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SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN

MEANS INVOLVING TWO POSITIVE NUMBERS

Li-Li Fu, Bo-Yan Xi and H. M. Srivastava*

Abstract. In this paper, we give the sufficient as well as necessary

condition of the Schur-convexity and Schur-harmonic-convexity of the

generalized Heronian means with two positive numbers. Our main results

provide the perfected versions of the results given in 2008 by Shi et al. [9].

1. INTRODUCTION

Throughout the this paper, we let

R = (−∞, +∞), R0 = [0, +∞) and R+ = (0, +∞).

We also let

(a, b) ∈ R2
+, w ∈ R0 and p ∈ R.

The well-known Heronian means of (a, b) ∈ R2
+ is defined by (see [1] and also

[2, p. 399])

(1.1) H1,1(a, b) =





a +
√

ab + b

3
(a 6= b)

√
ab (a = b).

An analogue of the above-defined Heronian means is stated as follows (see [5]):

(1.2) H1,4(a, b) =
a + 4(ab)

1
2 + b

6
.

Received May 5, 2011, accepted June 5, 2011.

Communicated by Jen-Chih Yao.

2010 Mathematics Subject Classification: Primary 05E05; Secondary 26B25.

Key words and phrases: Heronian means, Generalized Heronian means, Schur-convexity, Schur-

harmonic-convexity, Arithmetic-geometric-harmonic means inequalities, Schur-geometric-convexity.

*Corresponding author.

2721



2722 Li-Li Fu, Bo-Yan Xi and H. M. Srivastava

Recently, Janous [4] presented a family of the generalized Heronian means

defined by

(1.3) H1,w(a, b) =





a + w(ab)
1
2 + b

w + 2
(w ∈ R0)

√
ab (w = ∞)

and compared it with the other means.

In 2006, Li et al. [6] gave the monotonicity and Schur-convexity of another

generalized Heronian means as follows:

(1.4) Hp,1(a, b) =





(
ap + (ab)

p
2 + bp

3

) 1
p

(p 6= 0)

√
ab (p = 0).

Several variants as well as interesting applications of the Heronian means can

be found in the recent papers [3], [9], [10] and [12] to [15]. We remark here that

Shi et al. [9] discussed the Schur-convexity and Schur-geometric-convexity of a

further generalization of the Heronian means given by

(1.5) Hp,w(a, b) =





(
ap + w(ab)

p
2 + bp

w + 2

) 1
p

(p 6= 0)

√
ab (p = 0)

and proved Theorem 1 below.

Theorem 1. (see [9]). Each of the following assertions holds true:
(i) Hp,w(a, b) is increasing with respect to w;
(ii) Hp,w(a, b) is Schur-convex if (p, w) ∈ E11;
(iii) Hp,w(a, b) is Schur-concave if (p, w) ∈ E21,

where

E11 := {(p, w) : p = 2 and 0 5 w 5 2}(1.6)

and

(1.7)

E21 :=
{

(p, w) : p51 and 05w
}
∪
{
(p, w) : 1<p5 3

2
and w=1

}

∪
{

(p, w) :
3
2

< p 5 2 and w = 2
}
.
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Remark 1. Theorem 1 merely provides a sufficient condition of the

Schur-convexity of the generalized Heronian means Hp,w(a, b).

The main purpose of this paper is to give the sufficient as well as necessary

condition of the Schur-convexity and Schur-harmonic-convexity of the generalized

Heronian means Hp,w(a, b) with (a, b) ∈ R2
+. As applications our results, a new

refinement of the arithmetic-geometric-harmonic means inequalities is established.

2. PRELIMINARIES RESULTS

In order to prove our main results, we require a number of lemmas. Lemmas

1 and 2 involving the Schur-convexity and Schur-harmonic-convexity of a given

function can be found in [8] and [11], respectively. Lemma 3 involving Bernoulli’s

inequality [2] is well-known.

Lemma 1. (see [8, pp. 54-57]). Let Ω ⊂ Rn be a convex set which is sym-

metric with respect to permutations and which has a nonempty interior set Ω◦. If
ϕ : Ω → R is continuous and symmetric on Ω and differentiable in Ω◦, then ϕ is

Schur-convex (Schur-concave) if and only if the following condition:

S(x1, x2; ϕ) := (x1 − x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
= 0 (5 0)

holds true for any x ∈ Ω◦.

Lemma 2. (see [11]). Let Ω ⊂ Rn
+ be symmetric and have a nonempty interior

set Ω◦. Suppose also that
{(

1
x1

,
1
x2

, ...,
1
xn

)
: x ∈ Ω

}

is a convex set. If ϕ : Ω → R+ is continuous and symmetric on Ω, and differentiable
in Ω◦, then ϕ is Schur-harmonic-convex (Schur-harmonic-concave) if and only if

the following condition:

H(x1, x2; ϕ) := (x1 − x2)

(
x2

1

∂ϕ

∂x1
− x2

2

∂ϕ

∂x2

)
= 0 (5 0)

holds true for any x ∈ Ω◦.

Lemma 3. [Bernoulli’s Inequality (see [2, p. 4])]. Let x = −1. Then the
following inequality:

(2.1) (1 + x)α = 1 + αx

holds true if α = 1 or α 5 0 (x 6= −1). Furthermore, the inequality (2.1) is
reversed if 0 < α < 1.
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Lemma 4. For u ∈ R0, let

hp,w(u) :=(1 + u)p−1 − 1 − w

2
u(1 + u)

p
2
−1.(2.2)

Then hp,w(u) = 0 if and only if (p, w) ∈ E1. Furthermore, hp,w(u) 5 0 if and
only if (p, w) ∈ E2, where

(2.3)
E1 := {(p, w) : p = 2 and 0 5 w 5 2(p − 1)}

∪{(p, w) : 1 < p 5 2 and w = 0)}

and

E2 := {(p, w) : p 5 2 and max{0, 2(p− 1)} 5 w} .(2.4)

Proof. First of all, we prove the sufficiency. Indeed, for u ∈ R0, one gets

h′
p,w(u) = (1 + u)

p
2
−2

[
(p − 1)(1 + u)

p
2 − w

2

(
1 +

p

2
u

)]
.(2.5)

From Lemma 3, it follows for any u ∈ R0 that

(1 + u)
p
2 = 1 +

p

2
u (p = 2)(2.6)

and

(1 + u)
p
2 5 1 +

p

2
u (0 5 p 5 2).(2.7)

(i) We can easily see that hp,w(u) = 0 for 1 5 p 5 2 and w = 0.
If (p, w) ∈ E1 with 2(p − 1) = w = 0 and p = 2, then, by using (2.5) and the

inequality (2.6), we obtain

h′
p,w(u) = (1 + u)

p
2
−2 w

2

(
(1 + u)

p
2 − 1 − p

2
u

)
= 0.

It is not difficult to find that hp,w(u) is increasing for u ∈ R0 and that

hp,w(u) = hp,w(0) = 0.

(ii) If (p, w) ∈ E2 with p 5 1 and w = 0, then, obviously, hp,w(u) 5 0 holds
true.

If (p, w) ∈ E2 with

1 5 p 5 2 and p 5 1 +
w

2
,
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then we find the from (2.5) and inequality (2.7) that

h′
p,w(u) 5 (1 + u)

p
2
−2 w

2

(
(1 + u)

p
2 − 1 − p

2
u

)
5 0,

which implies that hp,w(u) is decreasing with respect to u ∈ R0 and

hp,w(u) 5 hp,w(0) = 0.

We now give the proof of the necessity.

(iii) For w, u ∈ R0, in view of hp,w(0) = 0 and using the mean value theorem,
we obtain

hp,w(u) = u · h′
p,w(u0) = 0 (u0 ∈ [0, u]).

We thus find that

lim
u0→0+

h′
p,w(u0) = h′

p,w(0+) = p − 1 − w

2
= 0,

that is, that

p − 1 =
w

2
.

If we set p − 1 = w
2 > 0, then we find from the mean value theorem that

hp(u) := hp,2(p−1)(u) = (1 + u)p−1 − 1 − (p − 1)u(1 + u)
p
2
−1 = u · h′

p(u0) = 0,

where u0 ∈ [0, u]. It, therefore, follows that

(2.8) h′
p(u0) = (p− 1)(1 + u0)

p
2
−2

[
(1 + u0)

p
2 −

(
1 +

p

2
u0

)]
= 0,

which implies that p = 2 by means of Lemma 3.
If

p − 1 =
w

2
= 0,

then we see that p = 1 with

hp,0(u) = (1 + u)p−1 − 1 = 0.

This also means that hp,w(u) = 0 must yield (p, w) ∈ E1.

(iv) For w, u ∈ R0, according to hp,w(0) = 0 and hp,w(u) 5 0, one finds that
h′

p,w(0+) 5 0 and

p − 1 5
w

2
.

If 0 5 p − 1 5 w
2 , by the same discussion as in the case of Part (iii) above, it

is easy to obtain 1 5 p 5 2 for hp,w(u) 5 0.
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If p − 1 < 0 5 w
2 , then, upon letting w = 0, we have p < 1 with

hp,0(u) = (1 + u)p−1 − 1 5 0.(2.9)

Therefore, hp,w(u) 5 0 must yield (p, w) ∈ E2.

The proof of Lemma 4 is thus completed.

By using the same method as in the proof of Lemma 4 above, we can deduce

the following analogous result.

Lemma 5. Define

kp,w(u) := (1 + u)p+1 − 1 +
w

2
u(1 + u)

p
2 (u ∈ R0).(2.10)

Then kp,w(u) = 0 if and only if (p, w) ∈ F1. Furthermore, kp,w(u) 5 0 if and only
if (p, w) ∈ F2, where

F1 := {(p, w) : −2 5 p and max{0,−2(p + 1)} 5 w}(2.11)

and

(2.12)
F2 := {(p, w) : p 5 −2 and 0 5 w 5 −2(p + 1)}

∪{(p, w) : p 5 −1 and w = 0}.

3. MAIN RESULTS AND APPLICATIONS

Theorem 2. The generalized Heronian meansHp,w(a, b) is Schur-convex if and
only if (p, w) ∈ E1, and is also Schur-concave if and only if (p, w) ∈ E2, where
E1 and E2 are given by (2.3) and (2.4), respectively.

Proof. It is easily observed that H0,w(a, b) =
√

ab is Schur-concave for
(a, b) ∈ R2

+.

For p 6= 0, we readily arrive that

(3.1)
∂Hp,w(a, b)

∂a
=

1
w + 2

(
ap−1 +

wb

2
(ab)

p
2
−1

)
[Hp,w(a, b)]1−p > 0

and

(3.2)
∂Hp,w(a, b)

∂b
=

1
w + 2

(
bp−1 +

wa

2
(ab)

p
2
−1

)
[Hp,w(a, b)]1−p > 0.

There is no loss of generality in supposing that
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a = b and 1 + u =
a

b
(u ∈ R0),

which yields

(3.3)

S(a, b; Hp,w) =
a−b

w+2
[Hp,w(a, b)]1−p

(
ap−1−bp−1−w

2
(a−b)(ab)

p
2
−1

)

=
(a − b)bp−1

w + 2
[Hp,w(a, b)]1−php,w(u),

where hp,w(u) is defined by (2.2).
This evidently completes the proof of Theorem 2 by means of Lemmas 1 and

4, and the expression given by (3.3).

Remark 2. In Figure 1 below, if we let

E3 :=
{

(p, w) : 1 +
w

2
< p < 2 and 0 < w < 2

}
(3.4)

and

E4 :=
{

(p, w) : 2 < p < 1 +
w

2
and 2 < w

}
,(3.5)

then we find that

R × R0 = E1 ∪ E2 ∪ E3 ∪ E4

and

E1 ∩ E3 = E2 ∩ E3 = E1 ∩ E4 = E2 ∩ E4 = φ.

Remark 3. In the case when (p, w) ∈ E3 ∪ E4, we cannot determine the

Schur-convexity of Hp,w(a, b). For example, for (1.98, 1.92) ∈ E3 and (4, 8) ∈ E4,

we know that

h1.98,1.92(1) = 0.0767 · · ·> 0, h1.98,1.92(59) = −0.0852 · · ·< 0

and

h4,8(1.01) = −0.999799 < 0, h4,8(2) = 3 > 0,

where hp,w(u) is defined by (2.2). Thus it follows from (3.3) that the sign of

S(a, b; Hp,w) is changed.

Remark 4. By combining Theorems 1 and 2, one finds from Figures 1 and 2

that if we let

(3.6)
E12 := {(p, w) : 2 < p and 2 < w 5 2(p− 1)}

∪{(p, w) : 1 < p 5 2 and w = 0},
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E22 :=
{

(p, w) : 1 < p <
3
2

and 2(p− 1) 5 w < 1
}

(3.7)

and

E23 :=
{

(p, w) :
3
2

5 p < 2 and 2(p− 1) 5 w < 2
}

,(3.8)

then we find that

E1 = E11 ∪ E12

and

E2 = E21 ∪ E22 ∪ E23.

Thus, obviously, Theorem 1 is only to put forward a sufficient condition of the

Schur-convexity of the generalized Heronian means Hp,w(a, b).

Fig. 1. Fig. 2. Fig. 3.

Similarly, the assertion of Theorem 3 below can be shown to hold true by

applying Lemmas 2, 3 and 5.

Theorem 3. The generalized Heronian means Hp,w(a, b) is Schur-harmonic-
convex if and only if (p, w) ∈ F1, and is also Schur-harmonic-concave if and only
if (p, w) ∈ F2, where F1 and F2 are given, as in Lemma 5, by (2.11) and (2.12),

respectively.

Remark 5. Given (see Figure 3)

F3 :=
{

(p, w) : −2 < p < −1 and 0 <
w

2
< −(p + 1)

}
(3.9)

and

F4 :=
{

(p, w) : p < −2 and − (p + 1) <
w

2

}
,(3.10)
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we can deduce that

R × R0 = F1 ∪ F2 ∪ F3 ∪ F4

and

F1 ∩ F3 = F2 ∩ F3 = F1 ∩ F4 = F2 ∩ F4 = φ.

Similar to the observations made in Remark 3, we also cannot determine the

Schur-harmonic-convexity of Hp,w(a, b) with (p, w) ∈ F3 ∪ F4.

As simple applications of Theorems 2 and 3, we are led to the following two

interesting corollaries.

Corollary 1. Let the p-th power mean of (a, b) ∈ R2
+ be defined by

(3.11) Mp(a, b) := Hp,0(a, b) =





(
ap + bp

2

) 1
p

(p 6= 0)
√

ab (p = 0).

Then Mp(a, b) is Schur-convex if and only if p = 1 and Schur-concave if and
only if p 5 1, and is also Schur-harmonic-convex if and only if p = −1 and
Schur-harmonic-concave if and only if p 5 −1.

Corollary 2. For

α = (α1, α2), β = (β1, β2) ∈ R2
0 and (

1
2
,
1
2
) ≺ β ≺ α ≺ (1, 0),

Hp1,w1(a, b) = Hp1,w1

(
Aα(a, b)

)
= Hp1,w1

(
Aβ(a, b)

)
= A(a, b)

= Hp2,w2

(
Aβ(a, b)

)
= Hp2,w2

(
Aα(a, b)

)
= Hp2,w2(a, b)

= Hp2,w2

(
Gα(a, b)

)
= Hp2,w2

(
Gβ(a, b)

)
= G(a, b)

= Hp3,w3

(
Gβ(a, b)

)
= Hp3,w3

(
Gα(a, b)

)
= Hp3,w3(a, b)

= Hp3,w3

(
Hα(a, b)

)
= Hp3,w3

(
Hβ(a, b)

)
= H(a, b)

= Hp4,w4

(
Hβ(a, b)

)
= Hp4,w4

(
Hα(a, b)

)
= Hp4,w4(a, b),

(3.12)

if

(p1, w1) ∈ E1,

(p2, w2) ∈E2 ∩ {(p, w) : 0 5 p and 0 5 w}
={(p, w) : max{0, 2(p− 1)} 5 w and 0 < p 5 2},
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(p3, w3) ∈{(p, w) : p < 0 and 0 5 w} ∩ F1

={(p, w) : −2 5 p < 0 and max{0,−2(p + 1)} 5 w}

and

(p4, w4) ∈ F2,

where

Aα(a, b) := (α1a + α2b, α2a + α1b), Gα(a, b) := (aα1bα2 , aα2bα1),

Hα(a, b) :=

(
1

α1
a + α2

b

,
1

α2
a + α1

b

)

and

A(a, b) :=
a + b

2
, G(a, b) :=

√
ab and H(a, b) :=

2ab

a + b
.

Remark 6. The inequalities (3.12) include a new refinement of the well-known

arithmetic-geometric-harmonic means inequalities with (a, b) ∈ R2
+.
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