TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 6, pp. 2667-2687, December 2011 This paper is available online at http://tjm.math.ntu.edu.tw

DERIVATIONS ON MATRIX ALGEBRAS WITH APPLICATIONS TO HARMONIC ANALYSIS

H. Samea

Abstract. In this paper, the derivations between ideals of the Banach algebra $\mathfrak{E}_{\infty}(I)$ are characterized. Necessary and sufficient conditions for weak amenability of Banach algebras $\mathfrak{E}_p(I)$, $1 \leq p \leq \infty$, are found. Also, some applications to compact groups and hypergroups are given.

1. INTRODUCTION

The Banach algebras $\mathfrak{E}_p(I)$, where $p \in [1, \infty] \cup \{0\}$, were introduced and extensively studied in Section 28 of [5]. For a compact group G with dual \widehat{G} , the Banach algebras $\mathfrak{E}_p(\widehat{G})$, where $p \in [1, \infty] \cup \{0\}$, and multipliers on these Banach algebras were introduced and extensively studied in [5]. The present paper continues of the study of these algebras, and investigate multipliers and derivations on ideals of $\mathfrak{E}_{\infty}(I)$ with applications to compact groups and hypergroups.

The organization of this paper is as follows. The preliminaries and notations are given in section 1. Section 2 is devoted to derivations between ideals of $\mathfrak{E}_{\infty}(I)$. In this paper, the set of all $M \in \mathfrak{E}(I)$ such that $MA, AM \in \mathfrak{B}$ $(A \in \mathfrak{A})$, and $M_i = 0$ $(i \in I, d_i = 1)$ is denoted by $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. It is shown that if \mathfrak{A} and \mathfrak{B} are ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and moreover there exist norms $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras, then \mathfrak{B} is a Banach \mathfrak{A} -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. It is shown that if D is a derivation from \mathfrak{A} into \mathfrak{B} , then D is continuous. Furthermore, if at least one of the spaces $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule, then there exists $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that D(A) = AM - MA ($A \in \mathfrak{A}$). In section 3, the Banach space $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$, where \mathfrak{A} and \mathfrak{B} are any of Banach spaces $\mathfrak{E}_p(I)$ $(1 \leq p \leq \infty)$, is formulated. Indeed, Theorem 35.4 of [5] is generalized from ideals of $\mathfrak{E}_{\infty}(\widehat{G})$, where G is a compact group with dual \widehat{G} , to ideals of $\mathfrak{E}_{\infty}(I)$. In section

Communicated by Yongsheng Han.

Received September 18, 2008, accepted September 20, 2010.

²⁰¹⁰ Mathematics Subject Classification: 15A60, 43A40.

Key words and phrases: Matrix algebra, Banach algebra, Multiplier, Derivation, Weak amenable Banach algebra, Compact groups, Compact hypergroups.

4 a number of results on derivations between Banach algebras of $\mathfrak{E}_p(I)$ $(1 \le p \le \infty)$ are stated and proved, and applied in investigating the weakly amenability of Banach algebras $\mathfrak{E}_p(I)$ $(1 \le p \le \infty)$. It is proved that $\mathcal{H}^1(\mathfrak{E}_\infty(I), \mathfrak{E}_p(I)) = 0$ for each $1 \le p \le \infty$. Also it is shown that for $1 \le p, q \leqq \infty$, $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = 0$ if and only if the set $\{i \in I : d_i \ge 1\}$ is finite. Moreover it is proved that for $1 \le p \le \infty$, $\mathcal{H}^1(\mathfrak{E}_p(I),\mathfrak{E}_\infty(I)) = 0$ if and only if $\sup\{a_i : i \in I, d_i \geqq 1\} < \infty$. Applications of these results enables one to prove that for each $1 , <math>\mathfrak{E}_p(I)$ is is weakly amenable if and only if the set $\{i \in I : d_i \geqq 1\}$ is finite. Also $\mathfrak{E}_1(I)$ is weakly amenable if and only if $\sup\{a_i : i \in I, d_i \ge 1\} < \infty$. However it is well-known that $\mathfrak{E}_{\infty}(I)$ is weakly amenable. In section 5 some applications of the previous sections in compact groups and hypergroups are given. Among other results, it is proved that if G is a compact group, then the convolution Banach algebra A(G)is weakly amenable if and only if $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$, where \widehat{G} is the dual of G and for each $\pi \in \widehat{G}$, $d_{\pi} = \dim \pi$. Also, a necessary and sufficient condition for weak amenability of the convolution Banach algebra A(K), for a compact hypergroup K, is proved.

2. Preliminaries

Let *H* be an *n*-dimensional Hilbert space and suppose that $\mathcal{B}(H)$ be the space of all linear operators on *H*. Clearly $\mathcal{B}(H)$ can be identified with $\mathbb{M}_n(\mathbb{C})$ (the space of all $n \times n$ -matrices on \mathbb{C}) as vector spaces. For $A \in \mathbb{M}_n(\mathbb{C})$, let $A^* \in \mathbb{M}_n(\mathbb{C})$ by $(A^*)_{ij} = \overline{A_{ji}}$ $(1 \leq i, j \leq n)$, and let |A| denote the unique positive-definite square root of AA^* . *A* is called *unitary* if $A^*A = AA^* = I$, where *I* is the $n \times n$ identity matrix. For $E \in \mathcal{B}(H)$, let $(\lambda_1, \ldots, \lambda_n)$ be the sequence of eigenvalues of operator |E|, written in any order. Define $||E||_{\varphi_{\infty}} = \max_{1 \leq i \leq n} |\lambda_i|$, and $||E||_{\varphi_p} =$ $(\sum_{i=1}^n |\lambda_i|^p)^{\frac{1}{p}}$ $(1 \leq p < \infty)$. For more details see Definition D.37 and Theorem D.40 of [5].

Let I be an arbitrary index set. For each $i \in I$, let H_i be a finite dimensional Hilbert space of dimension d_i , and let a_i be a real number ≥ 1 . These notations will remain in place throughout the paper. The *-algebra $\prod_{i \in I} B(H_i)$ will denoted by $\mathfrak{E}(I)$; scalar multiplication, addition, multiplication, and the adjoint of an element are defined coordinate-wise. Let $E = (E_i)$ be an element of $\mathfrak{E}(I)$. Define $||E||_p :=$ $\left(\sum_{i \in I} a_i ||E_i||_{\varphi_p}^p\right)^{\frac{1}{p}}$ $(1 \leq p < \infty)$, and $||E||_{\infty} = \sup_{i \in I} ||E_i||_{\varphi_{\infty}}$. For $1 \leq p \leq \infty$, $\mathfrak{E}_p(I)$ is defined as the set of all $E \in \mathfrak{E}(I)$ for which $||E||_p < \infty$, and $\mathfrak{E}_0(I)$ is defined as the set of all $E \in \mathfrak{E}(I)$ such that $\{i \in I : ||E_i||_{\varphi_{\infty}} \geq \epsilon\}$ is finite for all $\epsilon > 0$. The set of all $E \in \mathfrak{E}(I)$ such that $\{i \in I : ||E_i||_{\varphi_{\infty}} \neq 0\}$ is finite is denoted by $\mathfrak{E}_{00}(I)$. By Theorems 28.25, 28.27, and 28.32(v) of [5], both $(\mathfrak{E}_p(I), ||.||_p)$ $(1 \leq p \leq \infty)$, and $(\mathfrak{E}_0(I), ||.||_{\infty})$ are Banach algebras.

For a Banach algebra A, an A-bimodule will always refer to a *Banach* A-bimodule X, that is a Banach space which is algebraically an A-bimodule, and for

which there is a constant $C_{A,X} \ge 0$ such that

$$||a.x||_X, ||x.a||_X \le C_{A,X} ||a||_A ||x||_X \quad (a \in A, x \in X).$$

A linear map $D: A \rightarrow X$ is called an *X*-derivation, if

$$D(ab) = D(a).b + a.D(b) \quad (a, b \in A).$$

For every $x \in X$, ad_x is defined by $ad_x(a) = a.x - x.a$ $(a \in A)$. It is easily seen that ad_x is a derivation. Derivations of this form are called *inner derivations*. The set of all derivations from A into X is denoted by $Z^1(A, X)$, and the set of all inner X-derivations is denoted by $B^1(A, X)$. Clearly, $Z^1(A, X)$ is a linear subspace of the space of all linear operators of A into X and $B^1(A, X)$ is a linear subspace of $Z^1(A, X)$. The difference space of $Z^1(A, X)$ modulo $B^1(A, X)$ is denote by $H^1(A, X)$. The set of all continuous derivations from A into X is denoted by $Z^1(A, X)$, and the set of all (continuous) X-derivations is denoted by $\mathcal{B}^1(A, X)$. Clearly, $Z^1(A, X)$ is a linear subspace of the space of all bounded linear operators of A into X and $\mathcal{B}^1(A, X)$ is a linear subspace of $Z^1(A, X)$. Let $\mathcal{H}^1(A, X)$ be the difference space of $Z^1(A, X)$ modulo $\mathcal{B}^1(A, X)$.

The Banach space A^* with the *dual* module multiplications defined by

$$(f.a)(b) = f(ab), (a.f)(b) = f(ba) \quad (a, b \in A, f \in A^*),$$

is a Banach A-bimodule called the *dual* Banach A-bimodule A^* . A Banach algebra A is called *weakly amenable* if $\mathcal{H}^1(A, A^*) = 0$.

For a locally compact group G and a function $f : G \to \mathbb{C}$, \check{f} is defined by $\check{f}(x) = f(x^{-1})$ $(x \in G)$. Let A(G) (or with the notation $\Re(G)$ defined in 35.16 of [5]) consist of all functions h in $C_0(G)$ that can be written in at least one way as $\sum_{n=1}^{\infty} f_n * \check{g}_n$, where $f_n, g_n \in L^2(G)$, and $\sum_{n=1}^{\infty} ||f_n||_2 ||g_n||_2 < \infty$. For $h \in A(G)$, define

$$\|h\|_{A(G)} = \inf\left\{\sum_{n=1}^{\infty} \|f_n\|_2 \|g_n\|_2 : h = \sum_{n=1}^{\infty} f_n * \check{g}_n\right\}.$$

With this norm A(G) is a Banach space. For more details see 35.16 of [5]. In the case where G is a compact group, A(G) with convolution and the norm $\|.\|_{A(G)}$ is a Banach algebra (see 34.35 of [5]).

Throughout this paper K is a compact hypergroup as defined by Jewett ([6]). By Theorem 1.3.28 of [1], K admits a left Haar measure. Throughout the present paper the normalized Haar measure ω_K on the compact hypergroup K (i.e. $\omega_K(K) = 1$) is used. If $\pi \in \hat{K}$, (where \hat{K} is the set of equivalence classes of continuous irreducible representations of K, c.f. [1], 11.3 of [6], and [10]), then by Theorem 2.2 of [10], π is finite dimensional. Furthermore by the proof of Theorem 2.2 of [10], there

exists a constant c_{π} such that for each $\xi \in H_{\pi}$ with $\|\xi\| = 1$

$$\int_{K} |\langle \pi(x)\xi,\xi\rangle|^2 \, d\omega_K(x) = c_{\pi}.$$

Let $k_{\pi} = c_{\pi}^{-1}$. By Theorem 2.6 of [10], $k_{\pi} \ge d_{\pi}$. Moreover if K is a group then $k_{\pi} = d_{\pi}$. For each $\pi \in \widehat{K}$, let H_{π} be the representation space of π and $d_{\pi} = \dim H_{\pi}$. The algebras $\mathfrak{E}(\widehat{K})$ and $\mathfrak{E}_{p}(\widehat{K})$ for $p \in [1, \infty] \cup \{0\}$, are defined as above with each $a_{\pi} = k_{\pi}$. Let $\mu \in M(K)$. The Fourier transform of μ at $\pi \in \widehat{K}$ is denoted by $\widehat{\mu}(\pi)$ and defined as the operator $\widehat{\mu}(\pi) = \int_{K} \pi(\overline{x}) d\mu(x)$ on H_{π} . Define $\widehat{\mu} \in \mathfrak{E}(\widehat{K})$ by $\widehat{\mu}_{\pi} = \widehat{\mu}(\pi) \in \mathcal{B}(H_{\pi})$ (for more details see Theorem 3.2 of [10]). If $f \in L^{1}(K)$, and $\sum_{\pi \in \widehat{K}} k_{\pi} ||\widehat{f}(\pi)||_{\varphi_{1}} < \infty$, then f is said to have an *absolutely convergent Fourier series*. The set of all functions with absolutely convergent Fourier series is denoted by A(K) and called *the Fourier space* of K. For $f \in A(K)$, define $||f||_{A(K)} = ||\widehat{f}||_{1}$. By Proposition 4.2 of [10], A(K) with the convolution product is a Banach algebra and isometrically isomorphic with $\mathfrak{E}_{1}(\widehat{K})$. Note that the two definitions of A(G) and A(K) agree when K = G.

3. Derivations Between Ideals of $\mathfrak{E}_{\infty}(I)$

Throughout the paper for $A \in B(H_i)$, define A^i as an element of $\mathfrak{E}(I)$ given by

$$(A^i)_j = \begin{cases} A & \text{for } j = i \\ 0 & \text{otherwise.} \end{cases}$$

We denote the identity $d_i \times d_i$ -matrix (i.e. the identity operator in $\mathcal{B}(H_i)$) by I_i .

Proposition 3.1. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and \mathfrak{B} be a subspace of $\mathfrak{E}(I)$. Suppose that $(\mathfrak{A}, \|.\|_{\mathfrak{A}})$ is a Banach algebra and $(\mathfrak{B}, \|.\|_{\mathfrak{B}})$ is a Banach space. Then each linear mapping $\Theta : \mathfrak{A} \to \mathfrak{B}$ that satisfies

$$\Theta(AI_i^i) = \Theta(A)I_i^i \quad (A \in \mathfrak{A}, i \in I),$$

is continuous.

Proof. Let (A_n) be a sequence in \mathfrak{A} such that $||A_n||_{\mathfrak{A}} \to 0$ and $||\Theta(A_n) - B||_{\mathfrak{B}} \to 0$, where $B \in \mathfrak{B}$. Let $i \in I$. Since $\mathcal{B}(H_i)$ is finite dimensional, so by Lemma 1.20 of [8] the linear mapping $\Theta_i : \mathcal{B}(H_i) \to \mathfrak{B} : A_i \mapsto \Theta(A_i^i)$ is continuous. On the other hand since \mathfrak{A} is a Banach algebra, so for each $i \in I$

$$||A_n I_i^i||_{\mathfrak{A}} \le ||A_n||_{\mathfrak{A}} ||I_i^i||_{\mathfrak{A}} \longrightarrow 0.$$

Therefore for each $i \in I$

Derivations on Matrix Algebras

$$BI_i^i = \lim_{n \to \infty} \Theta(A_n)I_i^i = \lim_{n \to \infty} \Theta(A_nI_i^i)$$
$$= \lim_{n \to \infty} \Theta_i \left((A_n)_i \right) = \Theta_i \left(\lim_{n \to \infty} A_nI_i^i \right)$$
$$= \Theta_i(0) = 0.$$

Hence B = 0. By the Closed Graph Theorem Θ is continuous.

Corollary 3.2. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, and \mathfrak{B} be a subspace of $\mathfrak{E}(I)$. Suppose that $(\mathfrak{A}, \|.\|_{\mathfrak{A}})$ is a Banach algebra and $(\mathfrak{B}, \|.\|_{\mathfrak{B}})$ is a Banach \mathfrak{A} -bimodule. Then $Z^1(\mathfrak{A}, \mathfrak{B}) = \mathcal{Z}(\mathfrak{A}, \mathfrak{B})$. That is each derivation D from \mathfrak{A} into \mathfrak{B} is continuous.

Proof. Let $i \in I$. By Proposition 1.8.2 of [3], $D(I_i^i) = 0$. Hence for each $A \in \mathfrak{A}$

$$D(AI_i^i) = D(A)I_i^i + AD(I_i^i) = D(A)I_i^i.$$

So by Proposition 3.1, *D* is continuous.

Example 3.3. Let I be an infinite set. Fix $i_0 \in I$, and suppose that $\{i_n : n \in \mathbb{N}\}$ be an infinite countable subset of distinct elements of $I \setminus \{i_0\}$. Moreover suppose that for each $n \in \mathbb{N}$, $dim(H_{i_n}) \geq 2$. Define

$$\mathfrak{A} = \left\{ A \in \mathfrak{E}_0(I) : A_{i_n} \in \mathbb{C}\mathcal{E}_{12}^{i_n} \text{ for } n \in \mathbb{N}, \text{ and } A_i = 0 \text{ for all other } i \text{'s} \right\},\$$

with the norm $||A||_{\mathfrak{A}} = ||A||_{\infty}$ $(A \in \mathfrak{A})$. Then \mathfrak{A} is a Banach subalgebra of $\mathfrak{E}_{\infty}(I)$. Clearly $\{\mathcal{E}_{12}^{i_n} : n \in \mathbb{N}\}$ is a linearly independent subspace of the vector space \mathfrak{A} . Let \mathcal{B} be a basis for \mathfrak{A} such that $\{\mathcal{E}_{12}^{i_n} : n \in \mathbb{N}\} \subseteq \mathfrak{A}$. Let $D : \mathfrak{A} \to \mathfrak{A}$ be the linear mapping given by $D(\mathcal{E}_{12}^{i_n}) = n\mathcal{E}_{11}^{i_0}$, where $n \in \mathbb{N}$, and D(E) = 0, where $E \in \mathcal{B} \setminus \{\mathcal{E}_{12}^{i_n} : n \in \mathbb{N}\}$. Let $A, B \in \mathfrak{A}$. Then AB = 0, and so D(AB) = 0. Clearly D(A)B = AD(B) = 0 for each $A, B \in \mathfrak{A}$. Hence D is a derivation from \mathfrak{A} into \mathfrak{A} . Clearly D is not continuous (indeed, for each $n \in \mathbb{N}$, $||D|| \ge \left\| D(\mathcal{E}_{12}^{i_n}) \right\|_{\infty} = n$). So the condition $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, can not be omitted in Proposition 3.2.

Definition 3.4. Let \mathfrak{A} and \mathfrak{B} be subsets of $\mathfrak{E}(I)$. An element E in $\mathfrak{E}(I)$ is said to be a left (right, respectively) $(\mathfrak{A}, \mathfrak{B})$ -multiplier if $EA \in \mathfrak{B}$ ($AE \in \mathfrak{B}$, respectively) for all $A \in \mathfrak{A}$. The set of all left (right, respectively) $(\mathfrak{A}, \mathfrak{B})$ -multipliers will be denoted by $\mathcal{M}(\mathfrak{A}, \mathfrak{B})$ ($\mathcal{RM}(\mathfrak{A}, \mathfrak{B})$, respectively). The set of all $E \in \mathcal{M}(\mathfrak{A}, \mathfrak{B}) \cap \mathcal{RM}(\mathfrak{A}, \mathfrak{B})$ such that $E_i = 0$ whenever $d_i = 1$, will be denoted by $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$.

Lemma 3.5. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$. Then \mathfrak{B} is an algebraic \mathfrak{A} -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Also $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$ -bimodule.

2671

Proof. Clearly \mathfrak{B} is an algebraic \mathfrak{A} -bimodule, and $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a subspace of $\mathfrak{E}(I)$. Let $L \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ and $E \in \mathfrak{E}_{\infty}(I)$. Since \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, so if $A \in \mathfrak{A}$, then $(EL)A = E(LA) \in \mathfrak{B}$. Hence $EL \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. Similarly since \mathfrak{A} is an ideal of $\mathfrak{E}_{\infty}(I)$, so $LE \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. Therefore $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$ -bimodule.

Proposition 3.6. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Then \mathfrak{B} is an algebraic \mathfrak{A} -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover, if D is a derivation from \mathfrak{A} into \mathfrak{B} , then there exists a derivation \widetilde{D} from $\mathfrak{E}_{\infty}(I)$ into $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that $\widetilde{D}(A) = D(A)$ $(A \in \mathfrak{A})$.

Proof. Suppose D is a derivation from \mathfrak{A} into \mathfrak{B} . By Corollary 3.2 D is continuous. By Lemma 3.5, $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a $\mathfrak{E}_{\infty}(I)$ -bimodule.

Define $D: \mathfrak{E}_{\infty}(I) \to \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ by

$$\left(\widetilde{D}(E)\right)_i = \left(D(EI_i^i)\right)_i \quad (E \in \mathfrak{E}_{\infty}(I), i \in I)$$

 \widetilde{D} is a well-defined continuous derivation. To see this, let $E \in \mathfrak{E}_{00}(I)$. Since $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$, so $EI_i^i \in \mathfrak{A}$ for each $i \in I$. Hence $D(EI_i^i)$ is well-defined. Let $A \in \mathfrak{A}$, and $i \in I$ be such that $d_i \geqq 1$. Since $EA \in \mathfrak{A}$, so

$$\begin{split} \left(\widetilde{D}(E)A\right)_{i} &= \left(D(EI_{i}^{i})A\right)_{i} = \left(D(EI_{i}^{i}A) - EI_{i}^{i}D(A)\right)_{i} \\ &= \left(D(EA)I_{i}^{i} - EI_{i}^{i}D(A)\right)_{i} = \left(D(EA) - ED(A)\right)_{i}. \end{split}$$

Also if $i \in I$, and $d_i = 1$, then $AI_i^i = A_iI_i^i$, and $EI_i^i = E_iI_i^i$, where $A_i, E_i \in \mathbb{C}$. Hence

$$(D(EA) - ED(A))I_i^i = D(EA)I_i^i - E(D(A)I_i^i) = D(EAI_i^i) - ED(AI_i^i) = E_iA_iD(I_i^i) - EA_iD(I_i^i) = 0,$$

and

$$(D(E)A)I_i^i = D(E)(A_iI_i^i) = A_i(D(E)I_i^i) = A_iD(EI_i^i) = A_iE_iD(I_i^i) = 0.$$

The above equations show that D(E)A = D(EA) - ED(A). But, \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, and so $\widetilde{D}(E)A = D(EA) - ED(A) \in \mathfrak{B}$. Therefore $\widetilde{D}(E) \in \mathcal{M}(\mathfrak{A}, \mathfrak{B})$. Similarly one can prove that $A\widetilde{D}(E) = D(AE) - D(A)E \in \mathfrak{B}$, and so $\widetilde{D}(E) \in \mathcal{RM}(\mathfrak{A}, \mathfrak{B})$. Hence by definition of $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B}), \widetilde{D}(E) \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$.

Now, if $E, F \in \mathfrak{E}_{\infty}(I)$, and $i \in I$, then

$$\begin{split} \left(\widetilde{D}(EF)\right)_i &= \left(D\left((EF)I_i^i\right)\right)_i = \left(D\left((EI_i^i)(FI_i^i)\right)\right)_i \\ &= \left(D(EI_i^i)FI_i^i + EI_i^iD(FI_i^i)\right)_i = \left(D(EI_i^i)\right)_i F_i + E_i\left(D(FI_i^i)\right)_i \\ &= \left(\widetilde{D}(E)F + E\widetilde{D}(F)\right)_i. \end{split}$$

Hence \widetilde{D} is a derivation. It is clear that if $A \in \mathfrak{A}$, then $\widetilde{D}(A) = D(A)$.

Proposition 3.7. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and a norm $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach $\mathfrak{E}_{\infty}(I)$ -bimodules. Then $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a Banach $\mathfrak{E}_{\infty}(I)$ -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications, and with the norm

$$||L||_{\mathfrak{A},\mathfrak{B}} = \sup_{A \in \mathfrak{A}, ||A||_{\mathfrak{A}} = 1} (||LA||_{\mathfrak{B}} + ||AL||_{\mathfrak{B}}) \quad (L \in \mathcal{M}_{1}(\mathfrak{A},\mathfrak{B})).$$

Proof. Firstly, it is proved that $\|.\|_{\mathfrak{A},\mathfrak{B}}$ is a well defined norm on $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$. It is easy to see that $\mathfrak{B} \times \mathfrak{B}$ is a Banach space under the norm

$$\|(b_1, b_2)\|_{\mathfrak{B}\times\mathfrak{B}} = \|b_1\|_{\mathfrak{B}} + \|b_2\|_{\mathfrak{B}} \quad ((b_1, b_2) \in \mathfrak{B}\times\mathfrak{B}).$$

For $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$, define $\widehat{M} : \mathfrak{A} \to \mathfrak{B} \times \mathfrak{B}$ by $\widehat{M}(A) = (MA, AM)$ $(A \in \mathfrak{A})$. By definition $\|\widehat{M}\| = \|M\|_{\mathfrak{A},\mathfrak{B}}$. But, by Proposition 3.1, the mappings $A \mapsto MA, AM : \mathfrak{A} \to \mathfrak{B}$ are continuous, and so $\|M\|_{\mathfrak{A},\mathfrak{B}} < \infty$. Let $\|M\|_{\mathfrak{A},\mathfrak{B}} = 0$. Then $\|MI_i^i\|_{\mathfrak{B}} \leq \|M\|_{\mathfrak{A},\mathfrak{B}} \|I_i^i\|_{\mathfrak{A}} = 0$ (note that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$). It follows that $MI_i^i = 0$ for each $i \in I$, and so M = 0. Therefore $\|.\|_{\mathfrak{A},\mathfrak{B}}$ is a norm on $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$.

Suppose that $(M_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. By completeness of $\mathcal{B}(\mathfrak{A}, \mathfrak{B} \times \mathfrak{B})$ (the set of all continuous linear maps from \mathfrak{A} into $\mathfrak{B} \times \mathfrak{B}$), there exists $\Theta \in \mathcal{B}(\mathfrak{A}, \mathfrak{B} \times \mathfrak{B})$ such that $\lim_{n \to \infty} \widehat{M_n} = \Theta$. Let $\pi_1, \pi_2 : \mathfrak{B} \times \mathfrak{B} \to \mathfrak{B}$ be the natural projections $\pi_1 : (b_1, b_2) \mapsto b_1, \pi_2 : (b_1, b_2) \mapsto b_2$. Define $M \in \mathfrak{E}(I)$ by $MI_i^i = \pi_1(\Theta(I_i^i))I_i^i$. Then for $A \in \mathfrak{A}$

$$(MA)I_{i}^{i} = MI_{i}^{i}AI_{i}^{i} = \pi_{1}\left(\Theta(I_{i}^{i})\right)AI_{i}^{i} = \lim_{n \to \infty} \pi_{1}\left(\widehat{M_{n}}(I_{i}^{i})\right)AI_{i}^{i}$$
$$= \lim_{n \to \infty} (M_{n}I_{i}^{i})AI_{i}^{i} = \lim_{n \to \infty} (M_{n}A)I_{i}^{i}$$
$$= \lim_{n \to \infty} \pi_{1}\left(\widehat{M_{n}}(A)\right)I_{i}^{i} = \pi_{1}\left(\Theta(A)\right)I_{i}^{i}.$$

But

$$MI_{i}^{i} = \pi_{1}(\Theta(I_{i}^{i}))I_{i}^{i} = \pi_{1}\left(\widehat{M_{n}}(I_{i}^{i})\right)I_{i}^{i}$$

= $\pi_{1}\left(M_{n}I_{i}^{i}, I_{i}^{i}M_{n}\right)I_{i}^{i} = \pi_{2}\left(M_{n}I_{i}^{i}, I_{i}^{i}M_{n}\right)I_{i}^{i}$
= $\pi_{2}\left(\widehat{M_{n}}(I_{i}^{i})\right)I_{i}^{i} = \pi_{2}(\Theta(I_{i}^{i}))I_{i}^{i},$

and so by a similar method it can be proved that $(AM)I_i^i = \pi_2(\Theta(A))I_i^i$. It follows that $\Theta = \widehat{M}$, and $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. Therefore $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a Banach space.

Let $L \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ and $E \in \mathfrak{E}_{\infty}(I)$. Since \mathfrak{B} is an ideal of $\mathfrak{E}_{\infty}(I)$, so if $A \in \mathfrak{A}$, then $(EL)A = E(LA) \in \mathfrak{B}$. Similarly since \mathfrak{A} is an ideal of $\mathfrak{E}_{\infty}(I)$, so $A(EL) = (AE)L \in \mathfrak{B}$. Clearly if $d_i = 1$, then $(LE)_i = 0$. Therefore $LE \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. Similarly $EL \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$. Now,

$$\begin{split} \|EL\|_{\mathfrak{A},\mathfrak{B}} &= \sup_{\|A\|_{\mathfrak{A}}=1} \left(\|(EL)A\|_{\mathfrak{B}} + \|A(EL)\|_{\mathfrak{B}} \right) \\ &\leq \sup_{\|A\|_{\mathfrak{A}}=1} \|E(LA)\|_{\mathfrak{B}} + \sup_{\|A\|_{\mathfrak{A}}=1} \|(AE)L\|_{\mathfrak{B}} \\ &\leq C_{\mathfrak{E}_{\infty}(I),\mathfrak{B}} \|E\|_{\infty} \sup_{\|A\|_{\mathfrak{A}}=1} \|LA\|_{\mathfrak{B}} + \|L\|_{\mathfrak{A},\mathfrak{B}} \sup_{\|A\|_{\mathfrak{A}}=1} \|AE\|_{\mathfrak{A}} \\ &\leq C_{\mathfrak{E}_{\infty}(I),\mathfrak{B}} \|E\|_{\infty} \sup_{\|A\|_{\mathfrak{A}}=1} \|LA\|_{\mathfrak{B}} + C_{\mathfrak{E}_{\infty}(I),\mathfrak{A}} \|L\|_{\mathfrak{A},\mathfrak{B}} \|E\|_{\infty} \\ &\leq \max\left(C_{\mathfrak{E}_{\infty}(I),\mathfrak{A}}, C_{\mathfrak{E}_{\infty}(I),\mathfrak{B}}\right) \|E\|_{\infty} \|L\|_{\mathfrak{A},\mathfrak{B}}. \end{split}$$

Similarly

$$\|LE\|_{\mathfrak{A},\mathfrak{B}} \leq \max\left(C_{\mathfrak{E}_{\infty}(I),\mathfrak{A}}, C_{\mathfrak{E}_{\infty}(I),\mathfrak{B}}\right)\|E\|_{\infty}\|L\|_{\mathfrak{A},\mathfrak{B}}$$

Hence $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ is a Banach $\mathfrak{E}_{\infty}(I)$ -bimodule.

Lemma 3.8. Let I be a finite set, and X be a Banach $\mathfrak{E}_{\infty}(I)$ -bimodule. If $D : \mathfrak{E}_{\infty}(I) \to X$ is a derivation, then there exists $x \in X$ such that $||x||_X \leq ||D||$, and

$$D(A) = A.x - x.A \quad (A \in \mathfrak{E}_{\infty}(I)).$$

Proof. Clearly $\mathfrak{E}_{\infty}(I)$ can be identified with $\ell^{\infty} - \bigoplus_{i \in I} \mathbb{M}_{d_i}(\mathbb{C})$. Let G be the set of all elements E of $\ell^{\infty} - \bigoplus_{i \in I} \mathbb{M}_{d_i}(\mathbb{C})$ such that $(E_i)_{kl} \in \{-1, 0, 1\}$ $(i \in I, 1 \leq k, l \leq d_i)$ and each column and each row of E_i $(i \in I)$ contains exactly one non-zero term. By a similar method as the proof of Proposition 1.9.20, it is proved that $\frac{1}{card(G)} \sum_{E \in G} E \otimes E^{-1}$ whenever $(E^{-1})_i = E_i^{-1}$ $(i \in I)$, is a diagonal for $\ell^{\infty} - \bigoplus_{i \in I} \mathbb{M}_{d_i}(\mathbb{C})$, and so if

$$x = \frac{1}{\operatorname{card}(G)} \sum_{E \in G} E.D(E^{-1}),$$

then $D = ad_x$ (see the proof of Theorem 1.9.21((b) \Rightarrow (a)) of [3], or the proof of Theorem 2.2.4((ii) \Rightarrow (i)) of [9]). Clearly for each $E \in G$, $||E||_{\varphi_{\infty}} = ||E^{-1}||_{\varphi_{\infty}} = 1$. Hence

$$\|x\|_{X} = \left\|\frac{1}{card(G)}\sum_{E\in G} E.D(E^{-1})\right\|_{X} \le \frac{1}{card(G)}\sum_{E\in G} \|E.D(E^{-1})\|_{X}$$
$$\le \frac{1}{card(G)}\sum_{E\in G} \|E\|_{\varphi_{\infty}} \|D\| \|E^{-1}\|_{\varphi_{\infty}} = \|D\|.$$

Theorem 3.9. Let \mathfrak{A} be a subspace of $\mathfrak{E}(I)$, and there exists a norm $\|.\|_{\mathfrak{A}}$ such that with this norm \mathfrak{A} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule. Then $Z^{1}(\mathfrak{E}_{\infty}(I),\mathfrak{A}) = Z^{1}(\mathfrak{E}_{\infty}(I),\mathfrak{A}) = 0$. I. e. each derivation D from $\mathfrak{E}_{\infty}(I)$ into \mathfrak{A} is continuous and inner.

Proof. Let D be a derivation from $\mathfrak{E}_{\infty}(I)$ into \mathfrak{A} . By Corollary 3.2, D is continuous. For each finite subset F of I, let

$$\mathfrak{E}_{\infty}^{F'}(I) = \{ E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin F) \},\$$

and define $D_F : \mathfrak{E}^F_{\infty}(I) \to \mathfrak{A}$ by $D_F(A) = D(A)$ $(A \in \mathfrak{E}^F_{\infty}(I))$. By Lemma 3.8, there exists $E_F \in \mathfrak{A}$ such that $||E_F||_{\mathfrak{A}} \leq ||D_F|| \leq ||D||$, and $D(A) = AE_F - E_FA$ $(A \in \mathfrak{E}^F_{\infty}(I))$. Since \mathfrak{A} is a dual Banach space, by Banach-Alaoglue's Theorem there exist $E \in \mathfrak{A}$, and a subnet $(E_{F_{\alpha}})_{\alpha}$ of $(E_F)_F$ such that weak*-lim_{α} $E_{F_{\alpha}} = E$. Let \mathfrak{A}_* be a predual of \mathfrak{A} (i.e. $\mathfrak{A}^*_* = \mathfrak{A}$). For each $A \in \mathfrak{E}_{\infty}(I)$, $i \in I$, and $x \in \mathfrak{A}_*$

$$\begin{aligned} \langle x, (AE - EA)I_i^i \rangle &= \langle x.AI_i^i - AI_i^i.x, E \rangle \\ &= \lim_{\alpha, i \in F_{\alpha}} \langle x.AI_i^i - AI_i^i.x, E_{F_{\alpha}} \rangle \\ &= \lim_{\alpha, i \in F_{\alpha}} \langle x, (AI_i^i.E_{F_{\alpha}} - E_{F_{\alpha}}.AI_i^i) \rangle \\ &= \lim_{\alpha, i \in F_{\alpha}} \langle x, D(AI_i^i) \rangle = \langle x, D(A)I_i^i \rangle. \end{aligned}$$

Hence D(A) = AE - EA, and so D is inner.

The following is the main theorem of this paper.

Theorem 3.10. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Suppose one of the following statements are valid:

- (i) $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$ is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule,
- (ii) \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule.

If D is a derivation from \mathfrak{A} into \mathfrak{B} , then D is continuous and there exists $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that D(A) = AM - MA $(A \in \mathfrak{A})$.

Proof. By Proposition 3.6, there exists a derivation D from $\mathfrak{E}_{\infty}(I)$ into $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$ such that $\widetilde{D}(A) = D(A)$ $(A \in \mathfrak{A})$.

Suppose (i) is valid. By Theorem 3.9, D is inner. Hence there exists $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that D(A) = AM - MA $(A \in \mathfrak{A})$.

Now, suppose that (ii) is valid. By the proof of Theorem 3.9, for each finite subset F of I, there exists $M_F \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that $\widetilde{D}(A) = AM_F - M_F A$ $(A \in \mathfrak{E}^F_{\infty}(I))$. Let M be a cluster point of (M_F) in the weak*-operator topology

(note that since \mathfrak{B} is a dual Banach space, so the weak*-operator topology is well-defined, see also Remark 3.4 of [4]). Then by a method as the proof of the Theorem 3.9, $\widetilde{D}(A) = AM - MA$ ($A \in \mathfrak{E}_{\infty}(I)$). Hence D(A) = AM - MA ($A \in \mathfrak{A}$).

From the above theorem, one can obtain the following result.

Proposition 3.11. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Then \mathfrak{B} is a Banach \mathfrak{A} -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover if at least one of the spaces $\mathcal{M}_1(\mathfrak{A},\mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule, then

$$Z^{1}(\mathfrak{A},\mathfrak{B}) = \mathcal{Z}^{1}(\mathfrak{A},\mathfrak{B}) = \{D_{E} : E \in \mathcal{M}_{1}(\mathfrak{A},\mathfrak{B})\},\$$

where $D_E(A) = AE - EA \ (A \in \mathfrak{A}).$

The following elementary result is needed.

Lemma 3.12. Let \mathfrak{A} be a subalgebra of $\mathfrak{E}(I)$ such that $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. If $E \in \mathfrak{E}(I)$ is such that for each $A \in \mathfrak{A}$, AE = EA, then there exists a set $\{\lambda_i : i \in I\} \subseteq \mathbb{C}$ such that for each $i \in I$, $E_i = \lambda_i I_i$.

Proof. Let $i \in I$. For each $d_i \times d_i$ -matrix A,

$$AE_i = \left(A^i E\right)_i = \left(EA^i\right)_i = E_iA,$$

and hence by Corollary 27.10 of [5], there exists $\lambda_i \in \mathbb{C}$ such that $E_i = \lambda_i I_i$.

Notation. Throughout the paper the set of all $E \in \mathfrak{E}(I)$ such that $E_i = \lambda_i I_i$ $(i \in I)$, for a set $\{\lambda_i : i \in I\} \subseteq \mathbb{C}$, is denoted by $C(\mathfrak{E}(I))$.

Proposition 3.13. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Then \mathfrak{B} is a Banach \mathfrak{A} -bimodule with the product of $\mathfrak{E}(I)$ giving the two module multiplications. Moreover if at least one of the spaces $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule, then

$$\mathcal{H}^{1}(\mathfrak{A},\mathfrak{B}) = H^{1}(\mathfrak{A},\mathfrak{B}) \cong \frac{\mathcal{M}_{1}(\mathfrak{A},\mathfrak{B}) + C(\mathfrak{E}(I))}{\mathfrak{B} + C(\mathfrak{E}(I))},$$

where \cong denoted vector isomorphism.

Proof. Define

$$\Theta: \mathcal{M}_1(\mathfrak{A}, \mathfrak{B}) + C(\mathfrak{E}(I)) \to Z^1(\mathfrak{A}, \mathfrak{B}); E \mapsto D_E;$$

where $D_E(A) = AE - EA$ $(A \in \mathfrak{A})$. By Proposition 3.11 Θ is onto. By Lemma 3.12 ker $\Theta = C(\mathfrak{E}(I))$. Therefore

$$\frac{\mathcal{M}_1(\mathfrak{A},\mathfrak{B}) + C(\mathfrak{E}(I))}{C(\mathfrak{E}(I))} \cong Z^1(\mathfrak{A},\mathfrak{B}),$$

through the mapping

$$\widetilde{\Theta}: E + C(\mathfrak{E}(I)) \mapsto \Theta(E) = D_E \quad (E \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B}) + C(\mathfrak{E}(I))).$$

It is easy to show that

$$\widetilde{\Theta}\left(\frac{\mathfrak{B}+C(\mathfrak{E}(I))}{C(\mathfrak{E}(I))}\right) = \{D_E : E \in \mathfrak{B}\} = B^1(\mathfrak{A},\mathfrak{B}).$$

Hence

$$H^{1}(\mathfrak{A},\mathfrak{B}) = \frac{Z^{1}(\mathfrak{A},\mathfrak{B})}{B^{1}(\mathfrak{A},\mathfrak{B})} \cong \frac{\mathcal{M}_{1}(\mathfrak{A},\mathfrak{B}) + C(\mathfrak{E}(I))}{\mathfrak{B} + C(\mathfrak{E}(I))}$$

By Proposition 3.2 $\mathcal{H}^1(\mathfrak{A}, \mathfrak{B}) = H^1(\mathfrak{A}, \mathfrak{B}).$

Corollary 3.14. Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist a norm $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Moreover if at least one of the spaces $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ and \mathfrak{B} is a dual Banach $\mathfrak{E}_{\infty}(I)$ -bimodule. Then $\mathcal{H}^1(\mathfrak{A}, \mathfrak{B}) = 0$ if and only if $\mathcal{M}_1(\mathfrak{A}, \mathfrak{B}) \subseteq \mathfrak{B} + C(\mathfrak{E}(I))$.

4. General Results about the Banach Algebras $\mathfrak{E}_p(I)$ $(1 \le p \le \infty)$

For each $i \in I$, and $1 \leq m, n \leq d_i$, let \mathcal{E}_{mn}^i be the elementary $d_i \times d_i$ -matrix such that for $1 \leq k, l \leq d_i$,

$$\left(\mathcal{E}_{mn}^{i}\right)_{kl} = \begin{cases} 1 & \text{if } k = m, l = n \\ 0 & \text{otherwise.} \end{cases}$$

The following lemma is indeed a generalization of Theorem D.54 of [5].

Lemma 4.1. Let H be a finite-dimensional Hilbert space and $A \in \mathcal{B}(H)$, and $1 \leq p \leq \infty$. Then there exists $B \in \mathcal{B}(H)$ with $||B||_{\varphi_p} = 1$ such that $||A||_{\varphi_{\infty}} = ||AB||_{\varphi_{\infty}}$. Moreover

$$\|A\|_{\varphi_{\infty}} = \sup\left\{\|AB\|_{\varphi_{\infty}} : B \in \mathcal{B}(H) \text{ and } \|B\|_{\varphi_{p}} = 1\right\}.$$

Proof. By Theorem D.30 of [5], there exists a unitary operator $U_0 \in \mathcal{B}(H)$ such that $AU_0 = |A|$. Let $(\lambda_1, \ldots, \lambda_n)$ be the sequence of eigenvalues of the operator |A|, written in any order. By Spectral Theorem (see for example Theorem 6.4.4 of [7], or Corollary 5.4 of section of section II of [2]) there exists a unitary matrix $U \in \mathcal{B}(H)$ such that $U^{-1}|A|U = \sum_{i=1}^{n} \lambda_i \mathcal{E}_{ii}$. Let $\lambda_{i_0} = ||A||_{\varphi_{\infty}}$. If $B = U_0 U \mathcal{E}_{i_0 i_0}$, then by Theorem D.41 of [5], $||B||_{\varphi_p} = ||\mathcal{E}_{i_0 i_0}||_{\varphi_p} = 1$. On one hand since U is a unitary matrix, so is U^{-1} . Therefore by Theorem D.41 of [5]

$$\|AB\|_{\varphi_{\infty}} = \|A(U_0 U \mathcal{E}_{i_0 i_0})\|_{\varphi_{\infty}} = \||A| U \mathcal{E}_{i_0 i_0}\|_{\varphi_{\infty}} = \|(U^{-1}|A|U) \mathcal{E}_{i_0 i_0}\|_{\varphi_{\infty}}$$
$$= \|\left(\sum_{i=1}^n \lambda_i \mathcal{E}_{ii}\right) \mathcal{E}_{i_0 i_0}\|_{\varphi_{\infty}} = \|\lambda_{i_0} \mathcal{E}_{i_0 i_0}\|_{\varphi_{\infty}} = \lambda_{i_0} = \|A\|_{\varphi_{\infty}}.$$

Hence $||A||_{\varphi_{\infty}} \leq \sup\{||AB||_{\varphi_{\infty}} : ||B||_{\varphi_p} = 1\}$. On the other hand if $||B||_{\varphi_p} = 1$, then by Theorems D.51 and D.52 of [5],

$$\|AB\|_{\varphi_{\infty}} \leq \|A\|_{\varphi_{\infty}} \|B\|_{\varphi_{\infty}} \leq \|A\|_{\varphi_{\infty}} \|B\|_{\varphi_{p}} = \|A\|_{\varphi_{\infty}}$$

Therefore $||A||_{\varphi_{\infty}} = \sup\{||AB||_{\varphi_{\infty}} : ||B||_{\varphi_{p}} = 1\}.$

The following theorem is a generalization of parts IV and V of Theorem 35.4 of [5].

Proposition 4.2. Let $1 \le p < q \le \infty$. Then $\mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \mathfrak{E}_{\infty}(I)$, if and only if $\sup_{i \in I} a_i < \infty$.

Proof. Since p < q, so by Theorem 28.32(iii),(iv) of [5], $\mathfrak{E}_{\infty}(I)\mathfrak{E}_p(I) \subseteq \mathfrak{E}_p(I) \subseteq \mathfrak{E}_q(I)$. Hence $\mathfrak{E}_{\infty}(I) \subseteq \mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$.

Suppose $\sup_{i \in I} a_i < \infty$. We modify the proof of part IV Theorem 35.4 of [5], using Lemma 4.1. Let $E \in \mathfrak{E}(I) \setminus \mathfrak{E}_{\infty}(I)$. For each $n \in \mathbb{N}$, there exists $i_n \in I$ with $||E_{i_n}||_{\varphi_{\infty}} > n^3$ and such that $i_n \neq i_m$ for $n \neq m$. By applying Lemma 4.1, there exists $B_{i_n} \in B(H_{i_n})$ such that $||B_{i_n}||_{\varphi_p} = 1$ and $||E_{i_n}B_{i_n}||_{\varphi_{\infty}} = ||E_{i_n}||_{\varphi_{\infty}} > n^3$. Define A_{i_n} as $n^{-2}B_{i_n}$ for each n and $A_i = 0$ for all other *i*'s. Since

$$||A||_{p} = \left(\sum_{i \in I} a_{i} ||A_{i}||_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \left(\sum_{n \in \mathbb{N}} a_{i_{n}} n^{-2p}\right)^{\frac{1}{p}} \le \left(\sup_{i \in I} a_{i}\right)^{\frac{1}{p}} \left(\sum_{n \in \mathbb{N}} n^{-2p}\right)^{\frac{1}{p}} < \infty,$$

so $A \in \mathfrak{E}_p(I)$. Since for each $n \in \mathbb{N}$, $||E_{i_n}A_{i_n}||_{\varphi_{\infty}} > n$, so $EA \notin \mathfrak{E}_{\infty}(I)$. Hence $EA \notin \mathfrak{E}_q(I)$, and so $E \notin \mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. Therefore $\mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \mathfrak{E}_{\infty}(I)$.

Suppose $\sup_{i \in I} a_i = \infty$. Define $E \in \mathfrak{E}(I)$ by $E_i = a_i^{\frac{1}{p} - \frac{1}{q}} I_i$ for all $i \in I$. Clearly $E \notin \mathfrak{E}_{\infty}(I)$. For $A \in \mathfrak{E}_p(I)$, by the same method of the proof of part **V**

of Theorem 35.4 of [5], one can prove that $||EA||_{\infty} \leq ||EA||_q \leq ||A||_p < \infty$, and hence $E \in \mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. So $\mathfrak{E}_{\infty}(I) \subsetneqq \mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$.

Proposition 4.3. If $1 \le p \le \infty$, then $\mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) = \mathfrak{E}_{\infty}(I)$.

Proof. By 28.32(iii),(iv) of [5], $\mathfrak{E}_{\infty}(I) \subseteq \mathcal{M}(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I))$. Let $E \in \mathfrak{E}(I) \setminus \mathfrak{E}_{\infty}(I)$. As in the proof of Theorem 4.2, for each $n \in \mathbb{N}$, there exists $i_{n} \in I$ such that $||E_{i_{n}}||_{\varphi_{\infty}} > n$ and such that $i_{n} \neq i_{m}$ for $n \neq m$. Also there exists $B_{i_{n}} \in B(H_{i_{n}})$ such that $||B_{i_{n}}||_{\varphi_{p}} = 1$ and $||E_{i_{n}}B_{i_{n}}||_{\varphi_{\infty}} \geq n$. Define $A_{i_{n}}$ as $(a_{i_{n}}n^{2})^{-\frac{1}{p}}B_{i_{n}}$ for each n, and $A_{i} = 0$ for all other i's. By the same method of the proof of part **H** of Theorem 35.4 of [5], one can prove that $A \in \mathfrak{E}_{p}(I)$ and $EA \notin \mathfrak{E}_{p}(I)$. Therefore $\mathcal{M}(\mathfrak{E}_{p}(I), \mathfrak{E}_{p}(I)) = \mathfrak{E}_{\infty}(I)$.

Proposition 4.4. For $1 \le q , <math>\mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \mathfrak{E}_r(I)$, where r is defined by $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, with the convention $\frac{1}{\infty} = 0$.

Proof. By the same method of the proof of parts **VI** and **VII** of Theorem 35.4 of [5], $\mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \mathfrak{E}_r(I)$.

Theorem 4.5. Let $1 \le p < q \le \infty$, and $I_1 = \{i \in I : d_i \ge 1\}$. Then the following assertions are equivalent:

- (i) $\sup_{i\in I_1} a_i < \infty$.
- (*ii*) $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \{E \in \mathfrak{E}_\infty(I) : E_i = 0 \ (i \notin I_1)\}.$
- (*iii*) $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) \subseteq \mathfrak{E}_\infty(I) + C(\mathfrak{E}(I)).$

Proof. (i) \Rightarrow (ii): On one hand by Theorem 4.2 $\mathcal{M}(\mathfrak{E}_p(I_1), \mathfrak{E}_q(I_1)) = \mathfrak{E}_{\infty}(I_1)$. On the other hand, since p < q, by Theorem 28.32(iii),(iv) of [5],

$$\mathfrak{E}_p(I_1)\mathfrak{E}_\infty(I_1) \cup \mathfrak{E}_\infty(I)\mathfrak{E}_p(I) \subseteq \mathfrak{E}_p(I) \subseteq \mathfrak{E}_q(I_1).$$

Therefore $\mathcal{M}(\mathfrak{E}_p(I_1), \mathfrak{E}_q(I_1)) \cap \mathcal{RM}(\mathfrak{E}_p(I_1), \mathfrak{E}_q(I_1)) = \mathfrak{E}_{\infty}(I_1)$. By regarding $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$ as a subspace of $\mathfrak{E}(I_1)$, it follows that $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \{E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin I_1)\}.$

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i): Suppose that $\sup_{i \in I_1} a_i = \infty$. Define $E \in \mathfrak{E}(I)$ by $E_i = a_i^{\frac{1}{p} - \frac{1}{q}} \mathcal{E}_{11}^i$ for all $i \in I_1$, and $E_i = 0$ for all $i \notin I_1$. Note that $||E_i||_{\varphi_q} = a_i^{\frac{1}{p} - \frac{1}{q}}$. For $A \in \mathfrak{E}_p(I)$, use (D.51.1) and (D.52.iii) of [5] and the same method of the proof of part **V** of Theorem 35.4 of [5] to write

$$||EA||_{\infty} \leq ||EA||_{q} = \left(\sum_{i \in I} \left(a_{i}^{\frac{1}{q}} ||E_{i}A_{i}||_{\varphi_{q}}\right)^{q}\right)^{\frac{1}{q}} \leq \left(\sum_{i \in I} \left(a_{i}^{\frac{1}{q}} ||E_{i}A_{i}||_{\varphi_{q}}\right)^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i \in I} \left(a_{i}^{\frac{1}{q}} ||E_{i}||_{\varphi_{q}} ||A_{i}||_{\varphi_{q}}\right)^{p}\right)^{\frac{1}{p}} = \left(\sum_{i \in I} a_{i} ||A_{i}||_{\varphi_{q}}^{p}\right)^{\frac{1}{p}} \leq \left(\sum_{i \in I} a_{i} ||A_{i}||_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = ||A||_{p} < \infty.$$

Therefore $E \in \mathcal{M}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. Similarly one can prove that $E \in \mathcal{RM}(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. $\mathfrak{E}_q(I)$. Hence $E \in \mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. It can be proved that $E \notin \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$. Suppose to the contrary that $E \in \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$. Then there exists $E' \in \mathfrak{E}_q(I)$ and a set $\{\lambda_i : i \in I\} \subseteq \mathbb{C}$ such that for each $i \in I$, $E_i = E'_i + \lambda_i I_i$. Since $\sup_{i \in I_1} a_i = \infty$, there exists a subset $\{i_n : n \in \mathbb{N}\}$ of I_1 such that $i_m \neq i_n$ for $m \neq n$ and $\lim_n a_{i_n} = \infty$. The eigenvalues of $|E_{i_n} - \lambda_{i_n}I_{i_n}|$ are $|\lambda_{i_n}|$ with multiplicity $d_{i_n} - 1$ and $\left|a_{i_n}^{\frac{1}{p} - \frac{1}{q}} - \lambda_{i_n}\right|$ with multiplicity 1. Therefore

$$||E'_{i_n}||_{\varphi_q} \ge ||E'_{i_n}||_{\varphi_{\infty}} = ||E_{i_n} - \lambda_{i_n} I_{i_n}||_{\varphi_{\infty}} = \max\left(|\lambda_{i_n}|, \left|a_{i_n}^{\frac{1}{p} - \frac{1}{q}} - \lambda_{i_n}\right|\right) \ge \frac{1}{2}a_{i_n}^{\frac{1}{p} - \frac{1}{q}},$$

and hence

$$||E'||_q \ge ||E'||_{\infty} \ge \sup_{n \in \mathbb{N}} ||E'_{i_n}||_{\varphi_{\infty}} \ge \frac{1}{2} \sup_{n \in \mathbb{N}} a_{i_n}^{\frac{1}{p} - \frac{1}{q}} = \frac{1}{2} \left(\lim_{n} a_{i_n} \right)^{\frac{1}{p} - \frac{1}{q}} = \infty$$

This contradiction shows that $E \notin \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$. Therefore $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) \notin \mathfrak{E}_\infty(I) + C(\mathfrak{E}(I))$.

By Propositions 4.3 and 4.4, the following results are obtained.

Proposition 4.6. Let $1 \leq p \leq \infty$, and $I_1 = \{i \in I : d_i \geq 1\}$. Then $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) = \{E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin I_1)\}.$

Proposition 4.7. Let $1 \leq q , and <math>I_1 = \{i \in I : d_i \geqq 1\}$. Then $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \{E \in \mathfrak{E}_r(I) : E_i = 0 \ (i \notin I_1)\}$, where r is defined by $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, with the convention $\frac{1}{\infty} = 0$.

5. Derivations Between the Banach Algebras $\mathfrak{E}_p(I)$ $(1 \le p \le \infty)$

By Theorem 28.32 of [5], the Banach algebra $\mathfrak{E}_p(I)$ ia an ideal of $\mathfrak{E}_{\infty}(I)$. In this chapter $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$ for $1 \leq p, q \leq \infty$ is calculated.

2680

The following lemma is frequently used in the rest of paper.

Lemma 5.1. If the set $I_1 = \{i \in I : d_i \ge 1\}$ is infinite, then for $p, q \in [1, \infty]$,

$$\{E \in \mathfrak{E}_p(I) : E_i = 0 \ (i \notin I_1)\} \subseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$$

if and only if $p \leq q$. In particular $\mathfrak{E}_p(I) \subseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$, if and only if $p \leq q$.

Proof. If $p \leq q$, then by Theorem 28.32(iv) of [5], $\mathfrak{E}_p(I) \subseteq \mathfrak{E}_q(I) \subseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$.

Let p > q. Since the set $I_1 = \{i \in I : d_i \geqq 1\}$ is infinite, so there exists a countable infinite subset $\{i_n : n \in \mathbb{N}\}$ of distinct elements of I_1 . Define $A_{i_n} = a_{i_n}^{-\frac{1}{p}} n^{-\frac{1}{q}} \mathcal{E}_{11}^{i_n}$ for each n, and $A_i = 0$ for all other *i*'s. Since $\frac{p}{q} > 1$, so

$$||A||_{p} = \left(\sum_{i \in I} a_{i} ||A_{i}||_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \left(\sum_{n \in \mathbb{N}} a_{i_{n}} ||A_{i_{n}}||_{\varphi_{p}}^{p}\right)^{\frac{1}{p}} = \left(\sum_{n \in \mathbb{N}} n^{-\frac{p}{q}}\right)^{\frac{1}{p}} < \infty,$$

and hence $A \in \{E \in \mathfrak{E}_p(I) : E_i = 0 \ (i \notin I_1)\}$. One can prove that $A \notin \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$. Suppose to the contrary that $A \in \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$. So there exist $A' \in \mathfrak{E}_q(I)$ and a set $\{\lambda_i : i \in I\} \subseteq \mathbb{C}$ such that for each $i \in I$, $A_i = A'_i + \lambda_i I_i$. Since the eigenvalues of $|A_{i_n} - \lambda_{i_n} I_{i_n}|$ are $|\lambda_{i_n}|$ with multiplicity $d_{i_n} - 1$, and $\left|a_{i_n}^{-\frac{1}{p}}n^{-\frac{1}{q}} - \lambda_{i_n}\right|$ with multiplicity 1, so

$$\begin{aligned} \|A'_{i_n}\|_{\varphi_q} &\geq \|A'_{i_n}\|_{\varphi_{\infty}} = \|A_{i_n} - \lambda_{i_n} I_{i_n}\|_{\varphi_{\infty}} \\ &= \max\left(|\lambda_{i_n}|, \left|a_{i_n}^{-\frac{1}{p}} n^{-\frac{1}{q}} - \lambda_{i_n}\right|\right) \geq \frac{1}{2} a_{i_n}^{-\frac{1}{p}} n^{-\frac{1}{q}}. \end{aligned}$$

It follows that

$$||A'||_{q} = \left(\sum_{i \in I} a_{i} ||A'_{i}||_{\varphi_{q}}^{q}\right)^{\frac{1}{q}} \ge \left(\sum_{n \in \mathbb{N}} a_{i_{n}} ||A'_{i_{n}}||_{\varphi_{q}}^{q}\right)^{\frac{1}{q}}$$
$$\ge \frac{1}{2} \left(\sum_{n \in \mathbb{N}} a_{i_{n}}^{(1-\frac{q}{p})} n^{-1}\right)^{\frac{1}{q}} \ge \frac{1}{2} \left(\sum_{n \in \mathbb{N}} n^{-1}\right)^{\frac{1}{q}} = \infty.$$

This contradiction shows that $\{E \in \mathfrak{E}_p(I) : E_i = 0 \ (i \notin I_1)\} \nsubseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I)).$

Notation: Throughout the rest of the paper for 1 , let <math>p' denote the exponent conjugate to p, that is $\frac{1}{p} + \frac{1}{p'} = 1$, for p = 1, let p' = 0 (not ∞), and for $p = \infty$, let p' = 1.

Proposition 5.2. Let $1 \leq p \leq \infty$. Then the dual Banach $\mathfrak{E}_p(I)$ -bimodule $\mathfrak{E}_p(I)^*$ can be identified with the Banach $\mathfrak{E}_p(I)$ -bimodule $\mathfrak{E}_{p'}(I)$ with the product of $\mathfrak{E}(I)$ giving the two module multiplications.

Proof. By Theorem 28.31 of [5], the mapping $T : \mathfrak{E}_{p'}(I) \to \mathfrak{E}_p(I)^*$ given by

$$\langle B, T(A) \rangle = \sum_{i \in I} a_i tr(B_i A_i) \quad (A \in \mathfrak{E}_{p'}(I), B \in \mathfrak{E}_p(I)),$$

is an isometric Banach space isomorphism. Let $A, B \in \mathfrak{E}_p(I)$ and $X \in \mathfrak{E}_{p'}(I)$. For each $B \in \mathfrak{E}_{p'}(I)$,

$$\langle B, T(X).A \rangle = \langle AB, T(X) \rangle = \sum_{i \in I} a_i tr((AB)_i X_i)$$

$$= \sum_{i \in I} a_i tr(X_i (AB)_i)) = \sum_{i \in I} a_i tr((XA)_i B_i)$$

$$= \langle B, T(XA) \rangle.$$

So T(X).A = T(XA). Similarly A.T(X) = T(AX).

Proposition 5.3. Let $1 \le p \leqq \infty$ and $D : \mathfrak{E}_p(I) \to \mathfrak{E}_p(I)$ be a derivation. Then D is continuous, and there is an element $L \in \mathfrak{E}_{\infty}(I)$ such that

$$D(A) = AL - LA \quad (A \in \mathfrak{E}_p(I)).$$

Moreover $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) = 0$ if and only if the set $\{i \in I : d_i \ge 1\}$ is finite.

Proof. By Proposition 4.6, $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) = \{E \in \mathfrak{E}_\infty(I) : E_i = 0 \ (i \in I, d_i = 1)\}$. So by Theorem 3.10 and Proposition 5.2, D is continuous, and there exists $L \in \mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) \subseteq \mathfrak{E}_\infty(I)$ such that $D(A) = AL - LA \ (A \in \mathfrak{E}_p(I))$. If $I_1 = \{i \in I : d_i \geq 1\}$ is finite, then

$$\mathcal{M}_1(\mathfrak{E}_p(I),\mathfrak{E}_p(I)) = \{ E \in \mathfrak{E}_\infty(I) : E_i = 0 \ (i \notin I_1) \} \subseteq \mathfrak{E}_{00}(I) \subseteq \mathfrak{E}_p(I),$$

and so by Corollary 3.14, $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) = 0$.

Let I_1 be infinite. By Lemma 5.1, $\{E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin I_1)\} \not\subseteq \mathfrak{E}_p(I) + C(\mathfrak{E}(I))$, and hence by Corollary 3.14 $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_p(I)) \neq 0$.

Proposition 5.4. Let $1 \le p \le q \leqq \infty$ and suppose that $D : \mathfrak{E}_p(I) \to \mathfrak{E}_q(I)$ is a derivation. Then D is continuous, and there is an element $L \in \mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$ such that

$$D(A) = AL - LA \quad (A \in \mathfrak{E}_p(I)).$$

Moreover each derivation from $\mathfrak{E}_p(I)$ into $\mathfrak{E}_q(I)$ is inner if and only if the set $\{i \in I : d_i \ge 1\}$ is finite.

Proof. Note that $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) \subseteq \mathfrak{E}(I)$. Hence by Theorem 3.10 and Proposition 5.2, D is continuous, and there exists $L \in \mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$ such that $D(A) = AL - LA \ (A \in \mathfrak{E}_p(I)).$

If $\{i \in I : d_i \geq 1\}$ is finite, then $\mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) \subseteq \mathfrak{E}_{00}(I) \subseteq \mathfrak{E}_q(I)$, and so by Corollary 3.14 $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = 0$.

Let $I_1 = \{i \in I : d_i \geqq 1\}$ be infinite. Since $p \le q$, so $\{E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin I_1)\} \subseteq \mathcal{M}_1(\mathfrak{E}_p(I), \mathfrak{E}_q(I))$. Hence by Lemma 5.1, $\{E \in \mathfrak{E}_{\infty}(I) : E_i = 0 \ (i \notin I_1)\} \nsubseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$ and hence by Corollary 3.14, $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) \neq 0$.

By Proposition 4.7, and a method similar to the proof of Proposition 5.3, one can prove the following result.

Proposition 5.5. Let $1 \le q and <math>D : \mathfrak{E}_p(I) \to \mathfrak{E}_q(I)$ be a derivation. Then D is continuous and there is an element $L \in \mathfrak{E}_r(I)$, where $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$, such that

$$D(A) = AL - LA \quad (A \in \mathfrak{E}_p(I)).$$

Moreover $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = 0$ if and only if the set $\{i \in I : d_i \geqq 1\}$ is finite.

Proof. The proof is similar to the proof of Proposition 5.3. Also note that since $p \neq \infty$, so r > q. Hence by Lemma 5.1, if $I_1 = \{i \in I : d_i \geqq 1\}$ is infinite, then $\{E \in \mathfrak{E}_r(I) : E_i = 0 \ (i \notin I_1)\} \nsubseteq \mathfrak{E}_q(I) + C(\mathfrak{E}(I))$.

By using a method similar to the proof of Proposition 5.3, one can obtained the following result as a consequence of Theorems 3.10 and 4.5, and Corollary 3.14.

Theorem 5.6. Let $1 \leq p < q \leq \infty$. Then $\mathcal{Z}^1(\mathfrak{E}_p(I), \mathfrak{E}_q(I)) = \{D_L : L \in \mathfrak{E}_\infty(I)\}$, where $D_L(A) = AL - LA$ $(A \in \mathfrak{E}_p(I))$, if and only if $\sup_{i \in I_1} a_i < \infty$, where $I_1 = \{i \in I : d_i \geq 1\}$.

Corollary 5.7. Let $1 \leq p < \infty$. Then $\mathcal{H}^1(\mathfrak{E}_p(I), \mathfrak{E}_\infty(I)) = 0$ if and only if $\sup_{i \in I_1} a_i < \infty$, where $I_1 = \{i \in I : d_i \geq 1\}$.

Theorem 3.9 yields the following result.

Proposition 5.8. For each $1 \le p \le \infty$, and each $n \in \mathbb{N}$, $\mathcal{H}^1(\mathfrak{E}_{\infty}(I), \mathfrak{E}_p(I)) = 0$.

A combination of Lemma 5.2, and Propositions 5.4 and 5.5 yields the following result.

Theorem 5.9. For $1 , <math>\mathfrak{E}_p(I)$ is weakly amenable if and only if the set $\{i \in I : d_i \ge 1\}$ is finite.

Lemma 5.2 and Theorem 5.6 yields the following two corollaries.

Corollary 5.10. The Banach algebra $\mathfrak{E}_1(I)$ is weakly amenable if and only if $\sup_{i \in I_1} a_i < \infty$, where $I_1 = \{i \in I : d_i \ge 1\}$.

Remark 5.11. By Theorem 28.26 of [5], $\mathfrak{E}_{\infty}(I)$ is a C*-algebra. But by Theorem 4.2.4 of [9], each C*-algebra is weakly amenable. Therefore $\mathfrak{E}_{\infty}(I)$ is weakly amenable.

6. Applications to Compact Groups and Hypergroups

Let G be a compact group with dual \widehat{G} (the set of all equivalence classes of irreducible representations of G). Let H_{π} be the representation space of π , for each $\pi \in \widehat{G}$. The algebras $\mathfrak{E}(\widehat{G})$ and $\mathfrak{E}_p(\widehat{G})$ for $p \in [1, \infty] \cup \{0\}$, are defined as in the preliminaries with each a_{π} equal to the dimension d_{π} of $\pi \in \widehat{G}$ (c.f Definition 28.34 of [5]).

Corollary 5.7 yields the following result. Note that by definition of $\mathfrak{E}_p(\widehat{G})$ $(p \in [1, \infty] \cup \{0\}), a_{\pi} = d_{\pi} \ (\pi \in \widehat{G}).$

Theorem 6.1. If G is a compact group, then each derivation from $\mathfrak{E}_p(\widehat{G})$ into $\mathfrak{E}_{\infty}(\widehat{G})$ is continuous. Moreover $\mathcal{H}^1(\mathfrak{E}_p(\widehat{G}), \mathfrak{E}_{\infty}(\widehat{G})) = 0$ if and only if $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$.

By Theorem 34.35 of [5], the convolution Banach algebra A(G) is isometrically algebra isomorphic with $\mathfrak{E}_1(\widehat{G})$. Hence the convolution Banach algebra A(G) is weakly amenable if and only if $\mathfrak{E}_1(\widehat{G})$ is weakly amenable. Therefore as a consequence of Corollary 5.10, the following theorem is obtained.

Theorem 6.2. If G is a compact group, then the convolution Banach algebra A(G) is weakly amenable if and only if $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$.

Proposition 6.3. If G is an infinite non-abelian compact group, then the set $\{\pi \in \widehat{G} : \dim \pi \ge 1\}$ is infinite.

Proof. Suppose that the set $\{\pi \in \widehat{G} : \dim \pi \geq 1\}$ is finite. Hence by Theorem 5.3, each derivation from $\mathfrak{E}_2(\widehat{G})$ into itself is inner. Now, by Peter-Weyl theorem [5], the convolution Banach algebra $L^2(G)$ is isometrically algebra isomorphic with $\mathfrak{E}_2(\widehat{G})$. So by Proposition 5.3, $\mathcal{H}^1(L^2(G), L^2(G)) = 0$. If G is infinite and non-abelian, then there exist $x, y \in G$ such that $xy \neq yx$. The mapping $D_x: L^2(G) \to L^2(G)$ defined by

$$D_x(f) = \delta_x * f - f * \delta_x \quad (f \in L^2(G)),$$

is a non-inner derivation. To see this, let $D_x = ad_g$ for some $g \in L^2(G)$. Then for each $f \in L^2(G)$, $f * (\delta_x - g) = (\delta_x - g) * f$. Since $L^2(G)$ is dense in $L^1(G)$, so for

each $f \in L^1(G)$, $f * (\delta_x - g) = (\delta_x - g) * f$. Let (e_α) be a bounded approximate identity for $L^1(G)$. With the weak*-topology on M(G)

$$\begin{split} \delta_{xy} - \delta_{yx} &= weak^* - \lim_{\alpha} (\delta_x * (e_{\alpha} * \delta_y) - (e_{\alpha} * \delta_y) * \delta_x) \\ &= weak^* - \lim_{\alpha} D_x (e_{\alpha} * \delta_y) = weak^* - \lim_{\alpha} ad_g (e_{\alpha} * \delta_y) \\ &= g * \delta_y - \delta_y * g \in L^2(G) \subseteq L^1(G). \end{split}$$

Since G is compact and infinite, it is not discrete and hence $\delta_{xy} - \delta_{yx} \notin L^1(G)$. This contradiction proves that G must be abelian or finite.

A combination of Theorem 5.3, Theorem 5.9, and Proposition 6.3 yields the following result.

Corollary 6.4. Let G be a compact group. Then

- (a) For $1 \le p < \infty$, $\mathcal{H}^1(\mathfrak{E}_p(\widehat{G}), \mathfrak{E}_p(\widehat{G}) = 0$, if and only if G is finite or abelian.
- (b) For $1 , <math>\mathfrak{E}_p(\widehat{G})$ is weakly amenable, if and only if G is finite or abelian.

Proposition 6.5. Let G be a compact group and $1 \le p < q < \infty$. Then the following statements are equivalent:

- (i) $\mathcal{Z}^1(\mathfrak{E}_p(\widehat{G}), \mathfrak{E}_q(\widehat{G})) = \{ad_L : L \in \mathfrak{E}_\infty(\widehat{G})\}.$
- (*ii*) $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$.

Furthermore $\mathcal{H}^1(\mathfrak{E}_p(\widehat{G}),\mathfrak{E}_q(\widehat{G})) = 0$ if and only if G is finite or abelian.

Proof. By Theorem 5.6, the statements (i) and (ii) are equivalent. The remainder is a corollary of Proposition 5.4 and Proposition 6.3.

Example 6.6. Let G be a compact group. Then (A(G), *) is isometrically algebra isometric with $\mathfrak{E}_1(\widehat{G})$, and $(L^2(G), *)$ is isometrically algebra isometric with $\mathfrak{E}_2(\widehat{G})$.

- (a) By Proposition 3.11, each derivation from the convolution Banach algebra A(G) into the convolution Banach algebra $L^2(G)$ is continuous, i.e. $Z^1(A(G), L^2(G)) = Z^1(A(G), L^2(G))$.
- (b) If $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$, then by Proposition 6.5 $D \in \mathcal{Z}^1(A(G), L^2(G))$ if and only if there is an $T \in VN(G)$ such that D(f) = f.T T.f $(f \in A(G))$.
- (c) If for each $D \in \mathcal{Z}^1(A(G), L^2(G))$ there is an $T \in VN(G)$ such that D(f) = f.T T.f $(f \in A(G))$, then $\sup_{\pi \in \widehat{G}} d_{\pi} < \infty$.
- (d) $\mathcal{H}^1(A(G), L^2(G)) = 0$ if and only if G is finite or abelian.

The above results can be extended to compact hypergroups by the same way. Note that if K is a compact hypergroup, then by Theorem 2.6 of [10], for each $\pi \in \hat{K}$, $k_{\pi} \ge d_{\pi}$. Hence $\sup_{\{\pi \in \hat{K}: d_{\pi} \ge 1\}} k_{\pi} < \infty$ is equivalent to $\sup_{\pi \in \hat{K}} k_{\pi}(d_{\pi} - 1) < \infty$.

Proposition 6.7. If K is a compact hypergroup, then each derivation from $\mathfrak{E}_p(\widehat{K})$ into $\mathfrak{E}_{\infty}(\widehat{K})$ is continuous. Moreover $\mathcal{H}^1(\mathfrak{E}_p(\widehat{K}), \mathfrak{E}_{\infty}(\widehat{K})) = 0$ if and only if $\sup_{\pi \in \widehat{K}} k_{\pi}(d_{\pi}-1) < \infty$.

Theorem 6.8. If K is a compact hypergroup, then the convolution Banach algebra A(K) is weakly amenable if and only if $\sup_{\pi \in \widehat{G}} k_{\pi}(d_{\pi}-1) < \infty$.

Proposition 6.9. Let K be a compact hypergroup and $1 \le p < q < \infty$. Then the following statements are equivalent:

- (i) $\mathcal{Z}^1(\mathfrak{E}_p(\widehat{K}), \mathfrak{E}_q(\widehat{K})) = \{ad_L : L \in \mathfrak{E}_\infty(\widehat{K})\}.$
- (*ii*) $\sup_{\pi \in \widehat{K}} k_{\pi}(d_{\pi}-1) < \infty$.

Proposition 6.10. Suppose K is an infinite non-abelian compact hypergroup such that for each $x, y \in K$, the set x * y is finite. Then the set $\{\pi \in \widehat{K} : \dim \pi \ge 1\}$ is infinite.

Proof. By using the same method as the proof of Proposition 6.3, the proposition is proved. Note that since for each $x, y \in K$, the set x * y is finite, so $\delta_{xy} - \delta_{yx} \in \ell^1(K)$. If K is compact and infinite, then $\delta_{xy} - \delta_{yx} \notin L^1(K)$.

Corollary 6.11. Suppose K is a compact hypergroup such that for each $x, y \in K$, the set x * y is finite. Then

- (a) For $1 \le p < \infty$, $\mathcal{H}^1(\mathfrak{E}_p(\widehat{K}), \mathfrak{E}_p(\widehat{K})) = 0$, if and only if K is finite or abelian.
- (b) For $1 , <math>\mathfrak{E}_p(\widehat{K})$ is weakly amenable, if and only if K is finite or abelian.

Corollary 6.12. Suppose that K is a compact hypergroup such that for each $x, y \in K$, the set x * y is finite. Let $1 \le p < q < \infty$. Then $\mathcal{H}^1(\mathfrak{E}_p(\widehat{K}), \mathfrak{E}_q(\widehat{K})) = 0$ if and only if K is finite or abelian.

We close the paper with the following open problem.

Open problem: Let \mathfrak{A} and \mathfrak{B} be ideals of $\mathfrak{E}_{\infty}(I)$, and $\mathfrak{E}_{00}(I) \subseteq \mathfrak{A}$. Suppose that there exist norms $\|.\|_{\mathfrak{A}}$ on \mathfrak{A} , and $\|.\|_{\mathfrak{B}}$ on \mathfrak{B} such that with these norms \mathfrak{A} and \mathfrak{B} are Banach algebras. Let D be a derivation from \mathfrak{A} into \mathfrak{B} . Is there $M \in \mathcal{M}_1(\mathfrak{A}, \mathfrak{B})$ such that D(A) = AM - MA $(A \in \mathfrak{A})$ (see Theorem 3.10 for a special case)?

ACKNOWLEDGMENT

The author would like to thank the referee for invaluable comments. The author also would like to thank the University of Bu-Ali Sina (Hamedan) for its support.

References

- 1. W. R. Bloom and H. Heyer, *Harmonic analysis of probability measures on hypergroups*, Walter de Gruyter, Berlin, 1995.
- 2. J. B. Conway, A course in functional analysis, Springer Verlag, 1978.
- 3. H. G. Dales, *Banach algebras and automatic continuity*, Clarendon Press, Oxford, 2000.
- 4. F. Ghahramani and A. T. M. Lau, Approximate weak amenability, derivations and Arens regularity of Segal algebras, *Studia Mathematica*, **169(2)** (2005), 189-205.
- 5. E. Hewitt and K. A. Ross, *Abstract harmonic analysis, Vol. II*, Springer, Berlin, 1970.
- 6. R. I. Jewett, Spaces with an abstract convolution of measures, *Adv. Math.*, **18** (1975), 1-110.
- 7. S. J. Leon, *Linear algebra with applications*, 3nd ed., Macmillan Publishing Company, New York.
- 8. W. Rudin, Functional analysis, McGraw Hill, New York, 1991.
- 9. V. Runde, *Lectures on amenability*, Lecture Notes in Mathematics, Vol. **1774**, Springer, Berlin, 2002.
- R. C. Vrem, Harmonic analysis on compact hypergroups, *Pacific J. Math.*, 85 (1979), 239-251.

H. Samea Department of Mathematics Bu-Ali Sina University Hamedan, Iran E-mail: h.samea@basu.ac.ir