TAIWANESE JOURNAL OF MATHEMATICS Vol. 15, No. 4, pp. 1561-1573, August 2011 This paper is available online at http://www.tjm.nsysu.edu.tw/

TRANSFERENCE OF BILINEAR OPERATORS BETWEEN JACOBI SERIES AND HANKEL TRANSFORMS

Enji Sato

Dedicated to Professor Yuichi Kanjin on his 60th birthday

Abstract. Fan-Sato[8] proved a tranceference theorem with respect to the multilinear operators on \mathbb{R}^n . Also Blasco-Villarroya[3] proved the similar result with repect to the billinear operators on \mathbb{Z}^2 . In this paper, we prove a tranceference theorem of the billinear operators between Jacobi series and Hankel transforms.

1. INTRODUCTION

Let $0 < p, q, r < \infty$ with 1/p = 1/q + 1/r, and $m(\xi, \eta)$ a bounded measurable function. The bilinear operator T from $L^q(\mathbf{R}) \times L^r(\mathbf{R})$ to $L^p(\mathbf{R})$ is defined by

$$T(f,g)(x) = \int_{\mathbf{R}^2} m(\xi,\eta) \hat{f}(\xi) \hat{g}(\eta) e^{2\pi i x (\xi+\eta)} d\xi d\eta,$$

where $\hat{f}(\xi) = \int_{\mathbf{R}} f(x)e^{-2\pi i\xi x}dx$. Recently, Lacey-Thiele ([11-13]) developed the study of the multilinear operators. They proved that the operator T is bounded if $1 < q, r < \infty, p > 2/3, m(\xi, \eta) = sgn(\xi + \alpha \eta), \alpha \in \mathbf{R} \setminus \{0, 1\}$, and solved the problem with respect to the cauchy integral. The study of those operators was started by Coifman-Meyer (cf. [4-6]). Also we would like to hope that the readers refer to [9].

Now Fan-Sato[8] proved the de Leeuw type Theorem with respect to the multilinear operator on \mathbb{R}^n . Also Blasco-Villarroya [3] proved the de Leeuw type Theorem with respect to the bilinear operators on $\mathbb{Z} \times \mathbb{Z}$.

In this paper, we treat the bilinear operators on Jacobi orthogonal systems and those on the modified Hankel transforms. Then we show a tranceference theorem

Received May 1, 2009, accepted March 20, 2010.

Communicated by Youngsheng Han.

²⁰⁰⁰ Mathematics Subject Classification: Primary 43A22; Secondary 42A45.

Key words and phrases: Tranceference theorem, Jacobi series, Hankel transform.

among those orthogonal systems. The study of the transference thorem between Jacobi orthogonal system and the modified Hankel transform was begun by Igari [10]. After that, Connett-Schwartz [7] showed the weak type, and Betancor-Stempak [2], Stempak [16] developed the study. Also we refer to [14] and [15] in which we had the similar results.

Now we introduce the notations about Jacobi polynomials and the modified Hankel transforms. Let $P_n^{(\alpha,\beta)}(x)$ be the Jacobi polynomial of the degree n and the order (α,β) , α , $\beta > -1$. It is defined by

$$(1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x) = \frac{(-1)^{n}}{2^{n}n!}\frac{d^{n}}{dx^{n}}\{(1-x)^{n+\alpha}(1+x)^{n+\beta}\}.$$

Then the system $\{P_n^{(\alpha,\beta)}(\cos\theta)\}_{n=0}^{\infty}$ is an orthogonal system with respect to $L^2((0, \pi), \nu)$, where $d\nu(\theta) = (\sin\theta/2)^{2\alpha+1}(\cos\theta/2)^{2\beta+1}d\theta$. When we define $t_n^{(\alpha,\beta)} > 0$ by

$$(t_n^{(\alpha,\beta)})^{-2} = \int_0^\pi [P_n^{(\alpha,\beta)}(\cos\theta)]^2 d\nu(\theta),$$

 $\{t_n^{(\alpha,\beta)}P_n^{(\alpha,\beta)}(\cos\theta)\}_{n=0}^{\infty}$ is a complete orthonormal system of $L^2((0,\pi),\nu)$. Also let $\hat{f}(n)$ be defined by

$$\hat{f}(n) = \int_0^{\pi} f(\theta) t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos \theta) d\nu(\theta)$$

for $f \in L^1((0,\pi),\nu)$, and $||f||_{L^p(\nu)}$ the norm of f in $L^p((0,\pi),\nu)$ $(1 \le p < \infty)$, where $L^p((0,\pi),\nu)$ is the usual L^p -space with respect to the measure ν . For $\alpha > -1$, let $L^p((0,\infty),\mu)$ be the L^p -space on $(0,\infty)$ with respect to $d\mu(x) = x^{2\alpha+1}dx$, and $||f||_{L^p(\mu)}$ the norm of f in $L^p((0,\infty),\mu)$. Also for $f \in L^1((0,\infty),\mu)$

$$\mathcal{H}_{\alpha}f(x) = \int_{0}^{\infty} f(y)\mathcal{J}_{\alpha}(xy)d\mu(y)$$

where $\mathcal{J}_{\alpha}(x) = J_{\alpha}(x)/x^{\alpha}$ and J_{α} is the Bessel function of the first kind. Moreover, for any bounded continuous function $\phi(u, v)$ in $[0, \infty) \times [0, \infty)$, let $T = T_{\phi}$ be defined by

$$T(f,g)(x) = \int \int_{(0,\infty)\times(0,\infty)} \phi(u,v) \mathcal{H}_{\alpha}f(u) \mathcal{H}_{\alpha}g(v) \mathcal{J}_{\alpha}(xu) \mathcal{J}_{\alpha}(xv) d\mu(u) d\mu(v)$$

$$(f,g\in C_c^{\infty}(0,\infty)), \text{ and } \varepsilon>0$$

$$\widetilde{T}_{\varepsilon}(F,G)(\theta) = \sum_{n,m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{F}(n) \hat{G}(m) t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos \theta) t_m^{(\alpha,\beta)} P_m^{(\alpha,\beta)}(\cos \theta)$$
$$(F, \ G \in C_c^{\infty}(0,\pi)).$$

Let $\alpha = \beta = -1/2$. Then we have that $d\nu(\theta) = d\theta$ is the Lebesgue measure on $[0, \pi)$, $d\mu = dx$ the Lebesgue measure on the real line, $t_n^{(-1/2, -1/2)} P_n^{(-1/2, -1/2)}$

 $(\cos \theta) = \sqrt{\frac{\pi}{2}} \cos n\theta$, $\hat{f}(0) = \sqrt{\frac{1}{\pi}} \int_0^{\pi} f(\theta) d\theta$, $\hat{f}(n) = \sqrt{\frac{2}{\pi}} \int_0^{\pi} f(\theta) \cos n\theta d\theta$ $(n = 1, 2, \cdots)$, and $\mathcal{H}_{-1/2}f(x) = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(y) \cos xy dy$. In this case, the transference theorem about the bilinear operators which we state later is showed by Fan-Sato[8]. In this article, we generalize the transference theorem about the bilinear operators in the cases of $\alpha, \beta \ge -\frac{1}{2}$. Here, we state our result in precise:

Theorem. Let $1 < p, q, r < \infty$ with 1/p = 1/q + 1/r, $\alpha, \beta \ge -1/2$, and $\phi(u, v)$ a bounded continuous function on $[0, \infty) \times [0, \infty)$. If there exists a constant C > 0 such that for any $\varepsilon > 0$

$$||\tilde{T}_{\varepsilon}(F,G)||_{L^{p}(\nu)} \leq C||F||_{L^{q}(\nu)}||G||_{L^{r}(\nu)} \ (F,G \in C_{c}^{\infty}(0,\pi)),$$

then there exists a constant C > 0 such that

$$||T(f,g)||_{L^{p}(\mu)} \leq C||f||_{L^{q}(\mu)}||g||_{L^{r}(\mu)} \ (f,g \in C_{c}^{\infty}(0,\infty)).$$

In §3, we will show that T is a bounded bilinear operator from $L^q((0,\infty),\mu) \times L^r((0,\infty),\mu)$ to $L^p((0,\infty),\mu)$, when $\{\widetilde{T}_{\varepsilon}\}_{\varepsilon>0}$ are uniformly bounded from $L^q((0,\pi),\nu) \times L^r((0,\pi),\nu)$ to $L^p((0,\pi),\nu)$.

Throughout this paper, we may use varying a constant $C = C_{a,b,c,\cdots}$ which depends only on a, b, c, \cdots . Also we use the notation $O_{a,b,c,\cdots}(x)$ which means $|\frac{O_{a,b,c,\cdots}(x)}{x}| \leq C_{a,b,c,\cdots}$

2. Some Lemmas

In this section, we prove some Lemmas for our Theorem, whose essential idea depends on Igari[10]. After that, we will give the proof of Theorem by showing some steps in §3. First for $f, g \in C_c^{\infty}(0, M)$, let M and ε be positive numbers such that $f, g \in C_c^{\infty}(0, \infty)$ and $\pi/\varepsilon > M$, and we define $f_{\varepsilon}(\theta) = f(\theta/\varepsilon)$ and $g_{\varepsilon}(\theta) = g(\theta/\varepsilon)$. Also for $\phi(u, v)$, let

(1)
$$G(\theta/\varepsilon, 1/\varepsilon) = \sum_{n,m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos \theta) t_m^{(\alpha,\beta)} P_m^{(\alpha,\beta)}(\cos \theta).$$

Then, by the assumption of Theorem, there exists a constant C > 0 such that

(2)
$$||G(\theta/\varepsilon, 1/\varepsilon)||_{L^{p}(\nu)} \leq C||f_{\varepsilon}||_{L^{q}(\nu)}||g_{\varepsilon}||_{L^{r}(\nu)}.$$

Moreover, by Fatou's lemma and the change of variable $\theta = \varepsilon \tau$,

$$\left(\int_{0}^{\infty} \liminf_{\varepsilon \to 0} |\sum_{n,m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau) \times t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos \varepsilon \tau) |\tau^{2\alpha+1} d\tau\right)^{1/p} \leq C ||f||_{L^{q}(\mu)} ||g||_{L^{r}(\mu)}.$$

Also for a fixed number K > 0, there exists $\varepsilon_0 > 0$ such that

(3)
$$||\chi_{(0,K)}(\tau)G(\tau,1/\varepsilon)||_{L^{p}(\mu)} \leq C||f||_{L^{q}(\mu)}||g||_{L^{r}(\mu)}$$

 $(0 < \varepsilon < \varepsilon_0)$, by $\theta = \varepsilon \tau$ the change of variable and simple calculation in (2). Here, we prepare the following which is proved by Stempak[16] and the estimates of Jacobi polynomial[17]. we omit the proof.

Lemma 2.1. (cf. [16; p. 486]). Let n be a fixed natural number, and $\varepsilon > 0$. Then we have

(i)

$$t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos\theta)(\sin\theta/2)^{\alpha+1/2}(\cos\theta/2)^{\beta+1/2}$$

= $(n\theta)^{1/2} J_\alpha(n\theta) + \begin{cases} O(\theta) & \text{if } (Cn^{-1} \le \theta \le \pi - \varepsilon') \\ O(\theta^{\alpha+1/2}n^{\alpha-1/2}) & \text{if } (0 < \theta < Cn^{-1}) \end{cases}$

(ii)

$$t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos\theta)(\sin\theta/2)^{2\alpha+1}(\cos\theta/2)^{2\beta+1}$$

= $\sqrt{2n}J_{\alpha}(n\theta)(\theta/2)^{\alpha+1} + \begin{cases} O(\theta^{\alpha+3/2}) & \text{if } (Cn^{-1} \le \theta \le \pi - \varepsilon') \\ O(\theta^{2\alpha+1}n^{\alpha-1/2}) & \text{if } (0 < \theta < Cn^{-1}) \end{cases}$

(iii)

$$\varepsilon^{\alpha} t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \theta)$$

= $(2\varepsilon/\theta)^{\alpha} \sqrt{2n} J_{\alpha}(n\theta) + \begin{cases} O(\theta^{1/2-\alpha}\varepsilon^{\alpha}) & \text{if } (Cn^{-1} \le \theta \le \pi - \varepsilon') \\ O(n^{\alpha-1/2}\varepsilon^{\alpha}) & \text{if } (0 < \theta < Cn^{-1}), \end{cases}$

where ε' is a fixed number with $0 < \varepsilon' < \pi$ and C is a constant.

Next we show the following:

Lemma 2.2. (cf. [10]). Let ε , η , K be positive numbers with $K\varepsilon < \pi$, and N a fixed natural number. Then there exists $0 < \delta < 1$ such that for any $\eta < \tau < K$,

$$\sum_{\substack{n=0\\N[1/\varepsilon]}}^{N[1/\varepsilon]} \hat{f}_{\varepsilon}(n) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau)$$

=
$$\sum_{n=0}^{N[1/\varepsilon]} \mathcal{H}_{\alpha} f(n\varepsilon) \mathcal{J}_{\alpha}(n\varepsilon \tau) (n\varepsilon)^{2\alpha+1} \varepsilon + O_{f,\eta,K}(N\varepsilon^{\delta}) \ (0 < \eta < \tau < K),$$

where $O_{f,\eta,K}$ depends only on f,η,K .

Proof. Let supp f be in $[\eta', M'] \subset (0, M)$. then by Lemma2.1 and the change of variable $\theta = \varepsilon \tau$ with the behavior of Hankel transform and Bessel function at origin and infinity, we have

$$\begin{aligned} &(\varepsilon^{-\alpha} \hat{f}_{\varepsilon}(n))(\varepsilon^{\alpha} t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau)) \\ &= (\mathcal{H}_{\alpha} f(n\varepsilon) \mathcal{J}_{\alpha}(n\varepsilon \tau)(n\varepsilon)^{2\alpha+1}\varepsilon + O_{f}(\varepsilon^{5/2})) \\ &\times ((2/\tau)^{\alpha} \sqrt{2n} J_{\alpha}(n\varepsilon \tau) + \begin{cases} O((\varepsilon \tau)^{1/2-\alpha} \varepsilon^{\alpha}) & \text{if } (Cn^{-1} \leq \varepsilon \tau \leq \pi - \varepsilon') \\ O(n^{\alpha-1/2} \varepsilon^{\alpha}) & \text{if } (0 < \varepsilon \tau < Cn^{-1}), \end{cases} \end{aligned}$$

Hence, we estimate each part, and obtain the desired result. We omit the details. ■ It is easy to see next result by Lemma2.2.

Lemma 2.3. Let ε , η , K be positive numbers with $K\varepsilon < \pi$, and N a fixed natural number. Then we have the following:

(i) for any $0 < \delta < 1$, we have

$$\sum_{\substack{n=1\\N[1/\varepsilon]}}^{N[1/\varepsilon]} |\hat{f}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)|$$

=
$$\sum_{n=1}^{N[1/\varepsilon]} |\mathcal{H}_{\alpha}f(n\varepsilon)\mathcal{J}_{\alpha}(n\varepsilon\tau)|(n\varepsilon)^{2\alpha+1}\varepsilon + O_{f,\eta,K}(N\varepsilon^{\delta}) \ (0 < \eta < \tau < K),$$

where $O_{f,\eta,K}$ depends only on f, η , and K.

(ii) for any natural number n, and τ $(0 < \eta < \tau < K)$, we have

$$\hat{f}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)$$
$$=\mathcal{H}_{\alpha}f(n\varepsilon)\mathcal{J}_{\alpha}(n\varepsilon\tau)(n\varepsilon)^{2\alpha+1}\varepsilon+C_{f,\eta,K}(n,\varepsilon,\tau),$$

where

$$C_{f,\eta,K}(n,\varepsilon,\tau) = \begin{cases} C_{f,\eta,K}\varepsilon^2 & \text{if } (Cn^{-1} \le \varepsilon\tau \le \pi - \varepsilon') \\ C_{f,\eta,K}n^{2\alpha}\varepsilon^{2\alpha+2} & \text{if } (0 < \varepsilon\tau < Cn^{-1}), \end{cases}$$

,

and C, ε' are fixed numbers with $0 < \varepsilon' < \pi$.

3. The Proof of Theorem

We have seven steps for the proof of Theorem. For a natural number N, we define

$$G^{N}(\theta/\varepsilon, 1/\varepsilon) = \sum_{n,m=0}^{N[1/\varepsilon]} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos\theta) t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos\theta),$$

and

$$H^{N}(\theta/\varepsilon, 1/\varepsilon) = G(\theta/\varepsilon, 1/\varepsilon) - G^{N}(\theta/\varepsilon, 1/\varepsilon).$$

Step 1. For any $1 < s < \infty$, there exists a constant $C_{f,\eta,K,s} > 0$ such that

(4)
$$||\sum_{N[1/\varepsilon]}^{\infty} |\hat{f}_{\varepsilon}(n)t_n^{(\alpha,\beta)}P_n^{(\alpha,\beta)}(\cos\varepsilon\tau)|||_{L^s([\eta,K],\mu)} \le C_{f,\eta,K,s}N^{-1/2}.$$

In fact, we estimate

$$I = \int_{\eta}^{K} (\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)|)^{s}\tau^{2\alpha+1}d\tau.$$

By the change of variable $\tau = \theta/\varepsilon$ and the estimate

$$|t_n^{(\alpha,\beta)}P_n^{(\alpha,\beta)}(\cos\theta)(\sin\theta/2)^{\alpha+1/2}(\cos\theta/2)^{\beta+1/2}| \le C$$

(cf.[1]), we have

$$I \leq C\varepsilon^{-(2\alpha+2)} \int_{\varepsilon\eta}^{\varepsilon K} \theta^{(2\alpha+1)(1-s/2)} d\theta \times (\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)|)^{s}$$
$$\leq C_{f,\eta,K,s} \varepsilon^{-(\alpha+1/2)s} (\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)|)^{s}.$$

Here, we remark

$$\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)| \le C N^{-1/2} \varepsilon^{\alpha+1/2},$$

because we have

$$\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)| \le (\sum_{N[1/\varepsilon]+1}^{\infty} |n\hat{f}_{\varepsilon}(n)|^2)^{1/2} (\sum_{N[1/\varepsilon]+1}^{\infty} \frac{1}{n^2})^{1/2},$$

and $(\sum_{N[1/\varepsilon]+1}^{\infty} |n\hat{f}_{\varepsilon}(n)|^2)^{1/2} \leq C\varepsilon^{\alpha}$ by Igari's method[10;p.203]. Therefore, we have

$$I \le C\varepsilon^{-(\alpha+1/2)s}\varepsilon^{(\alpha+1/2)s}N^{-s/2} = CN^{-s/2},$$

and get the desired result (4).

Step 2. Let ε, η , K be positive numbers with $K\varepsilon < \pi$, and N a fixed natural number. Then there exists $C = C_{f,g,\eta,K} > 0$ and $0 < \delta < 1$ such that

(5)
$$||H^N(\tau, 1/\varepsilon)||_{L^p([\eta, K], \mu)} \le C(N^{-1/2} + N^{1/2}\varepsilon^{\delta}),$$

where C is independent of $\varepsilon,N.$ In fact, we divide $H^N(\tau,1/\varepsilon)$ into the three parts:

$$\begin{split} & H^{N}(\tau, 1/\varepsilon) \\ &= \sum_{n=0}^{n[1/\varepsilon]} \sum_{m=N[1/\varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos \varepsilon \tau) \\ &+ \sum_{m=0}^{N[1/\varepsilon]} \sum_{n=N[1/\varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos \varepsilon \tau) \\ &+ \sum_{n,m=N[1/\varepsilon]+1}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos \varepsilon \tau) \\ &= \sum_{1} + \sum_{2} + \sum_{3}, \end{split}$$

say.

First we estimate $||\sum_{1}||_{L^{p}([\eta,K],\mu)}^{p}$. By Lemma 2.3(i),

(6)
$$\left\|\sum_{n=0}^{N[1/\varepsilon]} \hat{f}_{\varepsilon}(n) t_n^{(\alpha,\beta)} P_n^{(\alpha,\beta)}(\cos \varepsilon \tau)\right\| \le C_{f,\eta,K} (1+N\varepsilon^{\delta}) \quad (\eta < \tau < K),$$

and

$$\begin{aligned} &\|\sum_{1}\|_{L^{p}([\eta,K],\mu)}^{p} \\ &\leq C_{f,\eta,K}(1+N\varepsilon^{\delta})^{p} \left\|\sum_{\substack{m=N[1/\varepsilon]\\m=N[1/\varepsilon]}}^{\infty} \right\| \hat{g}_{\varepsilon}(m)t_{m}^{(\alpha,\beta)}P_{m}^{(\alpha,\beta)}(\cos\varepsilon\tau)\|_{L^{p}([\eta,K],\mu)}^{p} \\ &\leq C_{f,g,\eta,K}(1+N\varepsilon^{\delta})^{p}N^{-p/2} \end{aligned}$$

by (6) and Step 1. Therefore, we obtain

(7)
$$\|\sum_{1}\|_{L^{p}([\eta,K],\mu)}^{p} \leq C_{f,g,\eta,K} (N^{-1/2} + N^{1/2}\varepsilon^{\delta})^{p}.$$

We similarly get

(8)
$$||\sum_{2}||_{L^{p}([\eta,K],\mu)}^{p} \leq C_{f,g,\eta,K}(N^{-1/2}+N^{1/2}\varepsilon^{\delta})^{p}.$$

Next we estimate $||\sum_{3} ||_{L^{p}([\eta,K],\mu)}$. By the Schwarz inequality and Step1, we have that

$$\begin{split} &||\sum_{3}||_{L^{p}([\eta,K],\mu)} \\ &\leq C \int_{\eta}^{K} \left(\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)| \right)^{p} \\ &\left(\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{g}_{\varepsilon}(m)t_{m}^{(\alpha,\beta)}P_{m}^{(\alpha,\beta)}(\cos\varepsilon\tau)| \right)^{p} d\mu \\ &\leq C \left\| \sum_{N[1/\varepsilon]+1}^{\infty} |\hat{f}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)| \right\|_{L^{2p}([\eta,K],\mu)}^{p} \\ &\times ||\sum_{N[1/\varepsilon]+1}^{\infty} |\hat{g}_{\varepsilon}(n)t_{n}^{(\alpha,\beta)}P_{n}^{(\alpha,\beta)}(\cos\varepsilon\tau)|||_{L^{2p}([\eta,K],\mu)}^{p} \\ &= C_{f,g,\eta,K,p}N^{-p}. \end{split}$$

Then, we obtain

(9)
$$||\sum_{3}||_{L^{p}([\eta,K],\mu)}^{p} \leq C_{f,g,\eta,K,p}N^{-p}$$

and by (7), (8), and (9)

$$||H^{N}(\tau, 1/\varepsilon)||_{L^{p}([\eta, K], \mu)}$$

$$\leq ||\sum_{1}||_{L^{p}([\eta, K], \mu)} + ||\sum_{2}||_{L^{p}([\eta, K], \mu)} + ||\sum_{3}||_{L^{p}([\eta, K], \mu)}$$

$$\leq C_{f,g,\eta, K}(N^{-1/2} + N^{1/2}\varepsilon^{\delta} + N^{-1}).$$

Step 3. There exist $\{\varepsilon_j\}$ with $\varepsilon_j \downarrow 0 (j \to \infty)$ and $G(\tau)$ a function such that

 $G(\tau, 1/\varepsilon_j) \to G(\tau)$

in the weak* topology in $L^p((0, K), \mu)$ for all K > 0.

In fact, we get the above result by (3) and the diagonal argument.

Step 4. There exists a subsequence $\{\varepsilon_{j_n}\}$ of $\{\varepsilon_j\}$ and $G^N(\tau)$ a function such that

$$G^N(\tau, 1/\varepsilon_{j_n}) \to G^N(\tau)$$

in the weak* topology in $L^p([\eta, K], \mu)$ for any N and $0 < \eta < K$. Because by Step2, there exist $\{\varepsilon'_j\}$ a subsequence of $\{\varepsilon_j\}$ and $H^N(\tau)$ a function such that

$$H^N(\tau, 1/\varepsilon_{j'}) \to H^N(\tau)$$

in the weak* topology in $L^p([\eta, K], \mu)$ for all N and $0 < \eta \le \tau \le K$, and (10) $||H^N||_{T} < T > T \le C$, $||M^{-1/2}||_{T} < T \le T$

(10)
$$||H^N||_{L^p([\eta,K],\mu)} \le C_{f,g,\eta,K} N^{-1/2}$$

Also by (3) and Step2, we have

$$\begin{aligned} &||G^{N}(\tau, 1/\varepsilon)\chi_{(\eta,K)}(\tau)||_{L^{p}(\mu)} \\ &\leq ||G(\tau, 1/\varepsilon)\chi_{(\eta,K)}(\tau)||_{L^{p}(\mu)} + ||H^{N}(\tau, 1/\varepsilon)\chi_{(\eta,K)}(\tau)||_{L^{p}(\mu)} \\ &\leq C||f||_{L^{q}(\mu)}||g||_{L^{r}(\mu)} + C(N^{-1/2} + N^{1/2}\varepsilon^{\delta}), \end{aligned}$$

since $G(\tau, 1/\varepsilon) = G^N(\tau, 1/\varepsilon) + H^N(\tau, 1/\varepsilon)$. So we obtain

$$||G^{N}(\tau, 1/\varepsilon)\chi_{(\eta,K)}||_{L^{p}(\mu)} \leq C_{N,f,g,\eta,K}$$

Then there exist a subsequence $\{\varepsilon_{j_n}\}$ of $\{\varepsilon_j\}$ and $G^N(\tau)$ a function such that $G^N(\tau, 1/\varepsilon_{j_n}) \to G^N(\tau)$

in the weak* topology in $L^p([\eta, K], \mu)$ for all $0 < \eta < K$ and $G = G^N + H^N$.

Step 5. For a fixed $\tau > 0$, we have

$$\lim_{\varepsilon \to 0} G^N(\tau, 1/\varepsilon) = \int_0^N \int_0^N \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d\mu(u) d\mu(v) (= G^N(\tau)).$$

In fact, since we have

$$G^{N}(\tau, 1/\varepsilon) = \sum_{n,m=0}^{\infty} \phi(\varepsilon n, \varepsilon m) \hat{f}_{\varepsilon}(n) \hat{g}_{\varepsilon}(m) t_{n}^{(\alpha,\beta)} P_{n}^{(\alpha,\beta)}(\cos \varepsilon \tau) t_{m}^{(\alpha,\beta)} P_{m}^{(\alpha,\beta)}(\cos \varepsilon \tau)$$

and Lemma2.3(ii), we obtain

NT .

$$\begin{split} & G^{N}(\tau, 1/\varepsilon) \\ &= \sum_{n,m=0}^{N[1/\varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} f(n\varepsilon) \mathcal{J}_{\alpha}(n\varepsilon) (n\varepsilon)^{2\alpha+1} \varepsilon \mathcal{H}_{\alpha} g(n\varepsilon) \mathcal{J}_{\alpha}(n\varepsilon) (n\varepsilon)^{2\alpha+1} \varepsilon \\ &+ \sum_{n,m=1}^{N[1/\varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} f(n\varepsilon) \mathcal{J}_{\alpha}(n\varepsilon) (n\varepsilon)^{2\alpha+1} \varepsilon C_{g,\eta,K}(m,\varepsilon,\tau) \\ &+ \sum_{n,m=1}^{N[1/\varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{H}_{\alpha} g(m\varepsilon) \mathcal{J}_{\alpha}(m\varepsilon) (m\varepsilon)^{2\alpha+1} \varepsilon C_{f,\eta,K}(n,\varepsilon,\tau) \\ &+ \sum_{n,m=1}^{N[1/\varepsilon]} \phi(\varepsilon n, \varepsilon m) \mathcal{C}_{f,\eta,K}(n,\varepsilon,\tau) C_{g,\eta,K}(m,\varepsilon,\tau) + O_{f,g,\eta,K}(N\varepsilon) \\ &= I_1 + I_2 + I_3 + I_4 + O_{f,g,\eta,K}(N\varepsilon), \text{ say.} \end{split}$$

Then, by the definition of the Riemann integral we obtain that

$$\lim_{\varepsilon \to 0} I_1 = \int_0^N \int_0^N \phi(u, v) \mathcal{H}_\alpha f(u) \mathcal{J}_\alpha(\tau u) \mathcal{H}_\alpha g(v) \mathcal{J}_\alpha(\tau v) d\mu(u) d\mu(v) d\mu(v$$

Also by Lemma 2.3(ii) we get that $I_2 = I_3 = O_{f,g,\eta,K}(N\varepsilon^{\delta})$, and $I_4 = O_{f,g,\eta,K}((N\varepsilon^{\delta})^2)$ $(0 < \delta < 1)$. Then, we have

$$\lim_{\varepsilon \to 0} G^N(\tau, 1/\varepsilon) = \int \int_{(0,N) \times (0,N)} \phi(u, v) \mathcal{H}_{\alpha} f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha} g(v) \mathcal{J}_{\alpha}(\tau v) d\mu(u) d\mu(v).$$

Step 6. We have

$$G(\tau) = \int_0^\infty \int_0^\infty \phi(u, v) \mathcal{H}_\alpha f(u) \mathcal{J}_\alpha(\tau u) \mathcal{H}_\alpha g(v) \mathcal{J}_\alpha(\tau v) d\mu(u) \mu(v) \ a.e. \ \tau.$$

In fact, let $0 < \eta' < K'$ be fixed. Since $\{|G^N(\tau, 1/\varepsilon)|\}_{\varepsilon}$ is uniformly bounded on $[\eta', K']$ by (6), we have

$$\lim_{k \to \infty} \int G^N(\tau, 1/\varepsilon_{j_k}) h(\tau) d\mu(\tau) = \int G^N(\tau) h(\tau) d\mu(\tau)$$

for any $h\in C^\infty_c(\eta',K').$ Then by the Lebesgue's convergence theorem and Step5 we have

$$\int G^{N}(\tau)h(\tau)d\mu(\tau)$$

= $\int_{0}^{\infty} \{\int_{0}^{N} \int_{0}^{N} \phi(u,v)\mathcal{H}_{\alpha}f(u)\mathcal{J}_{\alpha}(\tau u)\mathcal{H}_{\alpha}g(v)\mathcal{J}_{\alpha}(\tau v)d\mu(u)\mu(v)\}h(\tau)d\mu(\tau)$

for any $h \in C_c^{\infty}(0,\infty)$, and

(11)
$$G^{N}(\tau) = \int_{0}^{N} \int_{0}^{N} \phi(u, v) \mathcal{H}_{\alpha}f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha}g(v) \mathcal{J}_{\alpha}(\tau v) d\mu(u)\mu(v) \ a.e..$$

Here, there exists $\{N_j\}_j$ such that $H^{N_j}(\tau) \to 0$ a.e. τ by (10). Therefore, we remark

(12)
$$G^{N_j}(\tau) \to G(\tau) \ a.e. \ \tau,$$

since we have $G = G^N + H^N$. Now for any natural number N, let

$$F_N(u,v) = \phi(u,v)\mathcal{H}_{\alpha}f(u)\mathcal{J}_{\alpha}g(v)\mathcal{J}_{\alpha}(\tau v)\chi_{(0,N)\times(0,N)}(u,v).$$

It is known that

$$\mathcal{H}_{\alpha}f(x) = O(x^{-\ell}) \ (\ell = 1, 2, \cdots)(x \to \infty),$$

$$\mathcal{H}_{\alpha}f(x) = O(1) \ (x \to 0),$$

$$J_{\alpha}f(x) = O(x^{\alpha}) \ (x \to 0), \text{ and}$$

$$J_{\alpha}f(x) = O(x^{-1/2}) \ (x \to \infty).$$

By those properties, there exists $F \in L^1((0,\infty) \times (0,\infty), \mu \times \mu)$ such that $|F_N| \le F$ $(0 < \tau < K)$. Then, by Lebesgue's convergence theorem and (11), we have

(13)
$$\lim_{j \to \infty} G^{N_j}(\tau) = \int \int_{(0,\infty) \times (0,\infty)} \phi(u,v) \mathcal{H}_{\alpha}f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha}g(v) \mathcal{J}_{\alpha}(\tau v) d\mu(u)\mu(v).$$

After all, we have

$$G(\tau) = \int \int_{(0,\infty)\times(0,\infty)} \phi(u,v) \mathcal{H}_{\alpha}f(u) \mathcal{J}_{\alpha}(\tau u) \mathcal{H}_{\alpha}g(v) \mathcal{J}_{\alpha}(\tau v) d\mu(u)\mu(v) \ a.e. \ \tau$$

by (11), (12), and (13).

Step 7. This step completes the proof of Theorem. For the sake of this, we use all notations in the former steps. Let $h \in C_c^{\infty}(0,\infty)$ with $supp \ h \subset [\eta, K]$ $(0 < \eta < K)$. By Step2 and Step4, we have

$$\begin{aligned} & \left\| \int_{\eta}^{K} G^{N}(\tau, 1/\varepsilon) h(\tau) d\mu(\tau) \right\| \\ & \leq C ||f||_{L^{q}(\mu)} ||g||_{L^{r}(\mu)} ||h||_{L^{p'}(\mu)} + ||H^{N}(\tau, 1/\varepsilon)||_{L^{p}((0,K),d\mu)} ||h||_{L^{p'}((0,K),d\mu)} \\ & \leq C ||f||_{L^{q}(\mu)} ||g||_{L^{r}(\mu)} ||h||_{L^{p'}(\mu)} + C_{\eta,K,f,g} (N^{-1/2} + N^{1/2}\varepsilon^{\delta}) ||h||_{L^{p'}((0,K),d\mu)} \end{aligned}$$

Then, by $\varepsilon \to 0$ and Steps 5 and 6, we have

$$\left| \int_{\eta}^{K} G^{N}(\tau) h(\tau) d\mu(\tau) \right| \leq C ||f||_{L^{q}(\mu)} ||g||_{L^{r}(\mu)} ||h||_{L^{p'}(\mu)} + O_{f,g,\eta,K}(N^{-1/2}),$$

and

$$\left| \int_{\eta}^{K} G(\tau) h(\tau) d\mu(\tau) \right| \le C ||f||_{L^{q}(\mu)} ||g||_{L^{r}(\mu)} ||h||_{L^{p'}(\mu)}$$

by $N = N_j \rightarrow \infty (j \rightarrow \infty)$. Therefore, we obtain

$$||G||_{L^{p}(\mu)} \leq C||f||_{L^{q}(\mu)}||g||_{L^{r}(\mu)},$$

and

$$||T(f,g)||_{L^{p}(\mu)} \leq C||f||_{L^{q}(\mu)}||g||_{L^{r}(\mu)}.$$

We finish our proof.

Remark. The reverse transference Theorem of Igari's Theorem[10] is an unsolved problem, since Igari[10] proved the transference theorem. The converse transference Theorem of our Theorem is not known, too.

References

- 1. R. Askey, A transplantation theorem for Jacobi coefficients, *Pacific J. Math.*, **21** (1967), 393-404.
- 2. J. J. Betancor and K. Stempak, Relating multipliers and translation for Fourier-Bessel expansions and Hankel transform, *Tohoku Math. J.*, **53** (2001), 109-129.
- O. Blasco and F. Villarroya, Transference of bilinear multilinear operators on Lorentz spaces, *Illinois J. Math.*, 47 (2003), 1327-1343.
- 4. R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, *Trans. Amer. Math. Soc.*, **212** (1975), 315-331.
- 5. R. R. Coifman and Y. Meyer, d'integrales singulieres et operaturs multilineaires, *Ann. Inst. Fourier (Grenoble)*, **28** (1978), 177-202.
- R. R. Coifman and Y. Meyer, Au-dela des operateurs pseudo-differentiels, *Asterieque*, 57 (1978).
- 7. W. C. Connett and A. Schawartz, Weak type multipliers for Hankel transforms, *Pacific J. of Math.*, **63** (1976), 125-129.
- D. Fan and S. Sato, Transference on certain multilinear multiplier operators, J. Aust. Math. Soc., 70 (2001), 37-55.
- 9. L. Grafakos and R. H. Torres, multilinear Calderon-Zygmund theory, *Adv. Math.*, **165** (2002), 109-172.
- 10. S. Igari, On the multipliers of Hankel transform, *Tohoku Math. J.*, **24** (1972), 201-206.
- 11. M. Lacey and C. Thiele, L^p estimates on the bilinear Hilbert transform, Ann. of Math., **146** (1997), 693-724.
- 12. M. Lacey and C. Thiele, On the bilinear Hilbert transform, Proc. Intern. Congress of Mathematicians, Doc. Math., II (1998), 647-656.
- 13. M. Lacey and C. Thiele, On Calderon's conjecture, Ann. of Math., **149** (1999), 475-496.
- 14. E. Sato, Lorentz multipliers for Hankel transforms, *Scientiae Mathemaricae Japonicae*, **59** (2004), 479-488.

- 15. E. Sato, A generalization of the Hankel transform and the Lorentz multipliers, *Tokyo J. Math.*, **29** (2006), 147-166.
- 16. K. Stempak, On connections between Hankel, Lagurre and Jacobi transplantations, *Tohoku Math. J.*, **54** (2002), 471-493.
- 17. G. Szegö, Orhogonal Polynomials, Amer. Math. Soc. Colloquim, 1959.

Enji Sato Department of Mathematical Sciences Faculty of Science Yamagata University Yamagata 990-8560 Japan E-mail: esato@sci.kj.yamagata-u.ac.jp