TRANSFERENCE OF BILINEAR OPERATORS BETWEEN JACOBI SERIES AND HANKEL TRANSFORMS

Enji Sato
Dedicated to Professor Yuichi Kanjin on his 60th birthday

Abstract

Fan-Sato[8] proved a tranceference theorem with respect to the multilinear operators on \mathbf{R}^{n}. Also Blasco-Villarroya[3] proved the similar result with repect to the biilinear operators on \mathbf{Z}^{2}. In this paper, we prove a tranceference theorem of the bilinear operators between Jacobi series and Hankel transforms.

1. Introduction

Let $0<p, q, r<\infty$ with $1 / p=1 / q+1 / r$, and $m(\xi, \eta)$ a bounded measurable function. The bilinear operator T from $L^{q}(\mathbf{R}) \times L^{r}(\mathbf{R})$ to $L^{p}(\mathbf{R})$ is defined by

$$
T(f, g)(x)=\int_{\mathbf{R}^{2}} m(\xi, \eta) \hat{f}(\xi) \hat{g}(\eta) e^{2 \pi i x(\xi+\eta)} d \xi d \eta
$$

where $\hat{f}(\xi)=\int_{\mathbf{R}} f(x) e^{-2 \pi i \xi x} d x$. Recently, Lacey-Thiele ([11-13]) developed the study of the multilinear operators. They proved that the operator T is bounded if $1<q, r<\infty, p>2 / 3, m(\xi, \eta)=\operatorname{sgn}(\xi+\alpha \eta), \alpha \in \mathbf{R} \backslash\{0,1\}$, and solved the problem with respect to the cauchy integral. The study of those operators was started by Coifman-Meyer (cf. [4-6]). Also we would like to hope that the readers refer to [9].

Now Fan-Sato[8] proved the de Leeuw type Theorem with respect to the multilinear operator on \mathbf{R}^{n}. Also Blasco-Villarroya [3] proved the de Leeuw type Theorem with respect to the bilinear operators on $\mathbf{Z} \times \mathbf{Z}$.

In this paper, we treat the bilinear operators on Jacobi orthogonal systems and those on the modified Hankel transforms. Then we show a tranceference theorem

Received May 1, 2009, accepted March 20, 2010.
Communicated by Youngsheng Han.
2000 Mathematics Subject Classification: Primary 43A22; Secondary 42A45.
Key words and phrases: Tranceference theorem, Jacobi series, Hankel transform.
among those orthogonal systems. The study of the transference thorem between Jacobi orthogonal system and the modified Hankel transform was begun by Igari [10]. After that, Connett-Schwartz [7] showed the weak type, and Betancor-Stempak [2], Stempak [16] developed the study. Also we refer to [14] and [15] in which we had the similar results.

Now we introduce the notations about Jacobi polynomials and the modified Hankel transforms. Let $P_{n}^{(\alpha, \beta)}(x)$ be the Jacobi polynomial of the degree n and the order $(\alpha, \beta), \alpha, \beta>-1$. It is defined by

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left\{(1-x)^{n+\alpha}(1+x)^{n+\beta}\right\}
$$

Then the system $\left\{P_{n}^{(\alpha, \beta)}(\cos \theta)\right\}_{n=0}^{\infty}$ is an orthogonal system with respect to $L^{2}((0$, $\pi), \nu)$, where $d \nu(\theta)=(\sin \theta / 2)^{2 \alpha+1}(\cos \theta / 2)^{2 \beta+1} d \theta$. When we define $t_{n}^{(\alpha, \beta)}>0$ by

$$
\left(t_{n}^{(\alpha, \beta)}\right)^{-2}=\int_{0}^{\pi}\left[P_{n}^{(\alpha, \beta)}(\cos \theta)\right]^{2} d \nu(\theta),
$$

$\left\{t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta)\right\}_{n=0}^{\infty}$ is a complete orthonormal system of $L^{2}((0, \pi), \nu)$. Also let $\hat{f}(n)$ be defined by

$$
\hat{f}(n)=\int_{0}^{\pi} f(\theta) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) d \nu(\theta)
$$

for $f \in L^{1}((0, \pi), \nu)$, and $\|f\|_{L^{p}(\nu)}$ the norm of f in $L^{p}((0, \pi), \nu)(1 \leq p<\infty)$, where $L^{p}((0, \pi), \nu)$ is the usual L^{p}-space with respect to the measure ν. For $\alpha>$ -1 , let $L^{p}((0, \infty), \mu)$ be the L^{p}-space on $(0, \infty)$ with respect to $d \mu(x)=x^{2 \alpha+1} d x$, and $\|f\|_{L^{p}(\mu)}$ the norm of f in $L^{p}((0, \infty), \mu)$. Also for $f \in L^{1}((0, \infty), \mu)$

$$
\mathcal{H}_{\alpha} f(x)=\int_{0}^{\infty} f(y) \mathcal{J}_{\alpha}(x y) d \mu(y)
$$

where $\mathcal{J}_{\alpha}(x)=J_{\alpha}(x) / x^{\alpha}$ and J_{α} is the Bessel function of the first kind. Moreover, for any bounded continuous function $\phi(u, v)$ in $[0, \infty) \times[0, \infty)$, let $T=T_{\phi}$ be defined by

$$
\begin{aligned}
& T(f, g)(x)=\iint_{(0, \infty) \times(0, \infty)} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(x u) \mathcal{J}_{\alpha}(x v) d \mu(u) d \mu(v) \\
& \left(f, g \in C_{c}^{\infty}(0, \infty)\right), \text { and } \varepsilon>0 \\
& \widetilde{T}_{\varepsilon}(F, G)(\theta)=\Sigma_{n, m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{F}(n) \hat{G}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \theta) \\
& \left(F, G \in C_{c}^{\infty}(0, \pi)\right) .
\end{aligned}
$$

Let $\alpha=\beta=-1 / 2$. Then we have that $d \nu(\theta)=d \theta$ is the Lebesgue measure on $[0, \pi), d \mu=d x$ the Lebesgue measure on the real line, $t_{n}^{(-1 / 2,-1 / 2)} P_{n}^{(-1 / 2,-1 / 2)}$
$(\cos \theta)=\sqrt{\frac{\pi}{2}} \cos n \theta, \hat{f}(0)=\sqrt{\frac{1}{\pi}} \int_{0}^{\pi} f(\theta) d \theta, \hat{f}(n)=\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} f(\theta) \cos n \theta d \theta(n=$ $1,2, \cdots)$, and $\mathcal{H}_{-1 / 2} f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(y) \cos x y d y$. In this case, the transference theorem about the bilinear operators which we state later is showed by Fan-Sato[8]. In this article, we generalize the transfernce theorem about the bilinear operators in the cases of $\alpha, \beta \geq-\frac{1}{2}$. Here, we state our result in precise:

Theorem. Let $1<p, q, r<\infty$ with $1 / p=1 / q+1 / r, \alpha, \beta \geq-1 / 2$, and $\phi(u, v)$ a bounded continuous function on $[0, \infty) \times[0, \infty)$. If there exists a constant $C>0$ such that for any $\varepsilon>0$

$$
\left\|\widetilde{T}_{\varepsilon}(F, G)\right\|_{L^{p}(\nu)} \leq C\|F\|_{L^{q}(\nu)}\|G\|_{L^{r}(\nu)}\left(F, G \in C_{c}^{\infty}(0, \pi)\right)
$$

then there exists a constant $C>0$ such that

$$
\|T(f, g)\|_{L^{p}(\mu)} \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}\left(f, g \in C_{c}^{\infty}(0, \infty)\right)
$$

In $\S 3$, we will show that T is a bounded bilinear operator from $L^{q}((0, \infty), \mu) \times$ $L^{r}((0, \infty), \mu)$ to $L^{p}((0, \infty), \mu)$, when $\left\{\widetilde{T}_{\varepsilon}\right\}_{\varepsilon>0}$ are uniformly bounded from $L^{q}((0$, $\pi), \nu) \times L^{r}((0, \pi), \nu)$ to $L^{p}((0, \pi), \nu)$.

Throughout this paper, we may use varying a constant $C=C_{a, b, c, \cdots}$ which depends only on a, b, c, \cdots. Also we use the notation $O_{a, b, c, \cdots(x)}$ which means $\left|\frac{O_{a, b, c, \ldots}(x)}{x}\right| \leq C_{a, b, c, \cdots .}$

2. Some Lemmas

In this section, we prove some Lemmas for our Theorem, whose essential idea depends on Igari[10]. After that, we will give the proof of Theorem by showing some steps in $\S 3$. First for $f, g \in C_{c}^{\infty}(0, M)$, let M and ε be positive numbers such that $f, g \in C_{c}^{\infty}(0, \infty)$ and $\pi / \varepsilon>M$, and we define $f_{\varepsilon}(\theta)=f(\theta / \varepsilon)$ and $g_{\varepsilon}(\theta)=g(\theta / \varepsilon)$. Also for $\phi(u, v)$, let

$$
\begin{aligned}
& G(\theta / \varepsilon, 1 / \varepsilon) \\
= & \sum_{n, m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \theta) .
\end{aligned}
$$

Then, by the assumption of Theorem, there exists a constant $C>0$ such that

$$
\begin{equation*}
\|G(\theta / \varepsilon, 1 / \varepsilon)\|_{L^{p}(\nu)} \leq C\left\|f_{\varepsilon}\right\|_{L^{q}(\nu)}\left\|g_{\varepsilon}\right\|_{L^{r}(\nu)} \tag{2}
\end{equation*}
$$

Moreover, by Fatou's lemma and the change of variable $\theta=\varepsilon \tau$,

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \liminf _{\varepsilon \rightarrow 0} \mid \sum_{n, m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right. \\
& \left.\quad \times t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau) \mid \tau^{2 \alpha+1} d \tau\right)^{1 / p} \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}
\end{aligned}
$$

Also for a fixed number $K>0$, there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left\|\chi_{(0, K)}(\tau) G(\tau, 1 / \varepsilon)\right\|_{L^{p}(\mu)} \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)} \tag{3}
\end{equation*}
$$

$\left(0<\varepsilon<\varepsilon_{0}\right)$, by $\theta=\varepsilon \tau$ the change of variable and simple calculation in (2). Here, we prepare the following which is proved by Stempak[16] and the estimates of Jacobi polynomial[17]. we omit the proof.

Lemma 2.1. (cf. [16; p. 486]). Let n be a fixed natural number, and $\varepsilon>0$. Then we have
(i)

$$
\begin{aligned}
& t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta)(\sin \theta / 2)^{\alpha+1 / 2}(\cos \theta / 2)^{\beta+1 / 2} \\
= & (n \theta)^{1 / 2} J_{\alpha}(n \theta)+ \begin{cases}O(\theta) & \text { if }\left(C n^{-1} \leq \theta \leq \pi-\varepsilon^{\prime}\right) \\
O\left(\theta^{\alpha+1 / 2} n^{\alpha-1 / 2}\right) & \text { if }\left(0<\theta<C n^{-1}\right)\end{cases}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta)(\sin \theta / 2)^{2 \alpha+1}(\cos \theta / 2)^{2 \beta+1} \\
= & \sqrt{2 n} J_{\alpha}(n \theta)(\theta / 2)^{\alpha+1}+ \begin{cases}O\left(\theta^{\alpha+3 / 2}\right) & \text { if }\left(C n^{-1} \leq \theta \leq \pi-\varepsilon^{\prime}\right) \\
O\left(\theta^{2 \alpha+1} n^{\alpha-1 / 2}\right) & \text { if }\left(0<\theta<C n^{-1}\right)\end{cases}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \varepsilon^{\alpha} t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) \\
= & (2 \varepsilon / \theta)^{\alpha} \sqrt{2 n} J_{\alpha}(n \theta)+ \begin{cases}O\left(\theta^{1 / 2-\alpha} \varepsilon^{\alpha}\right) & \text { if }\left(C n^{-1} \leq \theta \leq \pi-\varepsilon^{\prime}\right) \\
O\left(n^{\alpha-1 / 2} \varepsilon^{\alpha}\right) & \text { if }\left(0<\theta<C n^{-1}\right),\end{cases}
\end{aligned}
$$

where ε^{\prime} is a fixed number with $0<\varepsilon^{\prime}<\pi$ and C is a constant.
Next we show the following:
Lemma 2.2. (cf. [10]). Let ε, η, K be positive numbers with $K \varepsilon<\pi$, and N a fixed natural number. Then there exists $0<\delta<1$ such that for any $\eta<\tau<K$,

$$
\begin{aligned}
& \sum_{n=0}^{N[1 / \varepsilon]} \hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) \\
= & \sum_{n=0}^{N[1 / \varepsilon]} \mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon \tau)(n \varepsilon)^{2 \alpha+1} \varepsilon+O_{f, \eta, K}\left(N \varepsilon^{\delta}\right)(0<\eta<\tau<K),
\end{aligned}
$$

where $O_{f, \eta, K}$ depends only on f, η, K.

Proof. Let supp f be in $\left[\eta^{\prime}, M^{\prime}\right] \subset(0, M)$. then by Lemma2.1 and the change of variable $\theta=\varepsilon \tau$ with the the behavior of Hankel transform and Bessel function at origin and infinity, we have

$$
\begin{aligned}
& \left(\varepsilon^{-\alpha} \hat{f}_{\varepsilon}(n)\right)\left(\varepsilon^{\alpha} t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right) \\
= & \left(\mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon \tau)(n \varepsilon)^{2 \alpha+1} \varepsilon+O_{f}\left(\varepsilon^{5 / 2}\right)\right) \\
& \times\left((2 / \tau)^{\alpha} \sqrt{2 n} J_{\alpha}(n \varepsilon \tau)+\left\{\begin{array}{ll}
O\left((\varepsilon \tau)^{1 / 2-\alpha} \varepsilon^{\alpha}\right) & \text { if }\left(C n^{-1} \leq \varepsilon \tau \leq \pi-\varepsilon^{\prime}\right) \\
O\left(n^{\alpha-1 / 2} \varepsilon^{\alpha}\right) & \text { if }\left(0<\varepsilon \tau<C n^{-1}\right)
\end{array}\right)\right.
\end{aligned}
$$

Hence, we estimate each part, and obtain the desired result. We omit the details.
It is easy to see next result by Lemma2.2.
Lemma 2.3. Let ε, η, K be positive numbers with $K \varepsilon<\pi$, and N a fixed natural number. Then we have the following:
(i) for any $0<\delta<1$, we have

$$
\begin{aligned}
& \sum_{n=1}^{N[1 / \varepsilon]}\left|\hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right| \\
= & \sum_{n=1}^{N[1 / \varepsilon]}\left|\mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon \tau)\right|(n \varepsilon)^{2 \alpha+1} \varepsilon+O_{f, \eta, K}\left(N \varepsilon^{\delta}\right)(0<\eta<\tau<K),
\end{aligned}
$$

where $O_{f, \eta, K}$ depends only on f, η, and K.
(ii) for any natural number n, and $\tau(0<\eta<\tau<K)$, we have

$$
\begin{aligned}
& \hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) \\
= & \mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon \tau)(n \varepsilon)^{2 \alpha+1} \varepsilon+C_{f, \eta, K}(n, \varepsilon, \tau),
\end{aligned}
$$

where

$$
C_{f, \eta, K}(n, \varepsilon, \tau)= \begin{cases}C_{f, \eta, K} \varepsilon^{2} & \text { if }\left(C n^{-1} \leq \varepsilon \tau \leq \pi-\varepsilon^{\prime}\right) \\ C_{f, \eta, K} n^{2 \alpha} \varepsilon^{2 \alpha+2} & \text { if }\left(0<\varepsilon \tau<C n^{-1}\right)\end{cases}
$$

and C, ε^{\prime} are fixed numbers with $0<\varepsilon^{\prime}<\pi$.

3. The Proof of Theorem

We have seven steps for the proof of Theorem. For a natural number N, we define
$G^{N}(\theta / \varepsilon, 1 / \varepsilon)=\sum_{n, m=0}^{N[1 / \varepsilon]} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \theta)$,
and

$$
H^{N}(\theta / \varepsilon, 1 / \varepsilon)=G(\theta / \varepsilon, 1 / \varepsilon)-G^{N}(\theta / \varepsilon, 1 / \varepsilon)
$$

Step 1. For any $1<s<\infty$, there exists a constant $C_{f, \eta, K, s}>0$ such that
(4) $\quad\left\|\sum_{N[1 / \varepsilon]}^{\infty}\left|\hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right\|_{L^{s}([\eta, K], \mu)} \leq C_{f, \eta, K, s} N^{-1 / 2}$.

In fact, we estimate

$$
I=\int_{\eta}^{K}\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right)^{s} \tau^{2 \alpha+1} d \tau
$$

By the change of variable $\tau=\theta / \varepsilon$ and the estimate

$$
\left|t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta)(\sin \theta / 2)^{\alpha+1 / 2}(\cos \theta / 2)^{\beta+1 / 2}\right| \leq C
$$

(cf.[1]), we have

$$
\begin{aligned}
I & \leq C \varepsilon^{-(2 \alpha+2)} \int_{\varepsilon \eta}^{\varepsilon K} \theta^{(2 \alpha+1)(1-s / 2)} d \theta \times\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n)\right|\right)^{s} \\
& \leq C_{f, \eta, K, s} \varepsilon^{-(\alpha+1 / 2) s}\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n)\right|\right)^{s} .
\end{aligned}
$$

Here, we remark

$$
\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n)\right| \leq C N^{-1 / 2} \varepsilon^{\alpha+1 / 2}
$$

because we have

$$
\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n)\right| \leq\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|n \hat{f}_{\varepsilon}(n)\right|^{2}\right)^{1 / 2}\left(\sum_{N[1 / \varepsilon]+1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}
$$

and $\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|n \hat{f}_{\varepsilon}(n)\right|^{2}\right)^{1 / 2} \leq C \varepsilon^{\alpha}$ by Igari's method[10;p.203]. Therefore, we have

$$
I \leq C \varepsilon^{-(\alpha+1 / 2) s} \varepsilon^{(\alpha+1 / 2) s} N^{-s / 2}=C N^{-s / 2}
$$

and get the desired result (4).
Step 2. Let ε, η, K be positive numbers with $K \varepsilon<\pi$, and N a fixed natural number. Then there exists $C=C_{f, g, \eta, K}>0$ and $0<\delta<1$ such that

$$
\begin{equation*}
\left\|H^{N}(\tau, 1 / \varepsilon)\right\|_{L^{p}([\eta, K], \mu)} \leq C\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}\right) \tag{5}
\end{equation*}
$$

where C is independent of ε, N.
In fact, we divide $H^{N}(\tau, 1 / \varepsilon)$ into the three parts:

$$
\begin{aligned}
& H^{N}(\tau, 1 / \varepsilon) \\
= & \sum_{n=0}^{n[1 / \varepsilon]} \sum_{m=N[1 / \varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau) \\
+ & \sum_{m=0}^{N[1 / \varepsilon]} \sum_{n=N[1 / \varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau) \\
+ & \sum_{n, m=N[1 / \varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau) \\
= & \sum_{1}+\sum_{2}+\sum_{3},
\end{aligned}
$$

say.
First we estimate $\left\|\sum_{1}\right\|_{L^{p}([\eta, K], \mu)}^{p}$. By Lemma 2.3(i),
(6) $\left\|\sum_{n=0}^{N[1 / \varepsilon]} \hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right\| \leq C_{f, \eta, K}\left(1+N \varepsilon^{\delta}\right)(\eta<\tau<K)$,
and

$$
\begin{aligned}
& \left\|\sum_{1}\right\|_{L^{p}([\eta, K], \mu)}^{p} \\
\leq & C_{f, \eta, K}\left(1+N \varepsilon^{\delta}\right)^{p}\left\|\sum_{m=N[1 / \varepsilon]}^{\infty}\right\| \hat{g}_{\varepsilon}(m) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau)\| \|_{L^{p}([\eta, K], \mu)}^{p} \\
\leq & C_{f, g, \eta, K}\left(1+N \varepsilon^{\delta}\right)^{p} N^{-p / 2}
\end{aligned}
$$

by (6) and Step 1. Therefore, we obtain

$$
\begin{equation*}
\left\|\sum_{1}\right\|_{L^{p}([\eta, K], \mu)}^{p} \leq C_{f, g, \eta, K}\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}\right)^{p} . \tag{7}
\end{equation*}
$$

We similarly get

$$
\begin{equation*}
\left\|\sum_{2}\right\|_{L^{p}([\eta, K], \mu)}^{p} \leq C_{f, g, \eta, K}\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}\right)^{p} \tag{8}
\end{equation*}
$$

Next we estimate $\left\|\sum_{3}\right\|_{L^{p}([\eta, K], \mu)}$. By the Schwarz inequality and Step1, we have that

$$
\begin{aligned}
& \left\|\sum_{3}\right\|_{L^{p}([\eta, K], \mu)} \\
\leq & C \int_{\eta}^{K}\left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right)^{p} \\
& \left(\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{g}_{\varepsilon}(m) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right)^{p} d \mu \\
\leq & C\left\|\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{f}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right\|_{L^{2 p}([\eta, K], \mu)}^{p} \\
\times & \left\|\sum_{N[1 / \varepsilon]+1}^{\infty}\left|\hat{g}_{\varepsilon}(n) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau)\right|\right\|_{L^{2 p}([\eta, K], \mu)}^{p} \\
= & C_{f, g, \eta, K, p} N^{-p} .
\end{aligned}
$$

Then, we obtain

$$
\begin{equation*}
\left\|\sum_{3}\right\|_{L^{p}([\eta, K], \mu)}^{p} \leq C_{f, g, \eta, K, p} N^{-p} \tag{9}
\end{equation*}
$$

and by (7), (8), and (9)

$$
\begin{aligned}
& \left\|H^{N}(\tau, 1 / \varepsilon)\right\|_{L^{p}([\eta, K], \mu)} \\
\leq & \left\|\sum_{1}\right\|_{L^{p}([\eta, K], \mu)}+\left\|\sum_{2}\right\|_{L^{p}([\eta, K], \mu)}+\left\|\sum_{3}\right\|_{L^{p}([\eta, K], \mu)} \\
\leq & C_{f, g, \eta, K}\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}+N^{-1}\right) .
\end{aligned}
$$

Step 3. There exist $\left\{\varepsilon_{j}\right\}$ with $\varepsilon_{j} \downarrow 0(j \rightarrow \infty)$ and $G(\tau)$ a function such that

$$
G\left(\tau, 1 / \varepsilon_{j}\right) \rightarrow G(\tau)
$$

in the weak* topology in $L^{p}((0, K), \mu)$ for all $K>0$.
In fact, we get the above result by (3) and the diagonal argument.
Step 4. There exists a subsequence $\left\{\varepsilon_{j_{n}}\right\}$ of $\left\{\varepsilon_{j}\right\}$ and $G^{N}(\tau)$ a function such that

$$
G^{N}\left(\tau, 1 / \varepsilon_{j_{n}}\right) \rightarrow G^{N}(\tau)
$$

in the weak* topology in $L^{p}([\eta, K], \mu)$ for any N and $0<\eta<K$.
Because by Step2, there exist $\left\{\varepsilon_{j}^{\prime}\right\}$ a subsequence of $\left\{\varepsilon_{j}\right\}$ and $H^{N}(\tau)$ a function such that

$$
H^{N}\left(\tau, 1 / \varepsilon_{j^{\prime}}\right) \rightarrow H^{N}(\tau)
$$

in the weak* topology in $L^{p}([\eta, K], \mu)$ for all N and $0<\eta \leq \tau \leq K$, and

$$
\begin{equation*}
\left\|H^{N}\right\|_{L^{p}([\eta, K], \mu)} \leq C_{f, g, \eta, K} N^{-1 / 2} \tag{10}
\end{equation*}
$$

Also by (3) and Step2, we have

$$
\begin{aligned}
& \left\|G^{N}(\tau, 1 / \varepsilon) \chi_{(\eta, K)}(\tau)\right\|_{L^{p}(\mu)} \\
\leq & \left\|G(\tau, 1 / \varepsilon) \chi_{(\eta, K)}(\tau)\right\|_{L^{p}(\mu)}+\left\|H^{N}(\tau, 1 / \varepsilon) \chi_{(\eta, K)}(\tau)\right\|_{L^{p}(\mu)} \\
\leq & C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}+C\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}\right),
\end{aligned}
$$

since $G(\tau, 1 / \varepsilon)=G^{N}(\tau, 1 / \varepsilon)+H^{N}(\tau, 1 / \varepsilon)$. So we obtain

$$
\left\|G^{N}(\tau, 1 / \varepsilon) \chi_{(\eta, K)}\right\|_{L^{p}(\mu)} \leq C_{N, f, g, \eta, K}
$$

Then there exist a subsequence $\left\{\varepsilon_{j_{n}}\right\}$ of $\left\{\varepsilon_{j}\right\}$ and $G^{N}(\tau)$ a function such that

$$
G^{N}\left(\tau, 1 / \varepsilon_{j_{n}}\right) \rightarrow G^{N}(\tau)
$$

in the weak* topology in $L^{p}([\eta, K], \mu)$ for all $0<\eta<K$ and $G=G^{N}+H^{N}$.
Step 5. For a fixed $\tau>0$, we have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} G^{N}(\tau, 1 / \varepsilon) \\
= & \int_{0}^{N} \int_{0}^{N} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) d \mu(v)\left(=G^{N}(\tau)\right) .
\end{aligned}
$$

In fact, since we have

$$
G^{N}(\tau, 1 / \varepsilon)=\sum_{n, m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha, \beta)} P_{m}^{(\alpha, \beta)}(\cos \varepsilon \tau)
$$

and Lemma2.3(ii), we obtain

$$
\begin{aligned}
& G^{N}(\tau, 1 / \varepsilon) \\
= & \sum_{n, m=0}^{N[1 / \varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon)(n \varepsilon)^{2 \alpha+1} \varepsilon \mathcal{H}_{\alpha} g(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon)(n \varepsilon)^{2 \alpha+1} \varepsilon \\
+ & \sum_{n, m=1}^{N[1 / \varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} f(n \varepsilon) \mathcal{J}_{\alpha}(n \varepsilon)(n \varepsilon)^{2 \alpha+1} \varepsilon C_{g, \eta, K}(m, \varepsilon, \tau) \\
+ & \sum_{n, m=1}^{N[1 / \varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} g(m \varepsilon) \mathcal{J}_{\alpha}(m \varepsilon)(m \varepsilon)^{2 \alpha+1} \varepsilon C_{f, \eta, K}(n, \varepsilon, \tau) \\
+ & \sum_{n, m=1}^{N[1 / \varepsilon]} \phi(\varepsilon n, \varepsilon m) C_{f, \eta, K}(n, \varepsilon, \tau) C_{g, \eta, K}(m, \varepsilon, \tau)+O_{f, g, \eta, K}(N \varepsilon) \\
= & I_{1}+I_{2}+I_{3}+I_{4}+O_{f, g, \eta, K}(N \varepsilon), \text { say. }
\end{aligned}
$$

Then, by the definition of the Riemann integral we obtain that

$$
\lim _{\varepsilon \rightarrow 0} I_{1}=\int_{0}^{N} \int_{0}^{N} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) d \mu(v)
$$

Also by Lemma 2.3(ii) we get that $I_{2}=I_{3}=O_{f, g, \eta, K}\left(N \varepsilon^{\delta}\right)$, and $I_{4}=O_{f, g, \eta, K}\left(\left(N \varepsilon^{\delta}\right)^{2}\right)$ $(0<\delta<1)$. Then, we have
$\lim _{\varepsilon \rightarrow 0} G^{N}(\tau, 1 / \varepsilon)=\iint_{(0, N) \times(0, N)} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) d \mu(v)$.

Step 6. We have

$$
G(\tau)=\int_{0}^{\infty} \int_{0}^{\infty} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) \mu(v) \text { a.e. } \tau .
$$

In fact, let $0<\eta^{\prime}<K^{\prime}$ be fixed. Since $\left\{\left|G^{N}(\tau, 1 / \varepsilon)\right|\right\}_{\varepsilon}$ is uniformly bounded on $\left[\eta^{\prime}, K^{\prime}\right]$ by (6), we have

$$
\lim _{k \rightarrow \infty} \int G^{N}\left(\tau, 1 / \varepsilon_{j_{k}}\right) h(\tau) d \mu(\tau)=\int G^{N}(\tau) h(\tau) d \mu(\tau)
$$

for any $h \in C_{c}^{\infty}\left(\eta^{\prime}, K^{\prime}\right)$. Then by the Lebesgue' s convergence theorem and Step5 we have

$$
\begin{aligned}
& \int G^{N}(\tau) h(\tau) d \mu(\tau) \\
= & \int_{0}^{\infty}\left\{\int_{0}^{N} \int_{0}^{N} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) \mu(v)\right\} h(\tau) d \mu(\tau)
\end{aligned}
$$

for any $h \in C_{c}^{\infty}(0, \infty)$, and

$$
\begin{equation*}
G^{N}(\tau)=\int_{0}^{N} \int_{0}^{N} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) \mu(v) \text { a.e.. } \tag{11}
\end{equation*}
$$

Here, there exists $\left\{N_{j}\right\}_{j}$ such that $H^{N_{j}}(\tau) \rightarrow 0$ a.e. τ by (10). Therefore, we remark

$$
\begin{equation*}
G^{N_{j}}(\tau) \rightarrow G(\tau) \text { a.e. } \tau \tag{12}
\end{equation*}
$$

since we have $G=G^{N}+H^{N}$.
Now for any natural number N, let

$$
F_{N}(u, v)=\phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) \chi_{(0, N) \times(0, N)}(u, v)
$$

It is known that

$$
\begin{aligned}
\mathcal{H}_{\alpha} f(x) & =O\left(x^{-\ell}\right)(\ell=1,2, \cdots)(x \rightarrow \infty), \\
\mathcal{H}_{\alpha} f(x) & =O(1)(x \rightarrow 0), \\
J_{\alpha} f(x) & =O\left(x^{\alpha}\right)(x \rightarrow 0), \text { and } \\
J_{\alpha} f(x) & =O\left(x^{-1 / 2}\right)(x \rightarrow \infty) .
\end{aligned}
$$

By those properties, there exists $F \in L^{1}((0, \infty) \times(0, \infty), \mu \times \mu)$ such that $\left|F_{N}\right| \leq$ $F(0<\tau<K)$.Then, by Lebesgue's convergence theorem and (11), we have

$$
\begin{align*}
& \lim _{j \rightarrow \infty} G^{N_{j}}(\tau) \\
& =\iint_{(0, \infty) \times(0, \infty)} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) \mu(v) . \tag{13}
\end{align*}
$$

After all, we have
$G(\tau)=\iint_{(0, \infty) \times(0, \infty)} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d \mu(u) \mu(v)$ a.e. τ by (11), (12), and (13).

Step 7. This step completes the proof of Theorem. For the sake of this, we use all notations in the former steps. Let $h \in C_{c}^{\infty}(0, \infty)$ with supp $h \subset[\eta, K](0<$ $\eta<K)$. By Step2 and Step4, we have

$$
\begin{aligned}
& \| \int_{\eta}^{K} G^{N}(\tau, 1 / \varepsilon) h(\tau) d \mu(\tau) \\
\leq & C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}\|h\|_{L^{p^{\prime}}(\mu)}+\left\|H^{N}(\tau, 1 / \varepsilon)\right\|_{L^{p}((0, K), d \mu)}\|h\|_{L^{p^{\prime}}((0, K), d \mu)} \\
\leq & C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}\|h\|_{L^{p^{\prime}}(\mu)}+C_{\eta, K, f, g}\left(N^{-1 / 2}+N^{1 / 2} \varepsilon^{\delta}\right)\|h\|_{L^{p^{\prime}}((0, K), d \mu)} .
\end{aligned}
$$

Then, by $\varepsilon \rightarrow 0$ and Steps 5 and 6 , we have

$$
\left|\int_{\eta}^{K} G^{N}(\tau) h(\tau) d \mu(\tau)\right| \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}\|h\|_{L^{p^{\prime}}(\mu)}+O_{f, g, \eta, K}\left(N^{-1 / 2}\right)
$$

and

$$
\left|\int_{\eta}^{K} G(\tau) h(\tau) d \mu(\tau)\right| \leq C| | f\left\|_{L^{q}(\mu)}\right\| g\left\|_{L^{r}(\mu)}\right\| h \|_{L^{p^{\prime}}(\mu)}
$$

by $N=N_{j} \rightarrow \infty(j \rightarrow \infty)$. Therefore, we obtain

$$
\|G\|_{L^{p}(\mu)} \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)},
$$

and

$$
\|T(f, g)\|_{L^{p}(\mu)} \leq C\|f\|_{L^{q}(\mu)}\|g\|_{L^{r}(\mu)}
$$

We finish our proof.
Remark. The reverse transference Theorem of Igari's Theorem[10] is an unsolved problem, since Igari[10] proved the transference theorem. The converse transference Theorem of our Theorem is not known, too.

References

1. R. Askey, A transplantation theorem for Jacobi coefficients, Pacific J. Math., 21 (1967), 393-404.
2. J. J. Betancor and K. Stempak, Relating multipliers and translation for Fourier-Bessel expansions and Hankel transform, Tôhoku Math. J., 53 (2001), 109-129.
3. O. Blasco and F. Villarroya, Transference of bilinear multilinear operators on Lorentz spaces, Illinois J. Math., 47 (2003), 1327-1343.
4. R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315-331.
5. R. R. Coifman and Y. Meyer, d'integrales singulieres et operaturs multilineaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177-202.
6. R. R. Coifman and Y. Meyer, Au-dela des operateurs pseudo-differentiels, Asterieque, 57 (1978).
7. W. C. Connett and A. Schawartz, Weak type multipliers for Hankel transforms, Pacific J. of Math., 63 (1976), 125-129.
8. D. Fan and S. Sato, Transference on certain multilinear multiplier operators, J. Aust. Math. Soc., 70 (2001), 37-55.
9. L. Grafakos and R. H. Torres, multilinear Calderon-Zygmund theory, Adv. Math., 165 (2002), 109-172.
10. S. Igari, On the multipliers of Hankel transform, Tôhoku Math. J., 24 (1972), 201206.
11. M. Lacey and C. Thiele, L^{p} estimates on the bilinear Hilbert transform, Ann. of Math., 146 (1997), 693-724.
12. M. Lacey and C. Thiele, On the bilinear Hilbert transform, Proc. Intern. Congress of Mathematicians, Doc. Math., II (1998), 647-656.
13. M. Lacey and C. Thiele, On Calderon's conjecture, Ann. of Math., 149 (1999), 475496.
14. E. Sato, Lorentz multipliers for Hankel transforms, Scientiae Mathemaricae Japonicae, 59 (2004), 479-488.
15. E. Sato, A generalization of the Hankel transform and the Lorentz multipliers, Tokyo J. Math., 29 (2006), 147-166.
16. K. Stempak, On connections between Hankel, Lagurre and Jacobi transplantations, Tôhoku Math. J., 54 (2002), 471-493.
17. G. Szegð, Orhogonal Polynomials, Amer. Math. Soc. Colloquim, 1959.

Enji Sato
Department of Mathematical Sciences
Faculty of Science
Yamagata University
Yamagata 990-8560
Japan
E-mail: esato@sci.kj.yamagata-u.ac.jp

