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TRANSFERENCE OF BILINEAR OPERATORS BETWEEN JACOBI
SERIES AND HANKEL TRANSFORMS

Enji Sato

Dedicated to Professor Yuichi Kanjin on his 60th birthday

Abstract. Fan-Sato[8] proved a tranceference theorem with respect to the
multilinear operators on Rn. Also Blasco-Villarroya[3] proved the similar
result with repect to the biilinear operators on Z2. In this paper, we prove
a tranceference theorem of the bilinear operators between Jacobi series and
Hankel transforms.

1. INTRODUCTION

Let 0 < p, q, r < ∞ with 1/p = 1/q + 1/r, and m(ξ, η) a bounded measurable
function. The bilinear operator T from Lq(R)× Lr(R) to Lp(R) is defined by

T (f, g)(x) =
∫
R2

m(ξ, η)f̂(ξ)ĝ(η)e2πix(ξ+η)dξdη,

where f̂(ξ) =
∫
R f(x)e−2πiξxdx. Recently, Lacey-Thiele ([11-13]) developed the

study of the multilinear operators. They proved that the operator T is bounded if
1 < q, r < ∞, p > 2/3, m(ξ, η) = sgn(ξ + αη), α ∈ R\{0, 1}, and solved
the problem with respect to the cauchy integral. The study of those operators was
started by Coifman-Meyer (cf. [4-6]). Also we would like to hope that the readers
refer to [9].

Now Fan-Sato[8] proved the de Leeuw type Theorem with respect to the mul-
tilinear operator on Rn. Also Blasco-Villarroya [3] proved the de Leeuw type
Theorem with respect to the bilinear operators on Z × Z.

In this paper, we treat the bilinear operators on Jacobi orthogonal systems and
those on the modified Hankel transforms. Then we show a tranceference theorem
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among those orthogonal systems. The study of the transference thorem between
Jacobi orthogonal system and the modified Hankel transform was begun by Igari
[10]. After that, Connett-Schwartz [7] showed the weak type, and Betancor-Stempak
[2], Stempak [16] developed the study. Also we refer to [14] and [15] in which we
had the similar results.

Now we introduce the notations about Jacobi polynomials and the modified
Hankel transforms. Let P

(α,β)
n (x) be the Jacobi polynomial of the degree n and the

order (α, β), α, β > −1. It is defined by

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2nn!
dn

dxn
{(1− x)n+α(1 + x)n+β}.

Then the system {P (α,β)
n (cos θ)}∞n=0 is an orthogonal system with respect to L2((0,

π), ν), where dν(θ) = (sin θ/2)2α+1(cos θ/2)2β+1dθ. When we define t
(α,β)
n > 0

by

(t(α,β)
n )−2 =

∫ π

0
[P (α,β)

n (cos θ)]2dν(θ),

{t(α,β)
n P

(α,β)
n (cos θ)}∞n=0 is a complete orthonormal system of L2((0, π), ν). Also

let f̂(n) be defined by

f̂(n) =
∫ π

0
f(θ)t(α,β)

n P (α,β)
n (cos θ)dν(θ)

for f ∈ L1((0, π), ν), and ||f ||Lp(ν) the norm of f in Lp((0, π), ν) (1 ≤ p < ∞),
where Lp((0, π), ν) is the usual Lp-space with respect to the measure ν. For α >
−1, let Lp((0,∞), µ) be the Lp-space on (0,∞) with respect to dµ(x) = x2α+1dx,
and ||f ||Lp(µ) the norm of f in Lp((0,∞), µ). Also for f ∈ L1((0,∞), µ)

Hαf(x) =
∫ ∞

0
f(y)Jα(xy)dµ(y),

where Jα(x) = Jα(x)/xα and Jα is the Bessel function of the first kind. Moreover,
for any bounded continuous function φ(u, v) in [0,∞) × [0,∞), let T = Tφ be
defined by

T (f, g)(x) =
∫ ∫

(0,∞)×(0,∞)
φ(u, v)Hαf(u)Hαg(v)Jα(xu)Jα(xv)dµ(u)dµ(v)

(f, g ∈ C∞
c (0,∞)), and ε > 0

T̃ε(F, G)(θ) = Σ∞
n,m=0φ(εn, εm)F̂(n)Ĝ(m)t(α,β)

n P (α,β)
n (cos θ)t(α,β)

m P (α,β)
m (cos θ)

(F, G ∈ C∞
c (0, π)).

Let α = β = −1/2. Then we have that dν(θ) = dθ is the Lebesgue measure
on [0, π), dµ = dx the Lebesgue measure on the real line, t

(−1/2,−1/2)
n P

(−1/2,−1/2)
n
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(cos θ) =
√

π
2 cos nθ, f̂(0) =

√
1
π

∫ π
0 f(θ) dθ, f̂ (n) =

√
2
π

∫ π
0 f(θ) cosnθdθ (n =

1, 2, · · ·), and H−1/2f(x) =
√

2
π

∫ ∞
0 f(y) cosxydy. In this case, the transference

theorem about the bilinear operators which we state later is showed by Fan-Sato[8].
In this article, we generalize the transfernce theorem about the bilinear operators in
the cases of α, β ≥ −1

2 . Here, we state our result in precise:

Theorem. Let 1 < p, q, r < ∞ with 1/p = 1/q+1/r, α, β ≥ −1/2, and φ(u, v)
a bounded continuous function on [0,∞)× [0,∞). If there exists a constant C > 0
such that for any ε > 0

||T̃ε(F, G)||Lp(ν) ≤ C||F ||Lq(ν)||G||Lr(ν) (F, G ∈ C∞
c (0, π)),

then there exists a constant C > 0 such that

||T (f, g)||Lp(µ) ≤ C||f ||Lq(µ)||g||Lr(µ) (f, g ∈ C∞
c (0,∞)).

In §3, we will show that T is a bounded bilinear operator from Lq((0,∞), µ)×
Lr((0,∞), µ) to Lp((0,∞), µ), when {T̃ε}ε>0 are uniformly bounded from Lq((0,
π), ν)× Lr((0, π), ν) to Lp((0, π), ν).

Throughout this paper, we may use varying a constant C = Ca,b,c,··· which
depends only on a, b, c, · · · . Also we use the notation Oa,b,c,···(x) which means
|Oa,b,c,···(x)

x | ≤ Ca,b,c,···.

2. SOME LEMMAS

In this section, we prove some Lemmas for our Theorem, whose essential idea
depends on Igari[10]. After that, we will give the proof of Theorem by showing
some steps in §3. First for f, g ∈ C∞

c (0, M), let M and ε be positive numbers
such that f, g ∈ C∞

c (0,∞) and π/ε > M , and we define fε(θ) = f(θ/ε) and
gε(θ) = g(θ/ε). Also for φ(u, v), let

(1)

G(θ/ε, 1/ε)

=
∞∑

n,m=0

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos θ)t(α,β)
m P (α,β)

m (cos θ).

Then, by the assumption of Theorem, there exists a constant C > 0 such that

||G(θ/ε, 1/ε)||Lp(ν) ≤ C||fε||Lq(ν)||gε||Lr(ν).(2)

Moreover, by Fatou’s lemma and the change of variable θ = ετ ,( ∫ ∞

0
lim inf

ε→0
|

∞∑
n,m=0

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos ετ)

×t(α,β)
m P (α,β)

m (cos ετ)|τ2α+1dτ
)1/p ≤ C||f ||Lq(µ)||g||Lr(µ).
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Also for a fixed number K > 0, there exists ε0 > 0 such that

||χ(0,K)(τ)G(τ, 1/ε)||Lp(µ) ≤ C||f ||Lq(µ)||g||Lr(µ)(3)

(0 < ε < ε0), by θ = ετ the change of variable and simple calculation in (2).
Here, we prepare the following which is proved by Stempak[16] and the estimates
of Jacobi polynomial[17]. we omit the proof.

Lemma 2.1. (cf. [16; p. 486]). Let n be a fixed natural number, and ε > 0.
Then we have

(i)

t(α,β)
n P (α,β)

n (cos θ)(sin θ/2)α+1/2(cos θ/2)β+1/2

= (nθ)1/2Jα(nθ) +

{
O(θ) if (Cn−1 ≤ θ ≤ π − ε′)
O(θα+1/2nα−1/2) if (0 < θ < Cn−1)

(ii)

t(α,β)
n P (α,β)

n (cos θ)(sin θ/2)2α+1(cos θ/2)2β+1

=
√

2nJα(nθ)(θ/2)α+1 +

{
O(θα+3/2) if (Cn−1 ≤ θ ≤ π − ε′)
O(θ2α+1nα−1/2) if (0 < θ < Cn−1)

(iii)

εαt(α,β)
n P (α,β)

n (cos θ)

= (2ε/θ)α
√

2nJα(nθ) +

{
O(θ1/2−αεα) if (Cn−1 ≤ θ ≤ π − ε′)
O(nα−1/2εα) if (0 < θ < Cn−1),

where ε′ is a fixed number with 0 < ε ′ < π and C is a constant.

Next we show the following:

Lemma 2.2. (cf. [10]). Let ε, η, K be positive numbers with Kε < π, and N

a fixed natural number. Then there exists 0 < δ < 1 such that for any η < τ < K,

N [1/ε]∑
n=0

f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)

=
N [1/ε]∑
n=0

Hαf(nε)Jα(nετ)(nε)2α+1ε + Of,η,K(Nεδ) (0 < η < τ < K),

where Of,η,K depends only on f, η, K.
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Proof. Let supp f be in [η ′, M ′] ⊂ (0, M). then by Lemma2.1 and the change
of variable θ = ετ with the the behavior of Hankel transform and Bessel function
at origin and infinity, we have

(ε−αf̂ε(n))(εαt(α,β)
n P (α,β)

n (cos ετ))

= (Hαf(nε)Jα(nετ)(nε)2α+1ε + Of(ε5/2))

×((2/τ)α
√

2nJα(nετ) +

{
O((ετ)1/2−αεα) if (Cn−1 ≤ ετ ≤ π − ε′)

O(nα−1/2εα) if (0 < ετ < Cn−1),
).

Hence, we estimate each part, and obtain the desired result. We omit the details.
It is easy to see next result by Lemma2.2.

Lemma 2.3. Let ε, η, K be positive numbers with Kε < π, and N a fixed
natural number. Then we have the following:

(i) for any 0 < δ < 1, we have

N [1/ε]∑
n=1

|f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)|

=
N [1/ε]∑
n=1

|Hαf(nε)Jα(nετ)|(nε)2α+1ε + Of,η,K(Nεδ) (0 < η < τ < K),

where Of,η,K depends only on f, η, and K.
(ii) for any natural number n, and τ (0 < η < τ < K), we have

f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)

= Hαf(nε)Jα(nετ)(nε)2α+1ε + Cf,η,K(n, ε, τ),

where

Cf,η,K(n, ε, τ) =

{
Cf,η,Kε2 if (Cn−1 ≤ ετ ≤ π − ε′)

Cf,η,Kn2αε2α+2 if (0 < ετ < Cn−1),
,

and C, ε′ are fixed numbers with 0 < ε ′ < π.

3. THE PROOF OF THEOREM

We have seven steps for the proof of Theorem. For a natural number N , we
define

GN(θ/ε, 1/ε) =
N [1/ε]∑
n,m=0

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos θ)t(α,β)
m P (α,β)

m (cos θ),
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and
HN(θ/ε, 1/ε) = G(θ/ε, 1/ε)− GN(θ/ε, 1/ε).

Step 1. For any 1 < s < ∞, there exists a constant Cf,η,K,s > 0 such that

||
∞∑

N [1/ε]

|f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)|||Ls([η,K],µ) ≤ Cf,η,K,sN
−1/2.(4)

In fact, we estimate

I =
∫ K

η

(
∞∑

N [1/ε]+1

|f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)|)sτ2α+1dτ.

By the change of variable τ = θ/ε and the estimate

|t(α,β)
n P (α,β)

n (cos θ)(sin θ/2)α+1/2(cos θ/2)β+1/2| ≤ C

(cf.[1]), we have

I ≤ Cε−(2α+2)

∫ εK

εη
θ(2α+1)(1−s/2)dθ × (

∞∑
N [1/ε]+1

|f̂ε(n)|)s

≤ Cf,η,K,sε
−(α+1/2)s(

∞∑
N [1/ε]+1

|f̂ε(n)|)s.

Here, we remark
∞∑

N [1/ε]+1

|f̂ε(n)| ≤ CN−1/2εα+1/2,

because we have
∞∑

N [1/ε]+1

|f̂ε(n)| ≤ (
∞∑

N [1/ε]+1

|nf̂ε(n)|2)1/2(
∞∑

N [1/ε]+1

1
n2

)1/2,

and (
∑∞

N [1/ε]+1 |nf̂ε(n)|2)1/2 ≤ Cεα by Igari’s method[10;p.203]. Therefore, we
have

I ≤ Cε−(α+1/2)sε(α+1/2)sN−s/2 = CN−s/2,

and get the desired result (4).

Step 2. Let ε, η, K be positive numbers with Kε < π, and N a fixed natural
number. Then there exists C = Cf,g,η,K > 0 and 0 < δ < 1 such that

||HN(τ, 1/ε)||Lp([η,K],µ) ≤ C(N−1/2 + N 1/2εδ),(5)
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where C is independent of ε, N.

In fact, we divide HN(τ, 1/ε) into the three parts:

HN(τ, 1/ε)

=
n[1/ε]∑
n=0

∞∑
m=N [1/ε]+1

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos ετ)t(α,β)
m P (α,β)

m (cos ετ)

+
N [1/ε]∑
m=0

∞∑
n=N [1/ε]+1

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos ετ)t(α,β)
m P (α,β)

m (cos ετ)

+
∞∑

n,m=N [1/ε]+1

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos ετ)t(α,β)
m P (α,β)

m (cos ετ)

=
∑

1 +
∑

2 +
∑

3,

say.
First we estimate || ∑1 ||pLp([η,K],µ)

. By Lemma 2.3(i),

∥∥∥∥∥∥
N [1/ε]∑
n=0

f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)

∥∥∥∥∥∥ ≤ Cf,η,K(1 + Nεδ) (η < τ < K),(6)

and

‖∑1‖p
Lp([η,K],µ)

≤ Cf,η,K(1 + Nεδ)p

∥∥∥∥∥∥
∞∑

m=N [1/ε]

∥∥∥∥∥∥ ĝε(m)t(α,β)
m P (α,β)

m (cos ετ)|||p
Lp([η,K],µ)

≤ Cf,g,η,K(1 + Nεδ)pN−p/2

by (6) and Step 1. Therefore, we obtain

(7) ‖∑1‖p
Lp([η,K],µ) ≤ Cf,g,η,K(N−1/2 + N 1/2εδ)p.

We similarly get

(8) ||∑2 ||pLp([η,K],µ) ≤ Cf,g,η,K(N−1/2 + N 1/2εδ)p.

Next we estimate ||∑3 ||Lp([η,K],µ). By the Schwarz inequality and Step1, we have
that
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||∑3 ||Lp([η,K],µ)

≤ C

∫ K

η

 ∞∑
N [1/ε]+1

|f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)|
p

 ∞∑
N [1/ε]+1

|ĝε(m)t(α,β)
m P (α,β)

m (cos ετ)|
p

dµ

≤ C

∥∥∥∥∥∥
∞∑

N [1/ε]+1

|f̂ε(n)t(α,β)
n P (α,β)

n (cos ετ)|
∥∥∥∥∥∥

p

L2p([η,K],µ)

× ||
∞∑

N [1/ε]+1

|ĝε(n)t(α,β)
n P (α,β)

n (cos ετ)|||p
L2p([η,K],µ)

= Cf,g,η,K,pN
−p.

Then, we obtain

(9) ||∑3 ||pLp([η,K],µ) ≤ Cf,g,η,K,pN
−p,

and by (7), (8), and (9)

||HN(τ, 1/ε)||Lp([η,K],µ)

≤ ‖∑1‖Lp([η,K],µ) + ||∑2 ||Lp([η,K],µ) + ||∑3 ||Lp([η,K],µ)

≤ Cf,g,η,K(N−1/2 + N 1/2εδ + N−1).

Step 3. There exist {εj} with εj ↓ 0(j → ∞) and G(τ) a function such that

G(τ, 1/εj) → G(τ)

in the weak* topology in Lp((0, K), µ) for all K > 0.
In fact, we get the above result by (3) and the diagonal argument.

Step 4. There exists a subsequence {εjn} of {εj} and GN(τ) a function such
that

GN(τ, 1/εjn) → GN(τ)

in the weak* topology in Lp([η, K], µ) for any N and 0 < η < K.
Because by Step2, there exist {ε′j} a subsequence of {εj} and HN(τ) a function
such that

HN(τ, 1/εj′) → HN(τ)
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in the weak* topology in Lp([η, K], µ) for all N and 0 < η ≤ τ ≤ K, and

||HN ||Lp([η,K],µ) ≤ Cf,g,η,KN−1/2.(10)

Also by (3) and Step2, we have

||GN(τ, 1/ε)χ(η,K)(τ)||Lp(µ)

≤ ||G(τ, 1/ε)χ(η,K)(τ)||Lp(µ) + ||HN(τ, 1/ε)χ(η,K)(τ)||Lp(µ)

≤ C||f ||Lq(µ)||g||Lr(µ) + C(N−1/2 + N 1/2εδ),

since G(τ, 1/ε) = GN(τ, 1/ε) + HN(τ, 1/ε). So we obtain

||GN(τ, 1/ε)χ(η,K)||Lp(µ) ≤ CN,f,g,η,K.

Then there exist a subsequence {εjn} of {εj} and GN(τ) a function such that

GN(τ, 1/εjn) → GN(τ)

in the weak* topology in Lp([η, K], µ) for all 0 < η < K and G = GN + HN .

Step 5. For a fixed τ > 0, we have

lim
ε→0

GN (τ, 1/ε)

=
∫ N

0

∫ N

0
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)dµ(v)(= GN(τ)).

In fact, since we have

GN(τ, 1/ε)=
∞∑

n,m=0

φ(εn, εm)f̂ε(n)ĝε(m)t(α,β)
n P (α,β)

n (cos ετ)t(α,β)
m P (α,β)

m (cos ετ)

and Lemma2.3(ii), we obtain

GN(τ, 1/ε)

=
N [1/ε]∑
n,m=0

φ(εn, εm)Hαf(nε)Jα(nε)(nε)2α+1εHαg(nε)Jα(nε)(nε)2α+1ε

+
N [1/ε]∑
n,m=1

φ(εn, εm)Hαf(nε)Jα(nε)(nε)2α+1εCg,η,K(m, ε, τ)

+
N [1/ε]∑
n,m=1

φ(εn, εm)Hαg(mε)Jα(mε)(mε)2α+1εCf,η,K(n, ε, τ)

+
N [1/ε]∑
n,m=1

φ(εn, εm)Cf,η,K(n, ε, τ)Cg,η,K(m, ε, τ) + Of,g,η,K(Nε)

= I1 + I2 + I3 + I4 + Of,g,η,K(Nε), say.
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Then, by the definition of the Riemann integral we obtain that

lim
ε→0

I1 =
∫ N

0

∫ N

0
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)dµ(v).

Also by Lemma 2.3(ii) we get that I2 =I3 =Of,g,η,K(Nεδ), and I4=Of,g,η,K((Nεδ)2)
(0 < δ < 1). Then, we have

lim
ε→0

GN(τ, 1/ε) =
∫ ∫

(0,N)×(0,N)
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)dµ(v).

Step 6. We have

G(τ) =
∫ ∞

0

∫ ∞

0
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)µ(v) a.e. τ.

In fact, let 0 < η′ < K ′ be fixed. Since {|GN(τ, 1/ε)|}ε is uniformly bounded
on [η′, K ′] by (6), we have

lim
k→∞

∫
GN(τ, 1/εjk

)h(τ)dµ(τ) =
∫

GN(τ)h(τ)dµ(τ)

for any h ∈ C∞
c (η′, K ′). Then by the Lebesgue’ s convergence theorem and Step5

we have∫
GN (τ)h(τ)dµ(τ)

=
∫ ∞

0
{
∫ N

0

∫ N

0
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)µ(v)}h(τ)dµ(τ)

for any h ∈ C∞
c (0,∞), and

(11) GN (τ)=
∫ N

0

∫ N

0

φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)µ(v) a.e..

Here, there exists {Nj}j such that HNj(τ) → 0 a.e. τ by (10). Therefore, we
remark

GNj(τ) → G(τ) a.e. τ,(12)

since we have G = GN + HN .

Now for any natural number N , let

FN (u, v) = φ(u, v)Hαf(u)Jαg(v)Jα(τv)χ(0,N)×(0,N)(u, v).



Transference of Bilinear Operators between Jacobi Series and Hankel Transforms 1571

It is known that

Hαf(x) = O(x−
) ( = 1, 2, · · ·)(x → ∞),

Hαf(x) = O(1) (x → 0),

Jαf(x) = O(xα) (x → 0), and

Jαf(x) = O(x−1/2) (x → ∞).

By those properties, there exists F ∈ L1((0,∞)× (0,∞), µ× µ) such that |FN | ≤
F (0 < τ < K).Then, by Lebesgue’s convergence theorem and (11), we have

(13)
lim

j→∞
GNj(τ)

=
∫ ∫

(0,∞)×(0,∞)
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)µ(v).

After all, we have

G(τ) =
∫ ∫

(0,∞)×(0,∞)
φ(u, v)Hαf(u)Jα(τu)Hαg(v)Jα(τv)dµ(u)µ(v) a.e. τ

by (11), (12), and (13).

Step 7. This step completes the proof of Theorem. For the sake of this, we use
all notations in the former steps. Let h ∈ C∞

c (0,∞) with supp h ⊂ [η, K] (0 <

η < K). By Step2 and Step4, we have∥∥∥∥∫ K

η

GN (τ, 1/ε)h(τ)dµ(τ)
∥∥∥∥

≤ C||f ||Lq(µ)||g||Lr(µ)||h||Lp′(µ) + ||HN(τ, 1/ε)||Lp((0,K),dµ)||h||Lp′((0,K),dµ)

≤ C||f ||Lq(µ)||g||Lr(µ)||h||Lp′(µ) + Cη,K,f,g(N−1/2 + N 1/2εδ)||h||Lp′((0,K),dµ).

Then, by ε → 0 and Steps 5 and 6, we have∣∣∣∣∫ K

η
GN(τ)h(τ)dµ(τ)

∣∣∣∣ ≤ C||f ||Lq(µ)||g||Lr(µ)||h||Lp′(µ) + Of,g,η,K(N−1/2),

and ∣∣∣∣∫ K

η
G(τ)h(τ)dµ(τ)

∣∣∣∣ ≤ C||f ||Lq(µ)||g||Lr(µ)||h||Lp′(µ)

by N = Nj → ∞(j → ∞). Therefore, we obtain

||G||Lp(µ) ≤ C||f ||Lq(µ)||g||Lr(µ),
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and
||T (f, g)||Lp(µ) ≤ C||f ||Lq(µ)||g||Lr(µ).

We finish our proof.

Remark. The reverse transference Theorem of Igari’s Theorem[10] is an un-
solved problem, since Igari[10] proved the transference theorem. The converse
transference Theorem of our Theorem is not known, too.
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