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AN EXTENSION OF A GENERALIZED EQUILIBRIUM PROBLEM

Sangho Kum1 and Mu-Ming Wong2,∗

Abstract. In this note, we consider a multi-valued version of a generalized
system (GS) called the multi-valued generalized system (MGS). Using the
Fan-Browder fixed point theorem and Brouwer’s fixed point theorem as basic
tools, we provide existence theorems on (MGS) with and without monotonicity,
respectively.

1. INTRODUCTION

The equilibrium problem (EP) has been intensively studied, beginning with
Blume and Oettli [1] where they proposed it as a generalization of optimization and
variational inequality problem. It turns out that this problem includes, as special
cases, other problems such as the fixed point and coincidence point problem, the
complementarity problem, the Nash equilibrium problem, etc. Because of the general
form of this problem, it was investigated under other terminologies, e.g., see [1].
We observe that existence, extensions and applications of equilibrium problems have
been extensively investigated in the literature. See, e.g., [2-22] and the references
therein.

Recently, Kazmi and Khan [23] introduced a kind of EP called generalized
system (GS) which extends the strong vector variational inequality (SVVI) studied
in Fang and Huang [24] in real Banach spaces. From Brouwer’s fixed point theorem,
they first derived an existence theorem of solutions of (GS) without monotonicity.
Then they presented a corresponding result with monotonicity using Fan’s KKM
Lemma [25] in real Banach spaces. However, they dealt with only the single-valued
case of the bi-operator F .
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In this note, we consider a multi-valued version of (GS) due to Kazmi and Khan
[23] which is called the multi-valued generalized system (in short, MGS). From both
theoretical and practical points of view, it is natural and useful to extend a single-
valued case to a corresponding multi-valued one. Using the Fan-Browder fixed
point theorem [26] and Brouwer’s fixed point theorem as basic tools, we provide
existence theorems on (MGS) with and without monotonicity in general Hausdorff
topological vector spaces.

2. PRELIMINARIES

Let us take a brief look at the standard definition of continuous multi-valued
functions. Let X, Y be non-empty topological spaces and T : X → 2Y be a
multifunction. A multifunction T : X → 2Y is said to be upper semicontinuous if
for each x ∈ X and each open set V in Y with T (x) ⊂ V , there exists an open
neighborhood U of x in X such that T (y) ⊂ V for each y ∈ U . A multifunction
T : X → 2Y is said to be lower semicontinuous if for each x ∈ X and each
open set V in Y with T (x) ∩ V �= ∅, there exists an open neighborhood U of
x in X such that T (y) ∩ V �= ∅ for each y ∈ U . T is said to be continuous if
T is both lower semicontinuous and upper semicontinuous. It is also known that
T : X → 2Y is lower semicontinuous if and only if for each closed set V in Y , the
set {x ∈ X | T (x) ⊂ V } is closed in X .

Let X , Y be Hausdorff topological vector spaces and let K be a nonempty
convex subset of X . Let C be a pointed closed convex cone in Y with intC �= ∅.
Let F : K×K ⇒ Y be a nonempty multivalued bi-operator such that F (x, x) ⊇ {0}
for each x ∈ K. Then a multivalued generalized sytem (MGS) is defined to be the
problem of finding x ∈ K such that

(MGS) F (x, y) � −C \ {0} for all y ∈ K.

F is said to be C-strongly pseudomonotone if it satisfies

∀x, y ∈ K, F (x, y) � −C \ {0} ⇒ F (y, x) ⊆ −C.

A multivalued mapping G : K ⇒ Y is said to be C-convex if ∀x, y ∈ K, ∀λ ∈
[0, 1],

G(λx + (1 − λ)y) ⊆ λG(x) + (1− λ)G(y)− C.

The mapping G is said to be generalized hemicontinuous (in short, g.h.c.) if ∀x, y ∈
K, ∀λ ∈ [0, 1],

λ �→ G(x + λ(y − x)) is upper semicontinuous at 0+.
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We denote by L(X, Y ) the space of all continuous linear operators from X to Y .
A multifunction T : K ⇒ L(X, Y ) is said to be C-strongly pseudomonotone if it
satisfies

∀x, y ∈ K, 〈Tx, y − x〉 � −C \ {0} ⇒ 〈Ty, x− y〉 ⊆ −C,

where 〈Tx, y − x〉 = {〈s, y − x〉 | s ∈ Tx}.

3. MAIN RESULTS

We first present an existence of solutions of (MSG) under monotonicity. To do
this, the following lemma is necessary.

Lemma 1. Let F : K × K ⇒ Y be g.h.c. in the first variable and C-convex
in the second variable. Assume that F is C-strongly pseudomonotone. Then the
following two problems are equivalent:

(i) Find x ∈ K such that F (x, y) � −C \ {0}, ∀y ∈ K.

(ii) Find x ∈ K such that F (y, x) ⊆ −C, ∀y ∈ K.

Proof. (i) ⇒ (ii). This is clear by the C-strong pseudomonotonicity of F .
(ii) ⇒ (i). Let x ∈ K be such that F (y, x) ⊆ −C, ∀y ∈ K . For any

y ∈ K, λ ∈ (0, 1), set yλ = x + λ(y − x). Then yλ ∈ K , hence

(1) F (yλ, x) ⊆ −C.

Since F is C-convex in the second variable, we have

(2) 0 ∈ F (yλ, yλ) ⊆ λF (yλ, y) + (1− λ)F (yλ, x)− C.

By (1) and the fact that C is a convex cone, we get

(3) λF (yλ, y) ∩ C �= ∅, hence F (yλ, y) ∩ C �= ∅.
Since F is g.h.c. in the first variable and yλ → x, we have F (x, y) ∩ C �= ∅. If
not, F (x, y) ⊆ Cc = V an open set. By the generalized hemicontinuity of F in its
first variable, there exists λ0 ∈ (0, 1] such that ∀λ ∈ [0, λ0), F (yλ, y) ⊆ V , i.e.,
F (yλ, y) ∩ C = ∅, which is a contradiction to (3). Therefore we obtain that

F (x, y) � −C \ {0},
because C is a pointed convex cone. This completes the proof.

Theorem 1. Let K be a nonempty compact convex subset of X . Let F :
K × K ⇒ Y be g.h.c. in the first variable, C-convex and l.s.c. in the second
variable. Assume that F is C-strongly pseudomonotone. Then (MGS) is solvable.
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Proof. We define two multifunctions A, B : K ⇒ K as follow:

A(x) = {y ∈ K | F (y, x) � −C}
B(x) = {y ∈ K | F (x, y) ⊆ −C \ {0}}.

The proof is proceeded in the following way.

(i) It is obvious that for each x ∈ K, A(x) ⊆ B(x) by the C-strong pseu-
domonotonicity of F .

(ii) B(x) is convex. Indeed, if y1, y2 ∈ B(x), we have

F (x, yi) ⊆ −C \ {0} for i = 1, 2.

By the C-convexity of F in the second variable, for any λ ∈ (0, 1),

F (x, λy1 + (1− λ)y2) ⊆ λF (x, y1) + (1− λ)F (x, y2) − C

⊆ (−C \ {0}) + (−C \ {0})− C

⊆ (−C \ {0})− C = −C \ {0},

which implies that B(x) is convex.
(iii) B has no fixed point because 0 ∈ F (x, x), ∀x ∈ K.
(iv) For each y ∈ K, A−1(y) is open in K . In fact, let {xλ} be a net in (A−1(y))c

which converges to x ∈ K. Then y /∈ A(xλ), i.e.,

(4) F (y, xλ) ⊆ −C.

Since F is l.s.c. in its second variable and xλ → x, we see that F (y, x) ⊆
−C. If not, F (y, x) ∩ (−C)c �= ∅. As (−C)c is open, there exists λ0 such
that ∀λ ≥ λ0, F (y, xλ) ∩ (−C)c �= ∅ by means of the lower semicontinuity
of F , which contradicts (4). Thus, x ∈ (A−1(y))c and (A−1(y))c is closed.
Consequently, A−1(y) is open in K .

(v) By the Fan-Browder fixed point theorem, there is an x0 ∈ K such that
A(x0) = ∅, that is,

F (y, x0) ⊆ −C, ∀y ∈ K.

Therefore the result follows from Lemma 1.

As a direct consequence of Theorem 1, we get the following.

Theorem 2. Let T : K ⇒ L(X, Y ) be a C-strongly pseudomonotone and
generalized hemicontinuous multifunction with nonempty compact values where



An Extension of a Generalized Equilibrium Problem 1671

L(X, Y ) is equipped with the topology of bounded convergence. Then the following
vector variational inequality has a solution x0 such that

〈Tx0, x− x0〉 � −C \ {0}, ∀x ∈ K.

Proof. Define F : K × K ⇒ Y by

F (x, y) = 〈Tx, y − x〉.
Clearly F (x, x) = {0}. Then all the hypotheses of Theorem 1 hold as follows.

(i) F is g.h.c. in the first variable. Indeed, fix y0 ∈ K. Then ∀x, z ∈ K, ∀λ ∈
[0, 1], consider the diagram below.

λ
G1→ (T (x+λ(z−x)), y0−(x+λ(z−x)))G2→〈T (x+λ(z−x)), y0−(x+λ(z−x))〉.

Since T is g.h.c. and compact-valued, so the product map G1 of two u.s.c.
multifunctions at 0+ with compact values is u.s.c. at 0+, too. Moreover,
the evaluation map G2(s, y) = 〈s, y〉 os continuous on the product space
L(X, Y )×L where L is the compact line segment L = {y0−(x+λ(z−x)) ∈
X | λ ∈ [0, 1]} [27, Lemma B]. This is because L(X, Y ) is endowed with
the topology of bounded convergence. Hence the composition map G2 ◦ G1

is u.s.c. at 0+. This means that F (x, y) = 〈Tx, y − x〉 is g.h.c. in its first
variable, as desired.

(ii) F is C-convex in the second variable. In fact, fix x0 ∈ K. For ∀y1, y2 ∈
K, ∀λ ∈ [0, 1], we have

F (x0, λy1 + (1− λ)y2) = 〈Tx0, λ(y1 − x0) + (1 − λ)(y2 − x0)〉
⊆ λ〈Tx0, y1 − x0〉 + (1 − λ)〈Tx0, y2 − x0〉
⊆ λ〈Tx0, y1 − x0〉 + (1 − λ)〈Tx0, y2 − x0〉 − C

= λF (x0, y1) + (1− λ)F (x0, y2) − C

(iii) F is l.s.c. in the second variable. Fix x0 ∈ K . Let y0 ∈ K and V be an
open set in Y such that F (x0, y0) = 〈Tx0, y0 − x0〉 ∩ V �= ∅. So there is an
s0 ∈ Tx0 with 〈s0, y0 − x0〉 ∈ V . Since the linear operator s0 is continuous,
there exists an open neighborhood U of y0 such that ∀y ∈ U , 〈s0, y−x0〉 ∈ V

because V is open. Thus F (x0, y) = 〈Tx0, y − x0〉 ∩ V �= ∅, ∀y ∈ U .
(iv) The C-strong pseudomonotonicity of F directly comes from that of T .

By Theorem 1, there exists x0 ∈ K such that

F (x0, x) � −C \ {0} ⇔ 〈Tx0, x− x0〉 � −C \ {0}, ∀x ∈ K.

This completes the proof.
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Remark. In Theorems 1 and 2, the topologies on K and Y can be replaced by
the weak topologies with the help of [28, Lemma 2.4]. Hence Theorem 2 can be
regarded as a multi-valued generalization of Fang and Huang [24, Theorem 2.3] in
Hausdorff topological vector spaces (not necessarily Banach spaces) X and Y . Of
course, Theorem 1 is a multi-valued version of Kazmi and Khan [23, Theorem 2.3].

Now we are in a position to show an existence of solutions of (MSG) without
monotonicity. The following lemma is the first step for this.

Lemma 2. A multifunction G : K ⇒ F is C-convex if and only if for
every n ≥ 2, whenever x1, . . . , xn ∈ K are given and for any λi ∈ [0, 1], i =
1, . . . , n, with

∑n
i=1 λi = 1, we have

(5) G

(
n∑

i=1

λi xi

)
⊆ λ1G(x1) + · · ·+ λnG(xn) − C.

Proof. The sufficiency is clear. For the necessity, we shall use the induction
argument on n. When n = 2, the condition (5) is exactly the same as the definition
of C-convexity. Assume that the condition (5) holds for all k ≤ n − 1 (n ≥ 3).
Let {x1, . . . , xn} ⊂ K be given, and λi ∈ [0, 1], i = 1, . . . , n, with

∑n
i=1 λi = 1

be arbitrarily given. Without loss of generality, we may assume
∑n−1

i=1 λi > 0
by reindexing i. Then, for a given set {x1, . . . , xn−1}, the induction assumption
assures that

(6) G

(
n−1∑
i=1

λi∑n−1
j=1 λj

xi

)
⊆ λ1∑n−1

j=1 λj

G(x1) + · · ·+ λn−1∑n−1
j=1 λj

G(xn−1)− C.

Again applying C-convexity to
{∑n−1

i=1
λi∑n−1

j=1 λj
xi, xn

}
in K, we see that

G

(
n∑

i=1

λi xi

)
= G




n−1∑

j=1

λj


(n−1∑

i=1

λi∑n−1
j=1 λj

xi

)
+ λnxn




⊆

n−1∑

j=1

λj


G

(
n−1∑
i=1

λi∑n−1
j=1 λj

xi

)
+ λnG(xn)− C.

Using the inclusion (6), we have

G

(
n∑

i=1

λi xi

)
⊆ [

λ1 G(x1) + · · ·+ λn−1 G(xn−1) − C
]
+ λnG(xn) − C

= λ1G(x1) + · · ·+ λn−1G(xn−1) + λnG(xn) − C
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because C is a convex cone. Therefore, by induction, for every n ≥ 2, we can
obtain the desired conclusion.

Using the same argument in Kazmi and Khan [23, Theorem 2.1], we obtain the
following.

Theorem 3. Let K be a nonempty compact convex subset of X . Let F :
K × K ⇒ Y be C-convex in the second variable. Assume that for each y ∈ K ,
the set {x ∈ K | F (x, y) ⊆ −C \ {0}} is open. Then (MGS) is solvable.

Proof. Suppose the contrary. Then for each x ∈ K , there exists y ∈ K such
that

(7) F (x, y) ⊆ −C \ {0}.

For each y ∈ K, define

(8) Ny = {x ∈ K | F (x, y) ⊆ −C \ {0}}.
So {Ny}y∈K is an open cover of K by means of the assumption and (7). Thus
there is a finite subcover {Nyi}n

i=1 and a partition of unity {βi}n
i=1 subordinated to

it such that

K =
n⋃

i=1

Nyi , βi(x) ≥ 0,

n∑
i=1

βi(x) = 1 ∀x ∈ K, and

{
βi(x) = 0 if x /∈ Nyi

βi(x) > 0 if x ∈ Nyi

}

We define a continuous function h : K → K by h(x) =
∑n

i=1 βi(x)yi. By
Brouwer’s fixed point theorem, there exists x0 ∈ co{y1, ..., yn} such that h(x0) =
x0 where co{y1, ..., yn} denotes the convex hull of {y1, ..., yn}. Define a multi-
function G : K ⇒ Y by G(x) = F (x, h(x)) for all x ∈ K. Since F is C-convex
in the second variable, by Lemma 2, we have

(9) G(x) = F (x, h(x)) = F (x,

n∑
i=1

βi(x)yi) ⊆
n∑

i=1

βi(x)F (x, yi) − C.

From (8) and (9), it is easily checked that G(x) = F (x, h(x)) ⊆ −C\{0}, ∀x ∈ K.
Hence

G(x0) = F (x0, h(x0)) = F (x0, x0) ⊆ −C \ {0},
which contradicts F (x0, x0) � 0.
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