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THE SOLUTION OF 3D-PHOTON TRANSPORT PROBLEM IN
INTERSTELLAR CLOUD

Yu-Hsien Chang and Cheng-Hong Hong

Abstract. In this paper we study a problem for photon transport in a host
medium (e.g. an interstellar cloud where a localized source is present), that oc-
cupies a compact convex region V in R3. We find the generalized solution of
the photon transport problem by means of the theory of equicontinuous semi-
group of bounded linear operators on a sequentially complete locally convex
topological vector space.

1. INTRODUCTION

The interstellar medium is mainly composed by molecular gases (mainly hydro-
gen), by more complex molecules and by grains of ”dust” of silicon and carbonate.
It is concentrated in big clouds, whose dimensions are of the order of ten light years.
We note that the diameter of the solar system is of the order of parsec.

A simple mathematical model of photon transport in a cloud which assume that
the photon transport phenomenon is one-dimensional has been well considered in [5,
6, 11]. In this paper we consider a more complex model that the photon transport
problem in a three-dimensional space. Let an interstellar cloud occupy the closed
and convex region V ⊂ R3, bounded by the closed regular surface Σ, and let Vi

be the interior of V so that V = Vi ∪ Σ and V is a compact set. We assume the
scattering cross-section σs (x), the total cross-section σ (x), and the photon source
q (x) satisfying

(1.1)
0 < σs ≡ σs (x) < σ (x) ≡ σ∀x ∈ V, σs (x) = σ (x) = 0 ∀x /∈ V,

q (x) = q0δ (x− x0) ∀x ∈ R3,

where σs and σ are constants, δ is the Dirac delta functional, and x0 ∈ R3. We
denote N (x, u, t) be the photon number density, so that N (x, u, t0) dxdu (t0 is a
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fixed number) is the expected number of photons in the volume element dx centered
at x and having velocity within the solid angle du around the unit vector u ∈ S,
where S is the surface of the unit sphere.

Morante, Lamb and Mcbride [1] described the photon transport equation in
interstellar space as follows:

(1.2)

1
c

∂

∂t
N (x, u, t) = −u · �xN (x, u, t)− σN (x, u, t)

+
σs

4π

∫
S

N
(
x, u′, t

)
du′

+q (x, t) ∀x ∈ V

where q (x, t) = q0δ (x− x0) and x0 is a fixed element in V .
This equation accompany with non re-entry boundary condition

(1.3) N (y, u, ·) = 0 if y ∈ Σ and u · n (y) < 0,

where n (y) is the outward normal at y ∈ Σ. We denote Σ1 be the portion of
Σ which satisfies (1.3), and denote Σ2 = Σ − Σ1. Note that the non re-entry
boundary condition (1.3) implies that there are no photon sources outside V , and
hence σs (x) = 0 if x is at outside of V .

Throughout this paper, we denote X = L1 (V × S) be the Banach space endow
with the norm

‖Ψ‖1 =
∫
V

∫
S |Ψ (x, u)| dudx for each Ψ ∈ X.

We define the ”free-streaming” operators A : D (A) → X and K : X → X by

AΨ (x, u) = −cu · ∇xΨ (x, u) ,

with D (A) = {Ψ ∈ X : −cu · ∇xΨ ∈ X and Ψ(y, u) = 0 if y ∈ Σ and u · n (y)
< 0}

KΨ (x) = σs
4π

∫
S Ψ (x, w)dw.

We also let B and T be the linear operators on X which are defined by

BΨ (x, u) = −cσΨ (x, u) , TΨ = (A+B +K)Ψ for every Ψ ∈ X.

Under these notations, system (1.2)-(1.3) can be transformed as:

(1.4)


d

dt
N (t) = T (N (t)) +Q (t) , ∀ t > 0;

N (0) = N0;
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where N (t) = N (·, ·, t) is a function from [0,∞) into X and Q (t) = q (x, t) =
q0δ (x− x0). Since the particle density is low, it is reasonable to assume that the
number of photons inside the cloud changes slowly in time, i.e., d

dtN (t) is small.
Some people solved equation (1.4) for the special case (see e.g. [1, 2, 11]). This
new system

(1.5)

{
T (N (t)) +Q (t) = 0, ∀ t > 0;

N (0) = N0;

is so-call quasi-static equation (moreover, for physical reasons we can assume
Q (t) = Q be a constant) and it is a good approximation to equation of system
(1.4). However, neither of the initial value problem (1.4) nor (1.5) has a solution
in the Banach space X = L1 (V × S) since δ does not belong to X . For solving
(1.4), we have to consider more general space. Let D (V × S) is the vector space
consisted of all continuous functions defined on some open set containing V × S.
We also assume that every element in D (V × S) is vanish outside V × S , and
it has continuous partial derivatives of all orders. We will consider the perturbed
Cauchy problem in a sequentially complete locally convex space X̃ = D′ (V × S)
(the dual space of D (V × S)) rather than in the Banach space X . We will give
further descriptions about these spaces in section 3.

Although system (1.4) is stemming from the photon transport problem, but it
is not only limited in this problem. The basis of radionuclide imaging technique
in cardiology is the notion of a tracer in the form of a radiopharmaceutical which
emits gamma rays and which can be administered to patients usually by intravenous
injection. The distribution of the radiopharmaceutical depends on the physical pro-
cesses within the body, which differ in health and disease. The problem (1.4) also
can be considered as a mathematical model for gamma ray in a medium composed
of three time-dependent regions (see [3, 4]).

2. PRELIMINARIES

Through out this paper we will use following notations. We always denote Z be
a sequentially complete locally convex space (hereafter, we denote it as sclcs) under
a suitable family of seminorms Γ, and we denote Z′ to be the dual space of Z. We
also denote L(Z) be the space of all continuous linear operators on Z. For each
L ∈ L (Z) and v ∈ Z ′, we use (Lx, v) to represent the scalar value v (Lx). We
suppose there is a collection of bounded subsets � of Z such that (∪M∈�M) = Z.
Under these notations, for each M ∈ � and N be any equicontinuous subset of Z ′

there is a seminorm p∗M,N on L(Z), which is given by

(2.1) p∗M,N (L) = sup
x∈M,v∈N

|(Lx, v)| , for every L ∈ L(Z).
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It is well known that the family Γ∗ =
{
p∗M,N : M ∈ �, N is equicontinuous in Z ′

}
induces a locally convex topology for L(Z)(see e.g. [10], p. 131). If � is a col-
lection of finite subsets of X , then the topology induced by Γ∗ is called the simple
topology. We denote the space L(Z) with this topology by Ls(Z). If � is a col-
lection of all bounded subsets of X , then the topology induced by Γ∗ is called the
bounded convergence topology. We denote the space L(Z) with this topology by
Lb(Z).

We say a family � of linear operators on X is equicontinuous if for each
p ∈ Γ, there is a continuous seminorm q = q(p) ∈ Γ such that p (Lx) ≤ q (x), for
all L ∈ � and x ∈ X . For each p ∈ Γ and L be a linear operator on Z, we define
a corresponding seminorm for the linear operator L by

(2.2) p̂ (L) = sup {p (Lx) : x ∈ X with p (x) ≤ 1}
(2.2) is identical with (2.1), if we take the seminorm p(x) = supx∈M,v∈N |(x, v)|
in (2.2).

A linear operator L on Z is said to be p-continuous if

p̂ (L) = sup {p (Lx) : x ∈ X with p (x) ≤ 1} <∞.

The family seminorm Γ̂ = {p̂ : p̂ <∞, p ∈ Γ} on L(Z) is actually a locally m-
convex algebra. A linear operator L ∈ L(Z) is said to be Γ-continuous if it is
p-continuous for every p ∈ Γ. Let LΓ(Z) denote the space of all Γ-continuous
linear operators on Z and denote BΓ(X) the subspace of LΓ(Z) whose elements
L satisfies

(2.3) ‖L‖Γ̂ = sup {p̂ (L) : p ∈ Γ} <∞.

BΓ(X) with norm ‖.‖Γ̂ is a Banach algebra. Under these notations, one may have
the relation

BΓ(X) ⊂ LΓ(X) ⊂ L(X).

As long as K ∈ BΓ(X), we can define the operator etK by

etK =
∞∑
i=0

ti

i!
Ki for each t > 0 and e0K = I for t = 0.

By similar way, we can define a topology on Z′. The simple topology (σ (Z′, Z)-
topology) of Z′ (denote by Z′

s ) is defined by the family of seminorms of the form

p
(
x′
)

= p
(
x′; x1, x2,...,xn

)
= sup

1≤j≤n

∣∣(xj, x
′)∣∣ ,

where x1, x2, ..., xn are an arbitrary finite system of elements of Z.



3D-Photon Transport Problem 1961

The bounded convergence topology (β (Z′, Z)- topology) of Z′ (denote by Z′
b )

is defined by the family of seminorms of the form

p
(
x′
)

= p
(
x′; �

)
= sup

x∈�

∣∣(x, x′)∣∣ ,
where � is an arbitrary bounded subset of Z. (2.2) also can define the seminorms
on L(Z′

s) or L(Z′
b) if Z is seen as the subspace of Z ′′. In general, L(Z′

s) ⊂ L(Z ′
b).

Let A′ be the adjoint operator of A ∈ L(Zs). The seminorm p̃N,M on L(Z′) is
defined by

p̃N,M

(
A′) = sup

v∈N,x∈M

∣∣(x, A′v
)∣∣ , for every A′ ∈ L(Z ′).

Then the family Γ̃ = {p̃N,M ;M ∈ �, N is equicontinuous in Z ′} induces a locally
convex topology for L(Z′). Moreover, we have

p̃N,M

(
A′) = p̂M,N (A) .

This show that if A ∈ L
Γ̂
(z) implies A′ ∈ L

Γ̃
(Z ′). Furthermore, if A ∈ B

Γ̂
(Z),

then A′ ∈ B
Γ̃
(Z ′) and ‖A‖

Γ̂
= ‖A′‖

Γ̃
(please see [9, p135]).

Definition 1. Let Z be a sclcs. The family of continuous linear operators
{T (t)}t≥0 on Z is called a strongly continuous C0-semigroup (abbreviated as C0-
semigroup) if following three conditions hold:

(1) T (0) = I ,
(2) T (t)T (s) = T (t+ s) for all s, t ≥ 0, and
(3) T (t)x −→ x as t ↓ 0, for every x ∈ X .

The C0-semigroup {T (t)}t≥0 is said to be equicontinuous if for each continuous
seminorm p on X , there exists a continuous seminorm q on Z such that p (T (t) x) ≤
q (x) for all t ≥ 0 and all x ∈ Z. Moreover, if there exists a number β ≥ 0 such
that

{
e−βtT (t)

}
t≥0

is an equicontinuous C0-semigroup, then it is called a quasi-
equicontinuous C0-semigroup.

Definition 2. Let β ≥ 0, M ≥ 1 be given and let Γ be a calibration (seminorm
family) for Z. We will denote the set of all densely defined linear operators A
satisfying the condition

(2.4)
∥∥∥(λ−A)−k

∥∥∥
Γ
≤M (λ− β)−k , λ > β, k = 0, 1, 2, ....

by G (X,Γ,M, β). We also write

G (X,Γ,M) = ∪β≥0G (X,Γ,M, β) and G (X,Γ) = ∪M≥1G (X,Γ,M) .
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Lemma 1. ([7, p. 307, Corollary 4.4]). Let Z be a sclcs space. A linear oper-
ator A in Z is the generator of a quasi-equicontinuous C 0-semigroup {Q (t)}t≥0,
that is, is an equicontinuous for some β ≥ 0, if and only if

(a) the domain D (A) of A is dense in Z, and
(b) the resolvent (λI −A)−1 exists for all λ ≥ β and there is a calibration Γ

such that

(2.5)
∥∥∥(λ−A)−1

∥∥∥
Γ
≤ (λ− β)−1 .

Follows from Lemma 1 if {Q (t)} t≥0 is a quasi-equicontinuous C0-semigroup with
the generator A, then there is a calibration such that A satisfies (2.5).

Main Theorem 1. Let {T (t)}t≥0⊂L(Z) be a quasi-equicontinuous C0-semi-
group with the generator A, and let Z+ denote the closure of the domain D (A′)
in the topology induced by Γ̃, where A′ is the adjoint operator of A. If T+ (t)
be the restriction of T (t) to Z+, then {T+ (t)}t≥0 ⊂ L(Z+) and {T+ (t)}t≥0is
a C0-semigroup with the generator A+ which is the largest restriction of A′ with
domain and range in Z+.

Proof. From Lemma 1, there is a calibration Γ such that A satisfies (2.5). If
the resolvent (λI − A)−1 exist for some λ, then the operator (λI′ − A′)−1 exists
and (

λ′I ′ −A′)−1 =
(
(λI −A)−1

)′
(pleasesee[12], p.273.proposition2).

This implies that∥∥∥ (λ′I ′−A′)−1
∥∥∥

Γ̃
=
∥∥∥∥((λI − A)−1

)′∥∥∥∥
Γ̃

=
∥∥∥((λI−A)−1

)∥∥∥
Γ̂
≤(λ− β)−1 in Z+.

Follows from Lemma 1, there exists a quasi-equicontinuous C0-semigroup {T+

(t)}t≥0 generated by A+ in Z+.
For any positive integer m, x ∈ Z and y′ ∈ Z+, we have((

I −m−1tA
)−m

x, y′
)

=
(
x,
(
I −m−1tA+

)−m
y′
)

.

And so we obtain, by lettingm→ ∞, the equality (T (t) x, y′) = (x, T+ (t) y′).
Hence T ′ (t) y′ = T+ (t) y′ that is, T+ (t) is the restriction to Z+ of T ′ (t).

Suppose x′ ∈ D (A′) and x′ ∈ Z+, A′x′ ∈ Z+, then (λI ′ −A′)x′ ∈ Z+ and
hence

(λI ′ − A+)−1 (λI ′ − A′) x′ = x′.
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Applying (λI −A+) from the left on both side, we obtain A′x′ = A+x′. This
implies that A+ is the largest restriction of A′ with domain as well as range in Z+.

For solving (1.6) and (1.7) we need one more Lemma, which was proved in [9].

Lemma 2. ([9] Corollary p. 212). Let Z be a barreled locally convex space.
Then the following collections of subsets of its dual Z ′ are identical:

(a) the equicontinuous sets,

(b) the β (Z ′, Z)-bounded sets.

(c) the σ (Z ′, Z)-bounded sets.

3. GENERALIZED SOLUTION OF PHOTON TRANSPORT PROBLEM

Now we are able to consider the photon transport problem (1.4). We will
show that this problem has a unique generalized (or weak) solution U ′ in the space
X̃ (= D′ (V × S)). For describing the space X̃, we will use following notations.
Let the Schwartz spaceD (V × S) consisting of thoseC∞ functions which, together
with all their derivatives, vanish outside of V ×S. D (V × S) is a Frechet space [9,
Example 10 ,p. 90] with the calibration of seminorms Γ = {qα} for any multi-index
such that

(3.1) qα (ψ) = sup(x,u)∈V ×S |(∂αψ) (x, u)| , ψ ∈ D (V × S)

where x ∈ V , u ∈ S, |(x, u)| =
(
|x|2 + |u|2

) 1
2 and

∂α = ∂α1
1 ∂α2

2 · · ·∂α6
6

(
∂i =

∂

∂xi

)
=

∂|α|

∂xα1
1 ∂xα2

2 · · ·∂xα6
6

(
|α| =

6∑
i=1

αi

)

Since every Frechet space is a barrel space, this impliesD (V × S) is a barrel space.
Let X̃ (= D′ (V × S)) be the dual space of D (V × S).

It can be shown that (see e.g. [8]) X = L1 (V × S) embed in X̃ in the following
sense.

We say that f ∈ D′ (V × S) can be identified with f ∈ L1 (V × S) if,

(φ, f) =
∫

V

∫
S

f (x, u)φ (x, u) dudx ∀φ ∈ D (V × S) .

and denote f̃ be the element embed with f in X̃.
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We also can appropriately extend the operator

TΨ (x, u) = −cσΨ (x, u)− cu · ∇xΨ (x, u) +
σs

4π

∫
S

Ψ (x, w)dw,

with domain

D (T ) = {Ψ ∈ X : −cu · ∇xΨ ∈ X

and it satisfies the non-entry boundary condition}
to the operator T̃ : X̃ → X̃. In an analogous way, give Tf ∈ X , it is not hard to
see (

φ, T̃ f̃
)

=
(
φ, T̃ f

)
=
∫
V

∫
S (Tf) (x, u)φ (x, u) dudx ∀ φ ∈ D (V × S) .

That is T̃ agrees with T on X and T̃ f̃ ∈ D′ (V × S) coincides with T̃ f for
all f ∈ X .

By change the order of integration and apply Green’s theorem then we have the
following relation

(3.2)

(
φ, T̃ f̃

)
=
∫

V

∫
S

(Tf) (x, u)φ (x, u) dudx

=
∫

V

∫
S
−cu · ∇xf (x, u)φ (x, u)dudx

+
∫

V

∫
S
−cσf (x, u)φ (x, u)dudx

+
σs

4π

∫
V

∫
S

(∫
S

f (x, w)dw
)
φ (x, u) dudx

=
∫

S
(−c (fφ |Σ)) du+

∫
V

∫
S
cu · (∇xφ) fdudx

+
∫

V

∫
S
−cσf (x, u)φ (x, u)dudx

+
σs

4π

∫
V

∫
S

(∫
S
f (x, w)dw

)
φ (x, u) dudx

=
∫

S
(−c (fφ |Σ2 +fφ |Σ1)) du

+
∫

V

∫
S
cu · (∇xφ) fdudx

+
∫

V

∫
S

−cσf (x, u)φ (x, u)dudx

+
σs

4π

∫
V

∫
S

(∫
S
f (x, w)dw

)
φ (x, u) dudx
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It is obvious that f ∈ D (A) implies fφ |Σ1= 0. If φ (y, u) = 0 for y ∈ Σ2,
then

∫
S (−c (fφ |Σ2 −fφ |Σ1)) du = 0, and hence (3.2) becomes

(3.3)

(
φ, T̃ f̃

)
=
∫

V

∫
S

cu · (∇xφ) fdudx+
∫

V

∫
S

−cσf (x, u)φ (x, u)dudx

+
σs

4π

∫
V

∫
S

(∫
S
f (x, w)dw

)
φ (x, u)dudx.

Now we can define the operator T̂ on D (V × S) by

T̂φ (x, u) = −cσφ (x, u) + cu · ∇xφ (x, u) + σs
4π

∫
S φ (x, w)dw

which with domain

D
(
T̂
)

= {φ ∈ D : cu · ∇xφ ∈ D (V × S) and φ (y, u) = 0 for y ∈ Σ2}.

Under this definition, it is easy to see that T̂ is a linear operator from D (V × S)
into itself, and we can get the equation (3.3) from (3.2). We also have the relation(

φ, T̃ f̃
)

=
(
T̂ φ, f̃

)
for all f̃ ∈ D(T̃ ), φ ∈ D

(
T̂
)

.

In other word, T̃ is the formal adjoint of T̂ .
Meri Lisi and Silvia Totaro [11] showed that there exists a Γ-contraction C0-

semigroup {W (t)}t≥0 generated by cu ∂
∂x . With a similar method used in [7,

example 4.2] and following calculation, we get the conclusion that there exists a
Γ-contraction C0-semigroup on D (V × S) generated by Â = cu · ∇x.

Let {W (t)}t≥0 be the semigroup on D (V × S) defined by

W (t) Ψ (x, u) = Ψ (x+ cut, u)χV (x+ cut), t ≥ 0, Ψ ∈ D (V × S), u ∈ S.

The topology of X is also induced by seminoms Ξ = {qα} for any multi-index
α, which is defined by (3.1).

Since

qα (W (t)ψ) = sup
(x,u)∈V ×S

|(∂αW (t)ψ) (x, u)|
= sup

(x,u)∈V ×S

|∂αψ (x+ cut, u)χV (x+ cut)|
= sup

(x,u)∈V ×S
|∂αψ (x, u)χV (x+ cut)| = qα (ψ) forallα.

Follows from (2.2) we have

‖W (t)‖
Ξ̂
≤ 1 .
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This implies that {W (t)}t≥0 is a Ξ-contraction C0-semigroup. The generator
of {W (t)}t≥0 is the operator cu · ∇x.

Let the operators B̂ and K̂ on the space D (V × S) be defined by

B̂φ (x, u) = −cσφ (x, u)
and

K̂φ (x) = σs
4π

∫
S φ (x, w)dw for every φ ∈ D.

Since
sup

{
qα

(
K̂φ
)

: φ ∈ D, qα (φ) ≤ 1
}
≤ cσs ,

we have
∥∥∥K̂∥∥∥

Ξ̂
≤ cσs, and

∥∥∥B̂∥∥∥
Ξ̂
≤ cσ. Follows from general perturbation theo-

rem (see e.g. [7]), there exists a locally equicontinuous C0-semigroup {V (t)}t≥0

on D (V × S) generated by T̂ . The Theorem implies that there exist a quasi-
equicontinuous C0-semigroup {V ′ (t)}t≥0 on D′ (V × S) generated by T̃ .

Remark. The topology on D′ (V × S) determined by D′
s (V × S) is the same

as the topology determined by D′
b (V × S). Since D (V × S) is a Montal space [9,

Example 4, p.240], X̃ = D′ (V × S), the dual space of D (V × S), is also a Montal
space [9, proposition 9, p.236]. Since every Montal space is a barrel space and it
is reflexive [9, p.231], this implies D (V × S) is a barrel space and D ′′ (V × S) =
D (V × S). The seminorms Γ̃ = {p̃N,M : M ∈ �, N is equicontinuous in X ′} on
D′

s (V × S) is the same as on D′
b (V × S), since according Lemma 2, N is a

equicontinuous set in D ′ (V × S) which is identical with the β (D ′, D)-bounded set,
and hence identical with the σ (D ′, D)-bounded set. This impliesA′ ∈ LΓ̃ (D′

b (V×
S)) if A′ ∈ L

Γ̃
(D′

s (V × S)).
Now we can consider the photon transport problem (1.4) on D′ (V × S). Since

Q (t) ≡ q0δ (x− x0) ∈ D′ (V × S) is integrable for t ∈ [0, l], where l is a finite
number, then (1.4) has a unique generalized solution U ′ which is given by

U ′ (t) = V ′ (t)N0 +
∫ t
0 V

′ (t− s)Q (s) ds.

We also can consider the quasi-static equation (1.5) on D ′ (V × S). Since
‖W (t)‖

Ξ̂
≤ 1, where {W (t)}t≥0 is the Ξ-contraction C0-semigroup generated by

Â = cu·∇x onD (V × S) and
∥∥∥K̂∥∥∥

Ξ̂
≤ cσs this implies Â+K̂ ∈ G (D (V × S) ,Γ,

1, cσs) and
[
λI −

(
Â+ K̂

)]−1
exist on D (V × S) for any λ > cσs. In particular,

if we choose λ = cσ, then from (1.1), we have the existence of
[
cσI−

(
Â+K̂

)]−1
=
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(
−T̂
)−1

and
(
T̃
)−1

=
((

T̂
)−1

)′
. This shows that (1.5) has a quasi-static solu-

tion, which is given by

U ′ =
(
T̃
)−1

(−Q) on D′ (V × S).
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