

=
∫

a+
1

∫
Γ\G

Φ1(g · (x0, RZ))Φ2(g · (x0,−RZ)) dg (2R)d α(2RZ)µ(2RZ) dZ.

Let τZ be the map from the strip SR1 ⊂ C into TR1(G/K) given by τZ(u+ iv) =
euZ · (x0, vZ). As in the proof of Theorem 8, this map is holomorphic. (There it
was assumed that Z was a unit vector, but by scaling the statement is true for any
Z with |Z| < 1.) Note that (x0, RZ) = τZ(iR) and (x0,−RZ) = τZ(−iR). Then
given any R ∈ (0, R1), we claim that GF has a holomorphic extension to a small
neighborhood of R in C, given by

(34)
GF (S)

=
∫

a+
1

∫
Γ\G

Φ1(g · τZ(iS))Φ2(g · τZ(−iS))dg (2S)dα(2SZ)µ(2SZ) dZ.

This follows from Point 2 of Lemma 11 and the analyticity of α (assumed) and µ
(it is a polynomial).

To be a bit more precise, α is assume to be real-analytic on p2R1. Thus, for
each R < R1, α has a holomorphic extension to a neighborhood U in pC of the
closed ball of radius 2R in p. Then for all S in a neighborhood of R, 2SZ will
belong to U for all Z ∈ p with |Z| ≤ 1. For S in a slightly smaller neighborhood
of R, α(2SZ) will be bounded uniformly in Z with |Z| ≤ 1. The integrand in (34)
is thus holomorphic in S and bounded uniformly in g and Z, from which it follows
that the integral is holomorphic in S.

The existence of this holomorphic extension establishes the real-analyticity of
GF .



Segal-Bargmann Transform for Compact Quotients 37

4.3. The global isometry formula

Theorem 13. ([Global Isometry Formula]). Given f ∈ L2(X) and let F =
et∆/2f. Let R0 be as in Proposition 2. Then the quantity

GF (R) := et|ρ|
2
∫

X

∫
T R

x (X)
|F (expx(iY ))|2 jcx(2Y )1/2e

−|Y |2/t

(πt)d/2
dY dx,

initially defined for R ∈ (0, R0), has a real-analytic extension to R ∈ (0,∞).
Furthermore, this real-analytic extension, also denoted G F , satisfies

lim
R→∞

GR(R) = ‖f‖2
L2(X) .

Thus, we may write, informally,

‖f‖2
L2(X)

= “ lim
R→∞

”et|ρ|
2
∫

X

∫
T R

x (X)
|F (expx(iY ))|2 jcx(2Y )1/2 e

−|Y |2/t

(πt)d/2
dY dx.

This result, as for the inversion formulas, is obtained from the corresponding
result in the dual compact group case (see (1)) by “dualizing” and inserting an
analytic continuation with respect to R.

In the corresponding theorem for G/K (G complex) in [30], the proof actually
shows that GF (R) is positive and strictly increasing as a function of R. In the case
of the compact quotient X = Γ\G/K , however, the presence of spectrum for −∆
in the interval [0, |ρ|2) means that GF (R) is not necessarily monotone in R, once
R > R0. (See (36) below.)

Proof. Putting f1 = f2 = f in the partial isometry formula (Theorem 9), we
have (with F = et∆/2f as usual)

(35) GF (R) =
〈
f, et∆/2βt,R(−∆)f

〉
L2(X)

.

The point is now that the definition of βt,R makes sense for any R > 0. Thus, the
right-hand side of (35) makes sense for all R > 0, even though the left-hand side
is defined only for small R. Equation (27) then suggests that the right-hand side of
(35) should tend to 〈f, f〉L2(X) as R tends to infinity.

To proceed rigorously, we choose an orthonormal basis {ψn} for L2(X) con-
sisting of eigenvectors of −∆ with eigenvalues λn. Then if f =

∑
anψn, we have,

for any R > 0,
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(36)

〈
f, et∆/2βt,R(−∆)f

〉
L2(X)

=
∞∑

n=1

|an|2 e−tλnt/2βt,R(λn)

=
∞∑

n=1

|an|2 e−tλnet|ρ|
2
∫
|Y |≤R

exp
(√

λn − |ρ|2 y1
)
e−|Y |2/4t

(4πt)d/2
dY.

The same argument as in the proof of Theorem 4 shows that Fubini’s Theorem
applies, so that we obtain

(37)

〈
f, et∆/2βt,R(−∆)f

〉
L2(X)

= ect
∫
|Y |≤R

[ ∞∑
n=1

|an|2 e−tλn exp
(√

λn − |ρ|2 y1
)]

e−|Y |2/4t

(4πt)d/2
dY.

Arguing, again, as in the proof of Theorem 4, we can see that the expression in
square brackets has an entire holomorphic extension to y1 ∈ C (given by the same
expression) and that the whole right-hand side of (37) is real-analytic as a function
of R, for all R ∈ (0,∞).

We have established, then, that the right-hand side of (35) is a real-analytic
function of R for R ∈ (0,∞). This, along with Lemma 12, shows that (35) holds
for all R < R0. (This was initially established, using the holomorphic change of
variable, only for R < R0/2.) Thus, the right-hand side of (35) is the desired
real-analytic extension of GF . To evaluate the limit as R tends to infinity of this
expression, we use our orthonormal basis {ψn} and we find N so that λn ≥ |ρ|2
for n > N. Then

(38)

〈
f, et∆/2βt,R(−∆)f

〉
L2(X)

=
N∑

n=1

|an|2 e−tλn/2βt,R(λn) +
∞∑

n=N+1

|an|2 e−tλn/2βt,R(λn).

Note that (by 27) we have

lim
R→∞

e−tλ/2βt,R(λ) = 1

for all λ ≥ 0. For n > N, βt,R(λn) is positive and increasing with R; thus, by
Monotone Convergence, we can put the limit as R tends to infinity inside the infinite
sum in (38). This shows that

lim
R→∞

〈
f, et∆/2βt,R(−∆)f

〉
L2(X)

=
∞∑

n=1

|an|2 = ‖f‖2
L2(X) .

This, in light of (35), is what we want to prove.
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4.4. The surjectivity theorem

We now show, roughly, that if F is any holomorphic function for which the
right-hand side of the global isometry formula makes sense and is finite, then F is
the analytic continuation of a function of the form et∆/2f, with f ∈ L2(X).

Theorem 14. Suppose F is a holomorphic function on T R1(X), for some
R1 > 0 such that the adapted complex structure exists on T R1(X). Let GF be the
function defined by

GF (R) = et|ρ|
2
∫

X

∫
T R

x (X)

|F (expx(iY ))|2 jcx(2Y )1/2 e
−|Y |2/t

(πt)d/2
dY dx,

for R < R1. Suppose that GF has a real-analytic extension (also denoted GF )
from (0, R1) to (0,∞) and that

lim
R→∞

GF (R)

exists and is finite. Then there exists a unique f ∈ L 2(X) for which F |X = et∆/2f.

Choose R0 so as in Proposition 2 and then choose R2 ≤ R0 so that the function
jc(2Y ) is positive on TR2(X). For any R < R2, let HL2(TR(X))t denote the
space of holomorphic functions F on TR(X) for which

et|ρ|
2
∫

X

∫
T R

x (X)
|F (expx(iY ))|2 jcx(2Y )1/2 e

−|Y |2/t

(πt)d/2
dY dx <∞,

with the obvious associated inner product. A standard argument shows that HL2

(TR(X))t is a closed subspace of the associated L2 space, and hence a Hilbert
space. Note that if ψ ∈ L2(X) is an eigenvector for −∆ with eigenvalue λ, then
ψ = et∆/2(eλt/2ψ), so that by Proposition 2, ψ has an analytic continuation to
TR0(X). This analytic continuation is bounded on each T R(X) for R < R0 and
hence belongs to HL2(TR(X))t.

Lemma 15. Let {ψn} be an orthonormal basis for L 2(X) consisting of eigen-
vectors for −∆. Let ψn also denote the analytic continuation of ψ n to TR(X).
Then the ψn’s form an orthogonal basis for HL 2(TR(X))t, for all R < R2 and
t > 0.

Proof. We fix one particularR<R2 and t>0, and we abbreviate HL2(TR(X))t

by HL2. The partial isometry theorem (Theorem 9) tells us that for n �= m, ψn and
ψm are orthogonal (but not orthonormal) as elements of HL2.

Suppose now that F ∈ HL2 and 〈F, ψn〉HL2 = 0 for all n. By the holomorphic
change of variable (Theorem 8), with α as in (29), along with Theorem 7, we have

〈F, ψn〉HL2 = 〈F, βt,R(−∆)ψn〉L2(X) = βt,R(λn) 〈F, ψn〉L2(X) .
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Here, in the second and third expressions, F denotes the restriction of the holo-
morphic function F to X. Now, as we have already remarked, it follows from the
partial isometry theorem (Theorem 9) that βt,R(λn) is strictly positive for all n, for
all R < R2. (See the discussion immediately after the statement of the theorem.)
Thus, if F is orthogonal to each ψn in HL2(TR(X))t, then the restriction of F
to L2(X) is orthogonal to each ψn. Since the ψn’s form an orthonormal basis for
L2(X), this tells us that the restriction of F to X is zero, from which it follows that
F is zero on TR(X), because X is a totally real submanifold of maximal dimension
in TR(X).

We now turn to the proof of the surjectivity theorem.

Proof of Theorem 14. Suppose F is as in Theorem 14. The lemma tells us that
for R < min(R1, R2) we can express F as

(39) F =
∞∑

n=1

anψn,

with convergence in HL2(TR(X))t. By a standard argument, pointwise evaluation
is continuous in HL2(TR(X))t with norm a locally bounded function of the point.
It follows that the restriction map from that space to L2(X) is a bounded operator.
Thus, the same expansion (39) holds also in L2(X). This shows that the coefficients
in (39) are independent of R for a fixed holomorphic function F.

We apply the partial isometry formula (Theorem 9) with f1 = f2 = etλn/2ψn, so
that F1 = F2 = ψn. This tells us that the norm-squared of ψn in HL2(TR(X))t is
etλn/2βt,R(λn) (times the norm-squared of ψn in L2(X), which is 1). We conclude,
then, that

(40)

GF (R) = ‖F‖2
HL2(T R(X))t

=
∞∑

n=1

|an|2 etλn/2βt,R(λn)

=
∞∑

n=1

|an|2 et|ρ|
2
∫

Y ∈Rd

|Y |≤2R

exp
(√

λn − |ρ|2 y1
)
e−|Y |2/4t

(4πt)d/2
dY,

for all R < min(R1, R2). We now split off the finite number of terms where
λn < |ρ|2 . Those terms have an analytic continuation in R given by the same
expression. For the remaining terms, the argument given in Section 7 of [30] shows
that if GF (R) is to have an analytic continuation in R to (0,∞), it must be given
by (40) for all R.

We now know that the analytic continuation of GF (which is assumed to exist)
is given by (40) for all R ∈ (0,∞). To evaluate the limit as R → ∞ of GF (R),
we use Dominated Convergence on the finite number of terms with λn < |ρ|2 and
we use Monotone Convergence twice on the remaining terms to obtain
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(41)

lim
R→∞

GF (R)

=
∞∑

n=1

|an|2 et|ρ|
2
∫

Y ∈Rd
exp

(√
λn − |ρ|2 y1

)
e−|Y |2/4t

(4πt)d/2
dY

=
∞∑

n=1

|an|2 etλn .

Since the limit of GF is assumed finite, we conclude that the right-hand side
of (41) is finite. We may then define f =

∑∞
n=1 ane

tλn/2ψn. The finiteness
of (41) gives convergence of this series in L2(X) and we observe that F |X =∑∞

n=1 anψn = et∆/2f. This establishes Theorem 14.
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