DERIVATIONS ON MATRIX ALGEBRAS WITH APPLICATIONS TO HARMONIC ANALYSIS

H. Samea

Abstract

In this paper, the derivations between ideals of the Banach algebra $\mathfrak{E}_{\infty}(I)$ are characterized. Necessary and sufficient conditions for weak amenability of Banach algebras $\mathfrak{E}_{p}(I), 1 \leq p \leq \infty$, are found. Also, some applications to compact groups and hypergroups are given.

1. Introduction

The Banach algebras $\mathfrak{E}_{p}(I)$, where $p \in[1, \infty] \cup\{0\}$, were introduced and extensively studied in Section 28 of [5]. For a compact group G with dual \widehat{G}, the Banach algebras $\mathfrak{E}_{p}(\widehat{G})$, where $p \in[1, \infty] \cup\{0\}$, and multipliers on these Banach algebras were introduced and extensively studied in [5]. The present paper continues of the study of these algebras, and investigate multipliers and derivations on ideals of $\mathfrak{E}_{\infty}(I)$ with applications to compact groups and hypergroups.

The organization of this paper is as follows. The preliminaries and notations are given in section 1 . Section 2 is devoted to derivations between ideals of $\mathfrak{E}_{\infty}(I)$. In this paper, the set of all $M \in \mathfrak{E}(I)$ such that $M A, A M \in \mathfrak{B}(A \in \mathfrak{A})$, and $M_{i}=0$ $\left(i \in I, d_{i}=1\right)$ is denoted by $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. It is shown that if \mathfrak{A} and \mathfrak{B} are ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and moreover there exist norms $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras, then \mathfrak{B} is a Banach \mathfrak{A}-bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. It is shown that if D is a derivation from \mathfrak{A} into \mathfrak{B}, then D is continuous. Furthermore, if at least one of the spaces $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule, then there exists $M \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $D(A)=A M-M A(A \in \mathfrak{A})$. In section 3, the Banach space $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$, where \mathfrak{A} and \mathfrak{B} are any of Banach spaces $\mathfrak{E}_{p}(I)$ ($1 \leq p \leq \infty$), is formulated. Indeed, Theorem 35.4 of [5] is generalized from ideals of $\mathfrak{E}_{\infty}(\overline{\widehat{G}})$, where G is a compact group with dual \widehat{G}, to ideals of $\mathfrak{E}_{\infty}(I)$. In section

[^0]4 a number of results on derivations between Banach algebras of $\mathfrak{E}_{p}(I)(1 \leq p \leq \infty)$ are stated and proved, and applied in investigating the weakly amenability of Banach algebras $\mathfrak{E}_{p}(I)(1 \leq p \leq \infty)$. It is proved that $\mathcal{H}^{1}\left(\mathfrak{E}_{\infty}(I), \mathfrak{E}_{p}(I)\right)=0$ for each $1 \leq p \leq \infty$. Also it is shown that for $1 \leq p, q \nsupseteq \infty, \mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=0$ if and only if the set $\left\{i \in I: d_{i} \supsetneqq 1\right\}$ is finite. Moreover it is proved that for $1 \leq p \nsupseteq \infty$, $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{\infty}(I)\right)=0$ if and only if $\sup \left\{a_{i}: i \in I, d_{i} \ngtr 1\right\}<\infty$. Applications of these results enables one to prove that for each $1<p<\infty, \mathfrak{E}_{p}(I)$ is is weakly amenable if and only if the set $\left\{i \in I: d_{i} \nsupseteq 1\right\}$ is finite. Also $\mathfrak{E}_{1}(I)$ is weakly amenable if and only if $\sup \left\{a_{i}: i \in I, d_{i} \nexists 1\right\}<\infty$. However it is well-known that $\mathfrak{E}_{\infty}(I)$ is weakly amenable. In section 5 some applications of the previous sections in compact groups and hypergroups are given. Among other results, it is proved that if G is a compact group, then the convolution Banach algebra $A(G)$ is weakly amenable if and only if $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$, where \widehat{G} is the dual of G and for each $\pi \in \widehat{G}, d_{\pi}=\operatorname{dim} \pi$. Also, a necessary and sufficient condition for weak amenability of the convolution Banach algebra $A(K)$, for a compact hypergroup K, is proved.

2. Preliminaries

Let H be an n-dimensional Hilbert space and suppose that $\mathcal{B}(H)$ be the space of all linear operators on H. Clearly $\mathcal{B}(H)$ can be identified with $\mathbb{M}_{n}(\mathbb{C})$ (the space of all $n \times n$-matrices on \mathbb{C}) as vector spaces. For $A \in \mathbb{M}_{n}(\mathbb{C})$, let $A^{*} \in \mathbb{M}_{n}(\mathbb{C})$ by $\left(A^{*}\right)_{i j}=\overline{A_{j i}}(1 \leq i, j \leq n)$, and let $|A|$ denote the unique positive-definite square root of $A A^{*}$. A is called unitary if $A^{*} A=A A^{*}=I$, where I is the $n \times n$ identity matrix. For $E \in \mathcal{B}(H)$, let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the sequence of eigenvalues of operator $|E|$, written in any order. Define $\|E\|_{\varphi_{\infty}}=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, and $\|E\|_{\varphi_{p}}=$ $\left(\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p}\right)^{\frac{1}{p}}(1 \leq p<\infty)$. For more details see Definition D. 37 and Theorem D. 40 of [5].

Let I be an arbitrary index set. For each $i \in I$, let H_{i} be a finite dimensional Hilbert space of dimension d_{i}, and let a_{i} be a real number ≥ 1. These notations will remain in place throughout the paper. The $*$-algebra $\prod_{i \in I} B\left(H_{i}\right)$ will denoted by $\mathfrak{E}(I)$; scalar multiplication, addition, multiplication, and the adjoint of an element are defined coordinate-wise. Let $E=\left(E_{i}\right)$ be an element of $\mathfrak{E}(I)$. Define $\|E\|_{p}:=$ $\left(\sum_{i \in I} a_{i}\left\|E_{i}\right\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}}(1 \leq p<\infty)$, and $\|E\|_{\infty}=\sup _{i \in I}\left\|E_{i}\right\|_{\varphi_{\infty}}$. For $1 \leq p \leq \infty$, $\mathfrak{E}_{p}(I)$ is defined as the set of all $E \in \mathfrak{E}(I)$ for which $\|E\|_{p}<\infty$, and $\mathfrak{E}_{0}(I)$ is defined as the set of all $E \in \mathfrak{E}(I)$ such that $\left\{i \in I:\left\|E_{i}\right\|_{\varphi_{\infty}} \geq \epsilon\right\}$ is finite for all $\epsilon>0$. The set of all $E \in \mathfrak{E}(I)$ such that $\left\{i \in I:\left\|E_{i}\right\|_{\varphi_{\infty}} \neq 0\right\}$ is finite is denoted by $\mathfrak{E}_{00}(I)$. By Theorems 28.25, 28.27, and 28.32(v) of [5], both $\left(\mathfrak{E}_{p}(I),\|\cdot\|_{p}\right)$ $(1 \leq p \leq \infty)$, and $\left(\mathfrak{E}_{0}(I),\|\cdot\|_{\infty}\right)$ are Banach algebras.

For a Banach algebra A, an A-bimodule will always refer to a Banach A bimodule X, that is a Banach space which is algebraically an A-bimodule, and for
which there is a constant $C_{A, X} \geq 0$ such that

$$
\|a . x\|_{X},\|x . a\|_{X} \leq C_{A, X}\|a\|_{A}\|x\|_{X} \quad(a \in A, x \in X)
$$

A linear map $D: A \rightarrow X$ is called an X-derivation, if

$$
D(a b)=D(a) \cdot b+a \cdot D(b) \quad(a, b \in A) .
$$

For every $x \in X, a d_{x}$ is defined by $a d_{x}(a)=a \cdot x-x \cdot a(a \in A)$. It is easily seen that $a d_{x}$ is a derivation. Derivations of this form are called inner derivations. The set of all derivations from A into X is denoted by $Z^{1}(A, X)$, and the set of all inner X-derivations is denoted by $B^{1}(A, X)$. Clearly, $Z^{1}(A, X)$ is a linear subspace of the space of all linear operators of A into X and $B^{1}(A, X)$ is a linear subspace of $Z^{1}(A, X)$. The difference space of $Z^{1}(A, X)$ modulo $B^{1}(A, X)$ is denote by $H^{1}(A, X)$. The set of all continuous derivations from A into X is denoted by $\mathcal{Z}^{1}(A, X)$, and the set of all (continuous) X-derivations is denoted by $\mathcal{B}^{1}(A, X)$. Clearly, $\mathcal{Z}^{1}(A, X)$ is a linear subspace of the space of all bounded linear operators of A into X and $\mathcal{B}^{1}(A, X)$ is a linear subspace of $\mathcal{Z}^{1}(A, X)$. Let $\mathcal{H}^{1}(A, X)$ be the difference space of $\mathcal{Z}^{1}(A, X)$ modulo $\mathcal{B}^{1}(A, X)$.

The Banach space A^{*} with the dual module multiplications defined by

$$
(f . a)(b)=f(a b),(a . f)(b)=f(b a) \quad\left(a, b \in A, f \in A^{*}\right),
$$

is a Banach A-bimodule called the dual Banach A-bimodule A^{*}. A Banach algebra A is called weakly amenable if $\mathcal{H}^{1}\left(A, A^{*}\right)=0$.

For a locally compact group G and a function $f: G \rightarrow \mathbb{C}, \check{f}$ is defined by $\check{f}(x)=f\left(x^{-1}\right)(x \in G)$. Let $A(G)$ (or with the notation $\mathfrak{K}(G)$ defined in 35.16 of [5]) consist of all functions h in $C_{0}(G)$ that can be written in at least one way as $\sum_{n=1}^{\infty} f_{n} * \check{g}_{n}$, where $f_{n}, g_{n} \in L^{2}(G)$, and $\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{2}\left\|g_{n}\right\|_{2}<\infty$. For $h \in A(G)$, define

$$
\|h\|_{A(G)}=\inf \left\{\sum_{n=1}^{\infty}\left\|f_{n}\right\|_{2}\left\|g_{n}\right\|_{2}: h=\sum_{n=1}^{\infty} f_{n} * \check{g}_{n}\right\} .
$$

With this norm $A(G)$ is a Banach space. For more details see 35.16 of [5]. In the case where G is a compact group, $A(G)$ with convolution and the norm $\|\cdot\|_{A(G)}$ is a Banach algebra (see 34.35 of [5]).

Throughout this paper K is a compact hypergroup as defined by Jewett ([6]). By Theorem 1.3.28 of [1], K admits a left Haar measure. Throughout the present paper the normalized Haar measure ω_{K} on the compact hypergroup K (i.e. $\omega_{K}(K)=1$) is used. If $\pi \in \widehat{K}$, (where \widehat{K} is the set of equivalence classes of continuous irreducible representations of K, c.f. [1], 11.3 of [6], and [10]), then by Theorem 2.2 of [10], π is finite dimensional. Furthermore by the proof of Theorem 2.2 of [10], there
exists a constant c_{π} such that for each $\xi \in H_{\pi}$ with $\|\xi\|=1$

$$
\int_{K}|\langle\pi(x) \xi, \xi\rangle|^{2} d \omega_{K}(x)=c_{\pi}
$$

Let $k_{\pi}=c_{\pi}^{-1}$. By Theorem 2.6 of [10], $k_{\pi} \geq d_{\pi}$. Moreover if K is a group then $k_{\pi}=d_{\pi}$. For each $\pi \in \widehat{K}$, let H_{π} be the representation space of π and $d_{\pi}=\operatorname{dim} H_{\pi}$. The algebras $\mathfrak{E}(\widehat{K})$ and $\mathfrak{E}_{p}(\widehat{K})$ for $p \in[1, \infty] \cup\{0\}$, are defined as above with each $a_{\pi}=k_{\pi}$. Let $\mu \in M(K)$. The Fourier transform of μ at $\pi \in \widehat{K}$ is denoted by $\widehat{\mu}(\pi)$ and defined as the operator $\widehat{\mu}(\pi)=\int_{K} \pi(\bar{x}) d \mu(x)$ on H_{π}. Define $\widehat{\mu} \in \mathfrak{E}(\widehat{K})$ by $\widehat{\mu}_{\pi}=\widehat{\mu}(\pi) \in \mathcal{B}\left(H_{\pi}\right)$ (for more details see Theorem 3.2 of [10]). If $f \in L^{1}(K)$, and $\sum_{\pi \in \widehat{K}} k_{\pi}\|\widehat{f}(\pi)\|_{\varphi_{1}}<\infty$, then f is said to have an absolutely convergent Fourier series. The set of all functions with absolutely convergent Fourier series is denoted by $A(K)$ and called the Fourier space of K. For $f \in A(K)$, define $\|f\|_{A(K)}=\|\widehat{f}\|_{1}$. By Proposition 4.2 of [10], $A(K)$ with the convolution product is a Banach algebra and isometrically isomorphic with $\mathfrak{E}_{1}(\widehat{K})$. Note that the two definitions of $A(G)$ and $A(K)$ agree when $K=G$.

3. Derivations Between Ideals of $\mathfrak{E}_{\infty}(I)$

Throughout the paper for $A \in B\left(H_{i}\right)$, define A^{i} as an element of $\mathfrak{E}(I)$ given by

$$
\left(A^{i}\right)_{j}=\left\{\begin{aligned}
A & \text { for } j=i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

We denote the identity $d_{i} \times d_{i}$-matrix (i.e. the identity operator in $\left.\mathcal{B}\left(H_{i}\right)\right)$ by I_{i}.
Proposition 3.1. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and \mathfrak{B} be a subspace of $\mathfrak{E}(I)$. Suppose that $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ is a Banach algebra and $\left(\mathfrak{B},\|\cdot\|_{\mathfrak{B}}\right)$ is a Banach space. Then each linear mapping $\Theta: \mathfrak{A} \rightarrow \mathfrak{B}$ that satisfies

$$
\Theta\left(A I_{i}^{i}\right)=\Theta(A) I_{i}^{i} \quad(A \in \mathfrak{A}, i \in I)
$$

is continuous.
Proof. Let $\left(A_{n}\right)$ be a sequence in \mathfrak{A} such that $\left\|A_{n}\right\|_{\mathfrak{A}} \rightarrow 0$ and $\| \Theta\left(A_{n}\right)-$ $B \|_{\mathfrak{B}} \rightarrow 0$, where $B \in \mathfrak{B}$. Let $i \in I$. Since $\mathcal{B}\left(H_{i}\right)$ is finite dimensional, so by Lemma 1.20 of [8] the linear mapping $\Theta_{i}: \mathcal{B}\left(H_{i}\right) \rightarrow \mathfrak{B}: A_{i} \mapsto \Theta\left(A_{i}^{i}\right)$ is continuous. On the other hand since \mathfrak{A} is a Banach algebra, so for each $i \in I$

$$
\left\|A_{n} I_{i}^{i}\right\|_{\mathfrak{A}} \leq\left\|A_{n}\right\|_{\mathfrak{A}}\left\|I_{i}^{i}\right\|_{\mathfrak{A}} \longrightarrow 0
$$

Therefore for each $i \in I$

$$
\begin{aligned}
B I_{i}^{i} & =\lim _{n \longrightarrow \infty} \Theta\left(A_{n}\right) I_{i}^{i}=\lim _{n \longrightarrow \infty} \Theta\left(A_{n} I_{i}^{i}\right) \\
& =\lim _{n \xrightarrow[\longrightarrow]{ }} \Theta_{i}\left(\left(A_{n}\right)_{i}\right)=\Theta_{i}\left(\lim _{n \longrightarrow \infty} A_{n} I_{i}^{i}\right) \\
& =\Theta_{i}(0)=0
\end{aligned}
$$

Hence $B=0$. By the Closed Graph Theorem Θ is continuous.
Corollary 3.2. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and \mathfrak{B} be a subspace of $\mathfrak{E}(I)$. Suppose that $\left(\mathfrak{A},\|\cdot\|_{\mathfrak{A}}\right)$ is a Banach algebra and $\left(\mathfrak{B},\|\cdot\|_{\mathfrak{B}}\right)$ is a Banach \mathfrak{A}-bimodule. Then $Z^{1}(\mathfrak{A}, \mathfrak{B})=\mathcal{Z}(\mathfrak{A}, \mathfrak{B})$. That is each derivation D from \mathfrak{A} into \mathfrak{B} is continuous.

Proof. Let $i \in I$. By Proposition 1.8.2 of [3], $D\left(I_{i}^{i}\right)=0$. Hence for each $A \in \mathfrak{A}$

$$
D\left(A I_{i}^{i}\right)=D(A) I_{i}^{i}+A D\left(I_{i}^{i}\right)=D(A) I_{i}^{i}
$$

So by Proposition 3.1, D is continuous.
Example 3.3. Let I be an infinite set. Fix $i_{0} \in I$, and suppose that $\left\{i_{n}: n \in \mathbb{N}\right\}$ be an infinite countable subset of distinct elements of $I \backslash\left\{i_{0}\right\}$. Moreover suppose that for each $n \in \mathbb{N}, \operatorname{dim}\left(H_{i_{n}}\right) \geq 2$. Define

$$
\mathfrak{A}=\left\{A \in \mathfrak{E}_{0}(I): A_{i_{n}} \in \mathbb{C} \mathcal{E}_{12}^{i_{n}} \text { for } n \in \mathbb{N}, \text { and } A_{i}=0 \text { for all other } i \text { 's }\right\}
$$

with the norm $\|A\|_{\mathfrak{A}}=\|A\|_{\infty}(A \in \mathfrak{A})$. Then \mathfrak{A} is a Banach subalgebra of $\mathfrak{E}_{\infty}(I)$. Clearly $\left\{\mathcal{E}_{12}^{i_{n}}: n \in \mathbb{N}\right\}$ is a linearly independent subspace of the vector space \mathfrak{A}. Let \mathcal{B} be a basis for \mathfrak{A} such that $\left\{\mathcal{E}_{12}^{i_{n}}: n \in \mathbb{N}\right\} \subseteq \mathfrak{A}$. Let $D: \mathfrak{A} \rightarrow \mathfrak{A}$ be the linear mapping given by $D\left(\mathcal{E}_{12}^{i_{n}}\right)=n \mathcal{E}_{11}^{i_{0}}$, where $n \in \mathbb{N}$, and $D(E)=0$, where $E \in \mathcal{B} \backslash\left\{\mathcal{E}_{12}^{i_{n}}: n \in \mathbb{N}\right\}$. Let $A, B \in \mathfrak{A}$. Then $A B=0$, and so $D(A B)=0$. Clearly $D(A) B=A D(B)=0$ for each $A, B \in \mathfrak{A}$. Hence D is a derivation from \mathfrak{A} into \mathfrak{A}. Clearly D is not continuous (indeed, for each $n \in \mathbb{N},\|D\| \geq\left\|D\left(\mathcal{E}_{12}^{i_{n}}\right)\right\|_{\infty}=n$). So the condition $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, can not be omitted in Proposition 3.2.

Definition 3.4. Let \mathfrak{A} and \mathfrak{B} be subsets of $\mathfrak{E}(I)$. An element E in $\mathfrak{E}(I)$ is said to be a left (right, respectively) $(\mathfrak{A}, \mathfrak{B})$-multiplier if $E A \in \mathfrak{B}(A E \in$ \mathfrak{B}, respectively) for all $A \in \mathfrak{A}$. The set of all left (right, respectively) ($\mathfrak{A}, \mathfrak{B})$ multipliers will be denoted by $\mathcal{M}(\mathfrak{A}, \mathfrak{B})(\mathcal{R} \mathcal{M}(\mathfrak{A}, \mathfrak{B})$, respectively). The set of all $E \in \mathcal{M}(\mathfrak{A}, \mathfrak{B}) \cap \mathcal{R} \mathcal{M}(\mathfrak{A}, \mathfrak{B})$ such that $E_{i}=0$ whenever $d_{i}=1$, will be denoted by $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$.

Lemma 3.5. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$. Then \mathfrak{B} is an algebraic \mathfrak{A} bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Also $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$-bimodule.

Proof. Clearly \mathfrak{B} is an algebraic \mathfrak{A}-bimodule, and $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a subspace of $\mathfrak{E}(I)$. Let $L \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and $E \in \mathfrak{E}_{\infty}(I)$. Since \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, so if $A \in \mathfrak{A}$, then $(E L) A=E(L A) \in \mathfrak{B}$. Hence $E L \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. Similarly since \mathfrak{A} is an ideal of $\mathfrak{E}_{\infty}(I)$, so $L E \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. Therefore $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$-bimodule.

Proposition 3.6. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Then \mathfrak{B} is an algebraic \mathfrak{A}-bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover, if D is a derivation from \mathfrak{A} into \mathfrak{B}, then there exists a derivation \widetilde{D} from $\mathfrak{E}_{\infty}(I)$ into $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $\widetilde{D}(A)=D(A)(A \in \mathfrak{A})$.

Proof. Suppose D is a derivation from \mathfrak{A} into \mathfrak{B}. By Corollary $3.2 D$ is continuous. By Lemma $3.5, \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$-bimodule.

Define $\widetilde{D}: \mathfrak{E}_{\infty}(I) \rightarrow \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ by

$$
(\widetilde{D}(E))_{i}=\left(D\left(E I_{i}^{i}\right)\right)_{i} \quad\left(E \in \mathfrak{E}_{\infty}(I), i \in I\right)
$$

\widetilde{D} is a well-defined continuous derivation. To see this, let $E \in \mathfrak{E}_{00}(I)$. Since $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, so $E I_{i}^{i} \in \mathfrak{A}$ for each $i \in I$. Hence $D\left(E I_{i}^{i}\right)$ is well-defined. Let $A \in \mathfrak{A}$, and $i \in I$ be such that $d_{i} \nsupseteq 1$. Since $E A \in \mathfrak{A}$, so

$$
\begin{aligned}
(\widetilde{D}(E) A)_{i} & =\left(D\left(E I_{i}^{i}\right) A\right)_{i}=\left(D\left(E I_{i}^{i} A\right)-E I_{i}^{i} D(A)\right)_{i} \\
& =\left(D(E A) I_{i}^{i}-E I_{i}^{i} D(A)\right)_{i}=(D(E A)-E D(A))_{i}
\end{aligned}
$$

Also if $i \in I$, and $d_{i}=1$, then $A I_{i}^{i}=A_{i} I_{i}^{i}$, and $E I_{i}^{i}=E_{i} I_{i}^{i}$, where $A_{i}, E_{i} \in \mathbb{C}$. Hence

$$
\begin{aligned}
(D(E A)-E D(A)) I_{i}^{i} & =D(E A) I_{i}^{i}-E\left(D(A) I_{i}^{i}\right)=D\left(E A I_{i}^{i}\right)-E D\left(A I_{i}^{i}\right) \\
& =E_{i} A_{i} D\left(I_{i}^{i}\right)-E A_{i} D\left(I_{i}^{i}\right)=0
\end{aligned}
$$

and

$$
(D(E) A) I_{i}^{i}=D(E)\left(A_{i} I_{i}^{i}\right)=A_{i}\left(D(E) I_{i}^{i}\right)=A_{i} D\left(E I_{i}^{i}\right)=A_{i} E_{i} D\left(I_{i}^{i}\right)=0
$$

The above equations show that $\widetilde{D}(E) A=D(E A)-E D(A)$. But, \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, and so $\widetilde{D}(E) A=D(E A)-E D(A) \in \mathfrak{B}$. Therefore $\widetilde{D}(E) \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$. Similarly one can prove that $A \widetilde{D}(E)=D(A E)-D(A) E \in \mathfrak{B}$, and so $\widetilde{D}(E) \in$ $\mathcal{R} \mathcal{M}(\mathfrak{A}, \mathfrak{B})$. Hence by definition of $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B}), \widetilde{D}(E) \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$.

Now, if $E, F \in \mathfrak{E}_{\infty}(I)$, and $i \in I$, then

$$
\begin{aligned}
(\widetilde{D}(E F))_{i} & =\left(D\left((E F) I_{i}^{i}\right)\right)_{i}=\left(D\left(\left(E I_{i}^{i}\right)\left(F I_{i}^{i}\right)\right)\right)_{i} \\
& =\left(D\left(E I_{i}^{i}\right) F I_{i}^{i}+E I_{i}^{i} D\left(F I_{i}^{i}\right)\right)_{i}=\left(D\left(E I_{i}^{i}\right)\right)_{i} F_{i}+E_{i}\left(D\left(F I_{i}^{i}\right)\right)_{i} \\
& =(\widetilde{D}(E) F+E \widetilde{D}(F))_{i}
\end{aligned}
$$

Hence \widetilde{D} is a derivation. It is clear that if $A \in \mathfrak{A}$, then $\widetilde{D}(A)=D(A)$.
Proposition 3.7. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and a norm $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach $\mathfrak{E}_{\infty}(I)$-bimodules. Then $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a Banach $\mathfrak{E}_{\infty}(I)$-bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications, and with the norm

$$
\|L\|_{\mathfrak{A}, \mathfrak{B}}=\sup _{A \in \mathfrak{A},\|A\|_{\mathfrak{A}}=1}\left(\|L A\|_{\mathfrak{B}}+\|A L\|_{\mathfrak{B}}\right) \quad\left(L \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})\right)
$$

Proof. Firstly, it is proved that $\|\cdot\|_{\mathfrak{A}, \mathfrak{B}}$ is a well defined norm on $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. It is easy to see that $\mathfrak{B} \times \mathfrak{B}$ is a Banach space under the norm

$$
\left\|\left(b_{1}, b_{2}\right)\right\|_{\mathfrak{B} \times \mathfrak{B}}=\left\|b_{1}\right\|_{\mathfrak{B}}+\left\|b_{2}\right\|_{\mathfrak{B}} \quad\left(\left(b_{1}, b_{2}\right) \in \mathfrak{B} \times \mathfrak{B}\right) .
$$

For $M \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$, define $\widehat{M}: \mathfrak{A} \rightarrow \mathfrak{B} \times \mathfrak{B}$ by $\widehat{M}(A)=(M A, A M)(A \in \mathfrak{A})$. By definition $\|\widehat{M}\|=\|M\|_{\mathfrak{A}, \mathfrak{B}}$. But, by Proposition 3.1, the mappings $A \mapsto$ $M A, A M: \mathfrak{A} \rightarrow \mathfrak{B}$ are continuous, and so $\|M\|_{\mathfrak{A}, \mathfrak{B}}<\infty$. Let $\|M\|_{\mathfrak{A}, \mathfrak{B}}=0$. Then $\left\|M I_{i}^{i}\right\|_{\mathfrak{B}} \leq\|M\|_{\mathfrak{A}, \mathfrak{B}}\left\|I_{i}^{i}\right\|_{\mathfrak{A}}=0$ (note that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$). It follows that $M I_{i}^{i}=0$ for each $i \in I$, and so $M=0$. Therefore $\|\cdot\|_{\mathfrak{A}, \mathfrak{B}}$ is a norm on $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$.

Suppose that $\left(M_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. By completeness of $\mathcal{B}(\mathfrak{A}, \mathfrak{B} \times \mathfrak{B})$ (the set of all continuous linear maps from \mathfrak{A} into $\mathfrak{B} \times \mathfrak{B}$), there exists $\Theta \in \mathcal{B}(\mathfrak{A}, \mathfrak{B} \times \mathfrak{B})$ such that $\lim _{n \rightarrow \infty} \widehat{M_{n}}=\Theta$. Let $\pi_{1}, \pi_{2}: \mathfrak{B} \times \mathfrak{B} \rightarrow \mathfrak{B}$ be the natural projections $\pi_{1}:\left(b_{1}, b_{2}\right) \mapsto b_{1}, \pi_{2}:\left(b_{1}, b_{2}\right) \mapsto b_{2}$. Define $M \in \mathfrak{E}(I)$ by $M I_{i}^{i}=\pi_{1}\left(\Theta\left(I_{i}^{i}\right)\right) I_{i}^{i}$. Then for $A \in \mathfrak{A}$

$$
\begin{aligned}
(M A) I_{i}^{i} & =M I_{i}^{i} A I_{i}^{i}=\pi_{1}\left(\Theta\left(I_{i}^{i}\right)\right) A I_{i}^{i}=\lim _{n \longrightarrow \infty} \pi_{1}\left(\widehat{M_{n}}\left(I_{i}^{i}\right)\right) A I_{i}^{i} \\
& =\lim _{n \longrightarrow \infty}\left(M_{n} I_{i}^{i}\right) A I_{i}^{i}=\lim _{n \longrightarrow \infty}\left(M_{n} A\right) I_{i}^{i} \\
& =\lim _{n \longrightarrow \infty} \pi_{1}\left(\widehat{M_{n}}(A)\right) I_{i}^{i}=\pi_{1}(\Theta(A)) I_{i}^{i}
\end{aligned}
$$

But

$$
\begin{aligned}
M I_{i}^{i} & =\pi_{1}\left(\Theta\left(I_{i}^{i}\right)\right) I_{i}^{i}=\pi_{1}\left(\widehat{M_{n}}\left(I_{i}^{i}\right)\right) I_{i}^{i} \\
& =\pi_{1}\left(M_{n} I_{i}^{i}, I_{i}^{i} M_{n}\right) I_{i}^{i}=\pi_{2}\left(M_{n} I_{i}^{i}, I_{i}^{i} M_{n}\right) I_{i}^{i} \\
& =\pi_{2}\left(\widehat{M_{n}}\left(I_{i}^{i}\right)\right) I_{i}^{i}=\pi_{2}\left(\Theta\left(I_{i}^{i}\right)\right) I_{i}^{i}
\end{aligned}
$$

and so by a similar method it can be proved that $(A M) I_{i}^{i}=\pi_{2}(\Theta(A)) I_{i}^{i}$. It follows that $\Theta=\widehat{M}$, and $M \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. Therefore $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a Banach space.

Let $L \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and $E \in \mathfrak{E}_{\infty}(I)$. Since \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, so if $A \in \mathfrak{A}$, then $(E L) A=E(L A) \in \mathfrak{B}$. Similarly since \mathfrak{A} is an ideal of $\mathfrak{E}_{\infty}(I)$, so $A(E L)=(A E) L \in \mathfrak{B}$. Clearly if $d_{i}=1$, then $(L E)_{i}=0$. Therefore $L E \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. Similarly $E L \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$. Now,

$$
\begin{aligned}
\|E L\|_{\mathfrak{R}, \mathfrak{B}} & =\sup _{\|A\|_{\mathfrak{A}}=1}\left(\|(E L) A\|_{\mathfrak{B}}+\|A(E L)\|_{\mathfrak{B}}\right) \\
& \leq \sup _{\|A\|_{\mathfrak{A}}=1}\|E(L A)\|_{\mathfrak{B}}+\sup _{\|A\|_{\mathfrak{l}}=1}\|(A E) L\|_{\mathfrak{B}} \\
& \leq C_{\mathfrak{E}_{\infty}(I), \mathfrak{B}}\|E\|_{\infty} \sup _{\|A\|_{\mathfrak{R}}=1}\|L A\|_{\mathfrak{B}}+\|L\|_{\mathfrak{R}, \mathfrak{B}} \sup _{\|A\|_{\mathfrak{L}}=1}\|A E\|_{\mathfrak{A}} \\
& \leq C_{\mathfrak{E}_{\infty}(I), \mathfrak{B}}\|E\|_{\infty} \sup _{\|A\|_{\mathfrak{R}}=1}\|L A\|_{\mathfrak{B}}+C_{\mathfrak{E}_{\infty}(I), \mathfrak{R}}\|L\|_{\mathfrak{R}, \mathfrak{B}}\|E\|_{\infty} \\
& \leq \max \left(C_{\mathfrak{E}_{\infty}(I), \mathfrak{R}}, C_{\left.\mathfrak{E}_{\infty}(I), \mathfrak{B}\right)}\|E\|_{\infty}\|L\|_{\mathfrak{R}, \mathfrak{B}} .\right.
\end{aligned}
$$

Similarly

$$
\|L E\|_{\mathfrak{A}, \mathfrak{B}} \leq \max \left(C_{\mathfrak{E}_{\infty}(I), \mathfrak{A}}, C_{\left.\mathfrak{E}_{\infty}(I), \mathfrak{B}\right)}\right)\|E\|_{\infty}\|L\|_{\mathfrak{A}, \mathfrak{B}} .
$$

Hence $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a Banach $\mathfrak{E}_{\infty}(I)$-bimodule.
Lemma 3.8. Let I be a finite set, and X be a Banach $\mathfrak{E}_{\infty}(I)$-bimodule. If $D: \mathfrak{E}_{\infty}(I) \rightarrow X$ is a derivation, then there exists $x \in X$ such that $\|x\|_{X} \leq\|D\|$, and

$$
D(A)=A \cdot x-x \cdot A \quad\left(A \in \mathfrak{E}_{\infty}(I)\right) .
$$

Proof. Clearly $\mathfrak{E}_{\infty}(I)$ can be identified with $\ell^{\infty}-\bigoplus_{i \in I} \mathbb{M}_{d_{i}}(\mathbb{C})$. Let G be the set of all elements E of $\ell^{\infty}-\bigoplus_{i \in I} \mathbb{M}_{d_{i}}(\mathbb{C})$ such that $\left(E_{i}\right)_{k l} \in\{-1,0,1\}$ $\left(i \in I, 1 \leq k, l \leq d_{i}\right)$ and each column and each row of $E_{i}(i \in I)$ contains exactly one non-zero term. By a similar method as the proof of Proposition 1.9.20, it is proved that $\frac{1}{\operatorname{card}(G)} \sum_{E \in G} E \otimes E^{-1}$ whenever $\left(E^{-1}\right)_{i}=E_{i}^{-1}(i \in I)$, is a diagonal for $\ell^{\infty}-\bigoplus_{i \in I} \mathbb{M}_{d_{i}}(\mathbb{C})$, and so if

$$
x=\frac{1}{\operatorname{card}(G)} \sum_{E \in G} E \cdot D\left(E^{-1}\right),
$$

then $D=a d_{x}$ (see the proof of Theorem 1.9.21((b) $\Rightarrow(\mathrm{a})$) of [3], or the proof of Theorem 2.2.4((ii) \Rightarrow (i)) of [9]). Clearly for each $E \in G,\|E\|_{\varphi_{\infty}}=\left\|E^{-1}\right\|_{\varphi_{\infty}}=1$. Hence

$$
\begin{aligned}
\|x\|_{X} & =\left\|\frac{1}{\operatorname{card}(G)} \sum_{E \in G} E \cdot D\left(E^{-1}\right)\right\|_{X} \leq \frac{1}{\operatorname{card}(G)} \sum_{E \in G}\left\|E \cdot D\left(E^{-1}\right)\right\|_{X} \\
& \leq \frac{1}{\operatorname{card}(G)} \sum_{E \in G}\|E\|_{\varphi_{\infty}}\|D\|\left\|E^{-1}\right\|_{\varphi_{\infty}}=\|D\| .
\end{aligned}
$$

Theorem 3.9. Let \mathfrak{A} be a subspace of $\mathfrak{E}(I)$, and there exists a norm $\|\cdot\|_{\mathfrak{A}}$ such that with this norm \mathfrak{A} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule. Then $Z^{1}\left(\mathfrak{E}_{\infty}(I), \mathfrak{A}\right)=$ $\mathcal{Z}^{1}\left(\mathfrak{E}_{\infty}(I), \mathfrak{A}\right)=0$. I. e. each derivation D from $\mathfrak{E}_{\infty}(I)$ into \mathfrak{A} is continuous and inner.

Proof. Let D be a derivation from $\mathfrak{E}_{\infty}(I)$ into \mathfrak{A}. By Corollary 3.2, D is continuous. For each finite subset F of I, let

$$
\mathfrak{E}_{\infty}^{F}(I)=\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0(i \notin F)\right\},
$$

and define $D_{F}: \mathfrak{E}_{\infty}^{F}(I) \rightarrow \mathfrak{A}$ by $D_{F}(A)=D(A)\left(A \in \mathfrak{E}_{\infty}^{F}(I)\right)$. By Lemma 3.8, there exists $E_{F} \in \mathfrak{A}$ such that $\left\|E_{F}\right\|_{\mathfrak{A}} \leq\left\|D_{F}\right\| \leq\|D\|$, and $D(A)=A E_{F}-E_{F} A$ $\left(A \in \mathfrak{E}_{\infty}^{F}(I)\right)$. Since \mathfrak{A} is a dual Banach space, by Banach-Alaoglue's Theorem there exist $E \in \mathfrak{A}$, and a subnet $\left(E_{F_{\alpha}}\right)_{\alpha}$ of $\left(E_{F}\right)_{F}$ such that weak*-lim $E_{F_{\alpha}}=E$. Let \mathfrak{A}_{*} be a predual of \mathfrak{A} (i.e. $\mathfrak{A}_{*}^{*}=\mathfrak{A}$). For each $A \in \mathfrak{E}_{\infty}(I), i \in I$, and $x \in \mathfrak{A}_{*}$

$$
\begin{aligned}
\left\langle x,(A E-E A) I_{i}^{i}\right\rangle & =\left\langle x \cdot A I_{i}^{i}-A I_{i}^{i} \cdot x, E\right\rangle \\
& =\lim _{\alpha, i \in F_{\alpha}}\left\langle x \cdot A I_{i}^{i}-A I_{i}^{i} \cdot x, E_{F_{\alpha}}\right\rangle \\
& =\lim _{\alpha, i \in F_{\alpha}}\left\langle x,\left(A I_{i}^{i} \cdot E_{F_{\alpha}}-E_{F_{\alpha}} \cdot A I_{i}^{i}\right)\right\rangle \\
& =\lim _{\alpha, i \in F_{\alpha}}\left\langle x, D\left(A I_{i}^{i}\right)\right\rangle=\left\langle x, D(A) I_{i}^{i}\right\rangle .
\end{aligned}
$$

Hence $D(A)=A E-E A$, and so D is inner.
The following is the main theorem of this paper.
Theorem 3.10. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Suppose one of the following statements are valid:
(i) $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule,
(ii) \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule.

If D is a derivation from \mathfrak{A} into \mathfrak{B}, then D is continuous and there exists $M \in$ $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $D(A)=A M-M A(A \in \mathfrak{A})$.

Proof. By Proposition 3.6, there exists a derivation \widetilde{D} from $\mathfrak{E}_{\infty}(I)$ into $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $\widetilde{D}(A)=D(A)(A \in \mathfrak{A})$.

Suppose (i) is valid. By Theorem 3.9, \widetilde{D} is inner. Hence there exists $M \in$ $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $D(A)=A M-M A(A \in \mathfrak{A})$.

Now, suppose that (ii) is valid. By the proof of Theorem 3.9, for each finite subset F of I, there exists $M_{F} \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $\widetilde{D}(A)=A M_{F}-M_{F} A$ $\left(A \in \mathfrak{E}_{\infty}^{F}(I)\right)$. Let M be a cluster point of $\left(M_{F}\right)$ in the weak*-operator topology
(note that since \mathfrak{B} is a dual Banach space, so the weak*-operator topology is welldefined, see also Remark 3.4 of [4]). Then by a method as the proof of the Theorem 3.9, $\widetilde{D}(A)=A M-M A\left(A \in \mathfrak{E}_{\infty}(I)\right)$. Hence $D(A)=A M-M A(A \in \mathfrak{A})$.

From the above theorem, one can obtain the following result.
Proposition 3.11. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Then \mathfrak{B} is a Banach \mathfrak{A}-bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover if at least one of the spaces $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule, then

$$
Z^{1}(\mathfrak{A}, \mathfrak{B})=\mathcal{Z}^{1}(\mathfrak{A}, \mathfrak{B})=\left\{D_{E}: E \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B}\}\right.
$$

where $D_{E}(A)=A E-E A(A \in \mathfrak{A})$.
The following elementary result is needed.
Lemma 3.12. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. If $E \in \mathfrak{E}(I)$ is such that for each $A \in \mathfrak{A}, A E=E A$, then there exists a set $\left\{\lambda_{i}: i \in I\right\} \subseteq \mathbb{C}$ such that for each $i \in I, E_{i}=\lambda_{i} I_{i}$.

Proof. Let $i \in I$. For each $d_{i} \times d_{i}$-matrix A,

$$
A E_{i}=\left(A^{i} E\right)_{i}=\left(E A^{i}\right)_{i}=E_{i} A
$$

and hence by Corollary 27.10 of [5], there exists $\lambda_{i} \in \mathbb{C}$ such that $E_{i}=\lambda_{i} I_{i}$.
Notation. Throughout the paper the set of all $E \in \mathfrak{E}(I)$ such that $E_{i}=\lambda_{i} I_{i}$ $(i \in I)$, for a set $\left\{\lambda_{i}: i \in I\right\} \subseteq \mathbb{C}$, is denoted by $C(\mathfrak{E}(I))$.

Proposition 3.13. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|.\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Then \mathfrak{B} is a Banach \mathfrak{A}-bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover if at least one of the spaces $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule, then

$$
\mathcal{H}^{1}(\mathfrak{A}, \mathfrak{B})=H^{1}(\mathfrak{A}, \mathfrak{B}) \cong \frac{\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})+C(\mathfrak{E}(I))}{\mathfrak{B}+C(\mathfrak{E}(I))}
$$

where \cong denoted vector isomorphism.
Proof. Define

$$
\Theta: \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})+C(\mathfrak{E}(I)) \rightarrow Z^{1}(\mathfrak{A}, \mathfrak{B}) ; E \mapsto D_{E},
$$

where $D_{E}(A)=A E-E A(A \in \mathfrak{A})$. By Proposition 3.11Θ is onto. By Lemma $3.12 \operatorname{ker} \Theta=C(\mathfrak{E}(I)$. Therefore

$$
\frac{\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})+C(\mathfrak{E}(I))}{C(\mathfrak{E}(I))} \cong Z^{1}(\mathfrak{A}, \mathfrak{B}),
$$

through the mapping

$$
\widetilde{\Theta}: E+C(\mathfrak{E}(I)) \mapsto \Theta(E)=D_{E} \quad\left(E \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})+C(\mathfrak{E}(I))\right) .
$$

It is easy to show that

$$
\widetilde{\Theta}\left(\frac{\mathfrak{B}+C(\mathfrak{E}(I))}{C(\mathfrak{E}(I)}\right)=\left\{D_{E}: E \in \mathfrak{B}\right\}=B^{1}(\mathfrak{A}, \mathfrak{B}) .
$$

Hence

$$
H^{1}(\mathfrak{A}, \mathfrak{B})=\frac{Z^{1}(\mathfrak{A}, \mathfrak{B})}{B^{1}(\mathfrak{A}, \mathfrak{B})} \cong \frac{\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})+C(\mathfrak{E}(I))}{\mathfrak{B}+C(\mathfrak{E}(I))} .
$$

By Proposition $3.2 \mathcal{H}^{1}(\mathfrak{A}, \mathfrak{B})=H^{1}(\mathfrak{A}, \mathfrak{B})$.

Corollary 3.14. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Moreover if at least one of the spaces $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$-bimodule. Then $\mathcal{H}^{1}(\mathfrak{A}, \mathfrak{B})=0$ if and only if $\mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B}) \subseteq \mathfrak{B}+C(\mathfrak{E}(I))$.

4. General Results about the Banach Algebras $\mathfrak{E}_{p}(I)(1 \leq p \leq \infty)$

For each $i \in I$, and $1 \leq m, n \leq d_{i}$, let $\mathcal{E}_{m n}^{i}$ be the elementary $d_{i} \times d_{i}$-matrix such that for $1 \leq k, l \leq d_{i}$,

$$
\left(\mathcal{E}_{m n}^{i}\right)_{k l}= \begin{cases}1 & \text { if } k=m, l=n \\ & 0 \text { otherwise } .\end{cases}
$$

The following lemma is indeed a generalization of Theorem D. 54 of [5].
Lemma 4.1. Let H be a finite-dimensional Hilbert space and $A \in \mathcal{B}(H)$, and $1 \leq p \leq \infty$. Then there exists $B \in \mathcal{B}(H)$ with $\|B\|_{\varphi_{p}}=1$ such that $\|A\|_{\varphi_{\infty}}=\|A B\|_{\varphi_{\infty}}$. Moreover

$$
\|A\|_{\varphi_{\infty}}=\sup \left\{\|A B\|_{\varphi_{\infty}}: B \in \mathcal{B}(H) \text { and }\|B\|_{\varphi_{p}}=1\right\} .
$$

Proof. By Theorem D. 30 of [5], there exists a unitary operator $U_{0} \in \mathcal{B}(H)$ such that $A U_{0}=|A|$. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the sequence of eigenvalues of the operator $|A|$, written in any order. By Spectral Theorem (see for example Theorem 6.4.4 of [7], or Corollary 5.4 of section of section II of [2]) there exists a unitary matrix $U \in \mathcal{B}(H)$ such that $U^{-1}|A| U=\sum_{i=1}^{n} \lambda_{i} \mathcal{E}_{i i}$. Let $\lambda_{i_{0}}=\|A\|_{\varphi_{\infty}}$. If $B=U_{0} U \mathcal{E}_{i_{0} i_{0}}$, then by Theorem D. 41 of [5], $\|B\|_{\varphi_{p}}=\left\|\mathcal{E}_{i_{0} i_{0}}\right\|_{\varphi_{p}}=1$. On one hand since U is a unitary matrix, so is U^{-1}. Therefore by Theorem D. 41 of [5]

$$
\begin{aligned}
\|A B\|_{\varphi_{\infty}} & =\left\|A\left(U_{0} U \mathcal{E}_{i_{0} i_{0}}\right)\right\|_{\varphi_{\infty}}=\left\||A| U \mathcal{E}_{i_{0} i_{0}}\right\|_{\varphi_{\infty}}=\left\|\left(U^{-1}|A| U\right) \mathcal{E}_{i_{0} i_{0}}\right\|_{\varphi_{\infty}} \\
& =\left\|\left(\sum_{i=1}^{n} \lambda_{i} \mathcal{E}_{i i}\right) \mathcal{E}_{i_{0} i_{0}}\right\|_{\varphi_{\infty}}=\left\|\lambda_{i_{0}} \mathcal{E}_{i_{0} i_{0}}\right\|_{\varphi_{\infty}}=\lambda_{i_{0}}=\|A\|_{\varphi_{\infty}}
\end{aligned}
$$

Hence $\|A\|_{\varphi_{\infty}} \leq \sup \left\{\|A B\|_{\varphi_{\infty}}:\|B\|_{\varphi_{p}}=1\right\}$. On the other hand if $\|B\|_{\varphi_{p}}=1$, then by Theorems D. 51 and D. 52 of [5],

$$
\|A B\|_{\varphi_{\infty}} \leq\|A\|_{\varphi_{\infty}}\|B\|_{\varphi_{\infty}} \leq\|A\|_{\varphi_{\infty}}\|B\|_{\varphi_{p}}=\|A\|_{\varphi_{\infty}}
$$

Therefore $\|A\|_{\varphi_{\infty}}=\sup \left\{\|A B\|_{\varphi_{\infty}}:\|B\|_{\varphi_{p}}=1\right\}$.
The following theorem is a generalization of parts IV and \mathbf{V} of Theorem 35.4 of [5].

Proposition 4.2. Let $1 \leq p<q \leq \infty$. Then $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\mathfrak{E}_{\infty}(I)$, if and only if $\sup _{i \in I} a_{i}<\infty$.

Proof. Since $p<q$, so by Theorem 28.32(iii),(iv) of [5], $\mathfrak{E}_{\infty}(I) \mathfrak{E}_{p}(I) \subseteq$ $\mathfrak{E}_{p}(I) \subseteq \mathfrak{E}_{q}(I)$. Hence $\mathfrak{E}_{\infty}(I) \subseteq \mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$.

Suppose $\sup _{i \in I} a_{i}<\infty$. We modify the proof of part IV Theorem 35.4 of [5], using Lemma 4.1. Let $E \in \mathfrak{E}(I) \backslash \mathfrak{E}_{\infty}(I)$. For each $n \in \mathbb{N}$, there exists $i_{n} \in I$ with $\left\|E_{i_{n}}\right\|_{\varphi_{\infty}}>n^{3}$ and such that $i_{n} \neq i_{m}$ for $n \neq m$. By applying Lemma 4.1, there exists $B_{i_{n}} \in B\left(H_{i_{n}}\right)$ such that $\left\|B_{i_{n}}\right\|_{\varphi_{p}}=1$ and $\left\|E_{i_{n}} B_{i_{n}}\right\|_{\varphi_{\infty}}=\left\|E_{i_{n}}\right\|_{\varphi_{\infty}}>n^{3}$. Define $A_{i_{n}}$ as $n^{-2} B_{i_{n}}$ for each n and $A_{i}=0$ for all other i 's. Since
$\|A\|_{p}=\left(\sum_{i \in I} a_{i}\left\|A_{i}\right\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}}=\left(\sum_{n \in \mathbb{N}} a_{i_{n}} n^{-2 p}\right)^{\frac{1}{p}} \leq\left(\sup _{i \in I} a_{i}\right)^{\frac{1}{p}}\left(\sum_{n \in \mathbb{N}} n^{-2 p}\right)^{\frac{1}{p}}<\infty$,
so $A \in \mathfrak{E}_{p}(I)$. Since for each $n \in \mathbb{N},\left\|E_{i_{n}} A_{i_{n}}\right\|_{\varphi_{\infty}}>n$, so $E A \notin \mathfrak{E}_{\infty}(I)$. Hence $E A \notin \mathfrak{E}_{q}(I)$, and so $E \notin \mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$. Therefore $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=$ $\mathfrak{E}_{\infty}(I)$.

Suppose $\sup _{i \in I} a_{i}=\infty$. Define $E \in \mathfrak{E}(I)$ by $E_{i}=a_{i}^{\frac{1}{p}-\frac{1}{q}} I_{i}$ for all $i \in I$. Clearly $E \notin \mathfrak{E}_{\infty}(I)$. For $A \in \mathfrak{E}_{p}(I)$, by the same method of the proof of part \mathbf{V}
of Theorem 35.4 of [5], one can prove that $\|E A\|_{\infty} \leq\|E A\|_{q} \leq\|A\|_{p}<\infty$, and hence $E \in \mathcal{M}\left(\mathfrak{E}_{p}(I)\right.$, $\left.\mathfrak{E}_{q}(I)\right)$. So $\mathfrak{E}_{\infty}(I) \varsubsetneqq \mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$.

Proposition 4.3. If $1 \leq p \leq \infty$, then $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=\mathfrak{E}_{\infty}(I)$.
Proof. By 28.32(iii),(iv) of [5], $\mathfrak{E}_{\infty}(I) \subseteq \mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)$. Let $E \in$ $\mathfrak{E}(I) \backslash \mathfrak{E}_{\infty}(I)$. As in the proof of Theorem 4.2, for each $n \in \mathbb{N}$, there exists $i_{n} \in I$ such that $\left\|E_{i_{n}}\right\|_{\varphi_{\infty}}>n$ and such that $i_{n} \neq i_{m}$ for $n \neq m$. Also there exists $B_{i_{n}} \in B\left(H_{i_{n}}\right)$ such that $\left\|B_{i_{n}}\right\|_{\varphi_{p}}=1$ and $\left\|E_{i_{n}} B_{i_{n}}\right\|_{\varphi_{\infty}} \geq n$. Define $A_{i_{n}}$ as $\left(a_{i_{n}} n^{2}\right)^{-\frac{1}{p}} B_{i_{n}}$ for each n, and $A_{i}=0$ for all other i 's. By the same method of the proof of part II of Theorem 35.4 of [5], one can prove that $A \in \mathfrak{E}_{p}(I)$ and $E A \notin \mathfrak{E}_{p}(I)$. Therefore $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=\mathfrak{E}_{\infty}(I)$.

Proposition 4.4. For $1 \leq q<p \leq \infty$, $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\mathfrak{E}_{r}(I)$, where r is defined by $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$, with the convention $\frac{1}{\infty}=0$.

Proof. By the same method of the proof of parts VI and VII of Theorem 35.4 of [5], $\mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\mathfrak{E}_{r}(I)$.

Theorem 4.5. Let $1 \leq p<q \leq \infty$, and $I_{1}=\left\{i \in I: d_{i} \ngtr 1\right\}$. Then the following assertions are equivalent:
(i) $\sup _{i \in I_{1}} a_{i}<\infty$.
(ii) $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0\left(i \notin I_{1}\right)\right\}$.
(iii) $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right) \subseteq \mathfrak{E}_{\infty}(I)+C(\mathfrak{E}(I))$.

Proof. (i) \Rightarrow (ii): On one hand by Theorem $4.2 \mathcal{M}\left(\mathfrak{E}_{p}\left(I_{1}\right), \mathfrak{E}_{q}\left(I_{1}\right)\right)=\mathfrak{E}_{\infty}\left(I_{1}\right)$. On the other hand, since $p<q$, by Theorem 28.32(iii),(iv) of [5],

$$
\mathfrak{E}_{p}\left(I_{1}\right) \mathfrak{E}_{\infty}\left(I_{1}\right) \cup \mathfrak{E}_{\infty}(I) \mathfrak{E}_{p}(I) \subseteq \mathfrak{E}_{p}(I) \subseteq \mathfrak{E}_{q}\left(I_{1}\right)
$$

Therefore $\mathcal{M}\left(\mathfrak{E}_{p}\left(I_{1}\right), \mathfrak{E}_{q}\left(I_{1}\right)\right) \cap \mathcal{R} \mathcal{M}\left(\mathfrak{E}_{p}\left(I_{1}\right), \mathfrak{E}_{q}\left(I_{1}\right)\right)=\mathfrak{E}_{\infty}\left(I_{1}\right)$. By regarding $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$ as a subspace of $\mathfrak{E}\left(I_{1}\right)$, it follows that $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=$ $\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0\left(i \notin I_{1}\right)\right\}$.
(ii) \Rightarrow (iii) is obvious.
$($ iii $) \Rightarrow($ i $)$: Suppose that $\sup _{i \in I_{1}} a_{i}=\infty$. Define $E \in \mathscr{E}(I)$ by $E_{i}=a_{i}^{\frac{1}{p}-\frac{1}{q}} \mathcal{E}_{11}^{i}$ for all $i \in I_{1}$, and $E_{i}=0$ for all $i \notin I_{1}$. Note that $\left\|E_{i}\right\|_{\varphi_{q}}=a_{i}^{\frac{1}{p}-\frac{1}{q}}$. For $A \in \mathfrak{E}_{p}(I)$, use (D.51.1) and (D.52.iii) of [5] and the same method of the proof of part \mathbf{V} of Theorem 35.4 of [5] to write

$$
\begin{aligned}
& \|E A\|_{\infty} \\
\leq & \|E A\|_{q}=\left(\sum_{i \in I}\left(a_{i}^{\frac{1}{q}}\left\|E_{i} A_{i}\right\|_{\varphi_{q}}\right)^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{i \in I}\left(a_{i}^{\frac{1}{q}}\left\|E_{i} A_{i}\right\|_{\varphi_{q}}\right)^{p}\right)^{\frac{1}{p}} \\
\leq & \left(\sum_{i \in I}\left(a_{i}^{\frac{1}{q}}\left\|E_{i}\right\|_{\varphi_{q}}\left\|A_{i}\right\|_{\varphi_{q}}\right)^{p}\right)^{\frac{1}{p}}=\left(\sum_{i \in I} a_{i}\left\|A_{i}\right\|_{\varphi_{q}}^{p}\right)^{\frac{1}{p}} \\
\leq & \left(\sum_{i \in I} a_{i}\left\|A_{i}\right\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}}=\|A\|_{p}<\infty .
\end{aligned}
$$

Therefore $E \in \mathcal{M}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$. Similarly one can prove that $E \in \mathcal{R} \mathcal{M}\left(\mathfrak{E}_{p}(I)\right.$, $\left.\mathfrak{E}_{q}(I)\right)$. Hence $E \in \mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$. It can be proved that $E \notin \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$. Suppose to the contrary that $E \in \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$. Then there exists $E^{\prime} \in \mathfrak{E}_{q}(I)$ and a set $\left\{\lambda_{i}: i \in I\right\} \subseteq \mathbb{C}$ such that for each $i \in I, E_{i}=E_{i}^{\prime}+\lambda_{i} I_{i}$. Since $\sup _{i \in I_{1}} a_{i}=\infty$, there exists a subset $\left\{i_{n}: n \in \mathbb{N}\right\}$ of I_{1} such that $i_{m} \neq i_{n}$ for $m \neq n$ and $\lim _{n} a_{i_{n}}=\infty$. The eigenvalues of $\left|E_{i_{n}}-\lambda_{i_{n}} I_{i_{n}}\right|$ are $\left|\lambda_{i_{n}}\right|$ with multiplicity $d_{i_{n}}-1$ and $\left|a_{i_{n}}^{\frac{1}{p}-\frac{1}{q}}-\lambda_{i_{n}}\right|$ with multiplicity 1 . Therefore

$$
\begin{aligned}
\left\|E_{i_{n}}^{\prime}\right\|_{\varphi_{q}} & \geq\left\|E_{i_{n}}^{\prime}\right\|_{\varphi_{\infty}}=\left\|E_{i_{n}}-\lambda_{i_{n}} I_{i_{n}}\right\|_{\varphi_{\infty}} \\
& =\max \left(\left|\lambda_{i_{n}}\right|,\left|a_{i_{n}}^{\frac{1}{p}-\frac{1}{q}}-\lambda_{i_{n}}\right|\right) \geq \frac{1}{2} a_{i_{n}}^{\frac{1}{p}-\frac{1}{q}},
\end{aligned}
$$

and hence

$$
\left\|E^{\prime}\right\|_{q} \geq\left\|E^{\prime}\right\|_{\infty} \geq \sup _{n \in \mathbb{N}}\left\|E_{i_{n}}^{\prime}\right\|_{\varphi_{\infty}} \geq \frac{1}{2} \sup _{n \in \mathbb{N}} a_{i_{n}}^{\frac{1}{p}-\frac{1}{q}}=\frac{1}{2}\left(\lim _{n} a_{i_{n}}\right)^{\frac{1}{p}-\frac{1}{q}}=\infty .
$$

This contradiction shows that $E \notin \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$. Therefore $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right) \nsubseteq$ $\mathfrak{E}_{\infty}(I)+C(\mathfrak{E}(I))$.

By Propositions 4.3 and 4.4, the following results are obtained.
Proposition 4.6. Let $1 \leq p \leq \infty$, and $I_{1}=\left\{i \in I: d_{i} \nsupseteq 1\right\}$. Then $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0\left(i \notin I_{1}\right)\right\}$.

Proposition 4.7. Let $1 \leq q<p \leq \infty$, and $I_{1}=\left\{i \in I: d_{i} \geqq 1\right\}$. Then $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\left\{E \in \mathfrak{E}_{r}(I): E_{i}=0\left(i \notin I_{1}\right)\right\}$, where r is defined by $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$, with the convention $\frac{1}{\infty}=0$.

5. Derivations Between the Banach Algebras $\mathfrak{E}_{p}(I)(1 \leq p \leq \infty)$

By Theorem 28.32 of [5], the Banach algebra $\mathfrak{E}_{p}(I)$ ia an ideal of $\mathfrak{E}_{\infty}(I)$. In this chapter $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$ for $1 \leq p, q \leq \infty$ is calculated.

The following lemma is frequently used in the rest of paper.
Lemma 5.1. If the set $I_{1}=\left\{i \in I: d_{i} \supsetneqq 1\right\}$ is infinite, then for $p, q \in[1, \infty]$,

$$
\left\{E \in \mathfrak{E}_{p}(I): E_{i}=0\left(i \notin I_{1}\right)\right\} \subseteq \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))
$$

if and only if $p \leq q$. In particular $\mathfrak{E}_{p}(I) \subseteq \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$, if and only if $p \leq q$.
Proof. If $p \leq q$, then by Theorem 28.32(iv) of [5], $\mathfrak{E}_{p}(I) \subseteq \mathfrak{E}_{q}(I) \subseteq$ $\mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$.

Let $p>q$. Since the set $I_{1}=\left\{i \in I: d_{i} \geqq 1\right\}$ is infinite, so there exists a countable infinite subset $\left\{i_{n}: n \in \mathbb{N}\right\}$ of distinct elements of I_{1}. Define $A_{i_{n}}=$ $a_{i_{n}}^{-\frac{1}{p}} n^{-\frac{1}{q}} \mathcal{E}_{11}^{i_{n}}$ for each n, and $A_{i}=0$ for all other i 's. Since $\frac{p}{q}>1$, so

$$
\|A\|_{p}=\left(\sum_{i \in I} a_{i}\left\|A_{i}\right\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}}=\left(\sum_{n \in \mathbb{N}} a_{i_{n}}\left\|A_{i_{n}}\right\|_{\varphi_{p}}^{p}\right)^{\frac{1}{p}}=\left(\sum_{n \in \mathbb{N}} n^{-\frac{p}{q}}\right)^{\frac{1}{p}}<\infty
$$

and hence $A \in\left\{E \in \mathfrak{E}_{p}(I): E_{i}=0\left(i \notin I_{1}\right)\right\}$. One can prove that $A \notin$ $\mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$. Suppose to the contrary that $A \in \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$. So there exist $A^{\prime} \in \mathfrak{E}_{q}(I)$ and a set $\left\{\lambda_{i}: i \in I\right\} \subseteq \mathbb{C}$ such that for each $i \in I, A_{i}=A_{i}^{\prime}+\lambda_{i} I_{i}$. Since the eigenvalues of $\left|A_{i_{n}}-\lambda_{i_{n}} I_{i_{n}}\right|$ are $\left|\lambda_{i_{n}}\right|$ with multiplicity $d_{i_{n}}-1$, and $\left|a_{i_{n}}^{-\frac{1}{p}} n^{-\frac{1}{q}}-\lambda_{i_{n}}\right|$ with multiplicity 1 , so

$$
\begin{aligned}
\left\|A_{i_{n}}^{\prime}\right\|_{\varphi_{q}} & \geq\left\|A_{i_{n}}^{\prime}\right\|_{\varphi_{\infty}}=\left\|A_{i_{n}}-\lambda_{i_{n}} I_{i_{n}}\right\|_{\varphi_{\infty}} \\
& =\max \left(\left|\lambda_{i_{n}}\right|,\left|a_{i_{n}}^{-\frac{1}{p}} n^{-\frac{1}{q}}-\lambda_{i_{n}}\right|\right) \geq \frac{1}{2} a_{i_{n}}^{-\frac{1}{p}} n^{-\frac{1}{q}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|A^{\prime}\right\|_{q} & =\left(\sum_{i \in I} a_{i}\left\|A_{i}^{\prime}\right\|_{\varphi_{q}}^{q}\right)^{\frac{1}{q}} \geq\left(\sum_{n \in \mathbb{N}} a_{i_{n}}\left\|A_{i_{n}}^{\prime}\right\|_{\varphi_{q}}^{q}\right)^{\frac{1}{q}} \\
& \geq \frac{1}{2}\left(\sum_{n \in \mathbb{N}} a_{i_{n}}^{\left(1-\frac{q}{p}\right)} n^{-1}\right)^{\frac{1}{q}} \geq \frac{1}{2}\left(\sum_{n \in \mathbb{N}} n^{-1}\right)^{\frac{1}{q}}=\infty
\end{aligned}
$$

This contradiction shows that $\left\{E \in \mathfrak{E}_{p}(I): E_{i}=0\left(i \notin I_{1}\right)\right\} \nsubseteq \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$.
Notation: Throughout the rest of the paper for $1<p<\infty$, let p^{\prime} denote the exponent conjugate to p, that is $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, for $p=1$, let $p^{\prime}=0$ (not ∞), and for $p=\infty$, let $p^{\prime}=1$.

Proposition 5.2. Let $1 \leq p \lesseqgtr \infty$. Then the dual Banach $\mathfrak{E}_{p}(I)$-bimodule $\mathfrak{E}_{p}(I)^{*}$ can be identified with the Banach $\mathfrak{E}_{p}(I)$-bimodule $\mathfrak{E}_{p^{\prime}}(I)$ with the product of $\mathfrak{E}(I)$ giving the two module multiplications.

Proof. By Theorem 28.31 of [5], the mapping $T: \mathfrak{E}_{p^{\prime}}(I) \rightarrow \mathfrak{E}_{p}(I)^{*}$ given by

$$
\langle B, T(A)\rangle=\sum_{i \in I} a_{i} \operatorname{tr}\left(B_{i} A_{i}\right) \quad\left(A \in \mathfrak{E}_{p^{\prime}}(I), B \in \mathfrak{E}_{p}(I)\right),
$$

is an isometric Banach space isomorphism. Let $A, B \in \mathfrak{E}_{p}(I)$ and $X \in \mathfrak{E}_{p^{\prime}}(I)$. For each $B \in \mathfrak{E}_{p^{\prime}}(I)$,

$$
\begin{aligned}
\langle B, T(X) \cdot A\rangle & =\langle A B, T(X)\rangle=\sum_{i \in I} a_{i} \operatorname{tr}\left((A B)_{i} X_{i}\right) \\
& \left.=\sum_{i \in I} a_{i} \operatorname{tr}\left(X_{i}(A B)_{i}\right)\right)=\sum_{i \in I} a_{i} \operatorname{tr}\left((X A)_{i} B_{i}\right) \\
& =\langle B, T(X A)\rangle
\end{aligned}
$$

So $T(X) \cdot A=T(X A)$. Similarly $A \cdot T(X)=T(A X)$.

Proposition 5.3. Let $1 \leq p \ngtr \infty$ and $D: \mathfrak{E}_{p}(I) \rightarrow \mathfrak{E}_{p}(I)$ be a derivation. Then D is continuous, and there is an element $L \in \mathfrak{E}_{\infty}(I)$ such that

$$
D(A)=A L-L A \quad\left(A \in \mathfrak{E}_{p}(I)\right)
$$

Moreover $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=0$ if and only if the set $\left\{i \in I: d_{i} \ngtr 1\right\}$ is finite.
Proof. By Proposition 4.6, $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0(i \in\right.$ $\left.\left.I, d_{i}=1\right)\right\}$. So by Theorem 3.10 and Proposition 5.2, D is continuous, and there exists $L \in \mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right) \subseteq \mathfrak{E}_{\infty}(I)$ such that $D(A)=A L-L A\left(A \in \mathfrak{E}_{p}(I)\right)$.

If $I_{1}=\left\{i \in I: d_{i} \nexists 1\right\}$ is finite, then

$$
\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0\left(i \notin I_{1}\right)\right\} \subseteq \mathfrak{E}_{00}(I) \subseteq \mathfrak{E}_{p}(I),
$$

and so by Corollary $3.14, \mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right)=0$.
Let I_{1} be infinite. By Lemma 5.1, $\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0\left(i \notin I_{1}\right)\right\} \nsubseteq$ $\mathfrak{E}_{p}(I)+C(\mathfrak{E}(I))$, and hence by Corollary $3.14 \mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)\right) \neq 0$.

Proposition 5.4. Let $1 \leq p \leq q \leqq \infty$ and suppose that $D: \mathfrak{E}_{p}(I) \rightarrow \mathfrak{E}_{q}(I)$ is a derivation. Then D is continuous, and there is an element $L \in \mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$ such that

$$
D(A)=A L-L A \quad\left(A \in \mathfrak{E}_{p}(I)\right)
$$

Moreover each derivation from $\mathfrak{E}_{p}(I)$ into $\mathfrak{E}_{q}(I)$ is inner if and only if the set $\left\{i \in I: d_{i} \supsetneqq 1\right\}$ is finite.

Proof. Note that $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right) \subseteq \mathfrak{E}(I)$. Hence by Theorem 3.10 and Proposition 5.2, D is continuous, and there exists $L \in \mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$ such that $D(A)=A L-L A\left(A \in \mathfrak{E}_{p}(I)\right)$.

If $\left\{i \in I: d_{i} \nexists 1\right\}$ is finite, then $\mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right) \subseteq \mathfrak{E}_{00}(I) \subseteq \mathfrak{E}_{q}(I)$, and so by Corollary $3.14 \mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=0$.

Let $I_{1}=\left\{i \in I: d_{i} \nsupseteq 1\right\}$ be infinite. Since $p \leq q$, so $\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=\right.$ $\left.0\left(i \notin I_{1}\right)\right\} \subseteq \mathcal{M}_{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)$. Hence by Lemma 5.1, $\left\{E \in \mathfrak{E}_{\infty}(I): E_{i}=0(i \notin\right.$ $\left.\left.I_{1}\right)\right\} \nsubseteq \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$ and hence by Corollary 3.14, $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right) \neq 0$.

By Proposition 4.7, and a method similar to the proof of Proposition 5.3, one can prove the following result.

Proposition 5.5. Let $1 \leq q<p \nsupseteq \infty$ and $D: \mathfrak{E}_{p}(I) \rightarrow \mathfrak{E}_{q}(I)$ be a derivation. Then D is continuous and there is an element $L \in \mathfrak{E}_{r}(I)$, where $\frac{1}{r}=\frac{1}{q}-\frac{1}{p}$, such that

$$
D(A)=A L-L A \quad\left(A \in \mathfrak{E}_{p}(I)\right) .
$$

Moreover $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=0$ if and only if the set $\left\{i \in I: d_{i} \geqq 1\right\}$ is finite.
Proof. The proof is similar to the proof of Proposition 5.3. Also note that since $p \neq \infty$, so $r>q$. Hence by Lemma 5.1, if $I_{1}=\left\{i \in I: d_{i} \nsupseteq 1\right\}$ is infinite, then $\left\{E \in \mathfrak{E}_{r}(I): E_{i}=0\left(i \notin I_{1}\right)\right\} \nsubseteq \mathfrak{E}_{q}(I)+C(\mathfrak{E}(I))$.

By using a method similar to the proof of Proposition 5.3, one can obtained the following result as a consequence of Theorems 3.10 and 4.5, and Corollary 3.14.

Theorem 5.6. Let $1 \leq p<q \leq \infty$. Then $\mathcal{Z}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{q}(I)\right)=\left\{D_{L}: L \in\right.$ $\left.\mathfrak{E}_{\infty}(I)\right\}$, where $D_{L}(A)=A L-L A\left(A \in \mathfrak{E}_{p}(I)\right)$, if and only if $\sup _{i \in I_{1}} a_{i}<\infty$, where $I_{1}=\left\{i \in I: d_{i} \ngtr 1\right\}$.

Corollary 5.7. Let $1 \leq p<\infty$. Then $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(I), \mathfrak{E}_{\infty}(I)\right)=0$ if and only if $\sup _{i \in I_{1}} a_{i}<\infty$, where $I_{1}=\left\{i \in I: d_{i} \nexists 1\right\}$.

Theorem 3.9 yields the following result.
Proposition 5.8. For each $1 \leq p \leq \infty$, and each $n \in \mathbb{N}, \mathcal{H}^{1}\left(\mathfrak{E}_{\infty}(I), \mathfrak{E}_{p}(I)\right)=0$.
A combination of Lemma 5.2, and Propositions 5.4 and 5.5 yields the following result.

Theorem 5.9. For $1<p<\infty, \mathfrak{E}_{p}(I)$ is weakly amenable if and only if the set $\left\{i \in I: d_{i} \nexists 1\right\}$ is finite.

Lemma 5.2 and Theorem 5.6 yields the following two corollaries.

Corollary 5.10. The Banach algebra $\mathfrak{E}_{1}(I)$ is weakly amenable if and only if $\sup _{i \in I_{1}} a_{i}<\infty$, where $I_{1}=\left\{i \in I: d_{i} \nexists 1\right\}$.

Remark 5.11. By Theorem 28.26 of [5], $\mathfrak{E}_{\infty}(I)$ is a C^{*}-algebra. But by Theorem 4.2.4 of [9], each C^{*}-algebra is weakly amenable. Therefore $\mathfrak{E}_{\infty}(I)$ is weakly amenable.

6. Applications to Compact Groups and Hypergroups

Let G be a compact group with dual \widehat{G} (the set of all equivalence classes of irreducible representations of G). Let H_{π} be the representation space of π, for each $\pi \in \widehat{G}$. The algebras $\mathfrak{E}(\widehat{G})$ and $\mathfrak{E}_{p}(\widehat{G})$ for $p \in[1, \infty] \cup\{0\}$, are defined as in the preliminaries with each a_{π} equal to the dimension d_{π} of $\pi \in \widehat{G}$ (c.f Definition 28.34 of [5]).

Corollary 5.7 yields the following result. Note that by definition of $\mathfrak{E}_{p}(\widehat{G})$ $(p \in[1, \infty] \cup\{0\}), a_{\pi}=d_{\pi}(\pi \in \widehat{G})$.

Theorem 6.1. If G is a compact group, then each derivation from $\mathfrak{E}_{p}(\widehat{G})$ into $\mathfrak{E}_{\infty}(\widehat{G})$ is continuous. Moreover $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{G}), \mathfrak{E}_{\infty}(\widehat{G})\right)=0$ if and only if $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$.

By Theorem 34.35 of [5], the convolution Banach algebra $A(G)$ is isometrically algebra isomorphic with $\mathfrak{E}_{1}(\widehat{G})$. Hence the convolution Banach algebra $A(G)$ is weakly amenable if and only if $\mathfrak{E}_{1}(\widehat{G})$ is weakly amenable. Therefore as a consequence of Corollary 5.10, the following theorem is obtained.

Theorem 6.2. If G is a compact group, then the convolution Banach algebra $A(G)$ is weakly amenable if and only if $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$.

Proposition 6.3. If G is an infinite non-abelian compact group, then the set $\{\pi \in \widehat{G}: \operatorname{dim} \pi \ngtr 1\}$ is infinite.

Proof. Suppose that the set $\{\pi \in \widehat{G}: \operatorname{dim} \pi \supsetneqq 1\}$ is finite. Hence by Theorem 5.3, each derivation from $\mathfrak{E}_{2}(\widehat{G})$ into itself is inner. Now, by PeterWeyl theorem [5], the convolution Banach algebra $L^{2}(G)$ is isometrically algebra isomorphic with $\mathfrak{E}_{2}(\widehat{G})$. So by Proposition 5.3, $\mathcal{H}^{1}\left(L^{2}(G), L^{2}(G)\right)=0$. If G is infinite and non-abelian, then there exist $x, y \in G$ such that $x y \neq y x$. The mapping $D_{x}: L^{2}(G) \rightarrow L^{2}(G)$ defined by

$$
D_{x}(f)=\delta_{x} * f-f * \delta_{x} \quad\left(f \in L^{2}(G)\right)
$$

is a non-inner derivation. To see this, let $D_{x}=a d_{g}$ for some $g \in L^{2}(G)$. Then for each $f \in L^{2}(G), f *\left(\delta_{x}-g\right)=\left(\delta_{x}-g\right) * f$. Since $L^{2}(G)$ is dense in $L^{1}(G)$, so for
each $f \in L^{1}(G), f *\left(\delta_{x}-g\right)=\left(\delta_{x}-g\right) * f$. Let $\left(e_{\alpha}\right)$ be a bounded approximate identity for $L^{1}(G)$. With the weak*-topology on $M(G)$

$$
\begin{aligned}
\delta_{x y}-\delta_{y x} & =\text { weak }^{*}-\lim _{\alpha}\left(\delta_{x} *\left(e_{\alpha} * \delta_{y}\right)-\left(e_{\alpha} * \delta_{y}\right) * \delta_{x}\right) \\
& =\text { weak }^{*}-\lim _{\alpha} D_{x}\left(e_{\alpha} * \delta_{y}\right)=\text { weak }^{*}-\lim _{\alpha} \operatorname{ad}_{g}\left(e_{\alpha} * \delta_{y}\right) \\
& =g * \delta_{y}-\delta_{y} * g \in L^{2}(G) \subseteq L^{1}(G)
\end{aligned}
$$

Since G is compact and infinite, it is not discrete and hence $\delta_{x y}-\delta_{y x} \notin L^{1}(G)$. This contradiction proves that G must be abelian or finite.

A combination of Theorem 5.3, Theorem 5.9, and Proposition 6.3 yields the following result.

Corollary 6.4. Let G be a compact group. Then
(a) For $1 \leq p<\infty, \mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{G}), \mathfrak{E}_{p}(\widehat{G})=0\right.$, if and only if G is finite or abelian.
(b) For $1<p<\infty, \mathfrak{E}_{p}(\widehat{G})$ is weakly amenable, if and only if G is finite or abelian.

Proposition 6.5. Let G be a compact group and $1 \leq p<q<\infty$. Then the following statements are equivalent:
(i) $\mathcal{Z}^{1}\left(\mathfrak{E}_{p}(\widehat{G}), \mathfrak{E}_{q}(\widehat{G})\right)=\left\{a d_{L}: L \in \mathfrak{E}_{\infty}(\widehat{G})\right\}$.
(ii) $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$.

Furthermore $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{G}), \mathfrak{E}_{q}(\widehat{G})\right)=0$ if and only if G is finite or abelian.
Proof. By Theorem 5.6, the statements (i) and (ii) are equivalent. The remainder is a corollary of Proposition 5.4 and Proposition 6.3.

Example 6.6. Let G be a compact group. Then $(A(G), *)$ is isometrically algebra isometric with $\mathfrak{E}_{1}(\widehat{G})$, and $\left(L^{2}(G), *\right)$ is isometrically algebra isometric with $\mathfrak{E}_{2}(\widehat{G})$.
(a) By Proposition 3.11, each derivation from the convolution Banach algebra $A(G)$ into the convolution Banach algebra $L^{2}(G)$ is continuous, i.e. $Z^{1}(A(G)$, $\left.L^{2}(G)\right)=\mathcal{Z}^{1}\left(A(G), L^{2}(G)\right)$.
(b) If $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$, then by Proposition $6.5 D \in \mathcal{Z}^{1}\left(A(G), L^{2}(G)\right)$ if and only if there is an $T \in V N(G)$ such that $D(f)=f . T-T . f(f \in A(G))$.
(c) If for each $D \in \mathcal{Z}^{1}\left(A(G), L^{2}(G)\right)$ there is an $T \in V N(G)$ such that $D(f)=$ $f . T-T . f(f \in A(G))$, then $\sup _{\pi \in \widehat{G}} d_{\pi}<\infty$.
(d) $\mathcal{H}^{1}\left(A(G), L^{2}(G)\right)=0$ if and only if G is finite or abelian.

The above results can be extended to compact hypergroups by the same way. Note that if K is a compact hypergroup, then by Theorem 2.6 of [10], for each $\pi \in \widehat{K}, k_{\pi} \geq d_{\pi}$. Hence $\sup _{\left\{\pi \in \widehat{K}: d_{\pi} \geqq 1\right\}} k_{\pi}<\infty$ is equivalent to $\sup _{\pi \in \widehat{K}} k_{\pi}\left(d_{\pi}-\right.$ 1) $<\infty$.

Proposition 6.7. If K is a compact hypergroup, then each derivation from $\mathfrak{E}_{p}(\widehat{K})$ into $\mathfrak{E}_{\infty}(\widehat{K})$ is continuous. Moreover $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{K}), \mathfrak{E}_{\infty}(\widehat{K})\right)=0$ if and only if $\sup _{\pi \in \hat{K}} k_{\pi}\left(d_{\pi}-1\right)<\infty$.

Theorem 6.8. If K is a compact hypergroup, then the convolution Banach algebra $A(K)$ is weakly amenable if and only if $\sup _{\pi \in \widehat{G}} k_{\pi}\left(d_{\pi}-1\right)<\infty$.

Proposition 6.9. Let K be a compact hypergroup and $1 \leq p<q<\infty$. Then the following statements are equivalent:
(i) $\mathcal{Z}^{1}\left(\mathfrak{E}_{p}(\widehat{K}), \mathfrak{E}_{q}(\widehat{K})\right)=\left\{a d_{L}: L \in \mathfrak{E}_{\infty}(\widehat{K})\right\}$.
(ii) $\sup _{\pi \in \hat{K}} k_{\pi}\left(d_{\pi}-1\right)<\infty$.

Proposition 6.10. Suppose K is an infinite non-abelian compact hypergroup such that for each $x, y \in K$, the set $x * y$ is finite. Then the set $\{\pi \in \widehat{K}: \operatorname{dim} \pi \supsetneqq 1\}$ is infinite.

Proof. By using the same method as the proof of Proposition 6.3, the proposition is proved. Note that since for each $x, y \in K$, the set $x * y$ is finite, so $\delta_{x y}-\delta_{y x} \in \ell^{1}(K)$. If K is compact and infinite, then $\delta_{x y}-\delta_{y x} \notin L^{1}(K)$.

Corollary 6.11. Suppose K is a compact hypergroup such that for each $x, y \in$ K, the set $x * y$ is finite. Then
(a) For $1 \leq p<\infty, \mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{K}), \mathfrak{E}_{p}(\widehat{K})\right)=0$, if and only if K is finite or abelian.
(b) For $1<p<\infty, \mathfrak{E}_{p}(\widehat{K})$ is weakly amenable, if and only if K is finite or abelian.

Corollary 6.12. Suppose that K is a compact hypergroup such that for each $x, y \in K$, the set $x * y$ is finite. Let $1 \leq p<q<\infty$. Then $\mathcal{H}^{1}\left(\mathfrak{E}_{p}(\widehat{K}), \mathfrak{E}_{q}(\widehat{K})\right)=0$ if and only if K is finite or abelian.

We close the paper with the following open problem.
Open problem: Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|\cdot\|_{\mathfrak{A}}$ on \mathfrak{A}, and $\|\cdot\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Let D be a derivation from \mathfrak{A} into \mathfrak{B}. Is there $M \in \mathcal{M}_{1}(\mathfrak{A}, \mathfrak{B})$ such that $D(A)=A M-M A(A \in \mathfrak{A})$ (see Theorem 3.10 for a special case)?

Acknowledgment

The author would like to thank the referee for invaluable comments. The author also would like to thank the University of Bu-Ali Sina (Hamedan) for its support.

References

1. W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, Walter de Gruyter, Berlin, 1995.
2. J. B. Conway, A course in functional analysis, Springer Verlag, 1978.
3. H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, 2000.
4. F. Ghahramani and A. T. M. Lau, Approximate weak amenability, derivations and Arens regularity of Segal algebras, Studia Mathematica, 169(2) (2005), 189-205.
5. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. II, Springer, Berlin, 1970.
6. R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math., 18 (1975), 1-110.
7. S. J. Leon, Linear algebra with applications, 3nd ed., Macmillan Publishing Company, New York.
8. W. Rudin, Functional analysis, McGraw Hill, New York, 1991.
9. V. Runde, Lectures on amenability, Lecture Notes in Mathematics, Vol. 1774, Springer, Berlin, 2002.
10. R. C. Vrem, Harmonic analysis on compact hypergroups, Pacific J. Math., 85 (1979), 239-251.
H. Samea

Department of Mathematics
Bu-Ali Sina University
Hamedan, Iran
E-mail: h.samea@basu.ac.ir

[^0]: Received September 18, 2008, accepted September 20, 2010.
 Communicated by Yongsheng Han.
 2010 Mathematics Subject Classification: 15A60, 43A40.
 Key words and phrases: Matrix algebra, Banach algebra, Multiplier, Derivation, Weak amenable Banach algebra, Compact groups, Compact hypergroups.

