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ALMOST SURE AND COMPLETE CONVERGENCE OF RANDOMLY
WEIGHTED SUMS OF INDEPENDENT RANDOM ELEMENTS IN

BANACH SPACES

Le Van Thanh1 and G. Yin2

Abstract. This work develops almost sure and complete convergence of
randomly weighted sums of independent random elements in a real separable
Banach space. Sufficient conditions for almost sure convergence and complete
convergence in the sense defined by Hsu and Robbins are provided. Examples
showing that the conditions cannot be removed or weakened are given. It is
also demonstrated that some of the known theorems in the literature are special
cases of our results.

1. INTRODUCTION

According to Hsu and Robbins [9], a sequence of real-valued random variables
{Xn, n ≥ 1} converges completely to 0 if,

(1.1)
∞∑

n=1

P
(|Xn| > ε

)
<∞ for all ε > 0.

Based on this definition, Hsu and Robbins [9] and Erd ös [7] derived a necessary
and sufficient condition for a sequence of independent identically distributed (i.i.d.)
random variables {Xn, n ≥ 1}. The assertion is: EX1 = 0 and E|X1|2 < ∞ if
and only if

(1.2)
∞∑

n=1

P
(∣∣ n∑

i=1

Xi

∣∣ > εn
)
<∞ for all ε > 0.
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Their theorem was extended by Baum and Katz [4] to establish a rate of convergence
in the sense of Marcinkiewicz-Zygmund’s strong law of large numbers, which reads:
Let α > 1/2, p ≥ 1, and {Xn, n ≥ 1} be a sequence of i.i.d. random variables.
Then EX1 = 0 and E|X1|p <∞ if and only if

(1.3)
∞∑

n=1

nαp−2P
(∣∣ n∑

i=1

Xi

∣∣ > εnα
)
<∞ for all ε > 0.

The results have been generalized and extended in several directions. A host of
researchers considered the problem in a Banach space setting; see Ahmed et al. [3],
Hu et al. [11], Sung [21], Hernández et al. [8], Sung et al. [19, 22], and Wang
[25] among others.

Recall that a sequence of random elements {Vni, n ≥ 1, 1 ≤ i ≤ n} is stochas-
tically dominated by a random element V if for some constant C <∞,

(1.4) P{‖Vni‖ > t} ≤ CP{‖V ‖ > t}, t ≥ 0, n ≥ 1, 1 ≤ i ≤ n.

Using stochastic dominance, Hu et al. [10] treated triangular arrays of row-wise
independent random variables and obtained the following complete convergence
result with a Marcinkiewicz-Zygmund type normalization. Let {Xni, n ≥ 1, 1 ≤
i ≤ n} be an array of row-wise independent mean 0 random variables that is
stochastically dominated by a random variable X , that is, condition (1.4) is satisfied.
If E|X |2t <∞ where 1 ≤ t < 2, then

(1.5)
∞∑

n=1

P
(∣∣ n∑

i=1

Xni

∣∣ > εn1/t
)
<∞ for all ε > 0.

Subsequently, Wang et al. [25] considered triangular arrays of row-wise independent
random elements and obtained the following convergence rate. Let 1/2 < α ≤ 1
and {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent random elements,
which is stochastically dominated by a random element V in the sense of condition
(1.4) being satisfied. If E‖V ‖p <∞ for some p > 1 and

(1.6) max
k≤n

P
(∥∥ k∑

i=1

Vni

∥∥ > εnα
)
→ 0 as n→ ∞ for all ε > 0,

then

(1.7)
∞∑

n=1

nαp−2P
(∣∣ n∑

i=1

Vni

∣∣ > εnα
)
<∞ for all ε > 0.

Later, Sung established a complete convergence for weighted sums of random ele-
ments in [20]. Let {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent
random elements that is stochastically dominated by a random element V . Let p ≥ 1
and {bni, n ≥ 1, 1 ≤ i ≤ n} be an array of constants satisfying
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(1.8) max
1≤i≤n

|bni| = O(n−1/p)

and

(1.9)
n∑

i=1

b2ni = o
( 1

logn

)
.

If E‖V ‖2p <∞ and

(1.10)
n∑

i=1

bniVni → 0 in probability as n→ ∞,

then

(1.11)
∞∑

n=1

P
(∥∥ n∑

i=1

bniVni

∥∥ > ε
)
<∞ for all ε > 0.

A number of researchers considered the weighted sums of random elements
where the weights are constants; see Ahmed et al. [3], Hu et al. [11], and Sung
[21]. In [16], Li et al. improved the main result of Thrum [24]; their result
reads: Let {Vi, i ≥ 1} be a sequence of independent identically distributed random
elements with E‖V1‖p < ∞ for some p ≥ 1. Let {ani, n ≥ 1, 1 ≤ i ≤ n} be an
array of constants such that supn,i |ani| <∞ and

(1.12)
n∑

i=1

a2
ni = O(nµ) for some 0 < µ < min{1, 2/p}.

If

(1.13)
1

n1/p

n∑
i=1

aniVi → 0 in probability,

then

(1.14)
1

n1/p

n∑
i=1

aniVi → 0 a.s.

In this paper, we obtain the almost sure convergence and complete convergence
for randomly weighted sums of arrays of row-wise independent random elements.
Although Cuzick [5], Li and Tomkins [18] and Li et al. [17] also considered almost
sure convergence with random weights, to the best of our knowledge, there has yet
been any result on the complete convergence of the case in which the weights are
random variables. Moreover, the results in the aforementioned papers do not imply
our results even in the case the weights are non-random. Most of the results of the
aforementioned work in the literature can be covered and improved by our results.
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As a motivation, we describe a problem arising in systems theory. Recall that
a transfer function is commonly used in the analysis of single-input single-output
systems, in signal processing, communication theory, and control theory. Consider a
continuous-time, linear, time-invariant system. Then a transfer function is the ratio
of the Laplace transforms of the output and input. It gives input/output character-
istics in the frequency domain. In certain applications, the underlying systems need
to be identified, which can be carried out by estimating the transfer functions using
observable data. Suppose that we wish to identify an unknown transfer function
K(·). The input is given by z(·), sampling interval is ∆, and output (at sampling
time n∆) is yn, where

yn =
∫ 1

0
K(u)z(n∆− u)du+ ψn,

where {ψn} is a sequence of observation noise, which is a sequence of i.i.d. random
variables with 0 mean and finite variance and is independent of z(·). To identify
or to estimate K(·), we treat this as a stochastic optimization problem in L2[0, 1],
which is the Hilbert space consisting of square integral functions defined on the
interval [0, 1]. Let

〈
x, y

〉
and ||x|| = [

〈
x, x

〉
]1/2 denote the inner product and the

norm on L2[0, 1], respectively. To carry out the desired task, we construct algorithm
of the form

(1.15) K̂n+1(t) = K̂n(t) + εnz(n∆t)
[
yn −

∫ 1

0

K̂n(u)z(n∆ − u)du
]
.

The above algorithm is stochastic approximation type analogs to its finite dimen-
sional counterpart [14]. Define δK̂n(t) = K̂n(t) − K(t), and use K̂n, δK̂n, K ,
and zn denote the random variables whose point values are K̂(t), δK̂n(t), K(t),
and zn(n∆ − t), resp.

(1.16) K̂n+1(t) = K̂n(t) + εnzn[
〈
δK̂n, zn

〉
+ ψn].

In the implementation, one often wishes to use a projection algorithm

(1.17) K̂n+1(t) = π
[
K̂n(t) + εnzn[

〈
δK̂n, zn

〉
+ ψn]

]
,

where π(·) is the projection to the unit ball in L2[0, 1]. As explained in [13, p.
782], this can be further rewritten as

(1.18) K̂n+1(t) = K̂n(t) + εnzn[
〈
δK̂n, zn

〉
+ ψn] − εncnK̂n + On,

where cn satisfies εncn < 1, and On satisfies
∑m(T )

j=0 Oj → 0, for any 0 < T <∞
with m(t) = max{n : tn ≤ t} and tn =

∑n−1
j=0 εj . In analyzing such algorithms,

one often needs to deal with a term (see [13, p. 783])
n∑

k=0

[ n∏
j=k+1

(1 − εjcj)
]
εkzk(

〈
zk, δK̂k

〉
+ ψk).
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As can be seen that this term is of the form a weighted sum of random variables.
Our work in this paper provides a sufficient condition for almost sure convergence
and complete convergence of such a sequence.

We also note that many linear models in statistics based on a random sample in-
volve weighted sums of dependent random variables. Examples include least-squares
estimators, nonparametric regression function estimators, and jackknife estimates,
among others. In this respect, the study of convergence for these weighted sums
has impact on statistics, probability, and their applications.

The rest of the paper is arranged as follows. Section 2 presents some definitions
and lemmas to be used in the proof of our results. Section 3 provided conditions for
almost sure convergence for randomly weighted sums. Our results in this section
improve the results by Li et al. [16]. Section 4 establishes complete convergence
for randomly weighted sums of arrays of row-wise independent random elements in
a real separable Banach space. In the main results, Theorem 3.1, Theorem 3.3, and
Theorem 4.1, no assumptions are made concerning the geometry of the underlying
Banach space. Finally, in Section 5, some corollaries and examples are presented
to illustrate the results. It demonstrates that our conditions are sharp and our results
lead to better convergence rates. Throughout this paper, the symbol C denotes a
generic positive constant (0 < C <∞) whose values may be different for different
appearances.

2. PRELIMINARIES

We begin with definitions, notation, and preliminary results prior to establishing
the main results. Let X be a real separable Banach space with norm || · ||. A random
element in X will be denoted by V or by Vn, Wn, etc.

The expected value or mean of a random element V , denoted EV , is defined
to be the Pettis integral provided it exists. That is, V has expected value EV ∈ X
if h(EV ) = E(h(V )) for every h ∈ X∗, where X ∗ denotes the (dual) space of all
continuous linear functionals on X . If E||V || < ∞, then (see, e.g., Taylor [23, p.
40]) V has an expected value. But the expected value can exist when E||V || = ∞.
For an example, see Taylor [23, p. 41].

Lemma 2.1 below is a Marcinkiewicz type inequality for some of independent
random elements; see de Acosta [1] for a proof.

Lemma 2.1. Let {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent
random elements. Then for every r ≥ 1, there is a positive constant C r depending
only on r such that for all n ≥ 1,

(2.19) E
∣∣∣‖ n∑

i=1

Vni‖ − E‖
n∑

i=1

Vni‖
∣∣∣r ≤ Cr

n∑
i=1

E‖Vni‖r, for 1 ≤ r ≤ 2,
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and

(2.20)

E
∣∣∣‖ n∑

i=1

Vni‖ − E‖
n∑

i=1

Vni‖
∣∣∣r

≤ Cr

(( n∑
i=1

E‖Vni‖2
)r/2 +

n∑
i=1

E‖Vni‖r
)
, for r > 2.

The following lemma is a Banach space version of Lemma 2.1 of Li at al. [16].
The proof is similar to that of Lemma 2.2 in Hu at al. [11].

Lemma 2.2. Let r ≥ 1, and {Vn, n ≥ 1} be a sequence of random elements
and {V ′

n, n ≥ 1} an independent copy of {Vn, n ≥ 1}. If Vn → 0 in probability,
then

(i) Vn → 0 a.s. if and only if Vn − V
′
n → 0 a.s.

(ii)
∞∑

n=1
nr−2P{‖Vn‖ ≥ ε} <∞ for every ε > 0 if and only if

∞∑
n=1

nr−2P{‖Vn−
V

′
n‖ ≥ ε} <∞ for every ε > 0.

The third lemma due to Hu at al. [11] concerning the relationship between
convergence in probability and mean convergence for sums of independent bounded
random elements.

Lemma 2.3. Let {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent
symmetric random elements and suppose there exists δ > 0 such that ‖V ni‖ ≤ δ
a.s. for all n ≥ 1, 1 ≤ i ≤ n. If

∑n
i=1 Vni → 0 in probability as n → ∞, then

E
∥∥∑n

i=1 Vni

∥∥ → 0 as n→ ∞.

The following lemma is a result of Adler at al. [2] concerning the expectation
of the truncation random elements that are stochastically dominated by a random
element V .

Lemma 2.4. Let {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array of random elements that
is stochastically dominated by a random element V . Then for all p > 0

(2.21)
E

(
‖Vni‖pI(‖Vni‖ ≤ t)

)

≤ CtpP (‖V ‖>t)+CE
(
‖V ‖pI(‖V ‖≤t)

)
, t ≥ 0, n ≥ 1, 1 ≤ i ≤ n,

and

(2.22)
E

(
‖Vni‖I(‖Vni‖ > t)

)

≤ CE
(
‖V ‖I(‖V ‖>t)

)
, t≥0, n ≥ 1, 1 ≤ i ≤ n.
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Finally, we present two exponential inequalities for independent Banach valued
random elements. See Sung [20, Lemma 1] for a proof of Lemma 2.5 (see also
[15]). The proof of Lemma 2.6 is also similar to that of Sung [20, Lemma 1].

Lemma 2.5. Let {Vi, 1 ≤ i ≤ n} be independent random elements such that
‖Vi‖ ≤ A a.s. for some constant A > 0. Then for all t > 0,

E
(

exp(t‖
n∑

i=1

Vi‖)
)
≤ exp

(
tE‖

n∑
i=1

Vi‖ + 2t2
n∑

i=1

E‖Vi‖2 exp(2tA)
)
.

Lemma 2.6. Let {Vi, 1 ≤ i ≤ n} be independent random elements such that
for each 1 ≤ i ≤ n ‖Vi‖ ≤ Ai a.s. for some constants Ai > 0. Then for all t > 0,

E
(

exp(t‖
n∑

i=1

Vi‖)
)
≤ exp

(
tE‖

n∑
i=1

Vi‖ + 4t2
n∑

i=1

E‖Vi‖2g(2tAi)
)
,

where g(x) = x−2(ex − 1 − x).

3. ALMOST SURE CONVERGENCE

In this section, we establish the almost sure convergence of randomly weighted
sums of independent random elements. The first theorem is a new result even when
Ani are constants. This theorem improves the cited result of Li et al. [16].

Theorem 3.1. Let p ≥ 1, and {Vi, i ≥ 1} be a sequence of independent
random elements that are stochastically dominated by a random element V with
E‖V ‖p < ∞. Let {Ani, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent
random variables such that

(3.1) sup
n≥1,1≤i≤n

|Ani| ≤ K a.s. for some positive constant K.

Assume that for all n ≥ 1, the random variables {A ni, 1 ≤ i ≤ n} are independent
of {Vi, i ≥ 1}, and

(3.2) lim
n→∞

1
n1/p

E‖
n∑

i=1

AniViI(‖AniVi‖ ≤ n1/p log−1 n)‖ = 0.

(1) If p > 2 and

(3.3)
n∑

i=1

E(|Ani|2) = o(n2/p log−1 n),

then
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(3.4) lim
n→∞

1
n1/p

n∑
i=1

AniVi = 0 a.s.

(2) If 1 ≤ p ≤ 2 and

(3.5)
n∑

i=1

E(|Ani|p) = O(nµ) for some 0 < µ < 1,

then (3.4) holds.

(3) If 1 ≤ p ≤ 2, and (3.1) and (3.2) are respectively replaced by

(3.6)

max
1≤i≤n

|Ani|

≤ K/ logn a.s. for some contant K and

lim
n→∞

1
n1/p

E‖
n∑

i=1

AniViI(‖Vi‖ ≤ n1/p)‖ = 0,

then (3.4) holds.

Proof. For ε > 0, we choose a positive integer N (to be specialized later), and
let

Xni = ViI(‖AniVi‖ ≤ n1/p log−1 n),

Yni = ViI(n1/p log−1 n < ‖AniVi‖ ≤ n1/p ε

N
),

and
Zni = ViI(‖AniVi‖ > n1/p ε

N
).

Proof of part (1) . For all t > 0, by Lemma 2.5

(3.7)

P (‖
n∑

i=1

AniXni‖ > n1/pε)

≤ exp(−tn1/pε)E
(

exp(t‖
n∑

i=1

AniXni‖)
)

(by the Markov inequality)

≤ exp(−tn1/pε)

exp
(
tE‖

n∑
i=1

AniXni‖ + 2t2
n∑

i=1

E‖AniXni‖2 exp(2tn1/p log−1 n)
)
.

Since E‖V ‖p <∞, p > 2, we have from (3.1) and (3.3) that

(3.8)
n∑

i=1

E‖AniXni‖2 ≤ C

n∑
i=1

E|Ani|2 = o(n2/p log−1 n).
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Putting t =
2n−1/p logn

ε
, it follows from (3.2), (3.7) and (3.8) that there exists

1 < α < 2 such that

(3.9) P (‖
n∑

i=1

AniXni‖ > n1/pε) ≤ C
1
nα

and for all large n.

Therefore

(3.10)
∞∑

n=1

P (‖
n∑

i=1

AniXni‖ > n1/pε) <∞.

Now, we use the method in [12]. From the definition of Yni,

(3.11)

P (
n∑

i=1

‖AniYni‖ > n1/pε)

≤ P (there are at least N such i’s that ‖AniVi‖ > n1/p log−1 n)
≤

∑
1≤i1<···<iN≤n

P
(
‖Ani1Vi1‖ > n1/p log−1 n, . . . ,

‖AniNViN ‖ > n1/p log−1 n
)

≤
( n∑

i=1

P (‖AniVi‖ > n1/p log−1 n)
)N

≤
( n∑

i=1

E‖AniVi‖p

n
logp n

)N

≤
(
Kp−2

n∑
i=1

E|Ani|2E‖Vi‖p

n
logp n

)N

≤
(
C

n∑
i=1

E|Ani|2
n

logp n
)N

≤ C
( logp n

n1−2/p

)N
.

Choose N large enough such that (1 − 2/p)N > 1, we get from (3.11) that

(3.12)
∞∑

n=1

P (‖
n∑

i=1

AniYni‖ > n1/pε) <∞.

Now, we note that E‖V ‖p < ∞ implies
∑∞

i=1 P (‖Vi‖ > i1/p) < ∞, so by the
Borel-Cantelli lemma,

(3.13)
n∑

i=1

‖Zni‖ = O(1) a.s.

It follows from (3.1) and (3.13) that
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(3.14) lim
n→∞

1
n1/p

∥∥ n∑
i=1

AniZni

∥∥ ≤ lim
n→∞

K

n1/p

n∑
i=1

‖Zni‖ = 0 a.s.

The conclusion (3.4) follows from (3.10), (3.12), and (3.14).

Proof of part (2). We see that (3.8) remains true since µ < 1 and

(3.15)

n∑
i=1

E‖AniXni‖2

≤
( n∑

i=1

E‖AniXni‖p
)
n−1+2/p logp−2 n

≤ C
( n∑

i=1

E|Ani|p
)
n−1+2/p logp−2 n

≤ Cnµ−1+2/p logp−2 n.

Therefore (3.9) remains true. The rest of the argument is similar to that of (3.12)
and (3.14).

Proof of part (3). Let g(x) = x−2(ex − 1 − x) and

Ui = ViI(‖Vi‖ ≤ i1/p), Wi = Vi − Ui.

For all t > 0, by Lemma 2.6 and the first part of (3.6),

(3.16)

E
(

exp(t‖
n∑

i=1

AniUi‖)
)

≤ exp
(
tE‖

n∑
i=1

AniUi‖ + 4t2
n∑

i=1

E‖AniUi‖2g(2tn1/pK/ logn)
)

≤ exp
(
tE‖

n∑
i=1

AniUi‖ + 4t2g(2tn1/pK/ logn)
n∑

i=1

E|Ani|2E‖Ui‖pn2/p−1
)

≤ exp
(
tE‖

n∑
i=1

AniUi‖ +Ct2n2/p(K/ logn)2g(2tn1/pK/ logn)
)

≤ exp
(
tE‖

n∑
i=1

AniUi‖ +C exp(2tn1/pK/ logn)
)

(since x2g(x) < ex for x > 0).
For all ε > 0, it follows from (3.16) and the Markov inequality that

(3.17)
P (‖

n∑
i=1

AniUi‖ > n1/pε)

≤ exp(−tn1/pε) exp
(
tE‖

n∑
i=1

AniUi‖ +C exp(2Ktn1/p/ logn)
)
.
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Putting t =
3n−1/p logn

ε
, it follows from (3.17) and the second part of (3.6)

that

(3.18) P (‖
n∑

i=1

AniUi‖ > n1/pε) ≤ C
1
n2

and for all large n.

Therefore

(3.19)
∞∑

n=1

P (‖
n∑

i=1

AniUi‖ > n1/pε) <∞.

By the Borel-Cantelli lemma,

(3.20) n−1/p‖
n∑

i=1

AniUi‖ → 0 a.s. as n→ ∞.

By the argument similar to that of (3.13), we have
∑n

i=1 ‖Wi‖ is bounded a.s. This
implies

(3.21) n−1/p‖
n∑

i=1

AniWi‖ ≤ K

n1/p logn

n∑
i=1

‖Wi‖ → 0 a.s. as n→ ∞.

Conclusion (3.4) follows from (3.20) and (3.21).

Remark 3.2. We note:

(i) When Ani ≡ ani a.s., where {ani, n ≥ 1, 1 ≤ i ≤ n} is a bounded array
of constants, then both condition (3.2) and the second part of (3.6) can be
replaced by

(3.22) n−1/p
n∑

i=1

aniVi → 0 in probability as n→ ∞.

The proof is standard (see Remark 4.3).
(ii) When p > 2, the condition (1.12) of Li et al. [16] is stronger than (3.3).

So, Theorem 3.1 improves the cited result of Li et al. [16] even when the
non-randomly weighted case.

(iii) We now compare Part (1) of Theorem 3.1 with result of Sung [20] cited
in Section (when p > 2). When Ani ≡ ani ≡ n1/pbni, (3.1), (3.3) and
(3.22) coincide with (1.8), (1.9), (1.10), respectively. Sung [20] obtained the
complete convergence of

∑n
i=1 bniVni under condition E‖V ‖2p < ∞ while

in Theorem 3.1, we obtain the almost sure convergence
∑n

i=1 bniVi under
condition E‖V ‖p <∞.
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(iv) Condition (3.5) is strong, but as we can see in Part (3), when (3.1) is strength-
ened to max1≤i≤n |Ani| ≤ K/ logn a.s., (3.5) can be removed. According to
a result by Cuzick [5, Corollary 2.1 and Lemma 2.1], Part (3) does not hold
if max1≤i≤n |Ani| ≤ K/ logn a.s. is weakened to (3.1).

The proof of the following theorem is similar to that of Part (1) of Theorem 3.1.

Theorem 3.3. Let p > 2, and {Vi, i ≥ 1} be a sequence of independent
random elements that are stochastically dominated by a random element V with
E‖V ‖p < ∞. Let {Ani, n ≥ 1, 1 ≤ i ≤ n} be an array of row-wise independent
random variables such that (3.1) holds. Assume that for all n ≥ 1, the random
variables {Ani, 1 ≤ i ≤ n} are independent of {Vi, i ≥ 1}, and (3.2) holds. If

(3.23)
n∑

i=1

E(|Ani|2) = O(n2/p log−1 n),

then

(3.24) lim sup
n→∞

1
n1/p

‖
n∑

i=1

AniVi‖ <∞ a.s.

4. COMPLETE CONVERGENCE

The following theorem provides conditions for complete convergence of ran-
domly weighted sums of row-wise independent random elements in Banach spaces.
Examples are provided in Section 5 to show that these conditions cannot be dis-
pensed with or weakened. No assumptions are made concerning the geometry of
the underlying Banach space.

Theorem 4.1. Let α > 1/2, 1 ≤ p < 2, {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array
of row-wise independent random elements that are stochastically dominated by a
random element V with E‖V ‖p < ∞. Let {Ani, n ≥ 1, 1 ≤ i ≤ n} be an array
of row-wise independent random variables. Assume that for all n ≥ 1, the random
variables {Ani, 1 ≤ i ≤ n} are independent of {Vni, 1 ≤ i ≤ n}. If

(4.1)
n∑

i=1

E(|Ani|2) = O(n),

and

(4.2) lim
n→∞ n−αE

∥∥∥ n∑
i=1

AniVniI(‖Vni‖ ≤ nα)
∥∥∥ = 0,

then

(4.3)
∞∑

n=1

nαp−2P
(∥∥ n∑

i=1

AniVni

∥∥ > εnα
)
<∞ for all ε > 0.
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Proof. Noting that (4.3) is automatic if αp < 1. So, we assume that αp ≥ 1.
For n ≥ 1, set

Wni = VniI(‖Vni‖ ≤ nα), 1 ≤ i ≤ n.

For all ε > 0,

(4.4)
P

(∥∥ n∑
i=1

AniVni

∥∥ > εnα
)

≤ P
(

max
1≤i≤n

‖Vni‖ > nα
)

+ P
(
‖

n∑
i=1

AniWni‖ > εnα
)
.

To obtain (4.3), it remains to show that

(4.5)
∞∑

n=1

nαp−2P
(

max
1≤i≤n

‖Vni‖ > nα
)
<∞,

and

(4.6)
∞∑

n=1

nαp−2P
(
‖

n∑
i=1

AniWni‖ > εnα
)
<∞.

First, we have

(4.7)

∞∑
n=1

nαp−2P
(

max
1≤i≤n

‖Vni‖ > nα
)

≤
∞∑

n=1

nαp−2
n∑

i=1

P
(
‖Vni‖ > nα

)

≤ C

∞∑
n=1

nαp−1P (‖V ‖ > nα)

= C

∞∑
n=1

nαp−1
∞∑

i=n

P (iα < ‖V ‖ ≤ (i+ 1)α)

= C
∞∑
i=1

i∑
n=1

nαp−1P (iα < ‖V ‖ ≤ (i+ 1)α)

≤ C

∞∑
i=1

iαpP (iα < ‖V ‖ ≤ (i+ 1)α)

≤ CE‖V ‖p <∞.

This proves (4.5). Note that it follows from (4.2) that for all large n,

(4.8) n−αE
∥∥∥ n∑

i=1

AniVniI(‖Vni‖ ≤ nα)
∥∥∥ < ε/2.

So, to prove (4.6), it suffice to show that
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(4.9)
∞∑

n=1

nαp−2P
(∣∣∣‖ n∑

i=1

AniWni‖ −E‖
n∑

i=1

AniWni‖
∣∣∣ > nαε/2

)
<∞.

We have
∞∑

n=1

nαp−2P
(∣∣∣‖ n∑

i=1

AniWni‖ −E‖
n∑

i=1

AniWni‖
∣∣∣ > nαε/2

)

≤ 4
ε2

∞∑
n=1

nαp−2−2αE
(∣∣∣‖ n∑

i=1

AniWni‖ − E‖
n∑

i=1

AniWni‖
∣∣∣2)

(by Chebyshev’s inequality)

≤ C

∞∑
n=1

nαp−2−2α
n∑

i=1

E
∥∥∥AniWni

∥∥∥2
(by Lemma 2.1 with r = 2)

= C

∞∑
n=1

nαp−2−2α
n∑

i=1

E|Ani|2E‖Wni‖2 (since Ani is independent of Vni)

≤ C

∞∑
n=1

nαp−2−2α
( n∑

i=1

E|Ani|2
)(
n2αP (‖V ‖ > nα) +E‖V I(‖V ‖ ≤ nα)‖2

)
(by (2.21))

≤ C

∞∑
n=1

nαp−1−2αE‖V I(‖V ‖ ≤ nα)‖2 + C

∞∑
n=1

nαp−1P (‖V ‖ > nα) (by (4.1))

≤ C

∞∑
n=1

nαp−1−2α
n∑

i=1

E
(
‖V ‖2I

(
(i− 1)α < ‖V ‖ ≤ iα

))
+ CE‖V ‖p (by (4.7))

= C
∞∑
i=1

∞∑
n=i

nαp−1−2αE
(
‖V ‖2I

(
(i− 1)α < ‖V ‖ ≤ iα

))
+ CE‖V ‖p

≤ C

∞∑
i=1

iαp−2αE
(‖V ‖2I((i− 1)α < ‖V ‖ ≤ iα)

)
+ CE‖V ‖p

≤ C

∞∑
i=1

iαpP
(
(i− 1)α < ‖V ‖ ≤ iα

)
+ CE‖V ‖p

≤ CE‖V ‖p <∞.

This proves (4.9). The proof of the theorem is completed.

Remark 4.2.

(i) When α > 1, condition (4.2) is automatically satisfied. To see this, for all
n ≥ 1,
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( n∑
i=1

E|Ani|
)2 ≤

( n∑
i=1

(EA2
ni)

1/2
)2

(by Jensen’s inequality)

≤ n

n∑
i=1

EA2
ni.

So, it follows from (4.1) that

(4.10)
n∑

i=1

E|Ani| = O(n).

Hence

0 ≤ lim
n→∞ n−αE

∥∥∥ n∑
i=1

AniVniI(‖Vni‖ ≤ nα)
∥∥∥

≤ lim
n→∞ n−α

n∑
i=1

E‖AniVniI(‖Vni‖ ≤ nα)‖

≤ lim
n→∞Cn−α

( n∑
i=1

E|Ani|
)(
E‖V I(‖V ‖ ≤ nα)‖+ nαP (‖V ‖ > nα)

)
(by (2.21))

≤ lim
n→∞Cn1−αE‖V ‖ (by (4.10))

= 0 (since α > 1 and E‖V ‖ <∞).
(ii) When X is a real separable Hilbert space and EVni ≡ 0, by similar method

(using the identity E(
∑n

i=1 Vni)2 =
∑n

i=1 EV
2
ni instead of Lemma 2.1) we

can prove that Theorem 4.1 still holds without (4.2).

Remark 4.3. When Ani ≡ ani a.s., where {ani, n ≥ 1, 1 ≤ i ≤ n} is an array
of constants satisfying

(4.11) sup
n≥1, i≥1

|ani| <∞,

then the condition (4.1) is satisfied automatically. Moreover, the condition (4.2) can
be replaced by

(4.12) n−α
n∑

i=1

aniVni → 0 in probability as n→ ∞.

To see this, by Lemma 2.2 and (4.12), we can assume that for each n ≥ 1, {Vni, 1 ≤
i ≤ n} are symmetric random elements. By Remark 4.2, we need only prove (4.2)
when 0 < α ≤ 1. We have
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0 ≤ lim
n→∞n−αE

∥∥∥ n∑
i=1

aniVniI(‖Vni‖ > nα)
∥∥∥

≤ lim
n→∞n−α

n∑
i=1

E‖aniVniI(‖Vni‖ > nα)‖

≤ lim
n→∞Cn−α

( n∑
i=1

|ani|
)
E‖V I(‖V ‖ > nα)‖ (by (2.22))

≤ lim
n→∞Cn1−αE‖V I(‖V ‖ > nα)‖ (by (4.11))

≤ lim
n→∞CE

(
‖V ‖1/αI(‖V ‖ > nα)

)
≤ lim

n→∞C
(
E

(‖V ‖pI(‖V ‖ > nα)
))1/αp

(by Jensen’s inequality and noting that αp ≥ 1)

= 0 (since E‖V ‖p <∞).

It follows that

(4.13) n−α
n∑

i=1

aniVniI(‖Vni‖ > nα) → 0 in probability as n→ ∞.

Combining (4.12) and (4.13), we have

(4.14) n−α
n∑

i=1

aniVniI(‖Vni‖ ≤ nα) → 0 in probability as n→ ∞.

Now, (4.11) implies that there exists a constant C such that∥∥∥n−αaniVniI(‖Vni‖ ≤ nα)
∥∥∥ ≤ |ani| ≤ C a.s. for all n ≥ 1, 1 ≤ i ≤ n.

Hence by Lemma 2.3 and (4.14), (4.2) follows.

Remark 4.4. If p ≥ 2, then Theorem 4.1 still hold if (4.1) is replaced by

(4.15)
n∑

i=1

E(|Ani|q) = O(n) for some q > 2(αp− 1)/(2α− 1).

The proof is similar to that of Theorem 4.1, by applying Lemma 2.1 with r = q/2.
The verbatim argument is omitted.

Now, if we consider Vni → aniVni as a linear operator fni : X → X , then
we have the following theorem. The proof is exactly as that of Theorem 4.1 and
Remark 4.4.
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Theorem 4.5. Let α > 1/2, p ≥ 1, {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array
of row-wise independent random elements that are stochastically dominated by a
random element V with E‖V ‖p <∞. Let {fni, n ≥ 1, 1 ≤ i ≤ n} be an array of
continuous linear operators from X to X . If

(4.16) lim
n→∞ n−αE

∥∥∥ n∑
i=1

fni(Vni)I(‖Vni‖ ≤ nα)
∥∥∥ = 0,

and if either

(4.17) 1 ≤ p < 2,
n∑

i=1

‖fni‖2 = O(n),

or

(4.18) p ≥ 2,
n∑

i=1

‖fni‖q = O(n) for some q > 2(αp− 1)/(2α− 1),

then

(4.19)
∞∑

n=1

nαp−2P
(∥∥ n∑

i=1

fni(Vni)
∥∥ > εnα

)
<∞ for all ε > 0.

By applying the fact that

E max
1≤k≤n

∥∥∥ k∑
i=1

Vni

∥∥∥ ≤
n∑

i=1

E‖Vni‖ for all arbitrary array {Vni, n ≥ 1, 1 ≤ i ≤ n},

we obtain the following theorem. No row-wise independence conditions are needed.

Theorem 4.6. Let α > 0, 0 < p < 1, {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array
of random elements that are stochastically dominated by a random element V with
E‖V ‖p < ∞. Let {Ani, n ≥ 1, 1 ≤ i ≤ n} be an array of random variables.
Assume that for all n ≥ 1, 1 ≤ i ≤ n, the random variable A ni is independent of
Vni. If

(4.20)
n∑

i=1

E(|Ani|) = O(n),

then

(4.21)
∞∑

n=1

nαp−2P
(

max
1≤k≤n

∥∥ k∑
i=1

AniVni

∥∥ > εnα
)
<∞ for all ε > 0.
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Proof. Let Wni be as in the proof of Theorem 4.1. We need only prove the
theorem for αp ≥ 1. For all ε > 0,

(4.22)

∞∑
n=1

nαp−2P
(

max
1≤k≤n

‖
k∑

i=1

AniWni‖ > nαε
)

≤ 1
ε

∞∑
n=1

nαp−2−αE
(

max
1≤k≤n

‖
k∑

i=1

AniWni‖
)

(by Chebyshev’s inequality)

≤ C

∞∑
n=1

nαp−2−α
n∑

i=1

E
∥∥∥AniWni

∥∥∥
= C

∞∑
n=1

nαp−2−α
n∑

i=1

E|Ani|E‖Wni‖ (since Ani is independent of Vni)

≤ C

∞∑
n=1

nαp−2−α
( n∑

i=1

E|Ani|
)(
nαP (‖V ‖ > nα)+E‖V I(‖V ‖ ≤ nα)‖

)
(by (2.21))

≤ C

∞∑
n=1

nαp−1−2αE‖V I(‖V ‖ ≤ nα)‖2 + C

∞∑
n=1

nαp−1P (‖V ‖ > nα)

(by (4.20))

≤ C

∞∑
n=1

nαp−1−α
n∑

i=1

E
(
‖V ‖I((i− 1)α < ‖V ‖ ≤ iα

))
+CE‖V ‖p

= C

∞∑
i=1

∞∑
n=i

nαp−1−αE
(
‖V ‖I((i− 1)α < ‖V ‖ ≤ iα

))
+ CE‖V ‖p

≤ C

∞∑
i=1

iαp−αE
(‖V ‖I((i− 1)α < ‖V ‖ ≤ iα)

)
+ CE‖V ‖p

≤ C

∞∑
i=1

iαpP
(
(i− 1)α < ‖V ‖ ≤ iα

)
+ CE‖V ‖p

≤ CE‖V ‖p <∞.

Similar to (4.7), we also have

(4.23)
∞∑

n=1
nαp−2P

(
max1≤i≤n ‖Vni‖ > nα

)
≤ CE‖V ‖p <∞.

Since

P
(

max
1≤k≤n

∥∥ k∑
i=1

AniVni

∥∥ > εnα
)

≤ P
(

max
1≤i≤n

‖Vni‖ > nα
)

+ P
(

max
1≤k≤n

‖
k∑

i=1

AniWni‖ > εnα
)
,

the conclusion (4.21) follows from (4.22) and (4.23).
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5. COROLLARIES AND EXAMPLES

In this section, we present several corollaries and examples. The first corollary
extends the result of Wang et al. [25] by including larger range for α and p.

Corollary 5.1. Let α > 1/2, p ≥ 1, {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array
of row-wise independent random elements that are stochastically dominated by a
random element V with E‖V ‖p <∞. Let {ani, n ≥ 1, 1 ≤ i ≤ n} be an array of
constants satisfying

(5.1) sup
n≥1

sup
1≤i≤n

|ani| <∞.

If

(5.2) n−α
∥∥∥ n∑

i=1

aniVni

∥∥∥ → 0 in probability as n→ ∞,

then

(5.3)
∞∑

n=1

nαp−2P
(∥∥ n∑

i=1

aniVni

∥∥ > εnα
)
<∞ for all ε > 0.

Proof. Set Ani ≡ ani a.s. Since (4.1) and (4.15) are immediately consequences
of (5.1), Corollary 5.1 follows from Theorem 4.1, Remark 4.3 and Remark 4.4

Remark 5.2. Corollary 5.1 extends the result of Wang et al. [25] and provides
better convergence rates.

(i) We only assume (5.2), whereas Wang et al. [25] assume (1.6).
(ii) We allow p ≥ 1, whereas Wang et al. [25] require that p > 1.

Corollary 5.3. Let 1/2 ≤ t < 2 and let {Vni, n ≥ 1, 1 ≤ i ≤ n} be an array
of row-wise independent random elements that are stochastically dominated by a
random element V with E‖V ‖2t < ∞. Let {ani, n ≥ 1, 1 ≤ i ≤ n} be an array
of constants satisfying

(5.4) sup
n≥1

sup
1≤i≤n

|ani| <∞.

If

(5.5) n−1/t
∥∥∥ n∑

i=1

aniVni

∥∥∥ → 0 in probability as n→ ∞,

then

(5.6)
∞∑

n=1

P
(∥∥ n∑

i=1

aniVni

∥∥ > εn1/t
)
<∞ for all ε > 0.
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Proof. Let p = 2t, α = 2/p = 1/t. Noting that 1/2 ≤ t < 2 implies α > 1/2.
Therefore Corollary 5.3 follows from Corollary 5.1.

Remark 5.4. Let ani ≡ n1/tbni. Then Corollary 5.3 implies the “p < 2 part”
of Sung [20]. If the Banach space is real valued and EVni = 0, n ≥ 1, 1 ≤ i ≤ n,
then by Remark 4.2 (ii), Corollary 5.3 also extends result of Hu et al. [10].

Next we consider two illustrative examples. Recall that �p (where p ≥ 1) is
the real separable Banach space of absolute pth-power summable real sequences
v = {vi, i ≥ 1} with norm ||v|| = (

∑∞
i=1 |vi|p)1/p. The element of �p having

1 in its nth position and 0 elsewhere will be denoted by v(n), n ≥ 1. Define a
sequence {Wn, n ≥ 1} of independent 0-mean random elements in �p by requiring
the {Vn, n ≥ 1} to be independent with

P{Wn = v(n)} = P{Wn = −v(n)} =
1
2
, n ≥ 1.

The random elements {Wn, n ≥ 1} will be used in the first example. This
example shows that the condition (4.2) cannot be removed in Theorem 4.1.

Example 5.5. Let 1 ≤ p < 2, α = 1/p and consider the Banach space �p
and the sequence {Wn, n ≥ 1} of independent 0-mean random elements in �p. Let
Vni = Wi for all n ≥ 1. Then {Vni, n ≥ 1, 1 ≤ i ≤ n} is stochastically dominated
by W1 that satisfies E‖W1‖p < ∞. Let {Ani, n ≥ 1, 1 ≤ i ≤ n} be an array of
row-wise independent random variables such that the sequences {Ani, i ≥ 1} and
{Vni, i ≥ 1} are independent for all n ≥ 1, and for all n ≥ 1 and 1 ≤ i ≤ n,

(5.7) P{Ani = −1} = P{Ani = 1} = 1/2.

Then ‖Vni‖ = 1 a.s. for all n ≥ 1, 1 ≤ i ≤ n and the condition (4.1) is satisfied.
Since

(5.8)
∥∥∥ n∑

i=1

AniVni

∥∥∥ = n1/p a.s.,

and so the (4.2) fails. It is easy to see that (4.3) also fails.

By applying Hölder’s inequality, if

(5.9)
n∑

i=1

E|Ani|q = O(n) for some q > 0,

then

(5.10)
n∑

i=1

E|Ani|r = O(n) for all 0 < r < q.
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The following example shows that in Theorem 4.1, we cannot replace (4.1) by the
weaker condition

(5.11)
n∑

i=1

E|Ani|p = O(n).

Example 5.6. Let 1 ≤ p < 2, α = 1/p and consider an array {Vni, n ≥ 1, 1 ≤
i ≤ n} of independent mean 0 real-valued random variables such that for all n ≥ 1
and all 1 ≤ i ≤ n,

(5.12)
P{Vni = 0} = 1 − 1/ log(n + 1) and P{Vni = −1}

= P{Vni = 1} = 1/(2 log(n+ 1)).

Then the array {Vni, n ≥ 1, 1 ≤ i ≤ n} is stochastically dominated by V11. Let
{Ani, n ≥ 1, 1 ≤ i ≤ n} be an array of random variables such that for all n ≥ 1

(5.13) P{Ani = 0} = 1 for all 1 ≤ i < n and P{Ann = n1/p} = 1.

Then
∑n

i=1E|Ani|p = O(n) but (4.1) fails. We also see that

(5.14) n−αE
∣∣∣ n∑

i=1

AniVniI(|Vni| ≤ nα)
∣∣∣ = E|Vnn| = 1/ log(n+ 1)

and so (4.2) holds. However, since

(5.15)
P

(∣∣∣ n∑
i=1

AniVni

∣∣∣ > εnα
)

= P
(|Vnn| > ε

)
= 1/ log(n+ 1) for all 0 < ε < 1,

conclusion (4.3) fails.
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