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LINEAR WEINGARTEN SURFACES FOLIATED BY CIRCLES IN

MINKOWSKI SPACE

Özgür Boyacioglu Kalkan, Rafael López* and Derya Saglam

Abstract. In this work, we study spacelike surfaces in Minkowski space E3
1

foliated by pieces of circles that satisfy a linear Weingarten condition of type

aH + bK = c, where a, b and c are constants and H and K denote the mean

curvature and the Gauss curvature respectively. We show that such surfaces

must be surfaces of revolution or surfaces with constant mean curvatureH = 0
or surfaces with constant Gauss curvature K = 0.

1. INTRODUCTION AND RESULTS

Let E3
1 be the Minkowski three-dimensional space, that is, the real vector space

R3 endowed with the scalar product 〈, 〉 = (dx1)2 + (dx2)2 − (dx3)2, where
(x1, x2, x3) denote the usual coordinates in R3. An immersion x : M → E3

1 of

a surface M is called spacelike if the induced metric x∗〈, 〉 on M is a Riemannian

metric. In this paper, we study spacelike surfaces that satisfy a relation of type

(1) aH + bK = c,

where H and K are the mean curvature and the Gauss curvature of M respectively,

and a, b and c are constants with a2+b2 6= 0. In such case we say thatM is a linear

Weingarten surface. This class of surfaces includes the surfaces with constant mean

curvature (b = 0 in (1)) and the surfaces with constant Gauss curvature (a = 0
in (1)). In Euclidean space, there is a great amount of literature on Weingarten

surfaces, beginning with works of Chern, Hartman, Winter and Hopf in the fifties.

More recently and focusing in Lorenzian spaces, we refer [1, 2, 3, 5, 8, 16], without

being a complete bibliography.
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In order to look for examples of linear Weingarten spacelike surfaces in E3
1, it

is natural to assume some hypothesis about the geometry of the surface. A simple

condition is that the surface is rotational. In such case, Equation (1) is an ODE of

second order given in terms of the generating curve of M . In a more general scene,

we consider surfaces constructed by a foliation of circles.

Definition 1.1. A cyclic surface in Minkowski space E3
1 is a surface determined

by a smooth uniparametric family of circles.

We also say that the surface is foliated by circles. As in Euclidean space, by a

circle in E3
1 we mean a planar curve with constant curvature. Since each circle is

included in a plane, given a cyclic surface, there exists a uniparametric family of

planes of E3
1 whose intersection withM is the set of circles that defines the surface.

Because the circles are contained in a spacelike surface, each circle of the foliation

must be a spacelike curve. However, the planes containing the circles can be of any

causal type.

Our work is motivated by the following fact. In Minkowski space E3
1 there are

cyclic spacelike surfaces with H =0 (or K =0) that are not rotational surfaces. For
the maximal case (H = 0) these surfaces are foliated by circles in parallel planes
and they represent in Minkowski ambient the same role as the classical Riemann

examples of minimal surfaces in Euclidean space. These surfaces appeared for the

first time in the literature in [12] and they have been origin of an extensive study

in recent years: see for example [4, 6, 7, 9, 11]. In the same sense, non-rotational

cyclic surfaces with constant Gauss curvature K = 0 appeared in [14]. Figure
1 exhibits both types of surfaces in the case that the planes of the foliation are

spacelike planes. See also Remark 3.1. Besides these examples, it is natural to ask

if there exist other cyclic surfaces in the family of linear Weingarten surfaces of E3
1.

If we compare with what happens in Euclidean space, the difficulty in E3
1 is the

Fig. 1. Examples of non-rotational spacelike surfaces in E3
1 foliated by circles in parallel

spacelike planes: H = 0 (left) and K = 0 (right).
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variety of possible cases that can appear since the plane containing the circle can

be of spacelike, timelike or lightlike type.

In the case that the planes of the foliation are parallel, we prove:

Theorem 1.1. LetM be a spacelike cyclic surface in E3
1 and we assume that the

circles of the foliation lie in parallel planes. If M is a linear Weingarten surface,

then M is a surface of revolution, or H = 0 or K = 0.

In Minkowski space E3
1 there are spacelike surfaces that play the same role

as spheres in Euclidean space. These surfaces are the pseudohyperbolic surfaces.

After an isometry of E3
1, a pseudohyperbolic surface of radius r > 0 and centered

at p ∈ E3
1 is given by

H2,1(r, p) = {x ∈ E3
1; 〈x− p, x− p〉 = −r2}.

From the Euclidean viewpoint, and if p is the origin of coordinates, H2,1(r, p) is
the hyperboloid of two sheets x2

1 + x2
2 − x2

3 = −r2 which is obtained by rotating

the hyperbola {x2
1 − x2

3 = r2, x2 = 0} with respect to the x3-axis. This surface is

spacelike with constant mean curvatureH = 1/r and with constant Gauss curvature

K = 1/r2. In particular, H2,1(r, p) is a linear Weingarten surface: exactly, there
are many choices of constants a, b and c that satisfy (1). Although this surface

is rotational, any uniparametric family of (non-parallel) planes intersects H2,1(r, p)
in circles. Taking account this fact about the pseudohyperbolic surfaces, our next

result establishes:

Theorem 1.2. Let M be a spacelike cyclic surface in E3
1. If M is a linear

Weingarten surface, then M is a pseudohyperbolic surface or the planes of the

foliation are parallel.

As consequence of the above two theorems, we conclude

Corollary 1. The only non-rotational spacelike cyclic surfaces that are linear

Weingarten surfaces are the Riemann examples of maximal surfaces [12] and a

family of surfaces with K = 0 described in [14].

The proofs of Theorems 1.1 and 1.2 involve long algebraic computations that

have been possible check by using a symbolic program such as Mathematica.

Finally, we point out that Theorems 1.1 and 1.2 hold for linear Weingarten cyclic

timelike surfaces of E3
1. The proofs are similar and we do not included them in the

present paper, although they can easily carried. In fact, a key in the proofs is that

the induced metric on M is non-degenerate and so, it could be Riemannian (M is

spacelike) of Lorentzian (M is timelike).
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2. PRELIMINARIES

A vector v ∈ E3
1 is said spacelike if 〈v, v〉 > 0 or v = 0, timelike if 〈v, v〉 < 0

and lightlike if 〈v, v〉 = 0 and v 6= 0. A plane P ⊂ E3
1 is said spacelike, timelike

or lightlike if the induced metric on P is a Riemannian metric (positive definite),

a Lorentzian metric (a metric of index 1) or a degenerated metric, respectively.
This is equivalent that any orthogonal vector to P is timelike, spacelike or lightlike

respectively.

Consider α : I ⊂ R → E3
1 a parametrized regular curve in E

3
1. We say that α is

spacelike if α′(t) is a spacelike vector for all t ∈ I . It is possible to reparametrize
α by the arc-length, that is by a parameter s such that 〈α′(s), α′(s)〉 = 1 for any
s ∈ I . Then one defines a Frenet trihedron at each point and whose differentiation

allows to define the curvature κ and the torsion τ of α. See [10, 15]. Motivated by
what happens in Euclidean ambient, we give the following definition:

Definition 2.2. A spacelike circle in Minkowski space E3
1 is a planar spacelike

curve with constant curvature.

We describe the spacelike circles in E3
1. The classification depends on the causal

character of the plane P containing the circle. After an isometry of the ambient

space E3
1, a circle parametrizes as follows:

1. If P is the horizonal plane x3 = 0, the circle is given by

α(s) = r
(

cos(
s

r
), sin(

s

r
), 0
)
, r > 0.

In this case, the curve is a Euclidean horizontal circle of radius r.

2. If P is the vertical plane x1 = 0, then

α(s) = r
(
0, sinh(

s

r
), cosh(

s

r
)
)
, r > 0.

The curve describes the hyperbola x2
2 − x2

2 = r2 in a vertical plane.

3. If P is the plane x2 − x3 = 0, then

α(s) =
(
s, r

s2

2
, r

s2

2

)
, r > 0.

The curve is a parabola in P .

A surfaceM in E3
1 is a surface of revolution (or rotational surface) if there exists

a straight line l such thatM is invariant by the rotations that leave l pointwise fixed.

In particular, a rotational surface in E3
1 is formed by a uniparametric family of circles

of E3
1 in parallel planes.

We end this section with local formula for the mean curvature and the Gauss

curvature of a spacelike surface. Given a spacelike surface M in E3
1, the spacelike
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condition is equivalent that any unit normal vector G to M is timelike. Since any

two timelike vectors in E3
1 can not be orthogonal, we have 〈G, (0, 0, 1)〉 6= 0 on the

whole of M . This shows that M is an orientable surface. As in Euclidean space,

one define the mean curvature H and the Gauss curvature of K of M as:

H =
1
2
trace(dG), K = det (−dG).

Let X = X(u, v) be a parametrization of M . Then the following formulae are

well-known [17]:

H =
1
2

eG − 2fF + gE

EG− F 2
, K =

e g − f2

EG− F 2
,

where E = 〈Xu,Xu〉, F = 〈Xu,Xv〉 and G = 〈Xv,Xv〉 are the coefficients of
the first and e = 〈G,Xuu〉, f = 〈G,Xuv〉 and g = 〈G,Xvv〉 the coefficients of the
second fundamental form. Moreover, W =: EG−F 2 is a positive function because

M is spacelike. From the expressions of H and K, we have

G[Xu,Xv,Xuu]− 2F [Xu,Xv,Xuv ] + E[Xu,Xv,Xvv ] = 2HW 3/2

[Xu,Xv,Xuu][Xu,Xv ,Xvv ]− [Xu,Xv,Xuv ]2 = KW 2

where [, , ] denotes the determinant of three vectors: [v1, v2, v3] = det(v1, v2, v3).

3. PROOF OF THEOREM 1.1

We consider a spacelike surface M ⊂ E3
1 parametrized by circles in parallel

planes. We discard the trivial cases a = 0 or b = 0 in (1): in such case, K or H is

a constant function and we know that Theorem 1.1 is true [13, 14]. We distinguish

three cases according to the causal character of the planes of the foliation.

3.1. The planes are spacelike

After a rigid motion in E3
1, we assume the planes are parallel to the plane x3 = 0.

Then the circles are horizontal Euclidean circles and M parametrizes as

(2) X(u, v) = (f(u), g(u), u)+ r(u)(cos v, sinv, 0),

where f, g, r > 0 are smooth functions in some u-interval I . With this parametriza-

tion, M is a surface of revolution if and only if f and g are constant functions.
The Weingarten relation aH + bK = c writes as:

a
G[Xu,Xv,Xuu] − 2F [Xu,Xv ,Xuv ] + E[Xu,Xv ,Xvv ]

2W 3/2
(3)

+b
[Xu,Xv,Xuu][Xu,Xv,Xvv] − [Xu,Xv ,Xuv ]2

W 2
= c.(4)
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3.1.1. Case c = 0

Equation (3) writes as

a2
(
G[Xu,Xv,Xuu] − 2F [Xu,Xv,Xuv ] + E[Xu,Xv,Xvv]

)2
W 2

−4b2
(
[Xu,Xv,Xuu][Xu,Xv,Xvv ]− [Xu,Xv ,Xuv ]2

)2
= 0.

Without loss of generality, we assume 4b2 = 1. If we compute the above equation
the parametrization given in (2), we obtain an expression

(5)

4∑

j=0

Aj(u) cos (jv) + Bj(u) sin (jv) = 0.

Then the functions Aj and Bj must vanish on I . By contradiction, we assume that
M is not rotational. Then f ′ or g′ does not vanish in some interval.

1. We consider the cases that one of the functions f or g is constant. For

simplicity we consider f ′ = 0 in some interval. Then g′ 6= 0. The coefficient A4

writes as

A4 =
1
8
a2r6g′2(rg′′ − 2r′g′)2.

As g′ 6= 0, we have that rg′′−2r′g′ = 0. Then g′ = λr2 for some positive constant

λ 6= 0. Now

A2 =
1
2
λ2r8(4r′2 − a2r2A2), B1 = 2λr7r′(a2rA2 − 2r′′)

where A = −1 + λ2r4 + r′2 − rr′′. From Equation B1 = 0, either r′ = 0 or
a2rA2−2r′′ = 0. If r′ = 0 in some interval, r is constant and a computation of the
coefficient E of the first fundamental form gives E = 0. Since this is not possible,
r′ 6= 0. A combination of A2 = 0 and B1 = 0 leads to that function r satisfies

2r′2 − rr′′ = 0. The solution is

r(u) =
c2

u + c1
, c1, c2 ∈ R.

Now A2 = 0 gives a polynomial equation on u given by

−4(u + c1)6 + a2
(
(u + c1)4 + c2

2 − λ2c4
2

)2
= 0.

In particular, the leading coefficient a2 must vanish: contradiction. This means that

the assumption that f is constant is impossible.

2. We assume that both f and g are not constant functions. Then f ′, g′ 6= 0.
The coefficient B4 yields:

(−4f ′g′r′ + rf ′f ′′ + rf ′g′′)(−2f ′2r′ + 2g′2r′ + rf ′f ′′ − rf ′g′′) = 0.

We distinguish two cases:
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1. Assume −4f ′g′r′ + rg′f ′′ + rf ′g′′ = 0. Then

f ′′ =
4f ′g′r′ − rf ′g′′

rg′
.

Now A4 = 0 gives a2r6(f ′2 + g′2)2(−2g′r′ + rg′′)2 = 0, that is,

(6) g′′ =
2g′r′

r
.

This implies g′ = λr2 with λ > 0. Analogously, f ′ = µr2, µ > 0. The
computation of B2 and B1 leads to

B2 = λµr8(a2r2A2 − 4r′2), B1 = 2λr7r′(a2rA2 − 2r′′),

where A = −1 + (λ2 + µ2)r4 + r′2 − r′′. Equation B1 = 0 gives the
possibility r′ = 0, that is, r is a constant function. In such case, B2 =
λµa2(−1 + (λ2 + µ2)r4)2. The computation of the coefficient E of the first

fundamental form gives E = 0: contradiction. Thus, we can assume that
r′ 6= 0. By combining B2 = B1 = 0, we obtain rr′′ = 2r′2. Solving this

equation, we have

r(u) =
c2

u + c1
, c1, c2 ∈ R.

The coefficient B2 writes now as as polynomial on u and from B2 = 0 we
conclude

a2(u + c2)8 − 4(u + c2)6 + 2a2c4
2

(
1 − c2

2(λ
2 + µ2)

)
(u + c2)4

+a2c4
2

(
1 − c2

2(λ
2 + µ2)

)2
= 0.

The leading coefficient must vanish, that is, a2 = 0: contradiction.

1. Assume −2f ′2r′ +2g′2r′ + rf ′f ′′− rg′g′′ = 0. From here, we obtain f ′′ and
putting it into A4, we have

A4 = −a2r6(f ′2 + g′2)2

8f ′2 (rg′′ − 2g′r′)2.

Then rg′′ − 2g′r′ = 0 and we now are in the position of the above case (6)
and this finishes the proof.

3.1.2. Case c 6= 0

The computation of A8 and B8 gives respectively:

A8 = − 1
32

c2r8(f ′8 − 28f ′6g′2 + 70f ′2g′6 + g′8)

B8 =
1
4
c2r8f ′g′(−f ′6 − 7f ′4g′2 − 7f ′2g′4 + g′6)
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Since α(u) = (f(u), g(u), 0) is not a constant planar curve, we parametrize it by
the arc-length, that is, (f(u), g(u)) = (x(φ(u), y(φ(u)), where

f ′(u) = φ′(u) cos(φ(u)), g′(u) = φ′(u) sin(φ(u)), φ′2 = f ′2 + g′2.

With this change of variable, the functions A8 and B8 write now as:

A8 = − 1
32

c2r8φ′8 cos(8φ(u)), B8 = − 1
32

c2r8φ′8 sin(8φ(u)).

As c 6= 0 and r > 0, we conclude that φ′ = 0 on some interval. Therefore
f ′2 + g′2 = 0, which means that α is a constant curve, obtaining a contradiction.

This finishes the proof of Theorem 1.1 for the case that the planes are spacelike.

3.4. The planes are timelike

Let M be a linear Weingarten spacelike surface foliated by pieces of circles in

parallel timelike planes. After a motion of E3
1, we suppose that these planes are

parallel to the plane x1 = 0. In this case we parametrize the surface by

(7) X(u, v) = (u, f(u), g(u))+ r(u)(0, sinhv, cosh v),

where r > 0, f and g are smooth functions. This means that M is formed by a

uniparametric family of vertical hyperbolas. In order to conclude thatM is rotational

it suffices to prove that f and g are constants.

3.2.1. Case c = 0

As in the case of spacelike planes, the reasoning is by contradiction. We assume

that f or g is not constant, that is, f ′ 6= 0 or g′ 6= 0.

1. We consider the case that one of the functions f or g is constant. For
simplicity, we assume f ′ = 0 in some interval. Then A4 writes as

A4 = −1
8
a2r6g′2(−2r′g′ + rg′′)2.

As g′ 6= 0, from A4 = 0 we have that rg′′ − 2r′g′ = 0. Then g′ = µr2, µ > 0.
Now

A2 = −1
2
µ2r8(4r′2 + a2r2A2), A1 = −2µr7r′(2r′′ + a2rA2),

where A = −1+µ2r4− r′2 + rr′′. As a2 > 0, Equation A2 = 0 implies that r is a
constant function and A = −1+µ2r4 = 0. Then the computation of the coefficient
E of the first fundamental form yields E = 0: contradiction.

2. We assume that both f ′, g′ 6= 0. The coefficient B4 yields:

(−4f ′g′r′ + rg′f ′′ + rf ′g′′)(−2f ′2r′ − 2g′2r′ + rf ′f ′′ + rg′g′′) = 0.

We distinguish two cases.
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1. If −4f ′g′r′ + rg′f ′′ + rf ′g′′ = 0, then

(8) f ′′ =
f ′(4f ′g′r′ − rg′′)

rb′
.

Now A4 = 0 gives

A4 =
a2r6(f ′2 − g′2)2(−2g′r′ + rg′′)2

8g′2
.

(a1) If f ′2 − g′2 = 0 then g′ = ±f ′. Let g′ = f ′ (the case g′ = −f ′ is

similar). Then g = f +c1, c1 ∈ R. Putting it into A4 and B4, we obtain

A4 = −a2r6f ′2(−2f ′r′ + rf ′′), B4 = a2r6f ′2(−2f ′r′ + rf ′′)2.

As f ′ 6= 0, then 2f ′r′ = rf ′′ and so, f ′ = λr2, λ > 0. The computation
of A2 and B1 gives

A2 = λ2r8(4r′2 + a2r2A2), B1 = 2λr7r′(2r′′ + a2rA2),

where A = 1 − r′2 + rr′′. From Equation A2 = 0 and the value of
A, we discard the case that r is constant function. The combination of

A2 = 0 and B1 = 0 implies that the function r satisfies 2r′2− rr′′ = 0.
Then

r(u) =
c2

u + c1
, c1, c2 ∈ R.

But then A2 = 0 gives a polynomial on u given by

4(u + c1)6 + a2
(
(u + c1)4 + c2

2

)2
= 0,

whose leading coefficient is a2: contradiction.

(a2) If rg′′ = 2g′r′ then g′ = µr2 with µ > 0. Using (8), f ′ = λr2, for

some λ > 0. The computation of A2 and A1 leads to

A2 = −1
2
(λ2 + µ2)r8(a2r2A2 + 4r′2), A1 = 2λr7r′(2r′′ + a2rA2)

where the value ofA is nowA = −1+(−λ2+µ2)r4+r′2−rr′′. Equation
A2 = 0 implies that r is a constant function and (λ2 − µ2)r4 = −1.
This gives E = 0: contradiction.

2 If −2f ′2r′ − 2g′2r′ + rf ′f ′′ + rg′g′′ = 0, we obtain f ′′ and hence we get

A4 =
a2r6(f ′2 − g′2)2(−2g′r′ + rg′′)2

8g′2
.
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(b1) If f ′2 − g′2 = 0 then g′ = ±f ′. Then we are as in the above case (a1).

(b2) If rg′′ = 2g′r′ then g′ = λr2 with λ > 0. Now we are in the position
of the case (a2).

3.2.2. Case c 6= 0

The computations of A8 and B8 give:

A8 = − 1
32

c2r8(f ′8 + 28f ′6g′2 + 70f ′2g′6 + g′8)

B8 =
1
4
c2r8f ′g′(f ′6 + 7f ′4g′2 + 7f ′2g′4 + g′6)

Since α(u) = (f(u), g(u)) is not a constant planar curve, we parametrize it by the
arc-length, that is, (f(u), g(u)) = (x(φ(u), y(φ(u)), where

f ′(u) = φ′(u) cosh(φ(u)), g′(u) = φ′(u) sinh(φ(u)), φ′2 = f ′2 − g′2.

With this change of variable, the functions A8 and B8 write now as:

A8 = − 1
32

c2r8φ′8 cosh(8φ(u)), B8 =
1
32

c2r8φ′8 sinh(8φ(u)).

As c 6= 0 and r > 0, we conclude that φ′ = 0 on some interval, that is, α is a

constant curve, obtaining a contradiction. This finishes the Theorem for the case

that the foliation planes are timelike.

3.3. The planes are lightlike

After a motion in E3
1, we parametrize the surface by

(9) X(u, v) = (f(u), g(u)+ u, g(u)− u) + (v, r(u)
v2

2
, r(u)

v2

2
),

where r > 0, f and g are smooth functions. In such case, M is rotational if f is a
constant function.

3.3.1. Case c = 0

We compute (1) and we take 4b2 = 1 again. With our parametrization, and we
obtain

(10)

6∑

j=0

Aj(u)vn = 0,

for some functions Aj . As a consequence, all coefficients Aj vanish. Then

A6 = −2a2(2r2 − r′)(−4rr′ + r′′)2.
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1. If 2r2 − r′ = 0 then r is given by

r(u) =
1

−2u − λ
, λ ∈ R.

Now

A3 =
16a2f ′(−4f ′ + (2u + λ)f ′′)2

(2u + λ)5
.

From A3 = 0 we have

(a) If f ′ = 0 then f is constant and M is rotational.

(b) If −4f ′ + (2u + λ)f ′′ = 0 then f ′′ = 4f ′

(2u+λ) . Then A2 = −256f ′2,

which implies that f ′ = 0 and M is rotational again.

2. Assume −4rr′ + r′′ = 0. The coefficient A4 gives a2(rf ′′ + 2r′f ′)2 +
2r′2(2r2 − r′) = 0. A first integral of −4rr′ + r′′ = 0 is 2r2 − r′ = k, for
some constant k 6= 0. Then A4 = 0 writes

a2(rf ′′ + 2r′f ′)2 + 2r′2k = 0.

(a) If k > 0, then r is constant and f ′′ = 0. In particular, f(u) = λu + µ.
Now A2 = 0 implies −16a2r2(λ2r + 4rg′ + g′′)2 = 0. Solving for g,
we obtain g(u) = −λ2u/4−e−4ruc1/(4r)+c2, c1, c2 ∈ R. Hence, (10)
writes −256c1r

4e−8ru = 0: contradiction.
(b) Assume k = −λ < 0. Then A4 = 0 implies

rf ′′ + 2r′f ′ = ±
√

2λ/a2r′.

Here we obtain f ′′, which it is substituted in A3 to obtain g′′ in terms
of f ′ and g′. Substituting into A2, we get that A1 = 0 is equivalent
to (2r2 + κ)/(κ − 2r2) = 0. Thus, the only possibility is that r is a
constant function. But then r′ = 2r2 + λ gets a contradiction.

3.3.2. c6= 0

If we compute the Weingarten relation (1) with our parametrization, we obtain

(11)

8∑

j=0

Bj(u)vn = 0,

for some functionsBj . As a consequence, all coefficientsBj vanish. The coefficient

B8 is B8 = −64c2(−2r2 + r′)4. Thus −2r2 + r′ = 0 and r is given by

r(u) =
1

−2u − µ
, µ ∈ R.

Now B3 = 1024c2f ′4

(2u+µ)5 . From B3 = 0 we have f ′ = 0 and thus M is rotational.
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Remark 3.1. Non-rotational spacelike surfaces in E3
1 with H = 0 and K = 0

are determined by the computation of (5). In the case H = 0 and if the planes of the
foliations are spacelike or timelike, the functions f , g and r in the parametrizations

(2) and (7) satisfy

f ′ = λr2, g′ = µr2, 1 − (ελ2 + µ2)r4 − r′2 + rr′′ = 0,

with λ, µ ∈ R and ε = 1 or ε = −1 depending if the planes are spacelike or timelike,
respectively. The solutions are given in terms of elliptic equations. If the planes are

lightlike, then H = 0 means that, up a constant, r = tan(2u) and

f(u) = λ(u +
1
2

cot(2u)), g(u)

=
1
32

(
4(4µ − 3λ2)u − 4λ2 cot(2u)− (λ2 − 4µ) sin(4u)

)
, λ, µ ∈ R.

If K = 0, then the functions satisfy f ′′ = g′′ = r′′ = 0 if the foliation planes
are spacelike or timelike, and f ′′ = g′′ = 0 and r(u) = λ/(u + µ) if the planes are
lightlike.

4. PROOF OF THEOREM 1.2

Let M be a linear Weingarten spacelike surface foliated by a uniparametric

family of circles. Consider a real interval I ⊂ R and u ∈ I the parameter of
each plane of the foliation that defines M . Let G(u) be a smooth unit vector field
orthogonal to each u-plane. Assume that the u-planes are not parallel and we will
conclude that M is a pseudohyperbolic surface. Then G′(u) 6= 0 in some real
interval. Without loss of generality, we assume that in that interval, the planes

containing the circles of M have the same causal character. Consider an integral

curve Γ of the vector field G. Then Γ is not a straight-line. This allows to define
a Frenet frame of Γ {t, n, b}. We have to distinguish three cases according to the
causal character of the foliation planes. If the planes are spacelike or timelike, the

reasoning is similar. For this reason, we shall only consider that the foliation planes

are spacelike and lightlike.

4.1. The planes are spacelike

Let {e1(u), e2(u)} be an orthonormal basis in each u-plane. ThenM parametrizes

as

X(u, v) = c(u) + r(u)(cos(v)e1(u) + sin(v)e2(u))

where r(u) > 0 and c(u) are differentiable functions on u. Then t = G is the unit

tangent vector to Γ and the Frenet equations are

t′ = κn

n′ = κt+ σb

b′ = −σn
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A change of coordinates allows to write M as

X(u, v) = c(u) + r(u)(cos(v)n(u) + sin(v)b(u)).

Set c′ = αt + βn + γb, where α, β y γ are smooth functions on u. Here t is a
timelike unit vector and n and b are spacelike unit vectors. Because Γ is not a

straight-line, κ 6= 0. By using c′ and the Frenet equations, the expression (1) is a
trigonometric polynomial on cos(jv) and sin(jv):

8∑

j=0

Aj(u) cos (jv) + Bj(u) sin (jv) = 0,

where Aj and Bj are smooth functions on u.

4.1.1. Case c = 0 in the relation aH + bK = c

Without loss of generality, we assume that 4b2 = 1. The coefficient B8 implies

βγ
(
2a2(3β4−10β2γ2 +3γ4)+κ2(1+12a2r2)(γ2−β2)+r2κ4(1+6a2r2)

)
= 0.

We discuss three cases.

1. Case β = 0 in a sub-interval of I . Then A8 = 0 writes as

(γ2 + r2κ2)2
(
4a2γ2 + (1 + 4a2r2)κ2

)
= 0.

This implies rκ = 0: contradiction.

2. Case γ = 0 in a sub-interval of I . Equation A8 = 0 writes as

(β2 − r2κ2)2
(
(1 + 4a2r2)κ2 − 4a2β2

)
= 0.

If β2 = r2κ2, it follows that A6 = − 9
32κ6r10(α − r′)2. Then A6 = 0 yields

α = r′. A computation ofW givesW = 0: contradiction. As a consequence,
we assume 4β2 = (1+4a2r2)κ2. The computation of the coefficient A7 leads

to α2(1 + 4a2r2) = 4a2r2r′2. From the expression of the center curve c, we
have

c′ =
rr′√
1

4a2 + r2
t+ κ

√
1

4a2
+ r2 n = (

√
1

4a2
+ r2 t)′.

In particular, there exists c0 ∈ E3
1 such that c = c0 +

√
1

4a2 + r2 t. The

parametrization X of the surface is now

X(u, v) = c0 +

√
1

4a2
+ r(u)2 t+ r(u)(cos(v)n+ sin(v)b).
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Then

〈X− c0,X− c0〉 =
1

4a2
.

This means that the surface is a pseudohyperbolic surface.

3. Case βγ 6= 0. From B8 = 0 we calculate β2:

β2 =
1

12a2

(
20a2γ2 + (1 + 12a2r2)κ2 ± A

)
,

where A =
√

256a2γ4 + 16a2γ2κ2 + 192a4r2γ2κ2 + κ4. We consider the

sign ’+’ in the value of β2 (similarly with the minus sign). Placing β2 into

A8 and taking in account that κ 6= 0, we obtain the following identity

26624a6γ6 + κ6 + 1536a2γ4κ2(1 + 2a2r2) + 72a2γ2κ4

= −
(
1792a2κ4 + κ4 + 64a2γ2κ2(1 + 12a2r2)

)
A.

Squaring both sides and after some manipulations, we obtain

(γ2 + κ2r2)
(
(16a2γ2 + κ2)2 + 256a2r2γ2κ2

)
= 0.

Hence we conclude κr = 0, which it is a contradiction.

4.1.2. Case c 6= 0 in the relation aH + bK = c

Without loss of generality, we shall assume that c = 1. The computations of the
coefficients A8 and B8 give

A8 = − 1
32

r8x1, B8 =
1
16

βγr8x2,

where

x1 = β8 − (28γ2 + κ2(a2 + 2b + 4r2))β6

+(70γ4 + 15γ2κ2(2(a2 + 2b + 4r2) + κ4(b2 + 3(a2 + 2b)r2 + 6r4))β4

+(−28γ6 − 15γ4κ2(a2 + 2b + 4r2) − κ6r2(2b2 + 3(a2 + 2b)r2 + 4r4)

−6γ2κ4(b2 + 3(a2 + 2b)r2 + 6r4))β2

+(γ2 + r2κ2)2(γ4 + γ2κ2(a2 + 2b + 2r2) + κ4(b2 + (a2 + 2b)r2 + r4)).

x2 = −4β6 + (28γ2 + 3κ2(a2 + 2b + 4r2))β4

−2(14γ4 + 5γ2κ2(a2 + 2b + 4r2) + κ4(b2 + 3(a2 + 2b)r2 + 6r4)β2

+(γ2 + r2κ2)(4γ4 + γ2κ2(3a2 + 6b + 8r2) + κ4(2b2 + 3(a2 + 2b)r2 + 4r4).

From B8 = 0, we discuss three cases:
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1. Case γ = 0 in some sub-interval of I . Then A8 = 0 is

(β2 − r2κ2)2
(
β4 − (a2 + 2b + 2r2)β2κ2 + (b2 + (a2 + 2b)r2 + r4)κ4

)
= 0.

(a) Suppose β2 = κ2r2. Without loss of generality we assume that β = κr.

Now A6 = −9
8b2κ6r10(α − r′)2. Then α = r′ and this gives W = 0 :

contradiction.

(b) Then β4 − (a2 + 2b + 2r2)β2κ2 + (b2 + (a2 + 2b)r2 + r4)κ4 = 0.
If we look this expression as a polynomial on β2, the computation of

the discriminant concludes that a2 + 4b ≥ 0. If a2 + 4b = 0, β2 =
(a2 + 4r2)κ2/4. Then B5 = 0 gives

B5 =
1

128
a4κ5r7σ

√
a2 + 4r2(α

√
a2 + 4r2 − 2rr′)2 = 0.

If σ = 0, A5 = 0 implies α
√

a2 + 4r2 − 2rr′ = 0 again. Therefore, in
both cases, and from the value of α, we can write

c′ =

(√
a2 + 4r2

2
t

)′

and so, there exists c0 ∈ E3
1 such that c = c0 +

√
a2+4r2

2 t. As a

consequence, we have

X(u, v) = c0 +
1
2

√
a2 + 4r(u)2 t+ r(u)

(
cos(v)n+ sin(v)b

)
,

for some c0 ∈ E3
1. Therefore 〈X−c0,X−c0〉 = −a2/4, and the surface

is a pseudohyperbolic surface.

Assume then a2 + 4b > 0. The coefficient A7 is

A7 =
1
64

aABκ5r9(ακ2 − κβ′ + κ′β) = 0,

with

A = 2b+a(a+
√

a2 + 4b), B = a3 +4ab+(a2 +2b)
√

a2 + 4b.

Then number A does not vanish and B = 0 holds only if a2 + 4b = 0.
From A7 = 0 we conclude that ακ2 − κβ′ + κ′β = 0, that is,

α =
(

β

κ

)′
,
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which implies c = c0 + β/κt for some c0 ∈ E3
1. The derivative of the

curve c is

c′ =
(

β

κ

)′
t+ βn =

(
β

κ
t

)′
.

The expression of X(u, v) is

X(u, v) = c0 +
β

κ
t+ r(cos(v)n+ sin(v)b).

Using the value of β2, we have,

〈X− c0,X− c0〉 = −β2

κ2
+ r2 = −

(
a2

2
+ b +

a

2

√
a2 + 4b

)
.

This means that the surface is a pseudohyperbolic surface.

2. Case β = 0 in some sub-interval of I . Then

A8 = − 1
32

r8(γ2 + κ2r2)y1, A7 = − 1
16

ακr9(γ2 + κ2r2)z1,

where

y1 = γ4 + (a2 + 2b + 2r2)κ2γ2 + (b2 + (a2 + 2b)r2 + r4)κ4

z1 = 8γ4 + (7(a2 + 2b) + 16r2)κ2γ2 + (6b2 + 7(a2 + 2b)r2 + 8r4)κ4.

Assume α 6= 0. From y1 = 0, we obtain γ2, which it is substituted into

z1 = 0, obtaining a
√

a2 + 4b = ±(a2 +2b). Then a2(a2 +4b) = (a2 +2b)2,
which implies b = 0: contradiction. Therefore, α = 0. From y1 = 0,

γ4 + (a2 + 2b + 2r2)κ2γ2 + (b2 + (a2 + 2b)r2 + r4)κ4 = 0.

Then

(12) γ2 =
1
2

(
± a
√

a2 + 4b− (a2 + 2b + 2r2)
)
κ2.

We prove that the parenthesis in (12) is non-positive, that is, ±a
√

a2 + 4b−
(a2 + 2b + 2r2) ≤ 0. Since this function on r is decreasing on a, we show

that (taking r = 0) ±a
√

a2 + 4b − (a2 + 2b) ≤ 0. Depending on the sign of
a, we have two possibilities. If a > 0, the inequality ±a

√
a2 + 4b ≤ a2 + 2b

is trivial. If a < 0, the inequality is trivial if a2 + 2b ≥ 0. The only case
to consider is ±a

√
a2 + 4b ≤ a2 + 2b < 0 (⇒ b < 0). But a2 + 2b < 0

and a2 + 4b ≥ 0 are not compatible. As a consequence of this reasoning,
we conclude from (12) that γ = 0 and this case was studied in the above
subsection.
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3. Case βγ 6= 0. In this case, the computations become very complicated and
difficult. For this reason, we only give the proof outline and we omit the

details. Let x = β2, y = γ2. From x1 = 0, we obtain the value of a2 + 2b,

which is substituted into x2 = 0, obtaining
(
(x+y)2+2(y−x)r2κ2+r4κ4

)2(
(x+y)2+2(y−x)r2κ2−b2κ4+r4κ4

)
= 0.

If we see (x + y)2 + 2(y − x)r2κ2 + r4κ4 = 0 as polynomical equation on
r2κ2, we find that the discriminant is negative, and so, this case is impossible.

Thus

(13) (x + y)2 + 2(y − x)r2κ2 − b2κ4 + r4κ4 = 0.

Then y = −x − r2κ2 + κ
√

4xr2 + b2κ2. Putting into x1 = 0, we conclude

16x2 − 8x(a2 + 2b + 2r2)κ2 + (a4 + 4a2b)κ4 = 0

or

256x4 − 512x3r2κ2 − 128x2(b2 − 2r4)κ4 + 64b2xr2κ6 + 3b4κ8 = 0.

We analyse the first possibility (the second one is analogous). If 16x2 −
8x(a2 + 2b + 2r2)κ2 + (a4 + 4a2b)κ4 = 0, then

(14)
β2 =

κ2

4

(
a2 + 2b + 2r2 ± 2Q

)

(
4
√

b2 + r2(a2 + 2b + 2r2 ± 2Q)− (a2 + 2b + 6r2)∓ 2Q
)
,

(15) γ2 =
κ2

4
where

Q =
√

a2r2 + (b + r2)2).

With these values obtained for β2 and γ2, Equation x1 = 0 depends only
on the function r. Exactly, x1 = 0 is a rational expression on r and√

b2 + (a2 + 2b)r2 + r4:

P(r,
√

b2 + (a2 + 2b)r2 + r4) = 0.

In particular, r(u) is a constant function. We do the change

p = x − y, q = (x − y)2 − 4xy

that is, x = (p +
√

2p2 − q)/2 and y = (−p +
√

2p2 − q)/2. Equation (13)
writes as
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(16) 2p2 − q − 2pr2κ2 + (r4 − b2)κ4 = 0 ⇒ q = 2p2 + 2pr2κ2 + (r4 − b2)κ4.

We calculate q by other way. From x1 = 0, we get a value of q, which it is
substituted into x2 = 0, obtaining

(p− r2κ2)
(
2p − (a2 + 2(b + r2))κ2

)

(
4p2 − 2p(a2 + 2b + 4r4)κ2 + (b2 + 2a2r2 + 4br2 + 4r4)κ4

)
= 0.

Hence and together (16) we obtain different values for p and q. On the other
hand, the values obtained for β and γ in (14) and (15) allow to get a pair of

values for p and q, which they must be equal. For each pair of these values,
we obtain different values for r, which are substituted into the coefficients

Ai and Bi. The computation of the coefficients A7 and B7 gives α = 0 and
using A5 and B5, we get σ = 0. Finally the coefficients A4 and B4 give

κ = 0, obtaining a contradiction.

4.2. The planes are lightlike

The surface M can be locally written as

X(u, v) = c(u) + vn(u) + r(u)v2t(u),

where r(u) > 0, and t and n are the tangent vector and normal vector of Γ respec-
tively. Since the planes are lightlike, 〈t, t〉 = 0 and 〈n, n〉 = 1. The Frenet frame
for Γ is {t, n, b}, where b is the unique lightlike vector orthogonal to n such that
〈t, b〉 = 1 and det(t, n, b) = 1. The Frenet equations are

t′ = κn

n′ = σt− κb

b′ = −σn

Again, we put c′ = αt + βn + γb. By using c′ and the Frenet equations, the
expression (1) is a trigonometric polynomial on v such as

∑n
j=0 Aj(u)vj = 0 with

n = 11 if c = 0 and n = 12 if c 6= 0.

4.2.1. Case c = 0 in the relation aH + bK = c

Without loss of generality, we assume that b = 1/2. ThenA11 = 98a2r2κ5(2r2γ

−r′)2. Then r′ = 2r2γ and so

A8 = −64r2κ5(σ − 2rβ)2(−4a2rβ + r2κ + 2a2σ) = 0.

If σ = 2rβ, then A6 = −100r4α2κ6. This yields α = 0 andW = 0: contradiction.
Thus 2a2σ = 4a2rβ − r2κ. Now A7 = 0 gives 2a2α = r2γ. Then
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c′ =
r′

4a2
t+ βn +

r′

2r2
b =

( r

4a2
t− 1

2r
b
)′

.

Therefore, there exists c0 ∈ E3
1 such that

X(u, v) = c0 +
( r

4a2
t− 1

2r
b

)
+ vn(u) + rv2t(u).

In particular,

〈X(u, v)− c0,X(u, v)− c0〉 = − 1
4a2

,

which shows that the surface is a pseudohyperbolic surface.

4.2.2. Case c 6= 0 in the relation aH + bK = c

We assume that c = 1. Then A12 = −64κ4(r′ − 2r2γ)4. As above, A8 = 0
gives two possibilities about the value of σ. In the first case, σ = 2rβ and A6 = 0
yields α = 0. This impliesW = 0: contradiction. The other case for σ is

σ2 + 2rσ
(
− 2β + (a2 + 2b)rκ

)
+ 4
(
β2 − (a2 + 2b)rβκ + b2r2κ2

)
r4 = 0.

Then
σ = 2rβ − a2r2κ − 2br2κ ± ar2κ

√
a2 + 4b.

In particular, a2 + 4b ≥ 0. We assume the choice ’+’ in the above identity (similar
for the minus sign). From Equation A7 = 0, we obtain

α =
1
2
(a2 + 2b − a

√
a2 + 4b)r′.

As in the case c = 0, we conclude the existence of c0 ∈ E3
1 such that

c = c0 +
1
2
(a2 + 2b− a

√
a2 + 4b)rt− 1

2r
b.

Now

X(u, v) = c0 +
1
2
(a2 + 2b− a

√
a2 + 4b)rt− 1

2r
b + vn(u) + rv2t(u),

and

〈X(u, v)− c0,X(u, v)− c0〉 = −1
2
(a2 + 2b− a

√
a2 + 4b),

showing that M is a pseudohyperbolic surface again.

REFERENCES

1. R. A. Abdel-Baky and H. N. Abd-Ellah, Ruled W-surfaces in Minkowski 3-space

E3
1 , Arch. Math., 44 (2008), 251-263.
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