differentiation on vilenkin groups using a matrix

Medo Pepic

$$
\begin{aligned}
& \text { Abstract. Given a Vilenkin group } G \text {, a scalar matrix } \Lambda=\left[\lambda_{i j}\right]_{i \in \mathbb{N}, j \in \mathbb{N}_{o}} \text {,a } \\
& \text { function } f \in L^{1}(G) \text {, and a point } x \in G \text { we introduce, for each } \alpha \in \mathbb{R} \text {, the } \\
& (\Lambda, \alpha)-\text { derivative } f \text { at } x \text { denoted by } f^{(\Lambda, \alpha)}(x) \text {. We also introduce the sets: } \\
& \qquad \begin{array}{c}
M_{\alpha}=M(G, \Lambda, \alpha, x):=\left\{f \in L^{1}(G): \exists f^{(\Lambda, \alpha)}(x)\right\}, \\
M=M(G, \Lambda, x):=\left\{f \in L^{1}(G): \exists f^{\Lambda}(x)\right\} ;
\end{array}
\end{aligned}
$$

where $f^{\Lambda}(x)$ derivative in [8], which is a generalization of Onneweer's derivative $f^{[1]}(x)$ in [6]. We proved:
(a) Five theorems which express essential characteristics of $(\Lambda, \alpha)-$ derivative,
(b) $M=M_{0}$,
(c) $(\forall \alpha, \beta \in \mathbb{R}) \wedge(\alpha<\beta) \Rightarrow\left(M_{\alpha} \subseteq M_{\beta}\right) \wedge\left(M_{\beta} \backslash M_{\alpha} \neq \theta\right)$.

Statement b) states that the method $(\Lambda, \alpha)-$ differentiation, for $\alpha=0$, is equal to Λ - differentiation and statement c) says that (Λ, α) - differentiation increases with increasing $\alpha \in \mathbb{R}$.

1. Introduction and Preliminaries

By a Vilenkin group G we mean an infinite, totally unconnected, compact Abelian group which satisfies the second axiom of countability. Vilenkin [10] has shown that the topology in G can be given by basic chain of neighborhoods of zero

$$
\begin{equation*}
G=G_{0} \supset G_{1} \supset \cdots \supset G_{n} \supset \ldots, \cap_{n=0}^{\infty} G_{n}=\{0\} \tag{1}
\end{equation*}
$$

consisting of open subgroups of the group G, such that quotient group G_{n} / G_{n+1} is cyclic group of prime order $p_{n+1}, \forall n \in \mathbb{N}_{0}$. G is called bounded iff a sequence

$$
\left(p_{n}\right)_{n \in \mathbb{N}}=\left(p_{1}, p_{2}, \ldots\right)
$$

Received June 28, 2006, accepted March 10, 2010.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 43A75.
Key words and phrases: Vilenkin group, Differentiation of functions.
Oekuje se da eovaj rad biti sufinansiran od strane Federalnog ministarstva obrazovanja i nauke BiH u okviru odgovarajueg naunoistraivakog projekta (Konkurs iz 2010. godine).
is bounded.
Classical example of Vilenkin group is product space

$$
\prod_{k=0}^{\infty} G_{k}
$$

where $G_{k}=\{0,1\}$ is a cyclic group of the second order for all $k \in \mathbb{N}_{0}$, equipped by discrete topology, with the component adding (note that adding in each component is done by module 2). It's direct generalization is group

$$
G=\prod_{k=0}^{\infty} \mathbb{Z}\left(n_{k}\right)
$$

where $\mathbb{Z}\left(n_{k}\right):=\left\{0,1,2, \ldots, n_{k}-1\right\}, n_{k} \geq 2$, is cyclic group of order $n_{k}\left(k \in \mathbb{N}_{0}\right)$ equipped by discrete topology.

It is possible to supply G with a normalized Haar measure μ such that $\mu\left(G_{n}\right)=$ m_{n}^{-1}, where $m_{n}:=p_{1} p_{2} \ldots p_{n}\left(m_{0}:=1\right)$. For every $1 \leq p<\infty$ let $L^{p}(G)$ denote the L^{p} space on G with respect to the measure μ. The class of all continuous complex functions on G will be denoted by $C(G)$. If $1 \leq p_{1}<p_{2}<\infty$, then $L^{p_{2}}(G) \subset L^{p_{1}}(G)$. Let Γ denote the (multiplicative) group of characters of the group G, and let $\Gamma_{n}=G_{n}^{\perp}$ denote the annihilator of G_{n} in Γ. The dual group (Γ, \cdot) is a discrete countable Abelian group with torzion [5, (24.15) and (24.26)]. Vilenkin [10] has proved that there exists a Paley - tupe ordering of the elements in Γ : let us chose a $\chi \in \Gamma_{k+1} \backslash \Gamma_{k}$ and denote by $\chi_{m_{k}}$. Every $n \in \mathbb{N}$ has a unique representation as

$$
\begin{equation*}
n=\sum_{i=0}^{N} a_{i} m_{i}, a_{i} \in\left\{0,1,2, \ldots, p_{i+1}-1\right\} \wedge a_{N} \neq 0 \wedge N=N(n) \tag{2}
\end{equation*}
$$

Therefore, $m_{N} \leq n<m_{N+1}$ and $n \rightarrow \infty \Leftrightarrow N \rightarrow \infty$. Let χ_{n} character defined by

$$
\begin{equation*}
\chi_{n}=\prod_{i=0}^{N} \chi_{m_{i}}^{a_{i}}=\prod_{i=0}^{N} r_{i}^{a_{i}}, r_{i}:=\chi_{m_{i}}\left(\forall i \in \mathbb{N}_{0}\right) \tag{3}
\end{equation*}
$$

It is straightforward that

$$
\begin{equation*}
\left(\forall n \in \mathbb{N}_{0}\right) \Gamma_{n}=\left\{\chi_{j}: 0 \leq j<m_{n}\right\} \tag{4}
\end{equation*}
$$

The sequence $\left(\chi_{n}\right)_{n \in \mathbb{N}_{0}}$ is a called a Vilenkin system. For every $n \in \mathbb{N}_{0}$ there exists $x_{n} \in G_{n} \backslash G_{n+1}$ such that $r_{n}\left(x_{n}\right)=e^{\frac{2 \pi}{p_{n+1}} i}$. Every $x \in G$ can be represented in unique way as

$$
\begin{equation*}
x=\sum_{n=0}^{\infty} a_{n} x_{n}, \quad a_{n} \in\left\{0,1,2, \ldots, p_{n+1}-1\right\} \tag{5}
\end{equation*}
$$

Then
(6)

$$
G_{n}=\left\{x \in G: \sum_{i=0}^{\infty} a_{i} x_{i}, a_{i}=0,0 \leq i<n\right\}
$$

A Vilenkin series $\sum_{n=0}^{\infty} c_{n} \chi_{n}$ is a Fourier series iff there is a function $f \in L^{1}(G)$ such that

$$
\begin{equation*}
c_{n}=\hat{f}\left(\chi_{n}\right)=\hat{f}(n):=\int_{G} f \overline{\chi_{n}}, \forall n \in \mathbb{N}_{0} \tag{7}
\end{equation*}
$$

where \bar{z} denotes the complex-conjugate of z. In that case, the $n-t h$ partial sum of the series is given by

$$
\begin{equation*}
S_{n}(f)=\sum_{k=0}^{n-1} \hat{f}(k) \chi_{k}=f * D_{n} \tag{8}
\end{equation*}
$$

where D_{n} defined by

$$
\begin{equation*}
D_{n}:=\sum_{k=0}^{n-1} \chi_{k} \tag{9}
\end{equation*}
$$

is the Dirichlet kernel of index n on G and

$$
\begin{equation*}
f * \varphi(x):=\int_{G} f(x-h) \varphi(h) d \mu(h) \tag{10}
\end{equation*}
$$

is convolution of function f and φ on G.
Spelling J. E. Gibs [3] and [4] first introduced the duadic derivative " [1]" with the following property

$$
\left[\omega_{k}(x)\right]^{[1]}=k \cdot \omega_{k}(x),
$$

where ω_{k} is Walsh (J. L. Walsh) function of index k. This derivative was further studied by P. L. Butzer and H. J. Wagner [2], and also F. Schipp [9] who proved that $k \cdot a_{k} \rightarrow 0$ yields

$$
\left[\sum_{k=0}^{\infty} a_{k} \omega_{k}(x)\right]^{[1]}=\sum_{k=0}^{\infty} k a_{k} \omega_{k}(x) .
$$

V. A. Skvortsov and W. R. Wade have proved the analogue result for the series over arbitrary system of characters from 0-dimensional groups under more general assumptions and have simplified the proof. J. Pal and P. Simon [7] have defined the derivative of a function defined on an arbitrary 0 -dimensional compact commutative group. C. V. Onneweer [6] has studied differentiation of functions (with complex
values) defined on dyadic group \mathbf{D}. In [6] he has given three definitions of dyadic differentiation where the Leibniz differentiation formula does not hold. His main idea was that the derivative on a duadic group should be defined in such a way that relations between a function defined on \mathbf{D} (manly relations between characters on D) and its derivative be as simple and natural as possible. For example, the natural relation the character

$$
e^{i k x}=\cos (k x)+i \sin (k x)
$$

on the torus group $\mathbf{T}=\mathbb{R} / 2 \pi \mathbf{Z}$ and its derivative

$$
\left(e^{i k x}\right)^{\prime}=i k e^{i k x}
$$

should be in some way preserved for a dyadic derivative of a character on D. M. Pepic, in [8], starting with [6, Definition 3], applied to Vilenkin groups, gave a matrix interpretation of Onneweer's derivative $f^{[1]}(x)$, of a function $f \in L^{1}(G)$, defined by

$$
\begin{equation*}
f^{[1]}(x):=\lim _{n \rightarrow \infty} E_{n} f(x) \tag{11}
\end{equation*}
$$

where

$$
E_{n} f(x):=\sum_{k=0}^{n-1}\left(m_{k+1}-m_{k}\right)\left[f(x)-S_{m_{k}}(x)\right] .
$$

This derivative is represented by the matrix $\Lambda=\left[\lambda_{i j}\right]_{i \in \mathbb{N}, j \in \mathbb{N}_{0}}$, where

$$
\lambda_{i j}:= \begin{cases}1 & \text { for } m_{n} \leq i<m_{n+1} \wedge 0 \leq j<m_{n}, n \in \mathbb{N} \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

That motivated him to introduce the following definition.
Definition 0. Let G be a given Vilenkin group and let $\Lambda=\left[\lambda_{i j}\right]_{i \in \mathbb{N}, j \in \mathbb{N}_{0}}$ be a scalar matrix. For $f \in L^{1}(G)$ and $x \in G$ and $i, n \in \mathbb{N}$ let

$$
\begin{equation*}
L_{i}(f, \Lambda, x):=\sum_{j=0}^{\infty} \lambda_{i j} \hat{f}(j) \chi_{j}(x) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}(f, \Lambda, x):=\sum_{j=-1}^{n-1} \sum_{i=m_{j}}^{m_{j+1}-1}\left[\sigma(f, \Lambda, x)-L_{i}(f, \Lambda, x)\right] \tag{14}
\end{equation*}
$$

$\left(m_{-1}:=0\right)$ with the condition that

$$
L_{i}(f, \Lambda, x) \rightarrow \sigma(f, \Lambda, x), i \rightarrow \infty
$$

Then the

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{n}(f, \Lambda, x)(\text { if it exists }) \tag{15}
\end{equation*}
$$

is called Λ-derivative of the function f at $x \in G$ and denoted by $f^{\Lambda}(x)$.

The Λ-derivative $f^{\Lambda}(x)$ is a generalization of Onneweer's derivative $f^{[1]}(x)$ [8, Re mark 1.2]. Also in [8] five theorems that express the essential characteristic of the Λ-derivative are given. In this paper, for any $\alpha \in \mathbb{R}$ we to introduce the new notion (Λ, α)-derivative by a following Definition 1 .

Definition 1.

(a) Let $\alpha \in \mathbb{R}$ be a given. Let G be a given Vilenkin group, and let $\Lambda=$ $\left[\lambda_{i j}\right]_{i \in \mathbb{N}, j \in \mathbb{N}_{0}}$ be a given scalar matrix. For $f \in L^{1}(G)$ and $x \in G$ and $i, n \in \mathbb{N}$ let

$$
\begin{equation*}
L_{i}(G, f, \Lambda, x):=\sum_{j=0}^{\infty} \lambda_{i j} \hat{f}(j) \chi_{j}(x) \tag{16}
\end{equation*}
$$

and

$$
E_{n}(G, f, \Lambda, \alpha, x):=\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}}
$$

$$
\begin{equation*}
\sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right] \tag{17}
\end{equation*}
$$

with the condition that

$$
L_{k}(G, f, \Lambda, x) \rightarrow \sigma(G, f, \Lambda, x), k \rightarrow \infty
$$

where n is given by (2). Then the

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{n}(G, f, \Lambda, \alpha, x) \text { if it exists) } \tag{18}
\end{equation*}
$$

is called the $(\boldsymbol{\Lambda}, \alpha)$-derivative of the function f at x and denoted

$$
f^{(\Lambda, \alpha)}(x)
$$

(b) Suppose the condition in a) holds

$$
\lim _{n \rightarrow \infty} E_{n}(G, f, \Lambda, \alpha, x)=g(x), \forall x \in G
$$

then function $g \in L^{1}(G)$ called $(\boldsymbol{\Lambda}, \alpha)$-derivative of the f and we write

$$
g=f^{(\Lambda, \alpha)}
$$

(c) If G, f, Λ, α, x be are as in $a)$, then we use following notation:

$$
\begin{gather*}
M_{\alpha}=M(G, \Lambda, \alpha, x):=\left\{f \in L^{1}(G): \text { exists } f^{(\Lambda, \alpha)}(x)\right\} \tag{19}\\
M=M(G, \Lambda, x):=\left\{f \in L^{1}(G): \text { exists } f^{\Lambda}(x)\right\} \tag{20}
\end{gather*}
$$

The results in this paper are the following statements about the main properties of the (Λ, α) - derivative of the functions on Vilenkin group G.

2. Results

Theorem 1. Let $G, f, \Lambda, \alpha, x, L_{i}(G, f, \Lambda, x)$ and $E_{n}(G, f, \Lambda, \alpha, x)$ be as in Definition 1. Then the following statements are true:
(a) $(\forall i \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right)\left(\forall \chi_{s} \in \Gamma\right)(\forall x \in G) L_{i}\left(G, \chi_{s}, \Lambda, x\right)=\lambda_{i s} \chi_{s}(x)$. Therefore, $L_{i}\left(G, \chi_{s}, \Lambda, x\right) \rightarrow \lambda_{\infty s} \chi_{s}(x), i \rightarrow \infty ;$ where

$$
\begin{equation*}
\lambda_{\infty s}:=\lim _{i \rightarrow \infty} \lambda_{i s} \tag{21}
\end{equation*}
$$

and

$$
\left(\forall s \in \mathbb{N}_{0}\right)\left(\forall \chi_{s} \in \Gamma\right)(\forall x \in G) \sigma\left(G, \chi_{s}, L a m b d a, x\right)=\lambda_{\infty s} \chi_{s}(x)
$$

(b) $\left(\forall s \in \mathbb{N}_{0}\right)(\forall \alpha \in \mathbb{N})(\forall x \in G) E_{n}\left(G, \chi_{s}, \Lambda, \alpha, x\right)=\Lambda_{n}(G, s, \alpha) \cdot \chi_{s}(x)$, where

$$
\begin{equation*}
\Lambda_{n}(G, s, \alpha):=\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty s}-\lambda_{k s}\right) \tag{22}
\end{equation*}
$$

(c) For arbitrary $s \in \mathbb{N}_{0}, \chi_{s}$ is a (Λ, α) - differentiable function at every $x \in G$ iff the following limit exists

$$
\begin{equation*}
\Lambda_{\infty}(G, s, \alpha)=\lim _{n \rightarrow \infty} \Lambda_{n}(G, s, \alpha) \tag{23}
\end{equation*}
$$

In that case

$$
\chi_{s}^{(\Lambda, \alpha)}(x)=\Lambda_{\infty}(G, s, \alpha) \cdot \chi_{s}(x)
$$

holds.
(d) $(\forall k \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right)(\forall x \in G)\left[L_{k}(G, f, \Lambda, x)\right]^{\curlywedge}(s)=\lambda_{k s} \cdot \hat{f}(s)$, under the condition that the series that appears in the proof may be integrated term by term.
(e) $(\forall n \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right)(\forall \alpha \in \mathbb{R})\left(\forall f \in L^{1}(G)(\forall x \in G)\right.$

$$
\left[E_{n}(G, f, \Lambda, \alpha, x)\right]^{\curlywedge}(s)=\Lambda_{n}(G, s, \alpha) \cdot \hat{f}(s)
$$

under the condition that the series that appears in the proof may be integrated term by term.

Corollary 1. If in Theorem 1. we take $\lambda_{\text {is }}=C, \forall i \in \mathbb{N}(C-$ constant $)$, where $s \in \mathbb{N}_{0}$ is given. Then the following holds:

1. $(\forall n \in \mathbb{N}) \Lambda_{n}(G, s, \alpha)=0 \wedge \Lambda_{\infty}(G, s, \alpha)=0$.
2. $(\forall i \in \mathbb{N}) L_{i}\left(G, \chi_{s}, \Lambda, x\right)=C \cdot \chi_{s}(x)$.
3. $(\forall n \in \mathbb{N})(\forall x \in G) E_{n}\left(G, \chi_{s}, \Lambda, \alpha, x\right)=0$ (particular $\chi_{s}^{(\Lambda, \alpha)}(x)=0, \forall x \in$ $G)$.
4. $(\forall i \in \mathbb{N})\left[L_{i}(G, f, \Lambda, x)\right]^{\curlywedge}(s)=C \cdot \hat{f}(s)$.
5. $(\forall n \in \mathbb{N})\left[E_{n}(G, f, \Lambda, \alpha, x)\right]^{\curlywedge}(s)=0$.

Corollary 2. If in Theorem 1. we take $(\forall i \in \mathbb{N})(\forall j \geq i) \lambda_{i j}=0$, then

$$
L_{i}(G, f, \Lambda, x)=\sum_{i=0}^{i-1} \lambda_{i j} \cdot \hat{f}(j) \chi_{j}(x)
$$

In that case the following statements holds:

1. $(\forall i \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right) L_{i}\left(G, \chi_{s}, \Lambda, x\right)=\lambda_{i s} \cdot \delta^{*}(i, s) \cdot \chi_{s}(x)$, where

$$
\delta^{*}(i, s):= \begin{cases}1 & , i>s \tag{24}\\ 0 & , \text { otherwise }\end{cases}
$$

2. $(\forall k \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right)\left[L_{k}(G, f, \Lambda, x)\right]^{\curlywedge}(s)=\lambda_{k s} \cdot \delta^{*}(k, s) \cdot \hat{f}(s)$.
3. $(\forall n \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right) E_{n}\left(G, \chi_{s}, \Lambda, \alpha, x\right)=\Lambda_{n}^{*}(G, s, \alpha) \cdot \chi_{s}(x)$, where

$$
\begin{equation*}
\Lambda_{n}^{*}(G, s, \alpha):=\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\lambda_{\infty s}-\lambda_{k s} \cdot \delta^{*}(k, s)\right] \tag{25}
\end{equation*}
$$

In particular if n satisfies $m_{N+1}<s$, then

$$
\begin{gathered}
\Lambda_{n}^{*}(G, s, \alpha)=\lambda_{\infty s} \cdot \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha-1}} \\
\text { 4. }(\forall n \in \mathbb{N})\left(\forall s \in \mathbb{N}_{0}\right)\left[E_{n}(G, f, \Lambda, \alpha, x)\right]^{\wedge}(s)=\Lambda_{n}^{*}(G, s, \alpha) \cdot \hat{f}(s) .
\end{gathered}
$$

Theorem 2. Let $G, f, \Lambda, \alpha, x, L_{i}(G, f, \Lambda, x)$ and $E_{n}(G, f, \Lambda, \alpha, x)$ be as in Definition 1. Then the following statements hold:
(a) If $(\forall x \in G) f(x)=C(C$ - constant $)$, then f is (Λ, α)-differentiable at every point $x \in G$ iff the limit

$$
\Lambda_{\infty}(G, 0, \alpha)=\lim _{n \rightarrow \infty} \Lambda_{n}(G, 0, \alpha)
$$

exists. In that case

$$
(\forall x \in G) f^{(\Lambda, \alpha)}(x)=C \cdot \Lambda_{\infty}(G, 0, \alpha)
$$

and particular, $C \neq 0$, then

$$
f^{(\Lambda, \alpha)}(x)=0(\forall x \in G) \text { iff } \Lambda_{\infty}(G, 0, \alpha)=0
$$

(b) If f and g are (Λ, α)-differentiable functions at a point $x \in G$, then the function $F:=f+g$ is (Λ, α)-differentiable at x and

$$
\begin{equation*}
(f+g)^{(\Lambda, \alpha)}(x)=f^{(\Lambda, \alpha)}(x)+g^{(\Lambda, \alpha)}(x) \tag{26}
\end{equation*}
$$

(c) If $f(\Lambda, \alpha)$-differentiable functions at a point $x \in G$, and C is constant, then the function $\varphi:=C \cdot f$ is (Λ, α)-differentiable at x and

$$
\begin{equation*}
(C \cdot f)^{(\Lambda, \alpha)}(x)=C \cdot f^{(\Lambda, \alpha)}(x) \tag{27}
\end{equation*}
$$

(d) If f and g are (Λ, α)-differentiable functions at a point $x \in G$, then the function $\Psi:=f * g$ is (Λ, α)-differentiable at x and

$$
(f * g)^{(\Lambda, \alpha)}(x)=\sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1} \sum_{j=0}^{\infty}\left(\lambda_{\infty j}-\lambda_{k j}\right) \hat{f}(j) \hat{g}(j) \chi_{j}(x)
$$

holds (under condition that the indicated limit exists).
(e) The Leibniz differentiation formula does not hold (generally) for the (Λ, α)derivative.

The well known fact that differentiability implies continuity in the classical case, hold in some sense in the case of the (Λ, α)-derivative. That fact is made precise by the following theorem.

Theorem 3. Let $(\forall k \in \mathbb{N}) L_{k}(G, f, \Lambda, x)$ be a continuous function in some neighborhood $x_{0}+G_{s}$ of the point x_{0} (this condition is automatically fulfilled when Λ is a triangular matrix). Then: If f is (Λ, α)-differentiable functions in $x_{0}+G_{s}$ and

$$
\sigma(G, f, \Lambda, x)=\lim _{k \rightarrow \infty} L_{k}(G, f, \Lambda, x)
$$

uniformly on $x_{0}+G_{s}$, then $\sigma(G, f, \Lambda, x)$ is a continuous function in $x_{0}+G_{s}$.
Remark 1. Let us notice for every function

$$
f \in L^{p}(G)(1 \leq p \leq \infty)\left\|S_{m_{n}}(f)-f\right\|_{p} \rightarrow 0(n \rightarrow \infty)[1, p .133] .
$$

If $\alpha=0$ and $\Lambda=\left[\lambda_{i j}\right]_{i \in \mathbb{N}, j \in \mathbb{N}_{0}}$ is the matrix in Onneweer's definition of differentiation, then

$$
(\forall x \in G)(\forall i \in \mathbb{N})\left(\forall k: m_{i} \leq k<m_{i+1}\right) L_{k}(G, f, \Lambda, x)=S_{m_{k}} f(x)
$$

and

$$
\sigma(G, f, \Lambda, x)=f(x) .
$$

In that case Theorem 3 be comes: If f is $(\Lambda, 0)$-differentiable functions in some neighborhood $x_{0}+G_{s}$ of the point x_{0} and $S_{m_{k}} f(x) \rightarrow f(x)(k \rightarrow \infty)$ uniformly on $x_{0}+G_{s}$, then f is continuous function in x_{0}.

Theorem 4. Suppose g is the (Λ, α)-derivative of $f \in L^{1}(G)$. If the Lebesgue dominated convergence theorem can be applied to the seguence

$$
\left(E_{n}\right)_{n \in \mathbb{N}}, E_{n}=E_{n}(G, f, \Lambda, \alpha, x)
$$

and function g, then $g \in L^{1}(G)$ and for each $j \in \mathbb{N}_{0}$

$$
\begin{equation*}
\stackrel{\hat{g}}{ }(j)=\Lambda_{\infty}(G, j, \alpha) \cdot \hat{f}(j) \tag{28}
\end{equation*}
$$

Theorem 5. If G, f, Λ, α, x are as in Definition 1, then we following statements hold:
(a) $\exists f^{\Lambda}(x) \Leftrightarrow \exists f^{(\Lambda, 0)}(x)$. In that case $f^{\Lambda}(x)=f^{(\Lambda, 0)}(x)$ holds. Therefore

$$
\begin{equation*}
M=M_{0} \tag{29}
\end{equation*}
$$

(b) $(\forall \alpha, \beta \in \mathbb{R}) \wedge(\alpha<\beta) \Rightarrow\left(M_{\alpha} \subseteq M_{\beta}\right) \wedge\left(M_{\beta} \backslash M_{\alpha} \neq \theta\right)(30)$

Remark 2. Statement a) in Theorem 5 says that the Λ-derivative is equal to the $(\Lambda, 0)-$ derivative and Statement b) in Theorem 5 says that the (Λ, α) - derivative, for each $0<\alpha$ is a strict generalization of the Λ - derivative.

3. Proofs

3.1. Proof of the Theorem 1.

1. Knowing that

$$
\hat{\chi}_{m}(n)=\int_{G} \chi_{m} \overline{\chi_{n}}=\delta(m, n):= \begin{cases}1 & , m=n \\ 0 & , m \neq n\end{cases}
$$

one obtains

$$
L_{i}\left(G, \chi_{s}, \Lambda, x\right)=\sum_{j=0}^{\infty} \lambda_{i j} \hat{\chi}_{s}(j) \chi_{j}(x)=\lambda_{i s} \cdot \chi_{s}(x)
$$

and

$$
L_{i}\left(G, \chi_{s}, \Lambda, x\right) \rightarrow \lambda_{\infty s} \cdot \chi_{s}(x)(i \rightarrow \infty)
$$

Therefore,

$$
\sigma\left(G, \chi_{s}, \Lambda, x\right)=\lambda_{\infty s} \cdot \chi_{s}(x)
$$

2. From statement 1 one obtains

$$
\begin{aligned}
& E_{n}\left(G, \chi_{s}, \Lambda, \alpha, x\right) \\
& :=\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma\left(G, \chi_{s}, \Lambda, x\right)-L_{k}\left(G, \chi_{s}, \Lambda, x\right)\right] \\
& =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}^{-1}}\left[\lambda_{\infty s} \chi_{s}(x)-\lambda_{k s} \chi_{s}(x)\right]=\Lambda_{n}(G, s, \alpha) \cdot \chi_{s}(x) .
\end{aligned}
$$

3. Follows from Definition 1 and statement 2.
4.

$$
\begin{aligned}
{\left[L_{k}(G, f, \Lambda, x)\right]^{\curlywedge}(s) } & =\int_{G}\left(\sum_{j=0}^{\infty} \lambda_{k j} \hat{f}(j) \chi_{j}\right) \overline{\chi_{s}} \\
& =\sum_{j=0}^{\infty} \lambda_{k j} \hat{f}(j) \int_{G} \chi_{j} \overline{\chi_{s}}=\lambda_{k s} \hat{f}(s)
\end{aligned}
$$

(under the condition that the series can be integrated term by term).
5.

$$
\begin{aligned}
& {\left[E_{n}(G, f, \Lambda, x)\right]^{\curlywedge}(s)} \\
& =\int_{G}\left\{\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right]\right\} \overline{\chi_{s}} \\
& =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\int_{G} \sigma(G, f, \Lambda, x) \overline{\chi_{s}}-\int_{G} L_{k}(G, f, \Lambda, x) \overline{\chi_{s}}\right] \\
& =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty s} \hat{f}(s)-\lambda_{k s} \hat{f}(s)\right)=\Lambda_{n}(G, s, \alpha) \hat{f}(s) .
\end{aligned}
$$

(under the condition that the series $\sigma(G, f, \Lambda, x) \overline{\chi_{s}}$ and $L_{k}(G, f, \Lambda, x) \overline{\chi_{s}}$ can be integrated term by term).

3.2. Proof of the Corolary 1.

The proof is evident.

3.3. Proof of the Corolary 2.

1. Knowing that

$$
\hat{\chi}_{m}(n)=\delta(m, n) \text { and }(\forall i \in \mathbb{N})\left(\forall j \in \mathbb{N}_{0}\right) \lambda_{i j}=\lambda_{i j} \cdot \delta^{*}(i, j)
$$

one obtains

$$
L_{i}\left(G, \chi_{s}, \Lambda, x\right)=\sum_{j=0}^{i-1} \lambda_{i j} \hat{\chi}_{s}(j) \chi_{j}(x)=\lambda_{i s} \cdot \chi_{s}(x) \cdot \delta^{*}(i, s)
$$

2. $\left[L_{i}(G, f, \Lambda, x)\right]^{\curlywedge}(s)=\int_{G}\left(\sum_{j=0}^{i-1} \lambda_{i j} \hat{f}(j) \chi_{j}\right) \overline{\chi_{s}}=\lambda_{i s} \cdot \delta^{*}(i, s) \cdot \hat{f}(s)$.
3. From 1. we have

$$
\begin{aligned}
E_{n}\left(G, \chi_{s}, \Lambda, \alpha, x\right)= & \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \\
& \sum_{k=m_{i}}^{m_{i+1}-1}\left[\lambda_{\infty s} \cdot \chi_{s}(x)-\lambda_{k s} \cdot \delta^{*}(k, s) \cdot \chi_{s}(x)\right] \\
= & \Lambda_{n}^{*}(G, s, \alpha) \cdot \chi_{s}(x)
\end{aligned}
$$

4.

$$
\begin{aligned}
& {\left[E_{n}(G, f, \Lambda, \alpha, x)\right]^{\curlywedge}(s)} \\
& =\int_{G}\left\{\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right]\right\} \overline{\chi_{s}} \\
& =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1} \int_{G}\left[\sum_{j=0}^{\infty} \lambda_{\infty j} \hat{f}(j) \chi_{j}-\sum_{j=0}^{k-1} \lambda_{k j} \hat{f}(j) \chi_{j}\right] \overline{\chi_{s}} \\
& =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}^{-1}}\left[\lambda_{\infty s} \hat{f}(s)-\lambda_{k s} \delta^{*}(k, s) \hat{f}(s)\right] \\
& =\Lambda_{n}^{*}(G, s, \alpha) \cdot \hat{f}(s)
\end{aligned}
$$

(under the condition that the series

$$
\sum_{j=0}^{\infty} \lambda_{\infty j} \hat{f}(j) \chi_{j}(x) \overline{\chi_{s}(x)}
$$

can be integrated term by term)

3.4. Proof of the Theorem 2.

(a) Let

$$
(\forall x \in G) f(x)=C(C-\text { constnt })
$$

Then, knowing that

$$
\hat{C}(j)=\int_{G} C \overline{\chi_{j}}=\left\{\begin{array}{ll}
C & , j=0 \\
0 & , j \neq 0
\end{array}=C \cdot \delta(0, j)\right.
$$

one obtains

$$
L_{k}(G, C, \Lambda, x)=C \lambda_{k 0} \text { and } \sigma(G, C, \Lambda, x)=C \lambda_{\infty 0}
$$

Therefore,

$$
\begin{aligned}
E_{n}(G, C, \Lambda, \alpha, x) & =\sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(C \cdot \lambda_{\infty s}-C \cdot \lambda_{k s}\right) \\
& =C \cdot \Lambda_{n}(G, 0, \alpha) \text { and } f^{(\Lambda, \alpha)}(x)=C \cdot \Lambda_{\infty}(G, 0, \alpha), \forall x \in G .
\end{aligned}
$$

Particular, if $C \neq 0$, then

$$
f^{(\Lambda, \alpha)}(x)=0(\forall x \in G) \Leftrightarrow \Lambda_{\infty}(G, 0, \alpha)=0
$$

(b) Let f and g are (Λ, α)-differentiable functions at a point $x \in G$ and

$$
F:=f+g .
$$

Then

$$
\begin{aligned}
& E_{n}(G, F, \Lambda, \alpha, x) \\
= & \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\begin{array}{c}
\sigma(G, f, \Lambda, x)+\sigma(G, g, \Lambda, x) \\
-L_{k}(G, f, \Lambda, x)-L_{k}(G, g, \Lambda, x)
\end{array}\right] \\
= & f^{(\Lambda, \alpha)}(x)+g^{(\Lambda, \alpha)}(x) .
\end{aligned}
$$

(c) Let f be a (Λ, α) - differentiable functions at a point $x \in G$ and C a constant.

Let

$$
\varphi:=C \cdot f
$$

Then

$$
\begin{aligned}
& E_{n}(G, F, \Lambda, \alpha, x) \\
= & \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[C \cdot \sigma(G, f, \Lambda, x)-C \cdot L_{k}(G, f, \Lambda, x)\right] \\
= & C \cdot \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right] \\
\rightarrow & C \cdot f^{(\Lambda, \alpha)}(x)(N \rightarrow \infty \Leftrightarrow n \rightarrow \infty) .
\end{aligned}
$$

(d) Let f and g are (Λ, α)-differentiable functions at a point $x \in G$ and

$$
\Psi:=f * g .
$$

Then

$$
\begin{aligned}
& L_{k}(G, \Psi, \Lambda, \alpha, x)=\sum_{j=0}^{\infty} \lambda_{k j} \hat{f}(j) \hat{g}(j) \chi_{j}(x) \rightarrow \sum_{j=0}^{\infty} \lambda_{\infty j} \hat{f}(j) \hat{g}(j) \chi_{j}(x), \\
& E_{n}(G, \Psi, \Lambda, \alpha, x) \\
&= \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, \Psi, \Lambda, x)-L_{k}(G, \Psi, \Lambda, x)\right] \\
&= \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}^{-1}}\left[\sum_{j=0}^{\infty} \lambda_{\infty j} \hat{f}(j) \hat{g}(j) \chi_{j}(x)-\sum_{j=0}^{\infty} \lambda_{k j} \hat{f}(j) \hat{g}(j) \chi_{j}(x)\right] \\
&= \sum_{i=-1}^{N} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty j}-\lambda_{k j}\right) \hat{f}(j) \hat{g}(j) \chi_{j}(x),
\end{aligned}
$$

under the condition the series

$$
\sum_{j=0}^{\infty} \lambda_{\infty j} \hat{f}(j) \hat{g}(j) \chi_{j}(x) \text { and } \sum_{j=0}^{\infty} \lambda_{k j} \hat{f}(j) \hat{g}(j) \chi_{j}(x)
$$

converge at the point $x \in G$. Therefore,

$$
\begin{aligned}
& \Psi^{(\Lambda, \alpha)}(x) \\
= & \lim _{n \rightarrow \infty} E_{n}(G, \Psi, \Lambda, \alpha, x)=\lim _{N \rightarrow \infty} E_{n}(G, \Psi, \Lambda, \alpha, x) \\
= & \sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty j}-\lambda_{k j}\right) \hat{f}(j) \hat{g}(j) \chi_{j}(x) \text { (if the limit exists). }
\end{aligned}
$$

(e) Let $f=\chi_{m_{n}}=r_{n}$ and $g=\chi_{m_{n+1}}=r_{n+1}$. Then $f \cdot g=\chi_{m_{n}+m_{n+1}}$. From Theorem 1, statement 3, we have

$$
\begin{aligned}
(f \cdot g)^{(\Lambda, \alpha)}(x) & =\chi_{m_{n}+m_{n+1}}(x) \cdot \Lambda_{\infty}\left(G, m_{n}+m_{n+1}, \alpha\right) \\
& =\chi_{m_{n}}(x) \cdot \chi_{m_{n+1}}(x) \cdot \Lambda_{\infty}\left(G, m_{n}+m_{n+1}, \alpha\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{(\Lambda, \alpha)}(x) \cdot g(x)+g^{(\Lambda, \alpha)}(x) \cdot f(x) \\
= & \chi_{m_{n}}(x) \cdot \chi_{m_{n+1}}(x) \cdot\left[\Lambda_{\infty}\left(G, m_{n}, \alpha\right)+\Lambda_{\infty}\left(G, m_{n+1}, \alpha\right)\right] .
\end{aligned}
$$

Therefore,

$$
(f \cdot g)^{(\Lambda, \alpha)}(x) \neq f^{(\Lambda, \alpha)}(x) \cdot g(x)+g^{(\Lambda, \alpha)}(x) \cdot f(x) \sqsubset
$$

3.5. Proof of the Theorem 3.

The theorem follows from the fact that the uniform limit of a sequence of continuous functions is continuous

3.6. Proof of the Theorem 4.

Applying the Lebesgue dominated convergence theorem of the sequence

$$
\left(E_{n}\right)_{n \in \mathbb{N}}, E_{n}=E_{n}(G, f, \Lambda, \alpha, x)
$$

and its limit

$$
g=f^{(\Lambda, \alpha)}
$$

we conclude

$$
g \in L^{1}(G) \wedge\left\|E_{n}-g\right\|_{1} \rightarrow 0(n \rightarrow \infty)
$$

Therefore,

$$
\left(\forall j \in \mathbb{N}_{0}\right)\left|\hat{E_{n}(j)-g(j)}\right| \rightarrow 0(n \rightarrow \infty)
$$

But by Theorem 1 (statement 5)

$$
\lim _{n \rightarrow \infty} E_{n}(j)=\Lambda_{\infty}(G, j, \alpha) \cdot \hat{f(j)}
$$

holds. Therefore,

$$
\left(\forall j \in \mathbb{N}_{0}\right) g(j)=\Lambda_{\infty}(G, j, \alpha) \cdot \hat{f(j)}
$$

holds

3.7. Proof of the Theorem 5.

(a) The proof is evident.
(b) For arbitrary $\alpha, \beta \in \mathbb{R} \wedge \alpha<\beta$, we designate $\gamma:=\beta-\alpha \in \mathbb{R}^{+}$. If $f \in M_{\alpha}=M(G, \Lambda, \alpha, x)$, then series

$$
\sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right]=\sum_{i=-1}^{\infty} A_{i}
$$

is convergent. From that and the series

$$
\sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\beta}} \sum_{k=m_{i}}^{m_{i+1}-1}\left[\sigma(G, f, \Lambda, x)-L_{k}(G, f, \Lambda, x)\right]=\sum_{i=-1}^{\infty} B_{i}
$$

is convergent, because

$$
\frac{B_{i}}{A_{i}}=\frac{1}{\left(m_{i+1}-m_{i}\right)^{\gamma}} \rightarrow 0(i \rightarrow \infty)
$$

Therefore, $f \in M_{\beta}=(G, \Lambda, \beta, x)$ and $M_{\alpha} \subseteq M_{\beta}$. Hence holds $M_{\beta} \backslash M_{\alpha} \neq$ θ, is proved for following Example.

Example 1. Let

$$
\lambda_{\infty s}-\lambda_{k s}:=\left(m_{i+1}-m_{i}\right)^{\alpha-1}, \forall i \in \mathbb{N}, \forall k \in\left[m_{i}, m_{i+1}\right)
$$

Then $\chi_{s} \in M_{\beta}$ because then the series

$$
\chi_{s}(x) \cdot \sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\beta}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty s}-\lambda_{k s}\right)=\chi_{s}(x) \cdot \sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\gamma}}
$$

is convergent and $\chi_{s} \notin M_{\alpha}$, because then the series

$$
\chi_{s}(x) \cdot \sum_{i=-1}^{\infty} \frac{1}{\left(m_{i+1}-m_{i}\right)^{\alpha}} \sum_{k=m_{i}}^{m_{i+1}-1}\left(\lambda_{\infty s}-\lambda_{k s}\right)=\chi_{s}(x) \cdot \sum_{i=-1}^{\infty} 1
$$

is not convergent.

References

1. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzafarli and A. I. Rubinshtein, Mul'tiplikativnye sistemy funkciĭ garmonicheskiiĭ anaiz na nul'mernnykh gruppakh, Elm, Baku, 1981.
2. P. L. Butzer and H. J. Wagner, Walsh- Fourier series and the concept of a derivative, Appl. Anal., 3(1) (1973), 29-46.
3. J. E. Gibbs, B. Ireland and J. E. Marshall, A generalization of the Gibbs differentiation, Theory and application of Wals and other nonsinusoidal functions, June 28-29, 1973.
4. J. E. Gibbs and M. J. Millard, Wals functions as solutions of a logical differentiall equation, NPL DES Rept, (1972), $\mathrm{N}^{o} 1$.
5. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin, 1963, (translated in Nauka, Moskva, 1975).
6. C. W. Onneweer, On the Definition of Dyadic Differentiation, Applicable Analysis, 9 (1979), 267-278.
7. J. Pall and Simon, On a generalization of concept of derivative, Acta Math. Acad. Sci. Hung., 29(1-2) (1977), 155-164.
8. M. Pepic, Differentiation of functions on Vilenkin groups, Matematicki Bilten, 23 (XLIX), Skopje, Makedonija, 1999, pp. 33-46.
9. F. Schipp, On the dyadic derivative, Acta Math. Acad. Sci. Hung., 28(1-2) (1976), 145-152.
10. N. Ya. Vilenkin, On a class of complete orhtonormal systems, Izv. ANSSSR, Ser. Math., 11 (1947), 363-400; Amer. Math. Soc. Trans. Ser. 2, 28 (1963), 1-35.

Medo Pepić
Department of Mathematics
University of Sarajevo
Zmaja od Bosne 35
BA-71000 Sarajevo
Bosnia and Hercegovina
E-mail, mpepic@lol.ba

