ON ENTIRE SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR DIFFERENTIAL AND DIFFERENCE EQUATIONS

Jie Zhang and Liang-Wen Liao*

Abstract

In this paper, we investigate some analogous results on the existence of entire solutions of a certain type of nonlinear differential and differentialdifference equations of the following form $$
f^{n}(z)+P_{d}(f)=p_{1}(z) e^{\alpha_{1} z}+p_{2}(z) e^{\alpha_{2} z},
$$ where $P_{d}(f)$ is a differential polynomial or differential-difference polynomial in $f(z)$. And we find out its entire solutions or prove that it has no entire solution for some special $P_{d}(f)$.

1. Introduction and Main Results

In this paper, a meromorphic function always means it is meromorphic in the whole complex plane \mathbb{C}. We assume that the reader is familiar with the standard notations in the Nevanlinna theory. We use the following standard notations in value distribution theory (see[2, 8]).

$$
T(r, f), m(r, f), N(r, f), \bar{N}(r, f), \cdots
$$

And we denote by $S(r, f)$ any quantity satisfying

$$
S(r, f)=o\{T(r, f)\}, \text { as } r \rightarrow \infty
$$

possibly outside of a set E with finite linear measure, not necessarily the same at each occurrence. The order of a meromorphic function $f(z)$ is defined as

$$
\rho(f)=\varlimsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

Received July 4, 2009, accepted May 20, 2010.
Communicated by Der-Chen Chang.
2010 Mathematics Subject Classification: Primary 30D35; Secondly 34M10.
Key words and phrases: Differential polynomial, Differential-difference polynomial, Small function, Entire, Order.
The research was supported by NSF of China(Grant 10871089).
*Corresponding author.

And the deficiency of a with respect to $f(z)$ is defined by

$$
\Theta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

A differential polynomial in $f(z)$ means that it is a polynomial in $f(z)$ and its derivatives with small functions of $f(z)$ as coefficients. A differential-difference polynomial in $f(z)$ means that it is a polynomial in $f(z)$, its derivatives and its shifts $f(z+c)$ with small functions of $f(z)$ as coefficients. We shall use $P_{d}(f)$ to denote a differential polynomial in $f(z)$ or a differential-difference polynomial in $f(z)$ with degree d. Furthermore, Nevanlinna's value distribution theory of meromorphic functions plays an important role in studying the growth and existence of meromorphic solutions of the differential or differential-difference equations. For instance, it is shown in [6] that the equation $4 f^{3}(z)+3 f^{\prime \prime}(z)=-\sin 3 z$ has exactly three nonconstant entire solutions, namely $f_{1}(z)=\sin z, f_{2}(z)=\frac{\sqrt{3}}{2} \cos z-$ $\frac{1}{2} \sin z, f_{3}(z)=-\frac{\sqrt{3}}{2} \cos z-\frac{1}{2} \sin z$. And Li-Yang in [6, 4] also considered a general case as follows.

Theorem A. (see [6]). Let $n \geq 3$ be an integer, $P_{n-3}(f)$ be an algebraic differential polynomial in $f(z)$ of degree $d \leq n-3, b(z)$ a meromorphic function and λ, c_{1}, c_{2} three nonzero constants. Then the equation

$$
\begin{equation*}
f^{n}(z)+P_{n-3}(f)=b(z)\left(c_{1} e^{\lambda z}+c_{2} e^{-\lambda z}\right) \tag{*}
\end{equation*}
$$

does not have any transcendental entire solution $f(z)$ satisfying that $T(r, b)=$ $S(r, f)$.

Theorem B. (see [4]). Let $n \geq 4$ be an integer and $P_{d}(f)$ denote an algebraic differential polynomial in $f(z)$ of degree $d \leq n-3$. If $p_{1}(z), p_{2}(z)$ are two nonzero polynomials and α_{1}, α_{2} are two nonzero constants such that $\frac{\alpha_{1}}{\alpha_{2}}$ is not rational, then the equation

$$
f^{n}(z)+P_{d}(f)=p_{1}(z) e^{\alpha_{1} z}+p_{2}(z) e^{\alpha_{2} z}
$$

does not have any transcendental entire solution.
An important question is that the condition that the degree of $P_{d}(f)$ satisfying $d \leq n-3$ can be weaken? In this paper, we obtained

Theorem 1. Let $n \geq 3$ be an integer and $P_{d}(f)$ denote an algebraic differential polynomial in $f(z)$ of degree $d \leq n-2$. If $p_{1}(z), p_{2}(z)$ are two nonzero polynomials and α_{1}, α_{2} are two nonzero constants such that $\frac{\alpha_{1}}{\alpha_{2}} \neq\left(\frac{d}{n}\right)^{ \pm 1}, 1$. Then any transcendental entire solution of the following equation

$$
\begin{equation*}
f^{n}(z)+P_{d}(f)=p_{1}(z) e^{\alpha_{1} z}+p_{2}(z) e^{\alpha_{2} z} \tag{1}
\end{equation*}
$$

$f(z)$ satisfies that $\Theta(0, f)=0$.

Remark 1. Comparing the proof of Theorem 1 and Theorem B, we can obtain that Theorem B remains valid if the condition " $\frac{\alpha_{1}}{\alpha_{2}}$ is not rational" is placed by $" \frac{\alpha_{1}}{\alpha_{2}} \neq\left(\frac{d}{n}\right)^{ \pm 1}, 1 "$ and the latter condition is necessary. In fact, the equation (1) has the entire solution $f(z)=p e^{\frac{\alpha_{1}}{n} z}$ if $\alpha_{1}=\alpha_{2}, P_{d}(f)=0, p_{1}(z)+p_{2}(z)=p^{n}(z)$; or the entire solution $f(z)=\left(p_{2}(z)\right)^{\frac{1}{n}} e^{\frac{\alpha_{1}}{d} z}$ if $\frac{\alpha_{1}}{\alpha_{2}}=\frac{d}{n}, P_{d}(f)=f^{d}(z), p_{1}{ }^{n}(z)=p_{2}{ }^{d}(z)$.

We will give some examples to show that the case that $\Theta(0, f)=0$ in Theorem 1 does exist.

Example 1. (see [4] Theorem 4). Let a, P_{1}, P_{2}, λ be non-zero constants. Then the differential equation

$$
f^{3}(z)+a f^{\prime \prime}=P_{1} e^{\lambda z}+P_{2} e^{-\lambda z}
$$

has transcendental entire solutions if and only if the condition $P_{1} P_{2}+\left(a \lambda^{2} / 27\right)^{3}=0$ holds. Moreover if the condition holds, then the solutions are

$$
f(z)=\varrho_{j} e^{\frac{\lambda z}{3}}-\left(\frac{a \lambda^{2}}{27 \varrho_{j}}\right) e^{-\frac{\lambda z}{3}},(j=1,2,3)
$$

where $\varrho_{j},(j=1,2,3)$ are the cubic roots of P_{1}.
Example 2. The differential equation

$$
f^{4}(z)-64 f f^{\prime \prime}+2=e^{z}+e^{-z}
$$

has a transcendental entire solution

$$
f(z)=e^{\frac{z}{4}}+e^{-\frac{z}{4}}
$$

But for some special $P_{d}(f)$ in Theorem 1, the equation (1) has no entire solution.
Theorem 2. Let a, P_{1}, P_{2} be non-zero constants. Then the equation

$$
\begin{equation*}
f^{3}(z)+a f^{\prime}(z)=P_{1} e^{\lambda z}+P_{2} e^{-\lambda z} \tag{2}
\end{equation*}
$$

does not have any transcendental entire solution.
Corresponds to the Theorem 1, we also considered the case that the differential polynomial $P_{d}(f)$ is placed by differential-difference polynomial. And we obtained

Theorem 3. Let $n \geq 4$ be an integer and $P_{d}(f)$ denote an algebraic differentialdifference polynomial in $f(z)$ of degree $d \leq n-3$. If $p_{1}(z), p_{2}(z)$ are two nonzero polynomials and α_{1}, α_{2} are two nonzero constants with $\frac{\alpha_{1}}{\alpha_{2}} \neq\left(\frac{d}{n}\right)^{ \pm 1}, 1$, then the equation (1) does not have any transcendental entire solution of finite order.

Theorem 4. Let P_{1}, P_{2} and λ be non-zero constants. For the difference equation

$$
\begin{equation*}
f^{3}(z)+a(z) f(z+1)=P_{1} e^{\lambda z}+P_{2} e^{-\lambda z} \tag{3}
\end{equation*}
$$

where $a(z)$ is a polynomial, we have
(i) if $a(z)$ is not a constant, then the equation (3) does not have any transcendental entire solution of finite order;
(ii) if $a(z)$ is a nonzero constant, then the equation (3) admit transcendental entire solutions of finite order if and only if the condition

$$
e^{\frac{1}{3} \lambda}=\mp 1 \text { and } P_{1} P_{2}= \pm\left(\frac{a}{3}\right)^{3}
$$

holds, furthermore if the condition above holds, then the transcendental entire solution of finite order of the equation (3) has the form as following

$$
f(z)=\varrho_{j} e^{2 k \pi i z}-\frac{a}{3 \varrho_{j}} e^{-2 k \pi i z} \text { or } f(z)=\varrho_{j} e^{2 k \pi i z+\pi i z}+\frac{a}{3 \varrho_{j}} e^{-(2 k \pi i z+\pi i z)} .
$$

Theorem 2 and Theorem 4 show that there is no causal link between the existences of the solution of a differential equation and the corresponding differentialdifference equation.

2. Lemmas

To prove our results, we need some lemmas.
Lemma 1. (see [3]). Let $f(z)$ be a transcendental meromorphic solution of finite order ρ of a difference equation of the form

$$
H(z, f) P(z, f)=Q(z, f)
$$

where $H(z, f), P(z, f), Q(z, f)$ are difference polynomials in $f(z)$ such that the total degree of $H(z, f)$ in $f(z)$ and its shifts is n, and that the total degree of $Q(z, f)$ is at most n. If $H(z, f)$ just contains one term of maximal total degree, then for any $\varepsilon>0$,

$$
m(r, P(z, f))=O\left(r^{\rho-1+\varepsilon}\right)+S(r, f)
$$

holds possibly outside of an exceptional set of finite logarithmic measure.
Remark 2. Particularly, if $H(z, f)=f^{n}(z)$, then a similar conclusion holds when $P(z, f), Q(z, f)$ are differential-difference polynomials in $f(z)$.

Lemma 2. (see [1]). Let $f(z)$ be meromorphic and transcendental function in the plane and satisfy

$$
f^{n}(z) P(f)=Q(f)
$$

where $P(f), Q(f)$ are differential polynomials in $f(z)$ with functions of small proximity related to $f(z)$ as the coefficients and the degree of $Q(f)$ is at most n, then

$$
m(r, P(f))=S(r, f)
$$

Lemma 3. (see [6]). Suppose that c is a non-zero constant and α is a nonconstant meromorphic function. Then the equation

$$
f^{2}(z)+\left(c f^{(n)}(z)\right)^{2}=\alpha
$$

has no transcendental meromorphic solution $f(z)$ satisfying $T(r, \alpha)=S(r, f)$.
Lemma 4. (see [5]). Let m, n be positive integers satisfying $\frac{1}{m}+\frac{1}{n}<1$. Then there are no transcendental entire solutions $f(z)$ and $g(z)$ satisfy the equation

$$
a(z) f^{n}(z)+b(z) g^{m}(z)=1
$$

with $a(z), b(z)$ being small functions of $f(z)$.
Lemma 5. (see [7]). Let $f(z)$ be a nonconstant meromorphic function. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(\log r),(r \rightarrow \infty)
$$

if f is of finite order, and

$$
m\left(r, \frac{f^{\prime}}{f}\right)=O(\log (r T(r, f))),(r \rightarrow \infty)
$$

possibly outside a set E of r with finite linear measure if $f(z)$ is of infinite order.
Lemma 6. (see [7]). Suppose that $f_{1}(z), f_{2}(z), \ldots f_{n}(z),(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots g_{n}(z)$ are entire functions satisfying the following conditions
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$.
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\}(r \rightarrow \infty, r \notin E)$.

Then $f_{j}(z) \equiv 0,(j=1,2, \ldots n)$.

3. The Proofs

3.1. Proof of theorem 1

Let $f(z)$ be a transcendental entire solution of the equation (1) with $\Theta(0, f)>0$. Then by differentiating both sides of the equation (1), we get

$$
\begin{equation*}
n f^{n-1} f^{\prime}+\left(P_{d}(f)\right)^{\prime}=\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) e^{\alpha_{1} z}+\left(p_{2} \alpha_{2}+p_{2}^{\prime}\right) e^{\alpha_{2} z} \tag{4}
\end{equation*}
$$

Eliminating $e^{\alpha_{1} z}, e^{\alpha_{2} z}$ from the equations (1) and (4), we obtain

$$
\begin{equation*}
\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) f^{n}-n p_{1} f^{n-1} f^{\prime}+Q_{d}(f)=\beta e^{\alpha_{2} z} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(p_{2} \alpha_{2}+p_{2}^{\prime}\right) f^{n}-n p_{2} f^{n-1} f^{\prime}+R_{d}(f)=-\beta e^{\alpha_{1} z} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) p_{2}-\left(p_{2} \alpha_{2}+p_{2}^{\prime}\right) p_{1} \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& Q_{d}(f)=\left(p_{1} \alpha_{1}+p_{1}{ }^{\prime}\right) P_{d}(f)-p_{1}\left(P_{d}(f)\right)^{\prime} \tag{8}\\
& R_{d}(f)=\left(p_{2} \alpha_{1}+p_{2}{ }^{\prime}\right) P_{d}(f)-p_{2}\left(P_{d}(f)\right)^{\prime} \tag{9}
\end{align*}
$$

By differentiating the equation (5), we get

$$
\begin{align*}
\left(\beta^{\prime}+\beta \alpha_{2}\right) e^{\alpha_{2} z}= & \left(p_{1} \alpha_{1}+p_{1}\right)^{\prime} f^{n}+n p_{1} \alpha_{1} f^{n-1} f^{\prime} \\
& -n(n-1) p_{1} f^{n-2} f^{\prime 2}-n p_{1} f^{n-1} f^{\prime \prime}+\left(Q_{d}(f)\right)^{\prime} \tag{10}
\end{align*}
$$

By eliminating $e^{\alpha_{2} z}$ from the equation (5) and (10), we get

$$
\begin{equation*}
f^{n-2}\left\{\gamma f^{2}-n p_{1} \gamma_{2} f f^{\prime}+n(n-1) p_{1} \beta f^{\prime 2}+n p_{1} \beta f f^{\prime \prime}\right\}=T_{d}(f) \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
\gamma_{1}=\left(\beta^{\prime}+\beta \alpha_{2}\right)\left(p_{1}^{\prime}+p_{1} \alpha_{1}\right)-\beta\left(p_{1}{ }^{\prime}+p_{1} \alpha_{1}\right)^{\prime} \\
\gamma_{2}=\beta^{\prime}+\alpha_{1} \beta+\alpha_{2} \beta
\end{gathered}
$$

and

$$
\begin{equation*}
T_{d}(f)=\beta\left(Q_{d}(f)\right)^{\prime}-\left(\beta^{\prime}+\beta \alpha_{2}\right) Q_{d}(f) \tag{12}
\end{equation*}
$$

And we set

$$
\begin{equation*}
\phi=\gamma_{1} f^{2}-n p_{1} \gamma_{2} f f^{\prime}+n(n-1) p_{1} \beta f^{\prime 2}+n p_{1} \beta f f^{\prime \prime} \tag{13}
\end{equation*}
$$

which is a differential polynomial in $f(z)$. We rewrite the equation (11) as the following form

$$
f^{n-2} \phi=T_{d}(f)
$$

It follows the fact that $T_{d}(f)$ is a differential polynomial in $f(z)$ with degree at most $n-2$ and Lemma 2 that

$$
T(r, \phi)=m(r, \phi)=S(r, f)
$$

Now we claim $\phi \equiv 0$. In fact, we rewrite the equation (13) as the following form

$$
\phi=f^{2} A(z)
$$

where

$$
A(z)=\gamma_{1}-n p_{1} \gamma_{2} \frac{f^{\prime}}{f}+n(n-1) p_{1} \beta\left(\frac{f^{\prime}}{f}\right)^{2}+n p_{1} \beta \frac{f^{\prime \prime}}{f}
$$

Then $m(r, A)=S(r, f)$. If $\phi \not \equiv 0$, then $A \not \equiv 0$. For any small $\epsilon>0$, we have

$$
\begin{aligned}
2 T(r, f) & =m\left(r, f^{2}\right)=m\left(r, \frac{\phi}{A}\right) \\
& \leq m(r, \phi)+m\left(r, \frac{1}{A}\right) \leq S(r, f)+T(r, A) \\
& \leq S(r, f)+N(r, A) \leq S(r, f)+2 \bar{N}\left(r, \frac{1}{f}\right) \\
& \leq 2(1-\Theta(0, f)+\epsilon) T(r, f) .
\end{aligned}
$$

This is impossible for $0<\epsilon<\Theta(0, f)$. Hence $A \equiv 0$, and $T_{d}(f) \equiv \phi \equiv 0$. Next, we discuss two cases.

Case 1. $Q_{d}(f) \not \equiv 0$. At this case, the equation (12) implies

$$
\begin{equation*}
Q_{d}(f)=c_{1} \beta e^{\alpha_{2} z} \tag{14}
\end{equation*}
$$

where $c_{1} \neq 0$. We substitute (14) into (5) and get

$$
\begin{equation*}
f^{n-1}\left\{\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) f-n p_{1} f^{\prime}\right\}=-\left(1-\frac{1}{c_{1}}\right) Q_{d}(f) . \tag{15}
\end{equation*}
$$

Setting

$$
\varphi=\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) f-n p_{1} f^{\prime}
$$

and noting that the degree of $Q_{d}(f)$ is at most $n-2$, we get by Lemma 2

$$
m(r, \varphi)=S(r, f) \text { and } m(r, f \varphi)=S(r, f)
$$

If $\varphi \not \equiv 0$, then

$$
T(r, f)=m(r, f) \leq m(r, f \varphi)+m\left(r, \frac{1}{\varphi}\right) \leq S(r, f)+T(r, \varphi)=S(r, f)
$$

It is impossible. Thus $\varphi \equiv 0$. By the equation (15), we get $c_{1}=1$ and $Q_{d}(f)=$ $\beta e^{\alpha_{2} z}$. On the other hand, we solute the equation $\varphi \equiv 0$ and get

$$
\begin{equation*}
f^{n}(z)=c_{2} p_{1} e^{\alpha_{1} z} \tag{16}
\end{equation*}
$$

By substituting the equation (16) into the equation (1), we get

$$
\left(1-\frac{1}{c_{2}}\right) f^{n}(z)=\frac{p_{2}}{\beta} Q_{d}(f)-P_{d}(f),
$$

where $\frac{p_{2}}{\beta} Q_{d}(f)-P_{d}(f)$ is a differential polynomial in f with degree at most $n-2$. By Lemma 2 again, we deduce $c_{2}=1$ and

$$
f^{n}(z)=p_{1} e^{\alpha_{1} z}, \quad P_{d}(f)=p_{2} e^{\alpha_{2} z}
$$

Thus

$$
f(z)=\left(p_{1}\right)^{\frac{1}{n}} e^{\frac{\alpha_{1}}{n} z}
$$

and

$$
P_{d}(f)=h\left(e^{\frac{\alpha_{1}}{n} z}\right)
$$

where $h\left(e^{\frac{\alpha_{1}}{n} z}\right)$ is a polynomial of $e^{\frac{\alpha_{1}}{n} z}$ with degree d and the small functions of $h\left(e^{\frac{\alpha_{1}}{n} z}\right)$ as its coefficients. Thus, by Lemma 6, we have $\frac{d \alpha_{1}}{n}=\alpha_{2}$, i.e. $\frac{\alpha_{1}}{\alpha_{2}}=\frac{n}{d}$, which is a contradiction.

Case 2. $Q_{d}(f) \equiv 0$. Then from the equation (8), we get

$$
\left(p_{1} \alpha_{1}+p_{1}^{\prime}\right) P_{d}(f)-p_{1}\left(P_{d}(f)\right)^{\prime}=0
$$

If $P_{d}(f) \equiv 0$, then $f^{n}(z)=p_{1}(z) e^{\alpha_{1} z}+p_{2}(z) e^{\alpha_{2} z}$. And we rewrite this equation as the following form

$$
\frac{1}{p_{2}}\left(f(z) \cdot e^{-\frac{\alpha_{2}}{n} z}\right)^{n}+\left(\frac{-p_{1}}{p_{2}}\right)\left(e^{\frac{\left(\alpha_{1}-\alpha_{2}\right) z}{m}}\right)^{m}=1
$$

where m is any positive integer. And Lemma 4 implies $\alpha_{1}=\alpha_{2}$, which is a contraction. Hence, $P_{d}(f) \not \equiv 0$. Thus we deduce that

$$
\begin{equation*}
P_{d}(f)=c_{3} p_{1} e^{\alpha_{1} z}, c_{3} \neq 0 \tag{17}
\end{equation*}
$$

From the equation (1), we get

$$
\begin{equation*}
f^{n}(z)+\left(c_{3}-1\right) p_{1} e^{\alpha_{1} z}=p_{2} e^{\alpha_{2} z} \tag{18}
\end{equation*}
$$

By Lemma 4 again, we get $c_{3}=1$ and $P_{d}(f)=p_{1} e^{\alpha_{1} z}$. Thus

$$
\begin{equation*}
f^{n}(z)=p_{2} e^{\alpha_{2} z} \tag{19}
\end{equation*}
$$

Then $f(z)=\left(p_{2}\right)^{\frac{1}{n}} e^{\frac{\alpha_{2}}{n} z}$. By the same arguments as above, we have again $\frac{d \alpha_{2}}{n}=$ α_{1} and $\frac{\alpha_{1}}{\alpha_{2}}=\frac{d}{n}$, which is a contradiction again. The proof of theorem 1 is completed.

3.2. Proof of theorem 2

Suppose that $f(z)$ is a transcendental entire solutions of the equation (2). By differentiating the equation (2), we get

$$
\begin{equation*}
3 f^{2} f^{\prime}+a f^{\prime \prime}=\lambda P_{1} e^{\lambda z}-\lambda P_{2} e^{-\lambda z} \tag{20}
\end{equation*}
$$

By taking both squares of (2) and (20) and eliminating $e^{ \pm \lambda z}$, we deduce

$$
\begin{equation*}
4 \lambda^{2} P_{1} P_{2}=\lambda^{2}\left(f^{3}+a f^{\prime}\right)^{2}-\left(3 f^{2} f^{\prime}+a f^{\prime \prime}\right)^{2} \tag{21}
\end{equation*}
$$

We set

$$
\begin{equation*}
\alpha=\lambda^{2} f^{2}-9 f^{\prime 2} \tag{22}
\end{equation*}
$$

It is obvious that α is an entire function. We set

$$
Q(f)=4 \lambda^{2} P_{1} P_{1}-\lambda^{2} a^{2} f^{\prime 2}-2 a \lambda^{2} f^{\prime} f^{3}+a^{2} f^{\prime \prime 2}+6 a f^{\prime} f^{\prime \prime} f^{2}
$$

which is a differential polynomial in $f(z)$ with degree 4 . Then we rewrite (21) as the following form

$$
\begin{equation*}
f^{4} \alpha=Q(f) \tag{23}
\end{equation*}
$$

By Lemma 2, we get $m(r, \alpha)=S(r, f)$ and $T(r, \alpha)=S(r, f)$. Thus, α is a small function of $f(z)$. We consider two cases.

Case 1. $\alpha \equiv 0$. Then the equation (22) implies that $f(z)=c e^{ \pm \frac{1}{3} \lambda z}$. By substituting this into (2) and simple calculation, we get

$$
\left(c^{3}-P_{1}\right) e^{\lambda z}+\frac{1}{3} a \lambda c e^{\frac{1}{3} \lambda z}=P_{2} e^{-\lambda z}
$$

or

$$
\left(c^{3}-P_{2}\right) e^{-\lambda z}-\frac{1}{3} a \lambda c e^{-\frac{1}{3} \lambda z}=P_{1} e^{\lambda z}
$$

By Lemma 6, we get $P_{1}=0$ or $P_{2}=0$, which is a contradiction.
Case 2. $\alpha \not \equiv 0$. Then Lemma 3 implies α is a non-zero constant. Thus

$$
f^{\prime}\left(\lambda^{2} f-9 f^{\prime \prime}\right)=0
$$

Since $f(z)$ is transcendental, then

$$
\begin{equation*}
\lambda^{2} f-9 f^{\prime \prime}=0 \tag{24}
\end{equation*}
$$

The general solutions of the equation (24) are

$$
\begin{equation*}
f(z)=c_{1} e^{\frac{1}{3} \lambda z}+c_{2} e^{-\frac{1}{3} \lambda z} \tag{25}
\end{equation*}
$$

where c_{1}, c_{2} are constants. Since $\alpha \not \equiv 0$, we have $c_{1} c_{2} \neq 0$. Then by substituting (25) into (2) and simple calculation, we get

$$
\begin{align*}
& \left(c_{1}^{3}-P_{1}\right) e^{\lambda z}+\left(c_{2}^{3}-P_{2}\right) e^{-\lambda z}+\left(3 c_{1}^{2} c_{2}+\frac{a \lambda c_{1}}{3}\right) e^{\frac{1}{3} \lambda z} \tag{26}\\
& +\left(3 c_{1} c_{2}^{2}-\frac{a \lambda c_{2}}{3}\right) e^{-\frac{1}{3} \lambda z}=0
\end{align*}
$$

By Lemma 6, we deduce

$$
c_{1}^{3}=P_{1}, c_{2}^{3}=P_{2}, 9 c_{1} c_{2}+a \lambda=0,9 c_{1} c_{2}=a \lambda
$$

Hence, $c_{1} c_{2}=0$. This is a contraction. The proof of theorem 2 is completed.

3.3. Proof of theorem 3

The proof of Theorem 3 is very similar to that of Theorem 1 . We just give a main framework of the proof.

Suppose that $f(z)$ is a transcendental entire solution with finite order $\rho(f)=\rho$ of the equation (1). By using the same arguments as those in Theorem 1, we can get the corresponding equation (4)-(13) and $f^{n-2} \phi=T_{d}(f)$, where $\phi=$ $\gamma_{1} f^{2}-n p_{1} \gamma_{2} f f^{\prime}+n(n-1) p_{1} \beta f^{\prime 2}+n p_{1} \beta f f^{\prime \prime}$ and $T_{d}(f)$ is a differential-difference polynomial in $f(z)$ with total degree at most $n-3$. By Lemma 1 , we get

$$
m(r, \phi)=S(r, f)+O\left(r^{\rho-1+\varepsilon}\right) \text { and } m(r, f \phi)=S(r, f)+O\left(r^{\rho-1+\varepsilon}\right)
$$

If $\phi \not \equiv 0$, then

$$
\begin{aligned}
T(r, f)=m(r, f) & \leq m\left(r, \frac{1}{\phi}\right)+m(r, f \phi) \leq T(r, \phi)+S(r, f)+O\left(r^{\rho-1+\varepsilon}\right) \\
& \leq m(r, \phi)+S(r, f)+O\left(r^{\rho-1+\varepsilon}\right)=S(r, f)+O\left(r^{\rho-1+\varepsilon}\right)
\end{aligned}
$$

This is impossible. Hence, $\phi \equiv 0$. Similarly, we can deduce $\varphi=\left(p_{1} \alpha_{1}+p_{1}{ }^{\prime}\right) f-$ $n p_{1} f^{\prime} \equiv 0$. By using similar arguments to the remained part of the proof of Theorem 1, we can get our conclusion easily. We omit the detail.

3.4. Proof of theorem 4

Suppose that $f(z)$ is a transcendental entire solution of the equation (3) with finite order $\rho(f)=\rho$. By differentiating (3), we get

$$
\begin{equation*}
3 f^{2}(z) f^{\prime}(z)+a(z) f^{\prime}(z+1)+a^{\prime}(z) f(z+1)=\lambda P_{1} e^{\lambda z}-\lambda P_{2} e^{-\lambda z} \tag{27}
\end{equation*}
$$

Similarly, by taking both squares of (3) and (27) and eliminating $e^{ \pm \lambda z}$, we deduce

$$
\begin{align*}
4 \lambda^{2} P_{1} P_{2}= & \lambda^{2}\left(f^{3}(z)+a(z) f(z+1)\right)^{2}-\left(3 f^{2}(z) f^{\prime}(z)+\right. \\
& \left.a(z) f^{\prime}(z+1)+a^{\prime}(z) f(z+1)\right)^{2} \tag{28}
\end{align*}
$$

We set

$$
\begin{equation*}
\alpha(z)=\lambda^{2} f^{2}(z)-9 f^{\prime 2}(z) \tag{29}
\end{equation*}
$$

which is a differential polynomial in $f(z)$. Thus $\alpha(z)$ is an entire function. And we set

$$
\begin{aligned}
Q(f)= & 4 \lambda^{2} P_{1} P_{1}-\lambda^{2} a^{2}(z)(f(z+1))^{2}-2 a(z) \lambda^{2} f(z+1) f^{3}(z) \\
& \left(a^{\prime}(z)\right)^{2} f^{2}(z)+6 a^{\prime}(z) f^{2}(z) f^{\prime}(z+1)+2 a(z) a^{\prime}(z) f(z+1) f^{\prime}(z+1) \\
& +a^{2}(z)\left(f^{\prime}(z+1)\right)^{2}+6 a(z) f^{\prime}(z) f^{\prime}(z+1) f^{2}(z)
\end{aligned}
$$

which is a differential-difference polynomial in $f(z)$ with total degree 4 . Then we rewrite (28) as the following form

$$
\begin{equation*}
f^{4} \alpha=Q(f) \tag{30}
\end{equation*}
$$

By Lemma 1, we get

$$
m(r, \alpha)=S(r, f)+O\left(r^{\rho-1+\varepsilon}\right)
$$

and $T(r, \alpha)=m(r, \alpha)=S(r, f)+O\left(r^{\rho-1+\varepsilon}\right)$. Thus, α is a small function of $f(z)$. Next, we consider two cases.

Case 1. $\alpha \equiv 0$. Then $f(z)=c e^{ \pm \frac{1}{3} \lambda z}$. By substituting this into (3) and simple calculation, we get

$$
\left(c^{3}-P_{1}\right) e^{\lambda z}+a(z) c e^{\frac{\lambda}{3}} e^{\frac{1}{3} \lambda z}=P_{2} e^{-\lambda z}
$$

or

$$
\left(c^{3}-P_{2}\right) e^{-\lambda z}+a(z) c e^{-\frac{\lambda}{3}} e^{-\frac{1}{3} \lambda z}=P_{1} e^{\lambda z}
$$

By Lemma 6, we get $P_{1}=0$ or $P_{2}=0$, which is a contradiction.
Case 2. $\alpha \not \equiv 0$. Then Lemma 3 implies α is a non-zero constant. Thus

$$
f^{\prime}\left(\lambda^{2} f-9 f^{\prime \prime}\right)=0
$$

Since $f(z)$ is transcendental, then

$$
\begin{equation*}
\lambda^{2} f-9 f^{\prime \prime}=0 \tag{31}
\end{equation*}
$$

The general solution of the equation (31) is

$$
\begin{equation*}
f(z)=c_{1} e^{\frac{1}{3} \lambda z}+c_{2} e^{-\frac{1}{3} \lambda z} \tag{32}
\end{equation*}
$$

where c_{1}, c_{2} are both non-zero constants. Then by substituting (32) into (3) and simple calculation, we get

$$
\begin{align*}
& \left(c_{1}^{3}-P_{1}\right) e^{\lambda z}+\left(c_{2}^{3}-P_{2}\right) e^{-\lambda z}+\left(3 c_{1}^{2} c_{2}+a(z) c_{1} e^{\frac{1}{3} \lambda}\right) e^{\frac{1}{3} \lambda z} \tag{33}\\
& +\left(3 c_{1} c_{2}^{2}+a(z) c_{2} e^{-\frac{1}{3} \lambda}\right) e^{-\frac{1}{3} \lambda z}=0 .
\end{align*}
$$

By Lemma 6, we deduce

$$
c_{1}^{3}=P_{1}, c_{2}^{3}=P_{2}, 3 c_{1} c_{2}+a(z) e^{\frac{1}{3} \lambda}=3 c_{1} c_{2}+a(z) e^{-\frac{1}{3} \lambda}=0
$$

Therefore, if $a(z)$ is a nonconstant polynomial, then we can deduce a contraction and the equation (3) does not admit any transcendental entire solutions of finite order. And if $a(z)$ is a nonzero constant a, then

$$
e^{\frac{1}{3} \lambda}=\mp 1 \text { and } P_{1} P_{2}= \pm\left(\frac{a}{3}\right)^{3}
$$

Thus, c_{1} can assume $\varrho_{j},(j=1,2,3)$, where ϱ_{j} satisfies $\varrho_{j}{ }^{3}=P_{1},(j=1,2,3)$, and $c_{2}= \pm \frac{a}{3 c_{1}}$. Hence, $f(z)$ is of the following forms

$$
f(z)=\varrho_{j} e^{2 k \pi i z}-\frac{a}{3 \varrho_{j}} e^{-2 k \pi i z}
$$

or

$$
f(z)=\varrho_{j} e^{2 k \pi i z+\pi i z}+\frac{a}{3 \varrho_{j}} e^{-(2 k \pi i z+\pi i z)} .
$$

The proof of theorem 4 is completed.

Acknowledgments

The authors would like to thank the referee for his/her comments and suggestions.

References

1. J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962), 17-27.
2. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
3. I. Lanie and C. C. Yang, Clunie theorems for difference and q-difference polynomials. J. London. Math. Soc., 76 (2007), 556-566.
4. P. Li and C. C. Yang, On the nonexistence of entire solutions of certain type of nonlinear differential equations, J. Math. Appl., 320 (2006), 827-835.
5. C. C. Yang, A generalization of a theorem of P.Montel on entire functions, Proc. Amer. Math. Soc., 26 (1970), 332-334.
6. C. C. Yang and P. Li, On the transcendental solutions of a certain type of nonlinear differential equations, Arch. Math., 82 (2004), 442-448.
7. C. C. Yang and H. X. Yi, Uniqueness Theory of meromorphic functions, Science Press, Beijing, Second Printed in 2006.
8. L. Yang, Value Distribution Theory, Springer-Verlag \& Science Press, Berlin, 1993.

Jie Zhang and Liang-Wen Liao
Department of Mathematics
Nanjing University
Nanjing 210093
P. R. China

E-mail: zhangjie1981@cumt.edu.cn maliao@nju.edu.cn

