TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 6, pp. 2721-2731, December 2011 This paper is available online at http://tjm.math.ntu.edu.tw

SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN MEANS INVOLVING TWO POSITIVE NUMBERS

Li-Li Fu, Bo-Yan Xi and H. M. Srivastava*

Abstract. In this paper, we give the sufficient as well as necessary condition of the Schur-convexity and Schur-harmonic-convexity of the generalized Heronian means with two positive numbers. Our main results provide the perfected versions of the results given in 2008 by Shi *et al.* [9].

1. INTRODUCTION

Throughout the this paper, we let

$$\mathbb{R}=(-\infty,+\infty),\ \mathbb{R}_0=[0,+\infty) \quad \text{and} \quad \mathbb{R}_+=(0,+\infty).$$

We also let

$$(a,b) \in \mathbb{R}^2_+, w \in \mathbb{R}_0 \text{ and } p \in \mathbb{R}.$$

The well-known Heronian means of $(a, b) \in \mathbb{R}^2_+$ is defined by (see [1] and also [2, p. 399])

(1.1)
$$H_{1,1}(a,b) = \begin{cases} \frac{a+\sqrt{ab}+b}{3} & (a \neq b)\\ \sqrt{ab} & (a = b). \end{cases}$$

An analogue of the above-defined Heronian means is stated as follows (see [5]):

(1.2)
$$H_{1,4}(a,b) = \frac{a+4(ab)^{\frac{1}{2}}+b}{6}.$$

Received May 5, 2011, accepted June 5, 2011.

Communicated by Jen-Chih Yao.

2010 Mathematics Subject Classification: Primary 05E05; Secondary 26B25.

Key words and phrases: Heronian means, Generalized Heronian means, Schur-convexity, Schur-harmonic-convexity, Arithmetic-geometric-harmonic means inequalities, Schur-geometric-convexity. *Corresponding author.

Recently, Janous [4] presented a family of the generalized Heronian means defined by

(1.3)
$$H_{1,w}(a,b) = \begin{cases} \frac{a+w(ab)^{\frac{1}{2}}+b}{w+2} & (w \in \mathbb{R}_0) \\ \sqrt{ab} & (w = \infty) \end{cases}$$

and compared it with the other means.

In 2006, Li *et al.* [6] gave the monotonicity and Schur-convexity of another generalized Heronian means as follows:

(1.4)
$$H_{p,1}(a,b) = \begin{cases} \left(\frac{a^p + (ab)^{\frac{p}{2}} + b^p}{3}\right)^{\frac{1}{p}} & (p \neq 0) \\ \sqrt{ab} & (p = 0). \end{cases}$$

Several variants as well as interesting applications of the Heronian means can be found in the recent papers [3], [9], [10] and [12] to [15]. We remark here that Shi *et al.* [9] discussed the Schur-convexity and Schur-geometric-convexity of a further generalization of the Heronian means given by

(1.5)
$$H_{p,w}(a,b) = \begin{cases} \left(\frac{a^p + w(ab)^{\frac{p}{2}} + b^p}{w+2}\right)^{\frac{1}{p}} & (p \neq 0)\\ \sqrt{ab} & (p = 0) \end{cases}$$

and proved Theorem 1 below.

Theorem 1. (see [9]). Each of the following assertions holds true:

(i) $H_{p,w}(a, b)$ is increasing with respect to w;

(ii) $H_{p,w}(a, b)$ is Schur-convex if $(p, w) \in E_{11}$;

(iii) $H_{p,w}(a, b)$ is Schur-concave if $(p, w) \in E_{21}$, where

(1.6)
$$E_{11} := \{(p, w) : p \ge 2 \text{ and } 0 \le w \le 2\}$$

and

(1.7)
$$E_{21} := \left\{ (p, w) : p \leq 1 \text{ and } 0 \leq w \right\} \cup \left\{ (p, w) : 1
$$\cup \left\{ (p, w) : \frac{3}{2}$$$$

Remark 1. Theorem 1 merely provides a sufficient condition of the Schur-convexity of the generalized Heronian means $H_{p,w}(a,b)$.

The main purpose of this paper is to give the sufficient as well as necessary condition of the Schur-convexity and Schur-harmonic-convexity of the generalized Heronian means $H_{p,w}(a, b)$ with $(a, b) \in \mathbb{R}^2_+$. As applications our results, a new refinement of the arithmetic-geometric-harmonic means inequalities is established.

2. PRELIMINARIES RESULTS

In order to prove our main results, we require a number of lemmas. Lemmas 1 and 2 involving the Schur-convexity and Schur-harmonic-convexity of a given function can be found in [8] and [11], respectively. Lemma 3 involving Bernoulli's inequality [2] is well-known.

Lemma 1. (see [8, pp. 54-57]). Let $\Omega \subset \mathbb{R}^n$ be a convex set which is symmetric with respect to permutations and which has a nonempty interior set Ω° . If $\varphi : \Omega \to \mathbb{R}$ is continuous and symmetric on Ω and differentiable in Ω° , then φ is Schur-convex (Schur-concave) if and only if the following condition:

$$S(x_1, x_2; \varphi) := (x_1 - x_2) \left(\frac{\partial \varphi}{\partial x_1} - \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \, (\le 0)$$

holds true for any $x \in \Omega^{\circ}$.

Lemma 2. (see [11]). Let $\Omega \subset \mathbb{R}^n_+$ be symmetric and have a nonempty interior set Ω° . Suppose also that

$$\left\{ \left(\frac{1}{x_1}, \frac{1}{x_2}, ..., \frac{1}{x_n} \right) : \boldsymbol{x} \in \Omega \right\}$$

is a convex set. If $\varphi : \Omega \to \mathbb{R}_+$ is continuous and symmetric on Ω , and differentiable in Ω° , then φ is Schur-harmonic-convex (Schur-harmonic-concave) if and only if the following condition:

$$H(x_1, x_2; \varphi) := (x_1 - x_2) \left(x_1^2 \frac{\partial \varphi}{\partial x_1} - x_2^2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 \ (\le 0)$$

holds true for any $x \in \Omega^{\circ}$.

Lemma 3. [Bernoulli's Inequality (see [2, p. 4])]. Let $x \ge -1$. Then the following inequality:

$$(2.1) (1+x)^{\alpha} \ge 1 + \alpha x$$

holds true if $\alpha \ge 1$ or $\alpha \le 0$ ($x \ne -1$). Furthermore, the inequality (2.1) is reversed if $0 < \alpha < 1$.

Lemma 4. For $u \in \mathbb{R}_0$, let

(2.2)
$$h_{p,w}(u) := (1+u)^{p-1} - 1 - \frac{w}{2} u(1+u)^{\frac{p}{2}-1}$$

Then $h_{p,w}(u) \ge 0$ if and only if $(p, w) \in E_1$. Furthermore, $h_{p,w}(u) \le 0$ if and only if $(p, w) \in E_2$, where

(2.3)
$$E_1 := \{ (p, w) : p \ge 2 \text{ and } 0 \le w \le 2(p-1) \} \\ \cup \{ (p, w) : 1$$

and

(2.4)
$$E_2 := \{(p, w) : p \leq 2 \text{ and } \max\{0, 2(p-1)\} \leq w\}.$$

Proof. First of all, we prove the *sufficiency*. Indeed, for $u \in \mathbb{R}_0$, one gets

(2.5)
$$h'_{p,w}(u) = (1+u)^{\frac{p}{2}-2} \left[(p-1)(1+u)^{\frac{p}{2}} - \frac{w}{2} \left(1 + \frac{p}{2}u \right) \right].$$

From Lemma 3, it follows for any $u \in \mathbb{R}_0$ that

(2.6)
$$(1+u)^{\frac{p}{2}} \ge 1 + \frac{p}{2}u \qquad (p \ge 2)$$

and

(2.7)
$$(1+u)^{\frac{p}{2}} \leq 1 + \frac{p}{2}u \qquad (0 \leq p \leq 2).$$

(i) We can easily see that $h_{p,w}(u) \ge 0$ for $1 \le p \le 2$ and w = 0.

If $(p, w) \in E_1$ with $2(p-1) \ge w \ge 0$ and $p \ge 2$, then, by using (2.5) and the inequality (2.6), we obtain

$$h'_{p,w}(u) \ge (1+u)^{\frac{p}{2}-2} \frac{w}{2} \left((1+u)^{\frac{p}{2}} - 1 - \frac{p}{2}u \right) \ge 0.$$

It is not difficult to find that $h_{p,w}(u)$ is increasing for $u \in \mathbb{R}_0$ and that

$$h_{p,w}(u) \ge h_{p,w}(0) = 0.$$

(ii) If $(p, w) \in E_2$ with $p \leq 1$ and $w \geq 0$, then, obviously, $h_{p,w}(u) \leq 0$ holds true.

If $(p, w) \in E_2$ with

$$1 \leq p \leq 2$$
 and $p \leq 1 + \frac{w}{2}$,

then we find the from (2.5) and inequality (2.7) that

$$h'_{p,w}(u) \leq (1+u)^{\frac{p}{2}-2} \frac{w}{2} \left((1+u)^{\frac{p}{2}} - 1 - \frac{p}{2}u \right) \leq 0,$$

which implies that $h_{p,w}(u)$ is decreasing with respect to $u \in \mathbb{R}_0$ and

$$h_{p,w}(u) \le h_{p,w}(0) = 0.$$

We now give the proof of the *necessity*.

(iii) For $w, u \in \mathbb{R}_0$, in view of $h_{p,w}(0) = 0$ and using the mean value theorem, we obtain

$$h_{p,w}(u) = u \cdot h'_{p,w}(u_0) \ge 0$$
 $(u_0 \in [0, u]).$

We thus find that

$$\lim_{u_0 \to 0^+} h'_{p,w}(u_0) = h'_{p,w}(0^+) = p - 1 - \frac{w}{2} \ge 0,$$

that is, that

$$p-1 \ge \frac{w}{2}.$$

If we set $p-1 = \frac{w}{2} > 0$, then we find from the mean value theorem that $h_p(u) := h_{p,2(p-1)}(u) = (1+u)^{p-1} - 1 - (p-1)u(1+u)^{\frac{p}{2}-1} = u \cdot h'_p(u_0) \ge 0$, where $u_0 \in [0, u]$. It, therefore, follows that

(2.8)
$$h'_p(u_0) = (p-1)(1+u_0)^{\frac{p}{2}-2} \left[(1+u_0)^{\frac{p}{2}} - \left(1+\frac{p}{2}u_0\right) \right] \ge 0,$$

which implies that $p \ge 2$ by means of Lemma 3.

If

$$p-1 \geqq \frac{w}{2} = 0,$$

then we see that $p \ge 1$ with

$$h_{p,0}(u) = (1+u)^{p-1} - 1 \ge 0.$$

This also means that $h_{p,w}(u) \ge 0$ must yield $(p, w) \in E_1$.

(iv) For $w, u \in \mathbb{R}_0$, according to $h_{p,w}(0) = 0$ and $h_{p,w}(u) \leq 0$, one finds that $h'_{p,w}(0^+) \leq 0$ and

$$p-1 \leq \frac{w}{2}.$$

If $0 \leq p-1 \leq \frac{w}{2}$, by the same discussion as in the case of Part (iii) above, it is easy to obtain $1 \leq p \leq 2$ for $h_{p,w}(u) \leq 0$.

If $p-1 < 0 \leq \frac{w}{2}$, then, upon letting w = 0, we have p < 1 with

(2.9)
$$h_{p,0}(u) = (1+u)^{p-1} - 1 \leq 0.$$

Therefore, $h_{p,w}(u) \leq 0$ must yield $(p, w) \in E_2$.

The proof of Lemma 4 is thus completed.

By using the same method as in the proof of Lemma 4 above, we can deduce the following analogous result.

Lemma 5. Define

(2.10)
$$k_{p,w}(u) := (1+u)^{p+1} - 1 + \frac{w}{2} u(1+u)^{\frac{p}{2}} \qquad (u \in \mathbb{R}_0).$$

Then $k_{p,w}(u) \ge 0$ if and only if $(p, w) \in F_1$. Furthermore, $k_{p,w}(u) \le 0$ if and only if $(p, w) \in F_2$, where

(2.11)
$$F_1 := \{(p, w) : -2 \leq p \text{ and } \max\{0, -2(p+1)\} \leq w\}$$

and

(2.12)
$$F_2 := \{ (p, w) : p \leq -2 \quad and \quad 0 \leq w \leq -2(p+1) \} \\ \cup \{ (p, w) : p \leq -1 \quad and \quad w = 0 \}.$$

3. MAIN RESULTS AND APPLICATIONS

Theorem 2. The generalized Heronian means $H_{p,w}(a, b)$ is Schur-convex if and only if $(p, w) \in E_1$, and is also Schur-concave if and only if $(p, w) \in E_2$, where E_1 and E_2 are given by (2.3) and (2.4), respectively.

Proof. It is easily observed that $H_{0,w}(a,b) = \sqrt{ab}$ is Schur-concave for $(a,b) \in \mathbb{R}^2_+$.

For $p \neq 0$, we readily arrive that

(3.1)
$$\frac{\partial H_{p,w}(a,b)}{\partial a} = \frac{1}{w+2} \left(a^{p-1} + \frac{wb}{2} (ab)^{\frac{p}{2}-1} \right) [H_{p,w}(a,b)]^{1-p} > 0$$

and

(3.2)
$$\frac{\partial H_{p,w}(a,b)}{\partial b} = \frac{1}{w+2} \left(b^{p-1} + \frac{wa}{2} (ab)^{\frac{p}{2}-1} \right) [H_{p,w}(a,b)]^{1-p} > 0.$$

There is no loss of generality in supposing that

$$a \geqq b$$
 and $1 + u = \frac{a}{b}$ $(u \in \mathbb{R}_0),$

which yields

(3.3)
$$S(a,b;H_{p,w}) = \frac{a-b}{w+2} [H_{p,w}(a,b)]^{1-p} \left(a^{p-1} - b^{p-1} - \frac{w}{2} (a-b)(ab)^{\frac{p}{2}-1} \right)$$
$$= \frac{(a-b)b^{p-1}}{w+2} [H_{p,w}(a,b)]^{1-p} h_{p,w}(u),$$

where $h_{p,w}(u)$ is defined by (2.2).

This evidently completes the proof of Theorem 2 by means of Lemmas 1 and 4, and the expression given by (3.3).

Remark 2. In Figure 1 below, if we let

(3.4)
$$E_3 := \left\{ (p, w) : 1 + \frac{w}{2}$$

and

(3.5)
$$E_4 := \left\{ (p, w) : 2$$

then we find that

$$\mathbb{R} \times \mathbb{R}_0 = E_1 \cup E_2 \cup E_3 \cup E_4$$

and

$$E_1 \cap E_3 = E_2 \cap E_3 = E_1 \cap E_4 = E_2 \cap E_4 = \phi.$$

Remark 3. In the case when $(p, w) \in E_3 \cup E_4$, we cannot determine the Schur-convexity of $H_{p,w}(a, b)$. For example, for $(1.98, 1.92) \in E_3$ and $(4, 8) \in E_4$, we know that

$$h_{1.98,1.92}(1) = 0.0767 \dots > 0, \qquad h_{1.98,1.92}(59) = -0.0852 \dots < 0$$

and

$$h_{4,8}(1.01) = -0.999799 < 0, \qquad h_{4,8}(2) = 3 > 0,$$

where $h_{p,w}(u)$ is defined by (2.2). Thus it follows from (3.3) that the sign of $S(a, b; H_{p,w})$ is changed.

Remark 4. By combining Theorems 1 and 2, one finds from Figures 1 and 2 that if we let

(3.6)
$$E_{12} := \{ (p, w) : 2$$

Li-Li Fu, Bo-Yan Xi and H. M. Srivastava

(3.7)
$$E_{22} := \left\{ (p, w) : 1$$

and

(3.8)
$$E_{23} := \left\{ (p, w) : \frac{3}{2} \le p < 2 \text{ and } 2(p-1) \le w < 2 \right\},$$

then we find that

$$E_1 = E_{11} \cup E_{12}$$

and

$$E_2 = E_{21} \cup E_{22} \cup E_{23}.$$

Thus, obviously, Theorem 1 is only to put forward a sufficient condition of the Schur-convexity of the generalized Heronian means $H_{p,w}(a,b)$.

Similarly, the assertion of Theorem 3 below can be shown to hold true by applying Lemmas 2, 3 and 5.

Theorem 3. The generalized Heronian means $H_{p,w}(a, b)$ is Schur-harmonicconvex if and only if $(p, w) \in F_1$, and is also Schur-harmonic-concave if and only if $(p, w) \in F_2$, where F_1 and F_2 are given, as in Lemma 5, by (2.11) and (2.12), respectively.

Remark 5. Given (see Figure 3)

(3.9)
$$F_3 := \left\{ (p, w) : -2$$

and

(3.10)
$$F_4 := \left\{ (p, w) : p < -2 \text{ and } -(p+1) < \frac{w}{2} \right\},$$

we can deduce that

$$\mathbb{R} \times \mathbb{R}_0 = F_1 \cup F_2 \cup F_3 \cup F_4$$

and

$$F_1 \cap F_3 = F_2 \cap F_3 = F_1 \cap F_4 = F_2 \cap F_4 = \phi.$$

Similar to the observations made in Remark 3, we also cannot determine the Schur-harmonic-convexity of $H_{p,w}(a, b)$ with $(p, w) \in F_3 \cup F_4$.

As simple applications of Theorems 2 and 3, we are led to the following two interesting corollaries.

Corollary 1. Let the *p*-th power mean of $(a, b) \in \mathbb{R}^2_+$ be defined by

(3.11)
$$M_p(a,b) := H_{p,0}(a,b) = \begin{cases} \left(\frac{a^p + b^p}{2}\right)^{\frac{1}{p}} & (p \neq 0) \\ \sqrt{ab} & (p = 0). \end{cases}$$

Then $M_p(a, b)$ is Schur-convex if and only if $p \ge 1$ and Schur-concave if and only if $p \le 1$, and is also Schur-harmonic-convex if and only if $p \ge -1$ and Schur-harmonic-concave if and only if $p \le -1$.

Corollary 2. For

$$\alpha = (\alpha_1, \alpha_2), \quad \beta = (\beta_1, \quad \beta_2) \in \mathbb{R}_0^2 \quad and \quad \left(\frac{1}{2}, \frac{1}{2}\right) \prec \beta \prec \alpha \prec (1, 0),$$

$$H_{p_1,w_1}(a, b) \geqq H_{p_1,w_1}\left(A_\alpha(a, b)\right) \geqq H_{p_1,w_1}\left(A_\beta(a, b)\right) \geqq A(a, b)$$

$$\geqq H_{p_2,w_2}\left(A_\beta(a, b)\right) \geqq H_{p_2,w_2}\left(A_\alpha(a, b)\right) \geqq H_{p_2,w_2}(a, b)$$

$$\geqq H_{p_2,w_2}\left(G_\alpha(a, b)\right) \geqq H_{p_2,w_2}\left(G_\beta(a, b)\right) \geqq G(a, b)$$

$$\geqq H_{p_3,w_3}\left(G_\beta(a, b)\right) \geqq H_{p_3,w_3}\left(G_\alpha(a, b)\right) \geqq H_{p_3,w_3}(a, b)$$

$$\geqq H_{p_3,w_3}\left(H_\alpha(a, b)\right) \geqq H_{p_3,w_3}\left(H_\beta(a, b)\right) \geqq H(a, b)$$

$$\geqq H_{p_4,w_4}\left(H_\beta(a, b)\right) \geqq H_{p_4,w_4}\left(H_\alpha(a, b)\right) \geqq H_{p_4,w_4}(a, b).$$

if

$$(p_1, w_1) \in E_1,$$

 $(p_2, w_2) \in E_2 \cap \{(p, w) : 0 \leq p \text{ and } 0 \leq w\}$
 $=\{(p, w) : \max\{0, 2(p-1)\} \leq w \text{ and } 0$

Li-Li Fu, Bo-Yan Xi and H. M. Srivastava

$$(p_3, w_3) \in \{(p, w) : p < 0 \text{ and } 0 \leq w\} \cap F_1$$
$$= \{(p, w) : -2 \leq p < 0 \text{ and } \max\{0, -2(p+1)\} \leq w\}$$

and

$$(p_4, w_4) \in F_2,$$

where

$$A_{\alpha}(a,b) := (\alpha_1 a + \alpha_2 b, \alpha_2 a + \alpha_1 b), \quad G_{\alpha}(a,b) := (a^{\alpha_1} b^{\alpha_2}, a^{\alpha_2} b^{\alpha_1}),$$
$$H_{\alpha}(a,b) := \left(\frac{1}{\frac{\alpha_1}{a} + \frac{\alpha_2}{b}}, \frac{1}{\frac{\alpha_2}{a} + \frac{\alpha_1}{b}}\right)$$

and

$$A(a,b):=\frac{a+b}{2},\ G(a,b):=\sqrt{ab}\quad and\quad H(a,b):=\frac{2ab}{a+b}$$

Remark 6. The inequalities (3.12) include a new refinement of the well-known arithmetic-geometric-harmonic means inequalities with $(a, b) \in \mathbb{R}^2_+$.

ACKNOWLEDGEMENTS

The present investigation was supported, in part, by the *National Natural Science Foundation of the People's Republic of China* under Grant Number 10962004.

References

- 1. H. Alzer and W. Janous, Solution of problem 8*, Crux Math., 13 (1987), 173-178.
- P. S. Bullen, D. S. Mitrinović and P. M. Vasić, *Means and Their Inequalities*, Kluwer Academic Publishers, Dordrecht, Boston and London, 1988.
- 3. K.-Z. Guan and H.-T. Zhu, The generalized Heronian mean and its inequalities, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.*, **17** (2006), 60-75.
- 4. W. Janous, A note on generalized Heronian means. *Math. Inequal. Appl.*, **4** (2001), 369-375.
- 5. G. Jia and J.-D. Cao, A new upper bound of the logarithmic mean, *J. Inequal. Pure Appl. Math.*, **4** (2003), Article 80, 1-4 (electronic).
- 6. D.-M. Li, C. Gu and H.-N. Shi, Schur convexity of the power-type generalization of Heronian mean, *Math. Practice and Theory*, **36** (2006), 387-390 (in Chinese).
- 7. Q.-J. Mao, Dual means, logarithmic and Heronian dual means of two positive numbers, *J. Suzhou Coll. Ed.*, **16** (1999), 82-85 (in Chinese).

- A. W. Marshall and I. Olkin, *Inequalities: Theory of Majorization and Its Applications*, Mathematics in Science and Engineering, Vol. 143, Academic Press, New York and London, 1979.
- 9. H.-N. Shi, M. Bencze, S.-H. Wu and D.-M. Li, Schur convexity of generalized Heronian means involving two parameters, *J. Inequal. Appl.*, **2008** (2008), Article ID 879273, 1-9.
- 10. H.-N. Shi, S.-H. Wu and F. Qi, An alternative note on the Schur-convexity of the extended mean values, *Math. Inequal. Appl.*, **9** (2006), 219-224.
- 11. W.-F. Xia and Y.-M. Chu, Schur-convexity for a class of symmetric functions and its applications. J. Inequal. Appl., (2009), Article ID 493759, 1-15.
- 12. Z.-H. Zhang and Y.-D. Wu, The generalized Heron mean and its dual form, *Appl. Math. E-Notes*, **5** (2005), 16-23 (electronic).
- 13. Z.-H. Zhang, Y.-D. Wu and H. M. Srivastava, Generalized Vandermonde determinants and mean values, *Appl. Math. Comput.*, **202** (2008), 300-310.
- 14. Z.-H. Zhang, Y.-D. Wu and A.-P. Zhao, The properties of the generalized Heron means and its dual form, *RGMIA Res. Rep. Collect.*, 7 (2004), Article 1.
- 15. N.-G. Zheng, Z.-H. Zhang and X.-M. Zhang, Schur-convexity of two types of one-parameter mean values in *n* variables, *J. Inequal. Appl.*, **2007** (2007), Article ID 78175, 1-10.

Li-Li Fu and Bo-Yan Xi College of Mathematics Inner Mongolia University for Nationalities Inner Mongolia Autonomous Region Tongliao City 028043 P. R. China E-mail: fulili0209@163.com baoyintu68@sohu.com

H. M. Srivastava Department of Mathematics and Statistics University of Victoria Victoria, British Columbia V8W 3R4 Canada E-mail: harimsri@math.uvic.ca