ON q-HAUSDORFF MATRICES

T. Selmanogullari, E. Savaş and B. E. Rhoades

Abstract

The q-Hausdorff matrices are defined in terms of symbols from q-mathematics. The matrices become ordinary Hausdorrf matrices as $q \rightarrow 1$. In this paper, we consider the q -analogues of the Cesaro matrix of order one, both for $0<q<1$ and $q>1$, and obtain the lower bounds for these matrices for any $1<p<\infty$.

1. Introduction

Ordinary Hausdorff matrices were introduced by Hurwitz and Silverman [7] to be the class of lower triangular matrix, that commute with C, the Cesàro matrix of order one. Hausdorff [6] reexamined this class, in the process of solving the moment problem over a finite interval, and developed many of the properties of the matrices that now bear his name. The standard reference on Hausdorff means is the book by G. H. Hardy [5].

A Hausdorff matrix H is a lower triangular matrix with entries defined by

$$
\begin{equation*}
h_{n k}=\binom{n}{k} \Delta^{n-k} \mu_{k} \quad 0 \leq k \leq n \tag{1.1}
\end{equation*}
$$

where $\binom{n}{k}$ is the ordinary binomial coefficient, $\left\{\mu_{n}\right\}$ is a real or complex sequence, and Δ is the forward difference operator defined by $\Delta \mu_{k}=\mu_{k}-\mu_{k+1}$ and $\Delta^{n+1} \mu_{k}=\Delta\left(\Delta^{n} \mu_{k}\right)$.

For example, the ordinary Cesàro matrix of order one, $(C, 1)$, has entries

$$
c_{n k}=\left\{\begin{array}{cc}
\frac{1}{n+1}, & n \geq k \\
0, & n<k
\end{array}\right.
$$

Received March 3, 2010, accepted June 24, 2010.
Communicated by H. M. Srivastava.
2010 Mathematics Subject Classification: Primary 40C05; Secondary 40G05.
Key words and phrases: q-Hausdorff matrices, Lower bound problem, q-Cesàro matrices.
The first author acknowledges support from the Scientific and Technical Research Council of Turkey in the preparation of this paper.

Every Hausdorff matrix also has the representation

$$
H=\delta \mu \delta
$$

where μ is the diagonal matrix with entries $\left\{\mu_{n}\right\}$, and δ is the lower triangular matrix defined by

$$
\delta_{n k}=(-1)^{k}\binom{n}{k} .
$$

It is easily verified that δ is its own inverse.
We now give a brief introduction to the symbols of q-mathematics and qHausdorff matrices. The subject of q-mathematics has many applications in mathematics, and the beginnings of q-mathematics date back to time of Euler. The q -analogue of the integer n, is defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q} \quad(q \neq 1)
$$

Then one can define the q -analogue of the factorial, the q -factorial, as

$$
[n]_{q}!= \begin{cases}\frac{q-1}{q-1} \frac{q^{2}-1}{q-1} \cdots \frac{q^{n}-1}{q-1}, & n=1,2, \ldots \ldots \\ 1, & n=0\end{cases}
$$

and then one can move on to define the q-binomial coefficients, also known Gaussian polynomials,

$$
\binom{n}{k}_{q}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}
$$

Note that, as $q \rightarrow 1$, the q-binomial coefficients approach the usual binomial coefficients.

For $q>0$ (see, e.g., [3]), a q-Hausdorff matrix H_{q} is defined by

$$
h_{n k}=q^{-k(n-k)}\binom{n}{k}_{q} \Delta_{q}^{n-k} \mu_{k} \quad(n, k=0,1, \ldots),
$$

where again $\left\{\mu_{k}\right\}$ is any sequence and Δ_{q} is the q - forward difference operator defined by

$$
\left(\Delta_{q}^{n} \mu\right)_{k}=q^{n k} \sum_{i=0}^{n}(-1)^{i}\binom{n}{i}_{q}\binom{i}{2}_{\mu_{k+i}}
$$

A q-Hausdorff matrix H_{q} has the representation

$$
H_{q}=\delta_{q} \mu \delta_{q}^{-1}
$$

where, as before, μ is the diagonal matrix with diagonal entries $\left\{\mu_{k}\right\}$ and δ_{q} is the lower triangular matrix with entries

$$
\left(\delta_{q}\right)_{n k}=(-1)^{k} q\binom{k}{2}\binom{n}{k}_{q}
$$

for $0 \leq k \leq n$. In contrast to ordinary Hausdorff matrices, δ_{q} is not its own inverse. For $q>1$, the q-Cesaro matrix, C_{q}^{1} is defined by

$$
\begin{equation*}
c_{n k}=\frac{q^{k}}{1+q+\ldots+q^{n}} \quad 0 \leq k \leq n \tag{1.2}
\end{equation*}
$$

The corresponding q-Cesàro matrix for $0<q<1$ can be obtained by replacing q by $1 / q$ in the above definitions. Thus, C_{q}^{1} for $0<q<1$ has entries

$$
\begin{equation*}
c_{n k}=\frac{q^{n-k}}{1+q+\ldots+q^{n}} \quad 0 \leq k \leq n . \tag{1.3}
\end{equation*}
$$

Bustoz and Gordillo [4], have established a number of results for q -Hausdorff matrices for $0<q<1$.

2. A Lower Bound on the q-Cesàro Operator

Let A be a matrix with nonnegative entries, $A \in B\left(l_{p}\right)$ for some $1<p$ and $\left\{x_{n}\right\}$ a decreasing sequence of nonnegative numbers in l_{p}. The lower bounds problem is to find the largest number L such that

$$
\|A x\|_{p} \geq L\|x\|_{p}
$$

For $p=2$ and $A=(C, 1)$, the problem was solved by Lyons [8] who found that

$$
L^{2}=\sum_{k=0}^{\infty} \frac{1}{(1+k)^{2}}
$$

This result was extended to l_{p} spaces for $p>1$ by Bennett [1]. In [1], Bennett established the following result, where $B\left(l_{p}\right)$ denotes the set of bounded linear operators on l_{p}.

Theorem 2.1. Let $\left\{x_{n}\right\}$ be a monotone decreasing nonnegative sequence, let $A \in B\left(l^{p}\right)$ with nonnegative entries, and $1<p<\infty$. Then

$$
\begin{equation*}
\|A x\|_{p} \geq L\|x\|_{p} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
L^{p}:=\inf _{r}(r+1)^{-1} \sum_{j=0}^{\infty}\left(\sum_{k=0}^{r} a_{j k}\right)^{p}=\inf _{r} f(r) \tag{2.5}
\end{equation*}
$$

For $A=(C, 1)$, the minimum occurs at $f(0)$, which is the sum of the $p^{t h}$ power of the first column of $(C, 1)$.

In [9], Rhoades examined the lower bounds questions for Rhaly matrices and obtained some results. In [2], Bennett has shown that $L^{p}=f(0)$ for each Hausdorff matrix $H \in B\left(l_{p}\right)$ with non-negative entries. Rhoades and Sen ([10, 11]), determined the lower bounds for classes of Rhaly matrices, considered as bounded linear operators on l_{p} and proved the following Theorem 2.2 and Lemma 2.3 which we will use to make our proofs. A factorable matrix is a lower triangular matrix whose nonzero entries $a_{n k}$ can be written in the form $a_{n} b_{k}$, where a_{n} depends on only n, and b_{k} depends only on k.

Theorem 2.2. Let A be factorable matrix with positive entries, row sums t_{n}, and $\left\{a_{n}\right\}$ monotone decreasing. Then sufficient conditions for $f(0)=L^{p}$ are that

$$
\begin{gather*}
\Delta y_{r}^{p}<0, \quad \Delta^{2} y_{r}^{p}>0, \tag{2.6}\\
\Delta^{2}\left(\frac{1}{\Delta y_{r}^{p}}\right) \leq 0, \tag{2.7}
\end{gather*}
$$

where $y_{r}=t_{r} / a_{r}$,

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \frac{a_{r+1}^{p} \Delta y_{r+1}^{p}}{\Delta^{2} y_{r}^{p}} \geq 0, \tag{2.8}\\
& t_{0}^{p}+2 \Delta y_{0}^{p} \sum_{j=1}^{\infty} a_{j}^{p} \leq 0 . \tag{2.9}
\end{align*}
$$

Lemma 2.3. Suppose that $v \in C^{3}[0, \infty)$. If, for all $r>0, p>1$, one has

$$
\begin{align*}
(a) v^{\prime} & >0, \\
(b) v^{\prime \prime} & >0, \tag{2.10}\\
(c) 2\left(v^{\prime \prime}\right)^{2}-v^{\prime} v^{\prime \prime \prime} & >0,
\end{align*}
$$

then $\Delta^{2}(1 / \Delta v(r)) \leq 0$.
We shall now determine the lower bounds for the q -Cesàro matrices of order one for $q>1$ and $0<q<1$. First we prove that the q-Cesàro matrices of order one are bounded linear operator on l_{p}, for $1<p<\infty$ by making use of the following special case of the Riesz-Thorin Theorem.

Theorem 2.4. [12]. If A is an infinite matrix for which $A \in B\left(l_{\infty}\right)$ and $A \in B\left(l_{1}\right)$, then $A \in B\left(l_{p}\right)$ for every $1<p<\infty$.

It is easily shown that each q-Cesaro matrix of order one for $q>1$ is a bounded linear operator from l_{1} to l_{1} and from l_{∞} to l_{∞}.

$$
\begin{aligned}
\left\|C_{q}^{1}\right\|_{1} & =\sup _{k} \sum_{n=k}^{\infty}\left|\frac{q^{k}}{1+q+\ldots+q^{n}}\right| \\
& =\sup _{k} q^{k} \sum_{n=k}^{\infty} \frac{q-1}{q^{n+1}-1} \\
& =\sup _{k} q^{k}(q-1) \sum_{n=k}^{\infty} \frac{1}{q^{n+1}} \frac{q^{n+1}}{q^{n+1}-1} .
\end{aligned}
$$

Note that

$$
\left\{\frac{q^{n+1}}{q^{n+1}-1}\right\}
$$

is a convergent monotone decreasing sequence. Therefore

$$
\begin{aligned}
\left\|C_{q}^{1}\right\|_{1} & \leq \sup _{k} q^{k}(q-1)\left(\frac{q}{q-1}\right) \sum_{n=k}^{\infty} \frac{1}{q^{n+1}} \\
& =\sup _{k} q^{k+1} \sum_{n=k}^{\infty} \frac{1}{q^{n+1}} \\
& =\sup _{k} \sum_{j=0}^{\infty} \frac{1}{q^{j}} \\
& =\frac{1}{1-1 / q}=\frac{q}{q-1}
\end{aligned}
$$

Similarly we can show that an upper bound for $\left\|C_{q}^{1}\right\|_{1}(0<q<1)$ is $1 /(1-q)$.
In [3] it has been shown that each row sum of each q-Hausdorff matrix is μ_{0}. Since $\mu_{0}=1$ for C_{q}^{1} and the entries of each C_{q}^{1} are positive, $\left\|C_{q}^{1}\right\|_{\infty}=1$, and $C_{q}^{1} \in B\left(l^{p}\right)$ for $1<p<\infty$, and $0<q<1$.

Theorem 2.5. For the q-Cesàro matrix of order one $(q>1), L^{p}=f(0)$.
Proof. From (1.2) it is clear that $C_{q}^{1},(1<q<\infty)$ is a factorable matrix. To prove our result we will use Theorem 2.2. To show that the sufficient conditions in Theorem 2.2 are satisfied by C_{q}^{1}, we shall use Lemma 2.3 with

$$
t_{n}=a_{n} \sum_{k=0}^{n} b_{k}=1, \quad a_{n}=\frac{1}{[n+1]_{q}}, \quad y_{n}=\frac{t_{n}}{a_{n}}=[n+1]_{q}
$$

Define

$$
v(r)=\left(\frac{q^{r+1}-1}{q-1}\right)^{p}
$$

Then,

$$
\begin{aligned}
v^{\prime}(r) & =\frac{p q^{r+1}(\ln q)\left(q^{r+1}-1\right)^{p-1}}{(q-1)^{p}}>0 \\
v^{\prime \prime}(r) & =\frac{p(\ln q)^{2} q^{r+1}\left(q^{r+1}-1\right)^{p-2}\left(p q^{r+1}-1\right)}{(q-1)^{p}}>0
\end{aligned}
$$

and

$$
\begin{aligned}
v^{\prime \prime \prime}(r)= & \frac{p(\ln q)^{3}\left(q^{r+1}-1\right)^{p-3} q^{r+1}\left[p^{2} q^{2(r+1)}+q^{r+1}(1-3 p)+1\right]}{(q-1)^{p}} \\
2\left(v^{\prime \prime}\right)^{2}-v^{\prime} v^{\prime \prime \prime}= & \frac{p^{2}(\ln q)^{4} q^{2(r+1)}\left(q^{r+1}-1\right)^{2 p-4}}{(q-1)^{2 p}} \\
& \times\left[2\left(p q^{r+1}-1\right)^{2}-\left(p^{2} q^{2(r+1)}+q^{r+1}(1-3 p)+1\right)\right]>0 .
\end{aligned}
$$

Hence by using Lemma 2.3, conditions (2.6) and (2.7) in Theorem 2.2 are satisfied. Also
$\lim _{r \rightarrow \infty}\left(\frac{1-q}{1-q^{r+2}}\right)^{p} \times\left(\frac{\left(1-q^{-(r+2)}\right)^{p}-\left(q-q^{-(r+2)}\right)^{p}}{\left(q^{-1}-q^{-(r+2)}\right)^{p}-2\left(1-q^{-(r+2)}\right)^{p}+\left(q-q^{-(r+2)}\right)^{p}}\right)=0$.
Hence condition (2.8) in Theorem 2.2 is satisfied. Finally,

$$
\begin{aligned}
t_{0}^{p}+2 \Delta y_{0}^{p} \sum_{j=1}^{\infty} a_{j}^{p} & =1+2\left(1-(q+1)^{p}\right) \sum_{j=1}^{\infty} \frac{(q-1)^{p}}{\left(q^{j+1}-1\right)^{p}} \\
& =1+\frac{2\left(1-(q+1)^{p}\right)(q-1)^{p}}{\left(q^{2}-1\right)^{p}}+2\left(1-(q+1)^{p}\right) \sum_{j=2}^{\infty} \frac{(q-1)^{p}}{\left(q^{j+1}-1\right)^{p}}
\end{aligned}
$$

Since $q>1$, the sum is less than

$$
1+\frac{2\left(1-(q+1)^{p}\right)}{(q+1)^{p}}=1+\frac{2}{(q+1)^{p}}-2=\frac{2}{(q+1)^{p}}-1<0
$$

so that

$$
t_{0}^{p}+2 \Delta y_{0}^{2} \sum_{j=1}^{\infty} a_{j}^{2}<0
$$

and condition (2.9) in Theorem 2.2 is satisfied.
The following theorem describes the lower bound condition for $C_{q}^{1}(0<q<1)$.
Theorem 2.6. For the q-Cesàro matrix of order one $(0<q<1), L^{p}=f(0)$.

Proof. From (1.3) it is clear that $C_{q}^{1}(0<q<1)$ is factorable matrix. Again we use Lemma 2.3 to prove that the conditions in Theorem 2.2 are satisfied by C_{q}^{1}. Using Lemma 2.3 with

$$
t_{n}=a_{n} \sum_{k=0}^{n} b_{k}=1, \quad a_{n}=\frac{q^{n}}{[n+1]_{q}}, \quad y_{n}=\frac{t_{n}}{a_{n}}=\frac{[n+1]_{q}}{q^{n}}
$$

define

$$
v(r)=\frac{\left(q^{-r}-q\right)^{p}}{(1-q)^{p}}
$$

then

$$
\begin{aligned}
v^{\prime}(r) & =\frac{p(\ln (1 / q))\left(1-q^{r+1}\right)^{p-1}}{q^{p r}(1-q)^{p}}>0 \\
v^{\prime \prime}(r) & =\frac{p(\ln (1 / q))^{2}\left(1-q^{r+1}\right)^{p-2}}{q^{p r}(1-q)^{p}}\left[p-q^{r+1}\right]>0
\end{aligned}
$$

and

$$
v^{\prime \prime \prime}(r)=\frac{p(\ln (1 / q))^{3}\left(1-q^{r+1}\right)^{p-3}}{q^{p r}(1-q)^{p}}\left[q^{2(r+1)}-(3 p-1) q^{r+1}+p^{2}\right]
$$

Thus

$$
2\left(v^{\prime \prime}\right)^{2}-v^{\prime} v^{\prime \prime \prime}=\frac{p^{2}(\ln (1 / q))^{4}\left(1-q^{r+1}\right)^{2 p-4}}{q^{2 p r}(1-q)^{2 p}}\left[q^{2(r+1)}-(p+1) q^{r+1}+p^{2}\right]>0
$$

From Lemma 2.3, conditions (2.6) and (2.7) in Theorem 2.2 are satisfied, and

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{a_{r+1}^{p} \Delta y_{r+1}^{p}}{\Delta^{2} y_{r}^{p}}=\lim _{r \rightarrow \infty} q^{p(r+1)}\left(\frac{1-q}{1-q^{r+2}}\right)^{p} \\
\times & {\left[\frac{q^{p}\left(1-q^{r+2}\right)^{p}-\left(1-q^{r+3}\right)^{p}}{q^{2 p}\left(1-q^{r+1}\right)^{p}-2 q^{p}\left(1-q^{r+2}\right)^{p}+\left(1-q^{r+3}\right)^{p}}\right]=0 . }
\end{aligned}
$$

and the condition (2.8) in Theorem 2.2 is satisfied. Since $0<q<1$,

$$
\begin{aligned}
t_{0}^{p}+2 \Delta y_{0}^{p} \sum_{j=1}^{\infty} a_{j}^{p} & =1+2\left(1-\left(\frac{1+q}{q}\right)^{p}\right) \times\left[q^{p}\left(\frac{1}{q+1}\right)^{p}+\sum_{j=2}^{\infty}\left(\frac{q^{j}(1-q)}{1-q^{j+1}}\right)^{p}\right] \\
& <1+2\left(\left(\frac{q}{q+1}\right)^{p}-1\right) \\
& =2\left(\frac{q}{q+1}\right)^{p}-1<0
\end{aligned}
$$

Hence condition (2.9) in Theorem 2.2 is satisfied.

References

1. G. Bennett, Lower bounds for matrices, Linear Algebra and Its Applications, $\mathbf{8 2}$ (1986), 81-98.
2. G. Bennett, Lower bounds for matrices. II, Canad. J. Math., 44(1) (1992), 54-74.
3. G. Bennett, An inequality for Hausdorff means, Houston J. Math., 25(4) (1999), 709-744.
4. J. Bustoz and L. F. Gordillo, q-Hausdorff Summability, J. Comput. Anal. Appl., 7(1) (2005), 35-48.
5. G. H. Hardy, Divergent Series, Oxford University Press, 1949.
6. F. Hausdorff, Summation methoden und Momentfolgen, I, Math. Z., 9 (1921), 74109.
7. W. A. Hurwitz and L. L. Silverman, On the consistency and equivalence of certain definitions of summability, Trans. Amer. Math. Soc., 18 (1917), 1-20.
8. R. Lyons, A lower bound on the Cesaro operator, Proc. Amer. Math. Society, 86(4) (1982), 694.
9. B. E. Rhoades, Lower bounds for some matrices II, Linear and Multilinear Algebra, 26(1-2) (1990), 49-58.
10. B. E. Rhoades and Pali Sen, Lower bounds for some factorable matrices, Int. J. Math. Math. Sci., 2006, Art. ID 76135, 13 pp.
11. B. E. Rhoades and Pali Sen, Erratum: Lower bounds for some factorable matrices, [Int. J. Math. and Math. Sci., (2006), ID 76135, 13 pp.; MR2251755], Int. J. Math. Math. Sci. 2007, Art. ID 29096, 3 pp.
12. G. O. Thorin, An extension of a convexity theorem due to M. Riesz, Kungl, Fysiograf lśka Sallskapets i Lund Fordhandinger, 8 (1939), No. 14.

[^0]B. E. Rhoades

Department of Mathematics
Indiana University
Bloomington, IN 47405-7106
U.S.A.

E-mail: rhoades@indiana.edu

[^0]: T. Selmanogullari

 Department of Mathematics
 Mimar Sinan Fine Arts University
 Besiktas-Istanbul
 Turkey
 E-mail: tugcenmat@yahoo.com
 E. Savaş

 Department of Mathematics
 Istanbul Commerce University
 Uskudar-Istanbul
 Turkey
 E-mail: ekremsavas@yahoo.com

