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ON q-HAUSDORFF MATRICES

T. Selmanogullari, E. Savaş and B. E. Rhoades

Abstract. The q-Hausdorff matrices are defined in terms of symbols from
q-mathematics. The matrices become ordinary Hausdorrf matrices as q → 1.
In this paper, we consider the q-analogues of the Cesàro matrix of order one,
both for 0 < q < 1 and q > 1, and obtain the lower bounds for these matrices
for any 1 < p < ∞.

1. INTRODUCTION

Ordinary Hausdorff matrices were introduced by Hurwitz and Silverman [7] to
be the class of lower triangular matrix, that commute with C, the Cesàro matrix
of order one. Hausdorff [6] reexamined this class, in the process of solving the
moment problem over a finite interval, and developed many of the properties of the
matrices that now bear his name. The standard reference on Hausdorff means is the
book by G. H. Hardy [5].

A Hausdorff matrix H is a lower triangular matrix with entries defined by

(1.1) hnk =
(

n
k

)
∆n−kµk 0 ≤ k ≤ n

where
( n

k

)
is the ordinary binomial coefficient, {µn} is a real or complex se-

quence, and ∆ is the forward difference operator defined by ∆µk = µk −µk+1 and
∆n+1µk = ∆(∆nµk).

For example, the ordinary Cesàro matrix of order one, (C, 1) , has entries

cnk =




1
n + 1

, n ≥ k

0, n < k.
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Every Hausdorff matrix also has the representation

H = δµδ,

where µ is the diagonal matrix with entries {µn}, and δ is the lower triangular
matrix defined by

δnk = (−1)k
( n

k

)
.

It is easily verified that δ is its own inverse.
We now give a brief introduction to the symbols of q-mathematics and q-

Hausdorff matrices. The subject of q-mathematics has many applications in math-
ematics, and the beginnings of q-mathematics date back to time of Euler. The
q-analogue of the integer n, is defined by

[n]q =
1 − qn

1 − q
(q �= 1) .

Then one can define the q-analogue of the factorial, the q-factorial, as

[n]q! =




q − 1
q − 1

q2 − 1
q − 1

· · · q
n − 1
q − 1

, n = 1, 2, .....

1, n = 0.

and then one can move on to define the q-binomial coefficients, also known Gaussian
polynomials, (

n
k

)
q

=
[n]q !

[n − k]q! [k]q!
.

Note that, as q → 1, the q-binomial coefficients approach the usual binomial coef-
ficients.

For q > 0 ( see, e.g., [3]), a q-Hausdorff matrix Hq is defined by

hnk = q−k(n−k)

(
n
k

)
q

∆n−k
q µk (n, k = 0, 1, ...),

where again {µk} is any sequence and ∆q is the q- forward difference operator
defined by

(
∆n

q µ
)
k

= qnk
n∑

i=0

(−1)i

(
n
i

)
q

q


 i

2




µk+i.

A q-Hausdorff matrix Hq has the representation

Hq = δqµδ−1
q ,
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where , as before, µ is the diagonal matrix with diagonal entries {µk} and δq is the
lower triangular matrix with entries

(δq)nk = (−1)kq


 k

2


 (

n
k

)
q

for 0 ≤ k ≤ n. In contrast to ordinary Hausdorff matrices, δq is not its own inverse.
For q > 1, the q-Cesàro matrix, C1

q is defined by

(1.2) cnk =
qk

1 + q + ... + qn
0 ≤ k ≤ n.

The corresponding q-Cesàro matrix for 0 < q < 1 can be obtained by replacing q
by 1/q in the above definitions. Thus, C1

q for 0 < q < 1 has entries

(1.3) cnk =
qn−k

1 + q + ... + qn
0 ≤ k ≤ n.

Bustoz and Gordillo [4], have established a number of results for q-Hausdorff
matrices for 0 < q < 1.

2. A LOWER BOUND ON THE q-CESÀRO OPERATOR

Let A be a matrix with nonnegative entries, A ∈ B(lp) for some 1 < p and {xn}
a decreasing sequence of nonnegative numbers in lp. The lower bounds problem is
to find the largest number L such that

‖Ax‖p ≥ L ‖x‖p .

For p = 2 and A = (C, 1), the problem was solved by Lyons [8] who found that

L2 =
∞∑

k=0

1
(1 + k)2

.

This result was extended to lp spaces for p > 1 by Bennett [1]. In [1], Bennett
established the following result, where B(lp) denotes the set of bounded linear
operators on lp.

Theorem 2.1. Let {xn} be a monotone decreasing nonnegative sequence, let
A ∈ B(lp) with nonnegative entries, and 1 < p < ∞. Then

(2.4) ‖Ax‖p ≥ L ‖x‖p

where

(2.5) Lp := inf
r

(r + 1)−1
∞∑

j=0

(
r∑

k=0

ajk

)p

= inf
r

f(r).
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For A = (C, 1), the minimum occurs at f(0), which is the sum of the pth power
of the first column of (C, 1).

In [9], Rhoades examined the lower bounds questions for Rhaly matrices and
obtained some results. In [2], Bennett has shown that Lp = f(0) for each Haus-
dorff matrix H ∈ B(lp) with non-negative entries. Rhoades and Sen ([10, 11]),
determined the lower bounds for classes of Rhaly matrices, considered as bounded
linear operators on lp and proved the following Theorem 2.2 and Lemma 2.3 which
we will use to make our proofs. A factorable matrix is a lower triangular matrix
whose nonzero entries ank can be written in the form anbk, where an depends on
only n, and bk depends only on k.

Theorem 2.2. Let A be factorable matrix with positive entries, row sums t n,
and {an} monotone decreasing. Then sufficient conditions for f(0) = L p are that

(2.6) ∆yp
r < 0, ∆2yp

r > 0,

(2.7) ∆2

(
1

∆yp
r

)
≤ 0,

where yr = tr/ar,

(2.8) lim
r→∞

ap
r+1∆yp

r+1

∆2yp
r

≥ 0,

(2.9) tp0 + 2∆yp
0

∞∑
j=1

ap
j ≤ 0.

Lemma 2.3. Suppose that v ∈ C3 [0,∞). If, for all r > 0, p > 1, one has

(2.10)

(a) v
′

> 0,

(b) v
′′

> 0,

(c) 2(v
′′
)2 − v

′
v
′′′

> 0,

then ∆2(1/∆v(r)) ≤ 0.

We shall now determine the lower bounds for the q-Cesàro matrices of order one
for q > 1 and 0 < q < 1. First we prove that the q-Cesàro matrices of order one
are bounded linear operator on lp, for 1 < p < ∞ by making use of the following
special case of the Riesz-Thorin Theorem.

Theorem 2.4. [12]. If A is an infinite matrix for which A ∈ B(l ∞) and
A ∈ B(l1), then A ∈ B(lp) for every 1 < p < ∞.
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It is easily shown that each q-Cesàro matrix of order one for q > 1 is a bounded
linear operator from l1 to l1 and from l∞ to l∞.

∥∥C1
q

∥∥
1

= sup
k

∞∑
n=k

∣∣∣∣ qk

1 + q + ... + qn

∣∣∣∣
= sup

k
qk

∞∑
n=k

q − 1
qn+1 − 1

= sup
k

qk (q − 1)
∞∑

n=k

1
qn+1

qn+1

qn+1 − 1
.

Note that {
qn+1

qn+1 − 1

}
is a convergent monotone decreasing sequence. Therefore

∥∥C1
q

∥∥
1
≤ sup

k
qk (q − 1)

(
q

q − 1

) ∞∑
n=k

1
qn+1

= sup
k

qk+1
∞∑

n=k

1
qn+1

= sup
k

∞∑
j=0

1
qj

=
1

1 − 1/q
=

q

q − 1
.

Similarly we can show that an upper bound for ||C1
q ||1 (0 < q < 1) is 1/(1− q).

In [3] it has been shown that each row sum of each q-Hausdorff matrix is µ0.
Since µ0 = 1 for C1

q and the entries of each C1
q are positive,

∥∥C1
q

∥∥
∞ = 1, and

C1
q ∈ B(lp) for 1 < p < ∞, and 0 < q < 1.

Theorem 2.5. For the q-Cesàro matrix of order one (q > 1), Lp = f(0).

Proof. From (1.2) it is clear that C1
q , (1 < q < ∞) is a factorable matrix. To

prove our result we will use Theorem 2.2. To show that the sufficient conditions in
Theorem 2.2 are satisfied by C1

q , we shall use Lemma 2.3 with

tn = an

n∑
k=0

bk = 1, an =
1

[n + 1]q
, yn =

tn
an

= [n + 1]q .

Define
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v(r) =
(

qr+1 − 1
q − 1

)p

.

Then,

v′(r) =
pqr+1(ln q)(qr+1 − 1)p−1

(q − 1)p
> 0,

v′′(r) =
p(ln q)2qr+1(qr+1 − 1)p−2

(
pqr+1 − 1

)
(q − 1)p

> 0,

and

v′′′(r) =
p(ln q)3(qr+1 − 1)p−3qr+1[p2q2(r+1) + qr+1(1 − 3p) + 1]

(q − 1)p

2(v
′′
)2 − v

′
v
′′′

=
p2(ln q)4q2(r+1)(qr+1 − 1)2p−4

(q − 1)2p

×[2(pqr+1 − 1)2 − (p2q2(r+1) + qr+1(1− 3p) + 1)] > 0.

Hence by using Lemma 2.3, conditions (2.6) and (2.7) in Theorem 2.2 are satisfied.
Also

lim
r→∞

(
1−q

1−qr+2

)p

×(

(
1 − q−(r+2)

)p − (q − q−(r+2)
)p(

q−1 − q−(r+2)
)p − 2

(
1 − q−(r+2)

)p + (q − q−(r+2))p
)=0.

Hence condition (2.8) in Theorem 2.2 is satisfied. Finally,

tp0 + 2∆yp
0

∞∑
j=1

ap
j = 1 + 2(1 − (q + 1)p)

∞∑
j=1

(q − 1)p

(qj+1 − 1)p

= 1+
2(1−(q+1)p)(q−1)p

(q2−1)p
+ 2(1−(q+1)p)

∞∑
j=2

(q−1)p

(qj+1−1)p
.

Since q > 1, the sum is less than

1 +
2(1− (q + 1)p)

(q + 1)p
= 1 +

2
(q + 1)p

− 2 =
2

(q + 1)p
− 1 < 0,

so that
tp0 + 2∆y2

0

∞∑
j=1

a2
j < 0.

and condition (2.9) in Theorem 2.2 is satisfied.

The following theorem describes the lower bound condition for C1
q (0 < q < 1).

Theorem 2.6. For the q-Cesàro matrix of order one (0 < q < 1), Lp = f(0).
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Proof. From (1.3) it is clear that C1
q (0 < q < 1) is factorable matrix. Again

we use Lemma 2.3 to prove that the conditions in Theorem 2.2 are satisfied by C1
q .

Using Lemma 2.3 with

tn = an

n∑
k=0

bk = 1, an =
qn

[n + 1]q
, yn =

tn
an

=
[n + 1]q

qn
,

define
v(r) =

(q−r − q)p

(1 − q)p ,

then

v′(r) =
p(ln(1/q))(1− qr+1)p−1

qpr(1 − q)p
> 0,

v′′(r) =
p(ln(1/q))2(1 − qr+1)p−2

qpr(1 − q)p
[p − qr+1] > 0.

and

v′′′(r) =
p(ln(1/q))3(1 − qr+1)p−3

qpr(1− q)p
[q2(r+1) − (3p− 1)qr+1 + p2].

Thus

2(v
′′
)2 − v

′
v
′′′

=
p2(ln(1/q))4(1− qr+1)2p−4

q2pr(1 − q)2p
[q2(r+1) − (p + 1)qr+1 + p2] > 0,

From Lemma 2.3, conditions (2.6) and (2.7) in Theorem 2.2 are satisfied, and

lim
r→∞

ap
r+1∆yp

r+1

∆2yp
r

= lim
r→∞ qp(r+1)

(
1 − q

1 − qr+2

)p

×
[

qp(1− qr+2)p − (1− qr+3)p

q2p(1− qr+1)p − 2qp(1 − qr+2)p + (1 − qr+3)p

]
= 0.

and the condition (2.8) in Theorem 2.2 is satisfied. Since 0 < q < 1,

tp0+2∆yp
0

∞∑
j=1

ap
j = 1+2

(
1−
(

1+q

q

)p)
×

qp

(
1

q+1

)p

+
∞∑

j=2

(
qj(1−q)
1−qj+1

)p



< 1 + 2
((

q

q + 1

)p

− 1
)

= 2
(

q

q + 1

)p

− 1 < 0

Hence condition (2.9) in Theorem 2.2 is satisfied.
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