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HYBRID VISCOSITY ITERATIVE APPROXIMATION OF ZEROS OF
M -ACCRETIVE OPERATORS IN BANACH SPACES

L. C. Ceng1, A. Petruşel and M. M. Wong2,∗

Abstract. In this paper, let X be a reflexive Banach space which either is
uniformly smooth or has a weakly continuous duality map. We prove, under
the convergence of no parameter sequences to zero, the strong convergence
of their iterative scheme to a zero of m-accretive operator A in X, which
solves a variational inequality on the set A−1(0) of zeros of A. Such a
result includes their main result as a special case. Furthermore, we also give a
weak convergence theorem for hybrid viscosity iterative approximation method
involving a maximal monotone operator in a Hilbert space.

1. INTRODUCTION

Let X be a real Banach space with the dual space X ∗. The normalized duality
mapping J from X into the family of nonempty (by Hahn-Banach theorem) weak-
star compact subsets of X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing between X and X ∗. It is known
that the norm of X is said to be Gateaux differentiable (and X is said to be smooth)
if

(1.1) lim
t→0

‖x + ty‖ − ‖x‖
t
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exists for every x, y in U = {x ∈ X : ‖x‖ = 1} the unit sphere of X . The norm
of X is said to be uniformly Frechet differentiable (and X is said to be uniformly
smooth) if the limit in (1.1) is attained uniformly for (x, y) ∈ U × U . Every
uniformly smooth Banach space X is reflexive and smooth.

Recall that a Banach space X has a weakly continuous duality map if there
exists a gauge ϕ for which the duality map Jϕ is single-valued and weak-to-weak∗
sequentially continuous (i.e., if {xn} is a sequence in X weakly converging to a
point x, then the sequence {Jϕ(xn)} converges weak∗ly to Jϕ(x)).

Let C be a nonempty closed convex subset of a real Banach space X , and
T : C → C be a mapping. Recall that T is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. Denote
by Fix(T ) the set of fixed points of T , i.e., Fix(T ) = {x ∈ C : Tx = x}. It is
assumed throughout the paper that T is a nonexpansive mapping with Fix(T ) �= ∅.
Recall that a self-mapping f : C → C is a contraction on C if there exists a constant
α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x − y‖, ∀x, y ∈ C.

As in [3], we use the notation Π C to denote the collection of all contractions on
C, i.e.,

ΠC = {f : C → C a contraction}.
Note that each f ∈ ΠC has a unique fixed point in C.

Recall also that an operator A (possibly multivalued) with domain D(A) and
range R(A) in X is called accretive, if for each xi ∈ D(A) and yi ∈ Axi for
i = 1, 2, there exists a j(x2 − x1) ∈ J(x2 − x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0,

where J : X → 2X∗ is the normalized duality mapping. An accretive operator A

is called m-accretive if R(I + rA) = X for each r > 0. Throughout the paper,
we assume that A is m-accretive and has a zero (that is, the inclusion 0 ∈ Az is
solvable). The set of zeros of A is denoted by F . For each r > 0, we denote by Jr

the resolvent of A, i.e., Jr = (I + rA)−1. Note that if A is m-accretive, then Jr

is a nonexpansive mapping from X to C := D(A) which is assumed convex, and
Fix(Jr) = F for all r > 0. We also denote by Ar the Yosida approximation of A,
i.e., Ar = 1

r (I − Jr).
Recently, Kim and Xu [15] and Xu [9] studied the sequence generated by the

iterative scheme

(1.2) xn+1 = αnu + (1 − αn)Jrnxn, ∀n ≥ 0,

and proved strong convergence of the iterative scheme (1.2) in the framework of
uniformly smooth Banach spaces and a reflexive Banach space which has a weakly
continuous duality map, respectively.
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Inspired by the iterative scheme (1.2), Qin and Su [4] introduced the following
iterative scheme:

(1.3)
{

yn = βnxn + (1− βn)Jrnxn,

xn+1 = αnu + (1 − αn)yn,

where u ∈ C is an arbitrary (but fixed) element of C and {αn} in (0, 1), {βn} in
[0, 1]. If βn = 0, then (1.3) reduces to (1.2). Subsequently, Ceng, Khan, Ansari
and Yao [12] proposed and analyzed a variant of the iterative scheme (1.3). They
proved, under the same assumptions on the sequences {αn}, {βn} and {rn} as in
Theorem 1.1 in Qin and Su [4], that {xn} defined by such a variant converges
strongly to a zero of an m-accretive operator A.

In 2009, Chen, Liu and Shen [13] suggested and analyzed an iterative scheme for
viscosity approximation of a zero of an m-accretive operator in a reflexive Banach
space which has a weakly continuous duality map.

Theorem CLS. (see [13, Theorem 2.1]). Let X be a real reflexive Banach
space and has a weakly continuous duality map J ϕ with gauge ϕ and A be an
m-accretive operator in X such that C = D(A) is convex with F = A−10 �= ∅,
and f : C → C be a fixed contraction mapping, {αn}∞n=0 in (0, 1) and {βn}∞n=0

in [0, 1], suppose {αn}∞n=0, {βn}∞n=0 and {rn}∞n=0 satisfy the following conditions:

(i)
∑∞

n=0 βn = ∞ and βn → 0 (n → ∞);
(ii) βn ∈ [0, a) for some a ∈ (0, 1) and rn ≥ ε for all n;
(iii)

∑∞
n=1 |αn+1 −αn| < ∞,

∑∞
n=1 |βn+1 − βn| < ∞ and

∑∞
n=1 |rn+1 − rn| <

∞.
Let {xn}∞n=1 be the composite process defined by

(1.4)

{
yn = αnxn + (1− αn)Jrnxn,

xn+1 = βnf(xn) + (1− βn)yn, ∀n ≥ 0.

Then {xn}∞n=0 converges strongly to a zero of A.

On the other hand, Yao, Chen and Yao [16] combined the viscosity approxi-
mation method [17] and the modified Mann iteration [15], and gave the following
hybrid viscosity approximation method:

Let C be a nonempty closed convex subset of a Banach space X, T : C → C

a nonexpansive mapping such that Fix(T ) �= ∅ and f ∈ ΠC . For any arbitrary
x0 ∈ C, define {xn} in the following way:

(1.5)

{
yn = αnxn + (1− αn)Txn,

xn+1 = βnf(xn) + (1− βn)yn, ∀n ≥ 0,
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where {αn} and {βn} are two sequences in (0, 1). They proved under certain
different control conditions on the sequences {αn} and {βn} that {xn} converges
strongly to a fixed point of T . Their result is the extension and improvement of the
main result in Kim and Xu [15].

Very recently, under the convergence of no parameter sequences to zero, Ceng
and Yao [14] proved the strong convergence of the sequence {xn} generated by
(1.5) to a fixed point of T , which solves a variational inequality on Fix(T ).

Theorem CY (See [14, Theorem 3.1]). Let C be a nonempty closed convex
subset of a uniformly smooth Banach space X . Let T : C → C be a nonexpansive
mapping with Fix(T ) �= ∅ and f ∈ ΠC with contractive constant α ∈ (0, 1). Given
sequences {αn} and {βn} in [0, 1], the following control conditions are satisfied:

(C1) 0 ≤ βn ≤ 1 − α, ∀n ≥ n0 for some integer n0 ≥ 1;
(C2)

∑∞
n=0 βn = ∞;

(C3) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(C4) limn→∞( βn+1

1−(1−βn+1)αn+1
− βn

1−(1−βn)αn
) = 0.

For an arbitrary x0 ∈ C, let {xn} be defined by (1.5). Then,

xn → Q(f) ⇐⇒ βn(f(xn) − xn) → 0,

where Q(f) ∈ Fix(T ) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ Fix(T ).

In this paper, let X be a real reflexive Banach space which, either is uniformly
smooth or has a weakly continuous duality map Jϕ. Assume that A is an m-accretive
operator in X . Combining Theorem CLS with Theorem CY as above, we prove,
under the convergence of no parameter sequences to zero, the strong convergence
of the sequence {xn} generated by (1.4) to a zero of A, which solves a variational
inequality on A−10. Such a result includes Theorem CLS as a special case. Fur-
thermore, we also give a weak convergence theorem for hybrid viscosity iterative
approximation method (1.4) involving a maximal monotone operator in a Hilbert
space H . The results presented in this paper can be viewed as the supplement,
improvement and extension of some known results in the literature, e.g., [4, 9-18].

2. PRELIMINARIES

Let X be a real Banach space with the topological dual space X ∗ and 〈x, x∗〉
be the pairing between x ∈ X and x∗ ∈ X∗. We write xn ⇀ x to indicate that
the sequence {xn} converges weakly to x. xn → x implies that {xn} converges
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strongly to x. Let 2X∗ denote the family of all subsets of X∗. Recall that the
normalized duality mapping J : X → 2X∗ is defined as

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X.

In order to establish new strong and weak convergence theorems for hybrid
viscosity iterative approximation of zeros of m-accretive operators, we need the
following lemmas. The first lemma is a very well-known (subdifferential) inequality;
see, e.g., [1].

Lemma 2.1. ([1]). Let X be a real Banach space and J the normalized duality
map on X . Then for any given x, y ∈ X , the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 2.2. ([8, Lemma 2]). Let {xn} and {yn} be bounded sequences in a
Banach space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0
and lim supn→∞(‖yn+1−yn‖−‖xn+1 −xn‖) ≤ 0. Then, limn→∞ ‖yn−xn‖ = 0.

Lemma 2.3. ([5]). Let {sn} be a sequence of nonnegative real numbers
satisfying the condition

sn+1 ≤ (1 − µn)sn + µnνn, ∀n ≥ 1,

where {µn}, {νn} are sequences of real numbers such that
(i) {µn} ⊂ [0, 1] and

∑∞
n=1 µn = ∞, or equivalently,

∞∏
n=1

(1− µn) := lim
n→∞

n∏
k=1

(1− µk) = 0;

(ii) lim supn→∞ νn ≤ 0, or
(ii)′

∑∞
n=1 µnνn is convergent.

Then, limn→∞ sn = 0.

Lemma 2.4. ([17, Theorem 4.1]). Let X be a uniformly smooth Banach space,
C be a nonempty closed convex subset of X, T : C → C be a nonexpansive
mapping with Fix(T ) �= ∅, and f ∈ ΠC . Then {xt} defined by

xt = tf(xt) + (1 − t)Txt

converges strongly to a point in Fix(T ). If we define Q : ΠC → Fix(T ) by

(2.1) Q(f) := lim
t→0

xt,
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then Q(f) solves the variational inequality

(2.2) 〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, ∀p ∈ Fix(T ).

In particular, if f = u ∈ C is a constant, then (2.1) is reduced to the sunny
nonexpansive retraction of Reich from C onto Fix(T ),

(2.3) 〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, ∀p ∈ Fix(T ).

Recall that an operator A with domain D(A) and range R(A) in X is said to
be accretive, if for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there is a j(x2−x1) ∈
J(x2 − x1) such that

〈y2 − y1, j(x2 − x1)〉 ≥ 0.

An accretive operator A is m-accretive if R(I + λA) = X for all λ > 0.
Denote by F the set of zeros of A, i.e.,

F := A−10 = {x ∈ D(A) : 0 ∈ Ax}.

Throughout the rest of this paper it is always assumed that A is m-accretive and
F is nonempty. For each r > 0, we denote by Jr the resolvent of A, i.e., Jr =
(I + rA)−1. Note that if A is m-accretive, then Jr : X → X is nonexpansive and
Fix(Jr) = A−10 for all r > 0. Indeed, observe that

x ∈ A−10 ⇔ 0 ∈ Ax

⇔ x ∈ (I + rA)x
⇔ x = (I + rA)−1x

⇔ x = Jrx

⇔ x ∈ Fix(Jr).

We also denote by Ar the Yosida approximation of A, i.e., Ar = 1
r (I − Jr). It is

known that Jr is a nonexpansive mapping from X to C := D(A), which will be
assumed convex.

Lemma 2.5. (The Resolvent Identity [7]). For each λ, µ > 0 and each x ∈ X ,

Jλx = Jµ(
µ

λ
x + (1− µ

λ
)Jλx).

Recall that a gauge is a continuous strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and ϕ(t) → ∞ as t → ∞. Associated to a gauge ϕ is
the duality map Jϕ : X → 2X∗ defined by

Jϕ(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖ϕ(‖x‖), ‖x∗‖ = ϕ(‖x‖)}, ∀x ∈ X.
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Following Browder [2], we say that a Banach space X has a weakly continuous
duality map if there exists a gauge ϕ for which the duality map Jϕ is single-valued
and weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in X weakly
convergent to a point x, then the sequence {Jϕ(xn)} converges weak∗ly to Jϕ(x)).
It is known that lp has a weakly continuous duality map for all 1 < p < ∞. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ, ∀t ≥ 0.

Then
Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ X,

where ∂ denotes the subdifferential in the sense of convex analysis. The first part of
the following lemma is an immediate consequence of the subdifferential inequality,
and the proof of the second part can be found in [19].

Lemma 2.6. Assume that X has a weakly continuous duality map J ϕ with
gauge ϕ.

(i) For all x, y ∈ X , there holds the inequality

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, Jϕ(x + y)〉.

(ii) Assume a sequence {xn} in X is weakly convergent to a point x. Then
there holds the identity

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖y − x‖), ∀y ∈ X.

Lemma 2.7. ([18, Theorem 3.1 and its proof]). Let X be a reflexive Banach
space and have a weakly continuous duality map Jϕ with gauge ϕ, C be a nonempty
closed convex subset of X, T : C → C be a nonexpansive mapping with Fix(T ) �=
∅, and f ∈ ΠC . Then {xt} defined by

xt = tf(xt) + (1 − t)Txt

converges strongly to a point in Fix(T ). If we define Q : ΠC → Fix(T ) by

(2.4) Q(f) := lim
t→0

xt,

then Q(f) solves the variational inequality

(2.5) 〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, ∀p ∈ Fix(T ).

In particular, if f = u ∈ C is a constant, then (2.4) is reduced to the sunny
nonexpansive retraction of Reich-type from C onto Fix(T ),

(2.6) 〈Q(u)− u, Jϕ(Q(u)− p)〉 ≤ 0, ∀p ∈ Fix(T ).



2466 L. C. Ceng, A. Petruşel and M. M. Wong

Recall that X satisfies Opial’s property [20] provided, for each sequence {xn}
in X , the condition xn ⇀ x implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ X, y �= x.

It is known [20] that each lp (1 ≤ p < ∞) enjoys this property, while Lp does not
unless p = 2. It is known [21] that any separable Banach space can be equivalently
renormed so that it satisfies Opial’s property. We denote by ωw(xn) the weak
ω-limit set of {xn}, i.e.,

ωw(xn) = {x̄ ∈ X : xni ⇀ x̄ for some subsequence {xni} of {xn}}.

Finally, recall that in a Hilbert space, there holds the following equality

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1]; see Takahashi [22].
We also use the following elementary lemmas.

Lemma 2.8. ([23]). Let {an} and {bn} be sequences of nonnegative real
numbers such that

∑∞
n=0 bn < ∞ and an+1 ≤ an + bn for all n ≥ 0. Then

limn→∞ an exists.

Lemma 2.9. ([3]). Demiclosedness Principle. Assume that T is a nonexpansive
self-mapping of a nonempty closed convex subset C of a Hilbert space H . If T

has a fixed point, then I − T is demiclosed. That is, whenever {xn} is a sequence
in C weakly converging to some x ∈ C and the sequence {(I − T )xn} strongly
converges to some y, it follows that (I − T )x = y. Here I is the identity operator
of H .

3. MAIN RESULTS

We now state and prove the main results of this paper.

Theorem 3.1. Let X be a reflexive Banach space. Assume, in addition, X
either is uniformly smooth or has a weakly continuous duality map J ϕ with gauge
ϕ. Let A be an m-accretive operator in X such that C = D(A) is convex with
F := A−10 �= ∅, and f ∈ ΠC with contractive constant α ∈ (0, 1). Given
sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞), the following control conditions
are satisfied:

(C1) 0 ≤ βn ≤ 1 − α, ∀n ≥ n0 for some integer n0 ≥ 1;
(C2)

∑∞
n=0 βn = ∞;

(C3) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
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(C4) limn→∞( βn+1

1−(1−βn+1)αn+1
− βn

1−(1−βn)αn
) = 0;

(C5) rn ≥ ε, ∀n ≥ 0 for some ε > 0 and limn→∞ |rn+1 − rn| = 0.

For an arbitrary x0 ∈ C, let {xn} be generated by

(3.1)

{
yn = αnxn + (1− αn)Jrnxn,

xn+1 = βnf(xn) + (1− βn)yn, ∀n ≥ 0.

Then,
xn → Q(f) ⇐⇒ βn(f(xn) − xn) → 0,

where one of the following two statements holds:
(i) if X is uniformly smooth, then Q(f) ∈ F solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F ;
(ii) if X has a weakly continuous duality map Jϕ with gauge ϕ, then Q(f) ∈ F

solves the variational inequality

〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. First, let us show that {xn} is bounded. Indeed, taking an element
p ∈ F = A−10 arbitrarily, we obtain that p = Jrnp and

‖xn+1 − p‖ ≤ βn‖f(xn) − p‖ + (1 − βn)‖yn = p‖
≤ βn‖f(xn) − f(p)‖+ βn‖f(p)− p‖

+(1 − βn)[αn‖xn − p‖ + (1 − αn)‖Jrnxn − Jrnp‖]
≤ [αβn+αn(1− βn)+(1− βn)(1− αn)]‖xn − p‖+βn‖f(p)−p‖
= [1− (1− α)βn]‖xn − p‖ + βn‖f(p)− p‖

≤ max{‖xn − p‖, ‖f(p)− p‖
1− α

}.
By induction, we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖f(p)− p‖
1 − α

}.
Hence {xn} is bounded, and so are the sequences {Jrnxn}, {yn} and {f(xn)}.

Suppose that xn → Q(f) ∈ F (n → ∞). Then Q(f) = JrnQ(f) for all n ≥ 0.
From (3.1) it follows that

‖yn − Q(f)‖ = ‖αn(xn − Q(f)) + (1− αn)(Jrnxn − Q(f))‖
≤ αn‖xn − Q(f)‖+ (1 − αn)‖Jrnxn − Q(f)‖
≤ αn‖xn − Q(f)‖+ (1 − αn)‖xn − Q(f)‖
= ‖xn − Q(f)‖ → 0 (n → ∞),
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that is, yn → Q(f). Again from (3.1) we obtain that

‖βn(f(xn) − xn)‖ = ‖xn+1 − xn − (1− βn)(yn − xn)‖
≤ ‖xn+1 − xn‖ + (1 − βn)‖yn − xn‖
≤ ‖xn+1 − Q(f)‖+ ‖xn − Q(f)‖

+(1 − βn)(‖yn − Q(f)‖+ ‖xn − Q(f)‖)
≤ ‖xn+1 − Q(f)‖+ 2‖xn − Q(f)‖+ ‖yn − Q(f)‖.

Since xn → Q(f) and yn → Q(f), we obtain βn(f(xn) − xn) → 0.
Conversely, Suppose that βn(f(xn) − xn) → 0 (n → ∞). Put γn = (1 −

βn)αn, ∀n ≥ 0. Then it follows from (C1) and (C3) that

αn ≥ γn = (1 − βn)αn ≥ (1 − (1 − α))αn = ααn, ∀n ≥ n0,

and hence

(3.2) 0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < 1.

Define

(3.3) xn+1 = γnxn + (1 − γn)zn.

Observe that

zn+1 − zn

=
xn+2 − γn+1xn+1

1 − γn+1
− xn+1 − γnxn

1 − γn

=
βn+1f(xn+1)+(1− βn+1)yn+1−γn+1xn+1

1 − γn+1
−βnf(xn)+(1− βn)yn−γnxn

1 − γn

= (
βn+1f(xn+1)

1 − γn+1
− βnf(xn)

1− γn
) − (1 − βn)[αnxn + (1 − αn)Jrnxn] − γnxn

1 − γn

+
(1 − βn+1)[αn+1xn+1 + (1 − αn+1)Jrn+1xn+1] − γn+1xn+1

1− γn+1

= (
βn+1f(xn+1)

1 − γn+1
− βnf(xn)

1− γn
)

+
(1−βn+1)(1−αn+1)Jrn+1xn+1

1−γn+1
− (1−βn)(1−αn)Jrnxn

1−γn

= (
βn+1f(xn+1)

1 − γn+1
− βnf(xn)

1− γn
) + (Jrn+1xn+1 − Jrnxn)

− βn+1

1 − γn+1
Jrn+1xn+1 +

βn

1 − γn
Jrnxn
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= (
βn+1

1−γn+1
− βn

1−γn
)f(xn+1)+(f(xn+1)−f(xn))

βn

1−γn
+(Jrn+1xn+1−Jrnxn)

−(
βn+1

1 − γn+1
− βn

1 − γn
)Jrn+1xn+1 − (Jrn+1xn+1 − Jrnxn)

βn

1 − γn

= (
βn+1

1− γn+1
− βn

1 − γn
)(f(xn+1) − Jrn+1xn+1) + (f(xn+1) − f(xn))

βn

1− γn

+
1 − γn − βn

1 − γn
(Jrn+1xn+1 − Jrnxn).

It follows that

(3.4)

‖zn+1 − zn‖

≤ | βn+1

1−γn+1
− βn

1−γn
|‖f(xn+1)−Jrn+1xn+1‖+‖f(xn+1)−f(xn)‖ βn

1−γn

+
1 − γn − βn

1 − γn
‖Jrn+1xn+1 − Jrnxn‖

≤ | βn+1

1−γn+1
− βn

1−γn
|(‖f(xn+1)‖+‖Jrn+1xn+1‖)+‖xn+1−xn‖ αβn

1−γn

+
1 − γn − βn

1 − γn
‖Jrn+1xn+1 − Jrnxn‖.

Here, we consider two cases.

Case 1. rn ≤ rn+1. In this case, Lemma 2.5 (the resolvent identity) implies
that

Jrn+1xn+1 = Jrn(
rn

rn+1
xn+1 + (1 − rn

rn+1
)Jrn+1xn+1).

Using the nonexpansivity of Jrn we get

(3.5)

‖Jrn+1xn+1 − Jrnxn‖

≤ ‖ rn

rn+1
xn+1 + (1 − rn

rn+1
)Jrn+1xn+1 − xn‖

= ‖ rn

rn+1
(xn+1 − xn) + (1 − rn

rn+1
)(Jrn+1xn+1 − xn)‖

≤ rn

rn+1
‖xn+1 − xn‖ + (1− rn

rn+1
)‖Jrn+1xn+1 − xn‖

≤ rn

rn+1
‖xn+1−xn‖+(1− rn

rn+1
)(‖Jrn+1xn+1−xn+1‖+‖xn+1−xn‖)

= ‖xn+1 − xn‖ +
rn+1 − rn

rn+1
‖Jrn+1xn+1 − xn+1‖

≤ ‖xn+1 − xn‖ +
rn+1 − rn

ε
‖Jrn+1xn+1 − xn+1‖.
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Substituting (3.5) in (3.4), we have

(3.6)

‖zn+1 − zn‖

≤ | βn+1

1− γn+1
− βn

1 − γn
|(‖f(xn+1)‖

+‖Jrn+1xn+1‖) + ‖xn+1 − xn‖ αβn

1− γn

+
1 − γn − βn

1− γn
[‖xn+1 − xn‖ +

rn+1 − rn

ε
‖Jrn+1xn+1 − xn+1‖]

≤ ‖xn+1 − xn‖ + | βn+1

1 − γn+1
− βn

1 − γn
|(‖f(xn+1)‖ + ‖Jrn+1xn+1‖)

+
rn+1 − rn

ε
‖Jrn+1xn+1 − xn+1‖

≤ ‖xn+1 − xn‖ + M1(| βn+1

1− γn+1
− βn

1 − γn
|+ |rn+1 − rn|),

where M1 is a constant such that

M1 ≥ max{‖f(xn)‖+ ‖Jrnxn‖, ‖Jrnxn − xn‖
ε

}, ∀n ≥ 1.

Case 2. rn+1 ≤ rn. Similarly we can derive (3.6).

Therefore, from (3.6) and conditions (C4), (C5), we conclude that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.2 we have

(3.7) lim
n→∞ ‖zn − xn‖ = 0.

It follows from (3.2) and (3.3) that

(3.8) lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 − γn)‖zn − xn‖ = 0.

From (3.1), we have

xn+1 − xn = βn(f(xn)− xn) + (1− βn)(yn − xn),

which hence implies that

α‖yn − xn‖ = (1 − (1 − α))‖yn − xn‖
≤ (1 − βn)‖yn − xn‖
= ‖xn+1 − xn − βn(f(xn) − xn)‖
≤ ‖xn+1 − xn‖+ ‖βn(f(xn) − xn)‖.
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Since xn+1 − xn → 0 and βn(f(xn)− xn) → 0, we get

(3.9) lim
n→∞ ‖yn − xn‖ = 0.

Observe that

(3.10) yn − xn = (1− αn)(Jrnxn − xn).

It follows from (C3), (3.9) and (3.10) that

(3.11a) lim
n→∞ ‖xn − Jrnxn‖ = 0.

Since Lemma 2.5 (the resolvent identity) implies that

Jrnxn = Jε(
ε

rn
xn + (1 − ε

rn
)Jrnxn),

it follows from (3.11a) and the nonexpansivity of Jε that

(3.11b)

‖Jεxn − xn‖ ≤ ‖Jrnxn − Jεxn‖ + ‖xn − Jrnxn‖
≤ ‖ ε

rn
xn + (1 − ε

rn
)Jrnxn − xn‖ + ‖xn − Jrnxn‖

= (1− ε

rn
)‖Jrnxn − xn‖ + ‖xn − Jrnxn‖

≤ 2‖xn − Jrnxn‖ → 0 (n → ∞).

Firstly, suppose that X is uniformly smooth. Let us show that

(3.12) lim sup
n→∞

〈f(z)− z, J(xn − z)〉 ≤ 0,

where z = Q(f),
Q(f) := lim

t→0
xt,

and xt is the unique fixed point of the contraction mapping Tt given by

Ttx = tf(x) + (1 − t)Jεx, t ∈ (0, 1).

By Lemma 2.4, Q(f) ∈ Fix(Jε) = F solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, ∀p ∈ F.

Note that
xt − xn = t(f(xt) − xn) + (1 − t)(Jεxt − xn).
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We apply Lemma 2.1 to deriving

(3.13)

‖xt−xn‖2

≤ (1−t)2‖Jεxt−xn‖2+2t〈f(xt)−xn, J(xt−xn)〉
≤ (1−t)2(‖Jεxt−Jεxn‖+‖Jεxn−xn‖)2

+2t〈f(xt)−xt, J(xt−xn)〉+2t‖xt−xn‖2

≤ (1−t)2‖xt−xn‖2+an(t)+2t〈f(xt)−xt, J(xt−xn)〉+2t‖xt−xn‖2,

where

an(t) = ‖Jεxn − xn‖(2‖xt − xn‖ + ‖Jεxn − xn‖) → 0 (due to (3.11b)).

The last inequality implies

〈xt − f(xt), J(xt − xn)〉 ≤ t

2
‖xt − xn‖2 +

1
2t

an(t).

It follows that

(3.14) lim sup
n→∞

〈xt − f(xt), J(xt − xn)〉 ≤ M
t

2
,

where M > 0 is a constant such that M ≤ ‖xt −xn‖2 for all n ≥ 1 and t ∈ (0, 1).
Taking the limsup as t → 0 in (3.14) and noticing the fact that the two limits are
interchangeable due to the fact that the duality map J is uniformly norm-to-norm
continuous on any bounded subset of X , we obtain (3.12).

Now, let us show that xn → z as n → ∞. Indeed, observe that

xn+1 − z = βn(f(xn) − z) + (1− βn)(yn − z)

= βn(f(xn)−z)+(1−βn)(1−αn)(Jrnxn−z)+(1−βn)αn(xn − z).

Then, utilizing Lemma 2.1 we get

‖xn+1 − z‖2 ≤ ‖(1− βn)αn(xn − z) + (1− βn)(1− αn)(Jrnxn − z)‖2

+2βn〈f(xn) − z, J(xn+1 − z)〉
≤ [(1− βn)αn‖xn − z‖ + (1− βn)(1− αn)‖xn − z‖]2

+2βn〈f(xn) − f(z), J(xn+1 − z)〉
+2βn〈f(z)− z, J(xn+1 − z)〉

≤ (1− βn)2‖xn − z‖2 + 2αβn‖xn − z‖‖xn+1 − z‖
+2βn〈f(z)− z, J(xn+1 − z)〉

≤ (1− βn)2‖xn − z‖2 + αβn(‖xn − z‖2 + ‖xn+1 − z‖2)

+2βn〈f(z)− z, J(xn+1 − z)〉.
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It hence follows that for all n ≥ n0

‖xn+1−z‖2 ≤ 1 − (2 − α)βn+β2
n

1−αβn
‖xn−z‖2+

2βn

1−αβn
〈f(z)−z, J(xn+1−z)〉

= (1− 2(1− α)βn

1−αβn
)‖xn−z‖2+

2βn

1−αβn
〈f(z)−z, J(xn+1−z)〉

+
β2

n

1 − αβn
‖xn − z‖2

≤ (1− 2(1− α)βn

1 − αβn
)‖xn − z‖2 +

2βn

1 − αβn
〈f(z)− z, J(xn+1 − z)〉

+
(1 − α)βn

1 − αβn
‖xn − z‖2

= (1− (1− α)βn

1 − αβn
)‖xn − z‖2 +

2βn

1 − αβn
〈f(z) − z, J(xn+1 − z)〉,

due to (C1). For every n ≥ n0, put

µn =
(1 − α)βn

1 − αβn

and
νn =

2
1 − α

〈f(z) − z, J(xn+1 − z)〉.
It follows that

(3.15) ‖xn+1 − z‖2 ≤ (1− µn)‖xn − z‖2 + µnνn, ∀n ≥ n0.

It is readily seen from (C2) and (3.12) that
∞∑

n=0

µn = ∞ and lim sup
n→∞

νn ≤ 0.

Therefore, applying Lemma 2.3 to (3.15), we conclude that xn → z as n → ∞.
Secondly, suppose that X has a weakly continuous duality map Jϕ with gauge

ϕ. Let us show that

(3.16) lim sup
n→∞

〈f(z) − z, Jϕ(xn − z)〉 ≤ 0,

where z = Q(f),
Q(f) := lim

t→0
xt,

and xt is the unique fixed point of the contraction mapping Tt given by

Ttx = tf(x) + (1 − t)Jεx, t ∈ (0, 1).
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By Lemma 2.7, Q(f) ∈ Fix(Jε) = F solves the variational inequality

(3.17) 〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, ∀p ∈ F.

We take a subsequence {xnk
} of {xn} such that

(3.18) lim sup
n→∞

〈f(z) − z, Jϕ(xn − z)〉 = lim
k→∞

〈f(z)− z, Jϕ(xnk
− z).

Since X is reflexive and {xn} is bounded, we may assume that xnk
⇀ x̄. Note

that ‖xn − Jrnxn‖ → 0 as n → ∞. Hence, {Jrnk
xnk

} converges weakly to x̄, and

‖Arnxn‖ =
1
rn

‖xn − Jrnxn‖ ≤ 1
ε
‖xn − Jrnxn‖ → 0.

Consequently, taking the limit as k → ∞ in the relation

Arnk
xnk

∈ AJrnk
xnk

,

we get 0 ∈ Ax̄; i.e., x̄ ∈ F . Thus, from (3.17) and (3.18) it follows that

lim sup
n→∞

〈f(z)− z, Jϕ(xn − z)〉 = 〈f(z) − z, Jϕ(x̄− z) ≤ 0.

This implies that (3.16) holds.
Now, let us show that xn → z as n → ∞. Indeed, observe that

Φ(‖yn − z‖) = Φ(‖αn(xn − z) + (1 − αn)(Jrnxn − z)‖)

≤ Φ(αn‖xn − z‖ + (1− αn)‖Jrnxn − z‖)
≤ Φ(‖xn − z‖).

Therefore, we apply Lemma 2.6 to getting

Φ(‖xn+1 − z‖)
= Φ(‖βn(f(xn)− z) + (1 − βn)(yn − p)‖)
= Φ(‖βn(f(xn)− f(z) + f(z) − z) + (1− βn)(yn − z)‖)
≤ Φ(‖(1− βn)(yn − z) + βn(f(xn) − f(z))‖) + βn〈f(z)− z, Jϕ(xn+1 − z)〉
≤ Φ((1− βn)‖yn − z‖ + βn‖f(xn) − f(z)‖) + βn〈f(z) − z, Jϕ(xn+1 − z)〉
≤ Φ((1− βn)‖yn − z‖ + αβn‖xn − z‖) + βn〈f(z)− z, Jϕ(xn+1 − z)〉
≤ (1− (1− α)βn)Φ(‖xn − z‖) + βn〈f(z)− z, Jϕ(xn+1 − z)〉.

Applying Lemma 2.3, we get

Φ(‖xn − z‖) → 0 (n → ∞),
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which hence implies that ‖xn − z‖ → 0 (n → ∞), i.e., xn → z (n → ∞). This
completes the proof.

Corollary 3.1. Let X be a reflexive Banach space. Assume, in addition,
X either is uniformly smooth or has a weakly continuous duality map J ϕ with
gauge ϕ. Let A be an m-accretive operator in X such that C = D(A) is convex
with F := A−10 �= ∅, and f ∈ ΠC . Given sequences {αn}, {βn} ⊂ [0, 1] and
{rn} ⊂ (0,∞), the following control conditions are satisfied:

(C1) limn→∞ βn = 0;
(C2)

∑∞
n=0 βn = ∞;

(C3) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(C4) rn ≥ ε, ∀n ≥ 0 for some ε > 0 and limn→∞ |rn+1 − rn| = 0.

Then for an arbitrary x0 ∈ C, the sequence {xn} defined by (3.1) converges
strongly to a zero Q(f) of A, where one of the following two statements holds:

(i) if X is uniformly smooth, then Q(f) ∈ F solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F ;

(ii) if X has a weakly continuous duality map J ϕ with gauge ϕ, then Q(f) ∈ F

solves the variational inequality

〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. Repeating the same argument as in the proof of Theorem 3.1, we know
that {xn} is bounded, and so are the sequences {Jrnxn}, {yn} and {f(xn)}. Since
limn→∞ βn = 0, it is easy to see that there hold the following:

(i) βn(f(xn) − xn) → 0 (n → ∞);
(ii) 0 ≤ βn ≤ 1 − α, ∀n ≥ n0 for some integer n0 ≥ 1;
(iii) limn→∞( βn+1

1−(1−βn+1)αn+1
− βn

1−(1−βn)αn
) = 0.

Therefore, all conditions of Theorem 3.1 are satisfied. So, utilizing Theorem 3.1
we obtain the desired result.

Corollary 3.2. Let X be a reflexive Banach space. Assume, in addition,
X either is uniformly smooth or has a weakly continuous duality map J ϕ with
gauge ϕ. Let A be an m-accretive operator in X such that C = D(A) is convex
with F := A−10 �= ∅, and f ∈ ΠC with contractive constant α ∈ (0, 1). Given
sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞), the following control conditions
are satisfied:
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(C1) 0 ≤ βn ≤ 1 − α, ∀n ≥ n0 for some integer n0 ≥ 1;
(C2) limn→∞(βn − βn+1) = 0 and

∑∞
n=0 βn = ∞;

(C3) limn→∞(αn − αn+1) = 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(C4) rn ≥ ε, ∀n ≥ 0 for some ε > 0 and limn→∞(rn − rn+1) = 0.

For an arbitrary x0 ∈ C, let {xn} be defined by (3.1). Then,

xn → Q(f) ⇐⇒ βn(f(xn)− xn) → 0,

where one of the following two statements holds:

(i) if X is uniformly smooth, then Q(f) ∈ F solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F ;

(ii) if X has a weakly continuous duality map J ϕ with gauge ϕ, then Q(f) ∈ F

solves the variational inequality

〈(I − f)Q(f), Jϕ(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. Observe that

βn+1

1− (1− βn+1)αn+1
− βn

1 − (1 − βn)αn

=
(βn+1 − βn) − βn+1αn + βnαn+1 + βn+1βnαn − βnβn+1αn+1

(1 − (1 − βn+1)αn+1)(1− (1 − βn)αn)

=
(βn+1 − βn) − βn+1(αn − αn+1) − αn+1(βn+1 − βn) + βnβn+1(αn − αn+1)

(1 − (1− βn+1)αn+1)(1− (1 − βn)αn)

=
(βn+1 − βn)(1− αn+1)− βn+1(αn − αn+1)(1− βn)

(1 − (1 − βn+1)αn+1)(1− (1 − βn)αn)
.

Since limn→∞(βn − βn+1) = 0 and limn→∞(αn − αn+1) = 0, it follows that

lim
n→∞(

βn+1

1− (1 − βn+1)αn+1
− βn

1− (1− βn)αn
) = 0.

Consequently, all conditions of Theorem 3.1 are satisfied. So, utilizing Theorem
3.1 we obtain the desired result.

Remark 3.1. Repeating the same argument as in the proof of Theorem 3.1, we
know that {xn} is bounded, and so are the sequences {Jrnxn}, {yn} and {f(xn)}.
Under the assumptions of Theorem CLS in Section 1, it can be easily seen that all
conditions of Corollary 3.2 are satisfied. Thus, we conclude that {xn} converges
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strongly to a zero of A. This shows that Corollary 3.2 includes Theorem CLS as a
special case. Note that the following condition in Corollary 3.2

lim
n→∞(αn − αn+1) = 0, lim

n→∞(βn − βn+1) = 0 and lim
n→∞(rn − rn+1) = 0

is much weaker than the following one in Theorem CLS
∞∑

n=1

|αn+1 − αn| < ∞,

∞∑
n=1

|βn+1 − βn| < ∞ and
∞∑

n=1

|rn+1 − rn| < ∞.

In addition, Corollary 3.2 removes the condition “βn → 0” in Theorem CLS as well.
Therefore, the advantages of Theorem 3.1 in the present paper are that weaker and
fewer restrictions are imposed on the parameter sequences {αn}, {βn} and {rn}.

Corollary 3.3. Let X be a reflexive Banach space. Assume, in addition, X

either is uniformly smooth or has a weakly continuous duality map J ϕ with gauge
ϕ. Let A be an m-accretive operator in X such that C = D(A) is convex with
F := A−10 �= ∅. Let the real sequences {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞)
satisfy the control conditions (C1)-(C4) in Corollary 3.1. For arbitrary x 0, u ∈ C,
let {xn} be defined by{

yn = αnxn + (1 − αn)Jrnxn,

xn+1 = βnu + (1 − βn)yn, ∀n ≥ 0.

Then,
xn → Q(u) ⇐⇒ βn(u − xn) → 0,

where one of the following two statements holds:

(i) if X is uniformly smooth, then Q(u) ∈ F solves the variational inequality

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F ;

(ii) if X has a weakly continuous duality map J ϕ with gauge ϕ, then Q(f) ∈ F

solves the variational inequality

〈Q(u)− u, Jϕ(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.

Proof. Put f(x) = u for all x ∈ C. Then by Corollary 3.1 we obtain the desired
result.

It is known [6] that when X = H a Hilbert space, m-accretive operators coincide
with maximal monotone operators. Next we give a weak convergence theorem for
hybrid viscosity iterative approximation method (3.1) involving a maximal monotone
operator A in a Hilbert space H .
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Theorem 3.2. Let H be a Hilbert space. Let A be a maximal monotone
operator in H such that C = D(A) is convex with F := A−10 �= ∅, and f ∈ ΠC

with contractive constant α ∈ (0, 1). Given sequences {αn}, {βn} ⊂ [0, 1] and
{rn} ⊂ (0,∞), the following control conditions are satisfied:

(C1)
∑∞

n=0 βn < ∞;
(C2) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(C3) rn ≥ ε, ∀n ≥ 0 for some ε > 0 and limn→∞ |rn+1 − rn| = 0.

Then for an arbitrary x0 ∈ C, the sequence {xn} defined by (3.1) converges weakly
to a zero of A

Proof. Take a zero p of A arbitrarily. Repeating the same argument as in the
proof of Theorem 3.1, we know that {xn} is bounded, and so are the sequences
{Jrnxn}, {yn} and {f(xn)}.

Observe that

(3.19)

‖xn+1 − p‖2

≤ (1 − βn)‖yn − p‖2 + βn‖f(xn) − p‖2

≤ ‖yn − p‖2 + βn‖f(xn) − p‖2

= ‖αn(xn − p) + (1 − αn)(Jrnxn − p)‖2 + βn‖f(xn) − p‖2

= αn‖xn − p‖2 + (1 − αn)‖Jrnxn − p‖2

−αn(1 − αn)‖xn − Jrnxn‖2 + βn‖f(xn)− p‖2

≤ αn‖xn − p‖2 + (1 − αn)‖xn − p‖2 − αn(1− αn)‖xn − Jrnxn‖2

+βn‖f(xn) − p‖2

= ‖xn − p‖2 − αn(1 − αn)‖xn − Jrnxn‖2 + βn‖f(xn)− p‖2

≤ ‖xn − p‖2 + βn‖f(xn) − p‖2.

Since
∑∞

n=0 βn < ∞ and {f(xn)} is bounded, we get
∑∞

n=0 βn‖f(xn)−p‖2 < ∞.
Utilizing Lemma 2.8, we deduce that limn→∞ ‖xn − p‖ exists. Furthermore it
follows from (3.19) that for all n ≥ 0

(3.20) αn(1−αn)‖xn−Jrnxn‖2 ≤ ‖xn −p‖2−‖xn+1 −p‖2 +βn‖f(xn)−p‖2.

Since βn → 0 and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1, it follows from
(3.20) that limn→∞ ‖xn −Jrnxn‖ = 0. As proved in the proof of Theorem 3.1, we
have ‖xn − Jεxn‖ ≤ 2‖xn − Jrnxn‖ for all n ≥ 1. This implies immediately that

(3.21) lim
n→∞ ‖xn − Jεxn‖ = 0.
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Now, let us show that ωw(xn) ⊂ F . Indeed, let x̄ ∈ ωw(xn). Then there exists
a subsequence {xni} of {xn} such that xni ⇀ x̄. Since (I−Jε)xn → 0, by Lemma
2.9 we known that x̄ ∈ Fix(Jε) = F .

Finally, let us show that ωw(xn) is a singleton. Indeed, let {xmj} be another
subsequence of {xn} such that xmj ⇀ x̂. Then x̂ is also a zero of A. If x̄ �= x̂, by
Opial’s property of H , we reach the following contradiction:

lim
n→∞ ‖xn − x̄‖ = lim

i→∞
‖xni − x̄‖

< lim
i→∞

‖xni − x̂‖ = lim
j→∞

‖xmj − x̂‖

< lim
j→∞

‖xmj − x̄‖ = lim
n→∞ ‖xn − x̄‖.

This implies that ωw(xn) is a singleton. Consequently, {xn} converges weakly to
a zero of A.

Remark 3.2. Compared with Theorem CLS in Section 1, Theorem 3.2 is a
weak convergence result. It can be viewed as the supplement of Theorem CLS.
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