SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN MEANS INVOLVING TWO POSITIVE NUMBERS

Li-Li Fu, Bo-Yan Xi and H. M. Srivastava*

Abstract

In this paper, we give the sufficient as well as necessary condition of the Schur-convexity and Schur-harmonic-convexity of the generalized Heronian means with two positive numbers. Our main results provide the perfected versions of the results given in 2008 by Shi et al. [9].

1. Introduction

Throughout the this paper, we let

$$
\mathbb{R}=(-\infty,+\infty), \mathbb{R}_{0}=[0,+\infty) \quad \text { and } \quad \mathbb{R}_{+}=(0,+\infty)
$$

We also let

$$
(a, b) \in \mathbb{R}_{+}^{2}, w \in \mathbb{R}_{0} \quad \text { and } \quad p \in \mathbb{R} .
$$

The well-known Heronian means of $(a, b) \in \mathbb{R}_{+}^{2}$ is defined by (see [1] and also [2, p. 399])

$$
H_{1,1}(a, b)= \begin{cases}\frac{a+\sqrt{a b}+b}{3} & (a \neq b) \tag{1.1}\\ \sqrt{a b} & (a=b) .\end{cases}
$$

An analogue of the above-defined Heronian means is stated as follows (see [5]):

$$
\begin{equation*}
H_{1,4}(a, b)=\frac{a+4(a b)^{\frac{1}{2}}+b}{6} . \tag{1.2}
\end{equation*}
$$

Received May 5, 2011, accepted June 5, 2011.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: Primary 05E05; Secondary 26B25.
Key words and phrases: Heronian means, Generalized Heronian means, Schur-convexity, Schur-harmonic-convexity, Arithmetic-geometric-harmonic means inequalities, Schur-geometric-convexity. *Corresponding author.

Recently, Janous [4] presented a family of the generalized Heronian means defined by

$$
H_{1, w}(a, b)= \begin{cases}\frac{a+w(a b)^{\frac{1}{2}}+b}{w+2} & \left(w \in \mathbb{R}_{0}\right) \tag{1.3}\\ \sqrt{a b} & (w=\infty)\end{cases}
$$

and compared it with the other means.
In 2006, Li et al. [6] gave the monotonicity and Schur-convexity of another generalized Heronian means as follows:

$$
H_{p, 1}(a, b)= \begin{cases}\left(\frac{a^{p}+(a b)^{\frac{p}{2}}+b^{p}}{3}\right)^{\frac{1}{p}} & (p \neq 0) \tag{1.4}\\ \sqrt{a b} & (p=0)\end{cases}
$$

Several variants as well as interesting applications of the Heronian means can be found in the recent papers [3], [9], [10] and [12] to [15]. We remark here that Shi et al. [9] discussed the Schur-convexity and Schur-geometric-convexity of a further generalization of the Heronian means given by

$$
H_{p, w}(a, b)= \begin{cases}\left(\frac{a^{p}+w(a b)^{\frac{p}{2}}+b^{p}}{w+2}\right)^{\frac{1}{p}} & (p \neq 0) \tag{1.5}\\ \sqrt{a b} & (p=0)\end{cases}
$$

and proved Theorem 1 below.

Theorem 1. (see [9]). Each of the following assertions holds true:
(i) $H_{p, w}(a, b)$ is increasing with respect to w;
(ii) $H_{p, w}(a, b)$ is Schur-convex if $(p, w) \in E_{11}$;
(iii) $H_{p, w}(a, b)$ is Schur-concave if $(p, w) \in E_{21}$,
where

$$
\begin{equation*}
E_{11}:=\{(p, w): p \geqq 2 \quad \text { and } \quad 0 \leqq w \leqq 2\} \tag{1.6}
\end{equation*}
$$

and

$$
\begin{align*}
E_{21}:= & \{(p, w): p \leqq 1 \text { and } 0 \leqq w\} \cup\left\{(p, w): 1<p \leqq \frac{3}{2} \text { and } w \geqq 1\right\} \tag{1.7}\\
& \cup\left\{(p, w): \frac{3}{2}<p \leqq 2 \text { and } w \geqq 2\right\} .
\end{align*}
$$

Remark 1. Theorem 1 merely provides a sufficient condition of the Schur-convexity of the generalized Heronian means $H_{p, w}(a, b)$.

The main purpose of this paper is to give the sufficient as well as necessary condition of the Schur-convexity and Schur-harmonic-convexity of the generalized Heronian means $H_{p, w}(a, b)$ with $(a, b) \in \mathbb{R}_{+}^{2}$. As applications our results, a new refinement of the arithmetic-geometric-harmonic means inequalities is established.

2. Preliminaries Results

In order to prove our main results, we require a number of lemmas. Lemmas 1 and 2 involving the Schur-convexity and Schur-harmonic-convexity of a given function can be found in [8] and [11], respectively. Lemma 3 involving Bernoulli's inequality [2] is well-known.

Lemma 1. (see [8, pp. 54-57]). Let $\Omega \subset \mathbb{R}^{n}$ be a convex set which is symmetric with respect to permutations and which has a nonempty interior set Ω°. If $\varphi: \Omega \rightarrow \mathbb{R}$ is continuous and symmetric on Ω and differentiable in Ω°, then φ is Schur-convex (Schur-concave) if and only if the following condition:

$$
S\left(x_{1}, x_{2} ; \varphi\right):=\left(x_{1}-x_{2}\right)\left(\frac{\partial \varphi}{\partial x_{1}}-\frac{\partial \varphi}{\partial x_{2}}\right) \geqq 0(\leqq 0)
$$

holds true for any $x \in \Omega^{\circ}$.
Lemma 2. (see [11]). Let $\Omega \subset \mathbb{R}_{+}^{n}$ be symmetric and have a nonempty interior set Ω°. Suppose also that

$$
\left\{\left(\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}\right): \boldsymbol{x} \in \Omega\right\}
$$

is a convex set. If $\varphi: \Omega \rightarrow \mathbb{R}_{+}$is continuous and symmetric on Ω, and differentiable in Ω°, then φ is Schur-harmonic-convex (Schur-harmonic-concave) if and only if the following condition:

$$
H\left(x_{1}, x_{2} ; \varphi\right):=\left(x_{1}-x_{2}\right)\left(x_{1}^{2} \frac{\partial \varphi}{\partial x_{1}}-x_{2}^{2} \frac{\partial \varphi}{\partial x_{2}}\right) \geqq 0(\leqq 0)
$$

holds true for any $x \in \Omega^{\circ}$.
Lemma 3. [Bernoulli's Inequality (see [2, p. 4])]. Let $x \geqq-1$. Then the following inequality:

$$
\begin{equation*}
(1+x)^{\alpha} \geqq 1+\alpha x \tag{2.1}
\end{equation*}
$$

holds true if $\alpha \geqq 1$ or $\alpha \leqq 0 \quad(x \neq-1)$. Furthermore, the inequality (2.1) is reversed if $0<\alpha<1$.

Lemma 4. For $u \in \mathbb{R}_{0}$, let

$$
\begin{equation*}
h_{p, w}(u):=(1+u)^{p-1}-1-\frac{w}{2} u(1+u)^{\frac{p}{2}-1} . \tag{2.2}
\end{equation*}
$$

Then $h_{p, w}(u) \geqq 0$ if and only if $(p, w) \in E_{1}$. Furthermore, $h_{p, w}(u) \leqq 0$ if and only if $(p, w) \in E_{2}$, where

$$
\begin{gather*}
E_{1}:=\{(p, w): p \geqq 2 \quad \text { and } \quad 0 \leqq w \leqq 2(p-1)\} \\
\cup\{(p, w): 1<p \leqq 2 \quad \text { and } \quad w=0)\} \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
E_{2}:=\{(p, w): p \leqq 2 \quad \text { and } \quad \max \{0,2(p-1)\} \leqq w\} \tag{2.4}
\end{equation*}
$$

Proof. First of all, we prove the sufficiency. Indeed, for $u \in \mathbb{R}_{0}$, one gets

$$
\begin{equation*}
h_{p, w}^{\prime}(u)=(1+u)^{\frac{p}{2}-2}\left[(p-1)(1+u)^{\frac{p}{2}}-\frac{w}{2}\left(1+\frac{p}{2} u\right)\right] . \tag{2.5}
\end{equation*}
$$

From Lemma 3, it follows for any $u \in \mathbb{R}_{0}$ that

$$
\begin{equation*}
(1+u)^{\frac{p}{2}} \geqq 1+\frac{p}{2} u \quad(p \geqq 2) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+u)^{\frac{p}{2}} \leqq 1+\frac{p}{2} u \quad(0 \leqq p \leqq 2) \tag{2.7}
\end{equation*}
$$

(i) We can easily see that $h_{p, w}(u) \geqq 0$ for $1 \leqq p \leqq 2$ and $w=0$.

If $(p, w) \in E_{1}$ with $2(p-1) \geqq w \geqq 0$ and $p \geqq 2$, then, by using (2.5) and the inequality (2.6), we obtain

$$
h_{p, w}^{\prime}(u) \geqq(1+u)^{\frac{p}{2}-2} \frac{w}{2}\left((1+u)^{\frac{p}{2}}-1-\frac{p}{2} u\right) \geqq 0 .
$$

It is not difficult to find that $h_{p, w}(u)$ is increasing for $u \in \mathbb{R}_{0}$ and that

$$
h_{p, w}(u) \geqq h_{p, w}(0)=0
$$

(ii) If $(p, w) \in E_{2}$ with $p \leqq 1$ and $w \geqq 0$, then, obviously, $h_{p, w}(u) \leqq 0$ holds true.

If $(p, w) \in E_{2}$ with

$$
1 \leqq p \leqq 2 \quad \text { and } \quad p \leqq 1+\frac{w}{2}
$$

then we find the from (2.5) and inequality (2.7) that

$$
h_{p, w}^{\prime}(u) \leqq(1+u)^{\frac{p}{2}-2} \frac{w}{2}\left((1+u)^{\frac{p}{2}}-1-\frac{p}{2} u\right) \leqq 0,
$$

which implies that $h_{p, w}(u)$ is decreasing with respect to $u \in \mathbb{R}_{0}$ and

$$
h_{p, w}(u) \leqq h_{p, w}(0)=0 .
$$

We now give the proof of the necessity.
(iii) For $w, u \in \mathbb{R}_{0}$, in view of $h_{p, w}(0)=0$ and using the mean value theorem, we obtain

$$
h_{p, w}(u)=u \cdot h_{p, w}^{\prime}\left(u_{0}\right) \geqq 0 \quad\left(u_{0} \in[0, u]\right) .
$$

We thus find that

$$
\lim _{u_{0} \rightarrow 0^{+}} h_{p, w}^{\prime}\left(u_{0}\right)=h_{p, w}^{\prime}\left(0^{+}\right)=p-1-\frac{w}{2} \geqq 0,
$$

that is, that

$$
p-1 \geqq \frac{w}{2} .
$$

If we set $p-1=\frac{w}{2}>0$, then we find from the mean value theorem that $h_{p}(u):=h_{p, 2(p-1)}(u)=(1+u)^{p-1}-1-(p-1) u(1+u)^{\frac{p}{2}-1}=u \cdot h_{p}^{\prime}\left(u_{0}\right) \geqq 0$, where $u_{0} \in[0, u]$. It, therefore, follows that

$$
\begin{equation*}
h_{p}^{\prime}\left(u_{0}\right)=(p-1)\left(1+u_{0}\right)^{\frac{p}{2}-2}\left[\left(1+u_{0}\right)^{\frac{p}{2}}-\left(1+\frac{p}{2} u_{0}\right)\right] \geqq 0, \tag{2.8}
\end{equation*}
$$

which implies that $p \geqq 2$ by means of Lemma 3 .
If

$$
p-1 \geqq \frac{w}{2}=0
$$

then we see that $p \geqq 1$ with

$$
h_{p, 0}(u)=(1+u)^{p-1}-1 \geqq 0 .
$$

This also means that $h_{p, w}(u) \geqq 0$ must yield $(p, w) \in E_{1}$.
(iv) For $w, u \in \mathbb{R}_{0}$, according to $h_{p, w}(0)=0$ and $h_{p, w}(u) \leqq 0$, one finds that $h_{p, w}^{\prime}\left(0^{+}\right) \leqq 0$ and

$$
p-1 \leqq \frac{w}{2} .
$$

If $0 \leqq p-1 \leqq \frac{w}{2}$, by the same discussion as in the case of Part (iii) above, it is easy to obtain $1 \leqq p \leqq 2$ for $h_{p, w}(u) \leqq 0$.

If $p-1<0 \leqq \frac{w}{2}$, then, upon letting $w=0$, we have $p<1$ with

$$
\begin{equation*}
h_{p, 0}(u)=(1+u)^{p-1}-1 \leqq 0 \tag{2.9}
\end{equation*}
$$

Therefore, $h_{p, w}(u) \leqq 0$ must yield $(p, w) \in E_{2}$.
The proof of Lemma 4 is thus completed.
By using the same method as in the proof of Lemma 4 above, we can deduce the following analogous result.

Lemma 5. Define

$$
\begin{equation*}
k_{p, w}(u):=(1+u)^{p+1}-1+\frac{w}{2} u(1+u)^{\frac{p}{2}} \quad\left(u \in \mathbb{R}_{0}\right) \tag{2.10}
\end{equation*}
$$

Then $k_{p, w}(u) \geqq 0$ if and only if $(p, w) \in F_{1}$. Furthermore, $k_{p, w}(u) \leqq 0$ if and only if $(p, w) \in F_{2}$, where

$$
\begin{equation*}
F_{1}:=\{(p, w):-2 \leqq p \quad \text { and } \quad \max \{0,-2(p+1)\} \leqq w\} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{gather*}
F_{2}:=\{(p, w): p \leqq-2 \quad \text { and } \quad 0 \leqq w \leqq-2(p+1)\} \tag{2.12}\\
\cup\{(p, w): p \leqq-1 \quad \text { and } \quad w=0\}
\end{gather*}
$$

3. Main Results and Applications

Theorem 2. The generalized Heronian means $H_{p, w}(a, b)$ is Schur-convex if and only if $(p, w) \in E_{1}$, and is also Schur-concave if and only if $(p, w) \in E_{2}$, where E_{1} and E_{2} are given by (2.3) and (2.4), respectively.

Proof. It is easily observed that $H_{0, w}(a, b)=\sqrt{a b}$ is Schur-concave for $(a, b) \in \mathbb{R}_{+}^{2}$.

For $p \neq 0$, we readily arrive that

$$
\begin{equation*}
\frac{\partial H_{p, w}(a, b)}{\partial a}=\frac{1}{w+2}\left(a^{p-1}+\frac{w b}{2}(a b)^{\frac{p}{2}-1}\right)\left[H_{p, w}(a, b)\right]^{1-p}>0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial H_{p, w}(a, b)}{\partial b}=\frac{1}{w+2}\left(b^{p-1}+\frac{w a}{2}(a b)^{\frac{p}{2}-1}\right)\left[H_{p, w}(a, b)\right]^{1-p}>0 \tag{3.2}
\end{equation*}
$$

There is no loss of generality in supposing that

$$
a \geqq b \quad \text { and } \quad 1+u=\frac{a}{b} \quad\left(u \in \mathbb{R}_{0}\right)
$$

which yields

$$
\begin{align*}
S\left(a, b ; H_{p, w}\right) & =\frac{a-b}{w+2}\left[H_{p, w}(a, b)\right]^{1-p}\left(a^{p-1}-b^{p-1}-\frac{w}{2}(a-b)(a b)^{\frac{p}{2}-1}\right) \tag{3.3}\\
& =\frac{(a-b) b^{p-1}}{w+2}\left[H_{p, w}(a, b)\right]^{1-p} h_{p, w}(u)
\end{align*}
$$

where $h_{p, w}(u)$ is defined by (2.2).
This evidently completes the proof of Theorem 2 by means of Lemmas 1 and 4, and the expression given by (3.3).

Remark 2. In Figure 1 below, if we let

$$
\begin{equation*}
E_{3}:=\left\{(p, w): 1+\frac{w}{2}<p<2 \quad \text { and } \quad 0<w<2\right\} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{4}:=\left\{(p, w): 2<p<1+\frac{w}{2} \quad \text { and } \quad 2<w\right\} \tag{3.5}
\end{equation*}
$$

then we find that

$$
\mathbb{R} \times \mathbb{R}_{0}=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}
$$

and

$$
E_{1} \cap E_{3}=E_{2} \cap E_{3}=E_{1} \cap E_{4}=E_{2} \cap E_{4}=\phi
$$

Remark 3. In the case when $(p, w) \in E_{3} \cup E_{4}$, we cannot determine the Schur-convexity of $H_{p, w}(a, b)$. For example, for $(1.98,1.92) \in E_{3}$ and $(4,8) \in E_{4}$, we know that

$$
h_{1.98,1.92}(1)=0.0767 \cdots>0, \quad h_{1.98,1.92}(59)=-0.0852 \cdots<0
$$

and

$$
h_{4,8}(1.01)=-0.999799<0, \quad h_{4,8}(2)=3>0
$$

where $h_{p, w}(u)$ is defined by (2.2). Thus it follows from (3.3) that the sign of $S\left(a, b ; H_{p, w}\right)$ is changed.

Remark 4. By combining Theorems 1 and 2, one finds from Figures 1 and 2 that if we let

$$
\begin{gather*}
E_{12}:=\{(p, w): 2<p \text { and } 2<w \leqq 2(p-1)\} \tag{3.6}\\
\cup\{(p, w): 1<p \leqq 2 \text { and } w=0\},
\end{gather*}
$$

$$
\begin{equation*}
E_{22}:=\left\{(p, w): 1<p<\frac{3}{2} \quad \text { and } \quad 2(p-1) \leqq w<1\right\} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{23}:=\left\{(p, w): \frac{3}{2} \leqq p<2 \quad \text { and } \quad 2(p-1) \leqq w<2\right\} \tag{3.8}
\end{equation*}
$$

then we find that

$$
E_{1}=E_{11} \cup E_{12}
$$

and

$$
E_{2}=E_{21} \cup E_{22} \cup E_{23} .
$$

Thus, obviously, Theorem 1 is only to put forward a sufficient condition of the Schur-convexity of the generalized Heronian means $H_{p, w}(a, b)$.

Fig. 1.

Fig. 2.

Fig. 3.

Similarly, the assertion of Theorem 3 below can be shown to hold true by applying Lemmas 2, 3 and 5.

Theorem 3. The generalized Heronian means $H_{p, w}(a, b)$ is Schur-harmonicconvex if and only if $(p, w) \in F_{1}$, and is also Schur-harmonic-concave if and only if $(p, w) \in F_{2}$, where F_{1} and F_{2} are given, as in Lemma 5, by (2.11) and (2.12), respectively.

Remark 5. Given (see Figure 3)

$$
\begin{equation*}
F_{3}:=\left\{(p, w):-2<p<-1 \quad \text { and } \quad 0<\frac{w}{2}<-(p+1)\right\} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{4}:=\left\{(p, w): p<-2 \quad \text { and } \quad-(p+1)<\frac{w}{2}\right\} \tag{3.10}
\end{equation*}
$$

we can deduce that

$$
\mathbb{R} \times \mathbb{R}_{0}=F_{1} \cup F_{2} \cup F_{3} \cup F_{4}
$$

and

$$
F_{1} \cap F_{3}=F_{2} \cap F_{3}=F_{1} \cap F_{4}=F_{2} \cap F_{4}=\phi
$$

Similar to the observations made in Remark 3, we also cannot determine the Schur-harmonic-convexity of $H_{p, w}(a, b)$ with $(p, w) \in F_{3} \cup F_{4}$.

As simple applications of Theorems 2 and 3, we are led to the following two interesting corollaries.

Corollary 1. Let the p-th power mean of $(a, b) \in \mathbb{R}_{+}^{2}$ be defined by

$$
M_{p}(a, b):=H_{p, 0}(a, b)= \begin{cases}\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}} & (p \neq 0) \tag{3.11}\\ \sqrt{a b} & (p=0)\end{cases}
$$

Then $M_{p}(a, b)$ is Schur-convex if and only if $p \geqq 1$ and Schur-concave if and only if $p \leqq 1$, and is also Schur-harmonic-convex if and only if $p \geqq-1$ and Schur-harmonic-concave if and only if $p \leqq-1$.

Corollary 2. For

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \alpha_{2}\right), \beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}_{0}^{2} \quad \text { and } \quad\left(\frac{1}{2}, \frac{1}{2}\right) \prec \beta \prec \alpha \prec(1,0), \\
& H_{p_{1}, w_{1}}(a, b) \geqq H_{p_{1}, w_{1}}\left(A_{\alpha}(a, b)\right) \geqq H_{p_{1}, w_{1}}\left(A_{\beta}(a, b)\right) \geqq A(a, b) \\
& \geqq H_{p_{2}, w_{2}}\left(A_{\beta}(a, b)\right) \geqq H_{p_{2}, w_{2}}\left(A_{\alpha}(a, b)\right) \geqq H_{p_{2}, w_{2}}(a, b) \\
& \geqq H_{p_{2}, w_{2}}\left(G_{\alpha}(a, b)\right) \geqq H_{p_{2}, w_{2}}\left(G_{\beta}(a, b)\right) \geqq G(a, b) \\
& \geqq H_{p_{3}, w_{3}}\left(G_{\beta}(a, b)\right) \geqq H_{p_{3}, w_{3}}\left(G_{\alpha}(a, b)\right) \geqq H_{p_{3}, w_{3}}(a, b) \\
& \geqq H_{p_{3}, w_{3}}\left(H_{\alpha}(a, b)\right) \geqq H_{p_{3}, w_{3}}\left(H_{\beta}(a, b)\right) \geqq H(a, b) \\
& \geqq H_{p_{4}, w_{4}}\left(H_{\beta}(a, b)\right) \geqq H_{p_{4}, w_{4}}\left(H_{\alpha}(a, b)\right) \geqq H_{p_{4}, w_{4}}(a, b),
\end{aligned}
$$

if

$$
\begin{aligned}
& \left(p_{1}, w_{1}\right) \in E_{1}, \\
\left(p_{2}, w_{2}\right) \in & E_{2} \cap\{(p, w): 0 \leqq p \quad \text { and } 0 \leqq w\} \\
= & \{(p, w): \max \{0,2(p-1)\} \leqq w \text { and } 0<p \leqq 2\},
\end{aligned}
$$

$$
\begin{aligned}
\left(p_{3}, w_{3}\right) & \in\{(p, w): p<0 \quad \text { and } \quad 0 \leqq w\} \cap F_{1} \\
& =\{(p, w):-2 \leqq p<0 \quad \text { and } \quad \max \{0,-2(p+1)\} \leqq w\}
\end{aligned}
$$

and

$$
\left(p_{4}, w_{4}\right) \in F_{2}
$$

where

$$
\begin{gathered}
A_{\alpha}(a, b):=\left(\alpha_{1} a+\alpha_{2} b, \alpha_{2} a+\alpha_{1} b\right), \quad G_{\alpha}(a, b):=\left(a^{\alpha_{1}} b^{\alpha_{2}}, a^{\alpha_{2}} b^{\alpha_{1}}\right) \\
H_{\alpha}(a, b):=\left(\frac{1}{\frac{\alpha_{1}}{a}+\frac{\alpha_{2}}{b}}, \frac{1}{\frac{\alpha_{2}}{a}+\frac{\alpha_{1}}{b}}\right)
\end{gathered}
$$

and

$$
A(a, b):=\frac{a+b}{2}, G(a, b):=\sqrt{a b} \quad \text { and } \quad H(a, b):=\frac{2 a b}{a+b} .
$$

Remark 6. The inequalities (3.12) include a new refinement of the well-known arithmetic-geometric-harmonic means inequalities with $(a, b) \in \mathbb{R}_{+}^{2}$.

Acknowledgements

The present investigation was supported, in part, by the National Natural Science Foundation of the People's Republic of China under Grant Number 10962004.

References

1. H. Alzer and W. Janous, Solution of problem 8*, Crux Math., 13 (1987), 173-178.
2. P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, Boston and London, 1988.
3. K.-Z. Guan and H.-T. Zhu, The generalized Heronian mean and its inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 17 (2006), 60-75.
4. W. Janous, A note on generalized Heronian means. Math. Inequal. Appl., 4 (2001), 369-375.
5. G. Jia and J.-D. Cao, A new upper bound of the logarithmic mean, J. Inequal. Pure Appl. Math., 4 (2003), Article 80, 1-4 (electronic).
6. D.-M. Li, C. Gu and H.-N. Shi, Schur convexity of the power-type generalization of Heronian mean, Math. Practice and Theory, 36 (2006), 387-390 (in Chinese).
7. Q.-J. Mao, Dual means, logarithmic and Heronian dual means of two positive numbers, J. Suzhou Coll. Ed., 16 (1999), 82-85 (in Chinese).
8. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Mathematics in Science and Engineering, Vol. 143, Academic Press, New York and London, 1979.
9. H.-N. Shi, M. Bencze, S.-H. Wu and D.-M. Li, Schur convexity of generalized Heronian means involving two parameters, J. Inequal. Appl., 2008 (2008), Article ID 879273, 1-9.
10. H.-N. Shi, S.-H. Wu and F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl., 9 (2006), 219-224.
11. W.-F. Xia and Y.-M. Chu, Schur-convexity for a class of symmetric functions and its applications. J. Inequal. Appl., (2009), Article ID 493759, 1-15.
12. Z.-H. Zhang and Y.-D. Wu, The generalized Heron mean and its dual form, Appl. Math. E-Notes, 5 (2005), 16-23 (electronic).
13. Z.-H. Zhang, Y.-D. Wu and H. M. Srivastava, Generalized Vandermonde determinants and mean values, Appl. Math. Comput., 202 (2008), 300-310.
14. Z.-H. Zhang, Y.-D. Wu and A.-P. Zhao, The properties of the generalized Heron means and its dual form, RGMIA Res. Rep. Collect., 7 (2004), Article 1.
15. N.-G. Zheng, Z.-H. Zhang and X.-M. Zhang, Schur-convexity of two types of one-parameter mean values in n variables, J. Inequal. Appl., 2007 (2007), Article ID 78175, 1-10.

Li-Li Fu and Bo-Yan Xi
College of Mathematics
Inner Mongolia University for Nationalities
Inner Mongolia Autonomous Region
Tongliao City 028043
P. R. China

E-mail: fulili0209@163.com
baoyintu68@sohu.com
H. M. Srivastava

Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3R4
Canada
E-mail: harimsri@math.uvic.ca

