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A GLOBAL ARNOLDI METHOD FOR LARGE NON-HERMITIAN

EIGENPROBLEMS WITH SPECIAL APPLICATIONS TO MULTIPLE

EIGENPROBLEMS

Congying Duan and Zhongxiao Jia*

Abstract. Global projection methods have been used for solving numerous

large matrix equations, but nothing has been known on if and how this method

can be proposed for solving large eigenproblems. In this paper, a global Arnold

method is proposed for large eigenproblems. It computes certain F-Ritz pairs

that are used to approximate some eigenpairs. The global Arnoldi method

inherits convergence properties of the standard Arnoldi method applied to a

larger matrix whose distinct eigenvalues are the eigenvalues of the original

given matrix. As an application, assuming that A is diagonalizable, we show

that the global Arnoldi method is able to solve multiple eigenvalue problems.

To be practical, we develop an implicitly restarted global Arnoldi algorithm

with certain F-shifts suggested. In particular, this algorithm can be adaptively

used to solve multiple eigenvalue problems. Numerical experiments show

that the algorithm is efficient for the eigenproblem and is reliable for quite

ill-conditioned multiple eigenproblems.

1. INTRODUCTION

Jbilou, Messaoudi and Sadok [16] propose a global projection method for solving

matrix equations. One of the main ingredients of the global methods is the use of the

Frobenius scalar product. Simply speaking, here “global” describes the algorithms

with the F-inner product to be defined by (1). They present a global Arnoldi

process that generates an F-orthonormal basis of a matrix Krylov subspace, and

based on it they derive the global FOM and the global GMRES methods. Several
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authors [13, 14, 30] propose some other global methods, for instance, the global

versions of CG, SCG, CR and CMRH. Over the past several years, numerous global

methods have been widely used for solving linear systems with multiple right-

hand sides and matrix equations, e.g., Sylvester equations and Riccati equations

[4, 17, 18, 24, 31]. These methods fall into category of global projection methods

onto certain matrix Krylov subspaces. A convergence analysis on the global GMRES

method is made in [5]. These global Krylov subspace algorithms appear effective

when applied for solving the problems mentioned above. Other applications of the

global Krylov subspace methods are in model reduction, especially MIMO systems

[7, 8, 9, 15]. However, no global projection method has been proposed for large

matrix eigenproblems hitherto. Whether or not a global projection method can be

proposed for the eigenproblems and, if yes, how to develop a practical algorithm

have not been known.

For large non-Hermitian eigenproblems, a major class of methods are orthogonal

projection methods, which include the famous Arnoldi method [1, 26, 29, 34]. The

Arnoldi method uses the Arnoldi process to construct an orthonormal basis of the

Krylov subspace generated by a single starting vector and compute the Ritz pairs

to approximate some of the eigenpairs of a large n × n matrix A. Assuming

that A is diagonalizable, however, it is known that the Arnoldi method itself is

unable to determine the multiplicities of the required eigenvalues and the associated

eigenspaces [19, 20, 21]. In order to figure out these problems, block versions

of the Arnoldi method are proposed [2, 20, 23] that first use the block Arnoldi

process to construct an orthonormal basis of the block Krylov subspace generated

by a set of vectors and then extract the Ritz pairs from the block Krylov subspaces

to approximate the desired eigenpairs.

In this paper, based on the global Arnoldi process starting with an n× s initial
matrix, we show how to derive a global Arnoldi method for large unsymmetric eigen-

problems and set up a general framework of global projection methods for eigen-

problems, also called the F-orthogonal projection methods. The method computes

so-called F-Ritz pairs to approximate some of the eigenpairs of A. A fundamental
difference with a usual projection method is that now there are s F-Ritz vectors

associated with each F-Ritz value, each of which can be used as an approximate

eigenvector. So we can pick up any one of the F-Ritz vectors for our use for each

F-Ritz value! We show that the F-Ritz values are equal to certain usual Ritz values

of a larger matrix with each eigenvalue of A as an s multiple one over a closely
related Krylov subspace and the F-Ritz pairs are at least as accurate as the usual

Ritz pairs. So the global Arnoldi method inherits convergence properties of the

standard Arnoldi method. We will pay special attention to the multiple eigenvalue

problem. Under the assumption that A is diagonalizable, we show that the global

Arnoldi method can be applied to adaptively determine multiplicities of the desired
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eigenvalues and the corresponding eigenspaces.

To be clearer and more illustrative, we state more on the global method. The

global Arnoldi process constructs an F-orthonormal basis V1, V2, . . . , Vm of the ma-

trix Krylov subspace Km(A, V1) generated by an n × s initial matrix V1 with the

Frobenius norm one, where Vi = (vi1, vi2, . . . , vis), i = 1, 2, . . . , m are n×s matri-

ces. If we interpret the basis (V1, V2, . . . , Vm) as ms linearly independent vectors,
this matrix Krylov subspace can be regarded as a usual block Krylov subspace of di-

mensionms starting with the initial block vector V1, so that we can decompose it into

the direct sum of the s single vector Krylov subspaces Km(A, v1j), j = 1, 2, . . . , s

of dimension m. By the F-orthogonal projection principle, we can get m approx-

imate eigenvalues λ
(m)
i , i = 1, 2, . . . , m, called the F-Ritz values with respect to

the matrix Krylov subspace. For each F-Ritz value λ
(m)
i , we can obtain an ap-

proximate eigenvector ϕ
(m)
ij , j = 1, 2, . . . , s from each single vector Krylov sub-

space. Assume that the F-Ritz value λ
(m)
i and these s corresponding F-Ritz vectors

ϕ
(m)
i1 , ϕ

(m)
i2 , . . . , ϕ

(m)
is have converged. Then they are all good approximations to

the eigenpairs of A. If a required eigenvalue λi is simple, the s F-Ritz vectors are

linearly dependent numerically. So if the multiplicity of the desired eigenvalue is not

concerned, we simply use any one of the s F-Ritz vectors as an approximate eigen-

vector rather than compute all of them. If λi is di (di < s) multiple, the s F-Ritz
vectors must be numerically linearly dependent, from which we can numerically

determine the multiplicity di reliably and efficiently. If λi is di (di ≥ s) multiple,
these s F-Ritz vectors are linearly independent. So λi is at least s multiple. We then
run the global Arnoldi method starting with a new V1 that are independent of the

old V1, and compute the new converged F-Ritz vectors. Adding them to the previ-

ous ϕ
(m)
ij , j = 1, 2, . . . , s, if they are linearly dependent numerically, then the rank

is di; otherwise, continue. Proceed in such a way until di is determined. We will

quantitatively establish a solid foundation for the above claims. Both theory and nu-

merical experiments illustrate that the procedure is reliable to determine eigenvalue

multiplicities and eigenspaces when condition numbers of the desired eigenvectors

are considerably smaller than reciprocals of the residual norms. This means that the

procedure is effective for quite ill-conditioned multiple eigenproblems.

The global Arnoldi method becomes very expensive in storage and computational

cost as m increases. Therefore, restarting is necessary when the method does not

deliver the approximate eigenpairs with prescribed accuracy for a maximum m

allowed. The need for restart was firstly recognized by Karush [22], and there

are various restarting schemes developed by many researchers, e.g., Paige [25],

Cullum and Donath [10], Golub and Underwood [12], Saad [27, 28] and Chatelin

and Ho [6]. All of these schemes are explicit restarting. Over the years, the

most popular restarting scheme is implicit restarting proposed by Sorensen [33] that
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combines the implicitly shifted QR iterations with the Arnoldi process and leads

to a truncated form of the implicitly shifted QR iteration. In this paper, we extend

implicit restarting to the global Arnoldi process and develop an implicitly restarted

global Arnoldi algorithm (IRGA) with those unwanted F-Ritz values as shifts, also

called exact shifts as in [33].

The rest of the paper is organized as follows. In the next section, we briefly

review the global Arnoldi process and the global FOM and GMRES algorithms. In

Section 3, we propose a global Arnoldi method for large unsymmetric eigenproblems.

In Section 4, we show how the global Arnoldi method is used to solve the multiple

eigenproblem. In Section 5, we discuss how to implicitly restart the global Arnoldi

method and develop the implicitly restarted global Arnoldi algorithm with the exact

shifts suggested. Finally, we report numerical examples to illustrate efficiency and

reliability of the algorithm in Section 6.

Some notations to be used are introduced. A is an n × n large diagonalizable

matrix throughout the paper, and λi, ϕi are its eigenvalues and eigenvectors with λi

labeled in a desired order. Denote by ‖ · ‖ the spectral norm of a matrix and the
vector 2-norm, by ‖ · ‖F the Frobenius norm of a matrix, by the superscript H the

conjugate transpose of a matrix or vector and by I the identity matrix with the order

clear from the context. The eigenvectors and their approximations are normalized

to have unit length.

2. THE GLOBAL ARNOLDI PROCESS AND THE GLOBAL FOM AND GMRES

LetMn,s denote the complex linear space of n × s rectangular matrices. For

two matrices X and Y inMn,s, we define their F-inner product by

(1) 〈X, Y 〉F = tr(XHY ),

where tr(Z) denotes the trace of the square matrix Z. Note that ‖ · ‖F = 〈·〉1/2
F .

We will use the notation X⊥FY to denote 〈X, Y 〉F = 0, meaning that X and Y
are F-orthogonal.

For a starting matrix V ∈ Mn,s, the matrix Krylov subspace Km(A, V ) is
defined by

(2) Km(A, V ) = span{V, AV, . . ., Am−1V },

which is a subset of Mn,s. Z ∈ Km(A, V ) means that there are scalars αi, i =
1, 2, . . . , m such that

(3) Z =
m−1∑

i=0

αiA
iV.
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Let V = (v1, v2, . . . , vs) and define a linear operator vec: Mn,s → Cns by

(4) vec(V ) = (vH
1 , vH

2 , . . . , vH
s )H .

Then we have

(5) 〈X, Y 〉F = 〈vec(X), vec(Y )〉,

where 〈·, ·〉 denotes the usual l2 inner product of the complex vector space Cns.

Denote by A⊗B the Kronecker product of the matricesA and B. The following

basic properties hold, e.g., [11]:

1. (A⊗ B)(C ⊗D) = (AC)⊗ (BD).
2. (A⊗ B)H = AH ⊗ BH .

3. If A ∈ Cn×n, X ∈ Cn×m, then vec(AX) = (Im ⊗ A)vec(X).
4. Each eigenvalue λi, i = 1, 2, . . . , n of A is an s multiple eigenvalue of Is⊗A.

The following global Arnoldi process is based on the modified Gram-Schmidt

process. It constructs an F-orthonormal basis V1, V2, . . . , Vm of the matrix Krylov

subspace Km(A, V ), that is, tr(V H
i Vj) = δij for i, j = 1, . . . , m, where δij is the

Kronecker delta.

Algorithm 1. The global Arnoldi process

1. V1 = V/‖V ‖F
2. for j = 1, 2, . . . , m do

W := AVj ;
for i = 1, 2, . . . , j do

hi,j = 〈W, Vi〉F ;
W = W − hi,jVi;

end

hj+1,j = ‖W‖F ;
Vj+1 = W/hj+1,j .

end

This process needs ms matrix A by vector products plus nm2s flops.

Define Vm = (V1, V2, . . . , Vm) and Hm and H̄m to be the m×m and the (m+
1) ×m Hessenberg matrices whose nonzero entries hi,j are defined by Algorithm

1. Then

(6) H̄m =
(

Hm

hm+1,meH
m

)
,

where em = (0, . . . , 0, 1)H is them-th canonical basis of Cm. We have the following

results [16, 24].
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Theorem 1. Let Vm, Hm and H̄m be defined as above. Then V1, V2, . . . , Vm

are an F-orthonormal basis of the matrix Krylov subspace Km(A, V1) and

(7) AVm = Vm(Hm ⊗ Is) + hm+1,m(0n×s, . . . , 0n×s, Vm+1)

(8) = Vm(Hm ⊗ Is) + rm(eH
m ⊗ Is),

(9) AVm = Vm+1(H̄m ⊗ Is),

where 0n×s denotes the n× s zero matrix, rm = hm+1,mVm+1.

Based on the global Arnoldi process, Jbilou et al. [16] propose a global FOM

(GL-FOM) algorithm and a global GMRES (GL-GMRES) algorithm for solving

linear systems with multiple right-hand sides and numerous matrix equations.

Taking the linear system with s multiple right-hand sides as example, we briefly

describe the GL-FOM and GL-GMRES algorithms. Let X0 be an initial guess

to the solution X of AX = B and R0 = B − AX0 its associated residual. At

the m-th iterate of the Gl-FOM algorithm, the correction Zm = Vm(ym ⊗ Is)
is extracted from the matrix Krylov subspace Km(A, R0) such that the residual
Rm = B − A(X0 + Zm) = R0 − AZm satisfies

(10) Rm⊥FKm(A, R0),

where ym is shown to be the solution of the following m×m linear system:

(11) Hmym = βe1, where β = ‖R0‖F .

In the GL-GMRES algorithm, the correction Zm = Vm(ym ⊗ Is) is determined
by imposing the residual minimization condition

(12) ‖Rm‖F = min
y∈Cm

‖R0 − AVm(y ⊗ Is)‖F ,

where ym is shown to be the solution of the (m + 1)×m least squares problem

(13) ym = arg min
y∈Cm

‖βe1 − H̄my‖, where β = ‖R0‖F .

For details on these two global methods, we refer to [16].

We remark that if s = 1 then the global Arnoldi process reduces to the standard
Arnoldi process and the GL-FOM and GL-GMRES methods become the standard

FOM (Arnoldi) and GMRES methods.

3. A GLOBAL ARNOLDI METHOD FOR EIGENPROBLEMS

As a first step towards deriving a global Arnoldi method for eigenproblems, a

simple but fundamental key is that we can interpret the matrix Krylov subspace

Km(A, V1) of Mn,s as a standard block Krylov subspace of Cn starting with the
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initial block vector V1. Correspondingly, we can interpret each basis element Vi, i =
1, 2, . . . , m of the matrix Krylov subspace Km(A, V1) as usual s vectors and each
n×s element of it as s vectors instead of an n×s matrix. We will switchKm(A, V1)
between the matrix Krylov subspace and the standard Krylov subspace, following

our need. In the sequel, when speaking of the block Krylov subspace, suppose that

Vm = (V1, V2, . . . , Vm) is of full column rank. Then Algorithm 1 also generates a
basis of the block Krylov subspace Km(A, V1) in Cn. However, we should keep in

mind that this basis is generally not orthogonal.

Mathematically, when Km(A, V1) is regarded as the block Krylov subspace, we
might use the standard orthogonal projection principle to solve eigenproblems. In

this case, premultiplying (7) by (VH
mVm)−1VH

m gives

(14)
(VH

mVm)−1VH
mAVm

= Hm ⊗ Is + (VH
mVm)−1VH

mhm+1,m(0n×s, . . . , 0n×s, Vm+1),

which is just the projection matrix of A onto the subspace spanned by the columns

of Vm, whose ms eigenvalues λ̂
(m)
i are just the Ritz values of A with respect to

this subspace and the (unnormalizing) Ritz vectors are ϕ̂
(m)
i = Vmŷi

(m), where the

ŷ
(m)
i are the eigenvectors of the projection matrix associated with the eigenvalues

λ̂
(m)
i . Mathematically, they are the same as the Ritz values and Ritz vectors when

the standard block Arnoldi process is exploited to generate an orthonormal basis

of Km(A, V1). However, computationally, we do not recommend this approach.
Firstly, it may be unstable as the columns of Vm can be nearly linearly dependent

so that VH
mVm is nearly singular; secondly, it is more costly than the block Arnoldi

method for the same m. Actually, apart from the cost of m-step global Arnoldi
process, we need n(ms)2 +2(ms)3 flops for forming VH

mVm and inverting it, while

the block Arnoldi process costs ms matrix by vector products plus n(ms)2 flops,
assuming that no reorthogonalization is used. So such a procedure costs more than

the block Arnoldi process for the same m. Therefore, we have to abandon it and
seek other viable procedures.

Define A = Is ⊗ A. Then it has each eigenvalue λi of A as an s multiple
eigenvalue. Assume that A is diagonalizable and define D = diag(λ1, λ2, . . . , λn)
and the eigenvector matrix

Φ = (ϕ1, ϕ2, . . . , ϕn).

Then



Φ
Φ

. . .

Φ




−1

A




Φ
Φ

. . .

Φ


 =




D

D
. . .

D


 .



1504 Congying Duan and Zhongxiao Jia

From this eigen-decomposition, we get the s corresponding eigenvectors of A as-
sociated with λi that have the form wi = (0, . . . , ϕH

i , . . . , 0)H, whose possible

nonzero entries are in positions n(i − 1) + 1 to ni, i = 1, 2, . . . , s. Any linear

combination of them is still an eigenvector of A associated with λi and may have

no special structure.

The global Arnoldi process on A starting with the matrix V1 is closely related

to the standard Arnoldi process on A starting with the initial vector vec(V1). The
following results can be easily justified [24], and they are the very first step to

propose and understand a global Arnoldi method for eigenproblems.

Theorem 2. Let Hm and H̄m be defined as above. Then vec(V1), vec(V2), . . . ,
vec(Vm) form an orthonormal basis of the usual Krylov subspace Km

(
A, vec(V1)

)

generated by A and the starting vector vec(V1). Define the matrix

Vm =
(
vec(V1), vec(V2), . . . , vec(Vm)

)
.

Then the following standard Arnoldi process holds:

AVm = VmHm + hm+1,mvec(Vm+1)eH
m,(15)

= VmH̄m.(16)

Since vec(V1), vec(V2), . . . , vec(Vm) are orthonormal, Theorem 2 shows that

Hm is the orthogonal projection matrix of A onto the subspace Km

(
A, vec(V1)

)
.

Let λ
(m)
i , y

(m)
i , i = 1, 2, . . . , m be the eigenpairs of Hm with ‖y(m)

i ‖ = 1. The
eigenvalues λ

(m)
i are the Ritz values of A with respect to the subspace

Km(A, vec(V1)) and the corresponding Ritz vectors are

w
(m)
i = (vec(V1), vec(V2), . . . , vec(Vm))y(m)

i , i = 1, 2, . . . , s.

So we can simply use the Ritz pairs to approximate some eigenpairs of A. The
residual norms are computed cheaply by

(17) ‖Aw
(m)
i − λ

(m)
i w

(m)
i ‖ = hm+1m | eH

my
(m)
i |

without explicitly forming w
(m)
i until the convergence occurs.

However, the situation is subtle and by no means so simple as A is much larger
than A in size and all the eigenvalues are at least s multiple. We note that on

one hand each eigenvalue of A is an s multiple one of A and on the other hand
the eigenvalues of Hm are always simple if it is diagonalizable. In fact, assuming

that A is diagonalizable, the standard Arnoldi method works as if A had only

simple eigenvalues [19, 20, 21, 26, 27]. Therefore, when a Ritz pair defined above
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converges, we can get only one simple approximation to the s multiple eigenpairs

of A. So we have to do more.
We now propose a better and practical global Arnoldi method that works on the

original A directly rather than on the much larger ns × ns matrix A. Recall that
the global Arnoldi process constructs an F-orthonormal basis V1, V2, . . . , Vm of the

matrix Krylov subspace Km(A, V1). When speaking of a block Krylov subspace
Km(A, V1), we can simply decompose it into the direct sum of the s single vector

Krylov subspaces generated by the starting vectors v11, v12, . . . , v1s, respectively:

(18) Km(A, V1) = Km(A, v11)⊕Km(A, v12)⊕ · · · ⊕ Km(A, v1s).

Keeping in mind the assumption that the columns of V1, V2, . . . , Vm are linearly

independent. Then in the MATLAB language the columns of Vj
m = Vm(:, j : s :

ms) form a basis of Km(A, v1j), j = 1, 2, . . . , s. Since v1j , j = 1, 2, . . . , s are
supposed to be linearly independent, we get the s distinct m-dimensional Krylov

subspaces Km(A, v1j). Now we still use λ
(m)
i , i = 1, 2, . . . , m as approximations

to some of the eigenvalues of A, called the F-Ritz values of A with respect to the

matrix Krylov subspace Km(A, V1), but we compute the s new vectors

(19) ϕ
(m)
ij = Vj

my
(m)
i , j = 1, 2, . . . , s,

called the F-Ritz vectors of A with respect to Km(A, V1). For each λ
(m)
i we now

have the s corresponding F-Ritz vectors ϕ
(m)
ij ∈ Km(A, v1j).

We shed more lights on the F-Ritz pairs. Suppose that they already converge.

Then if λi is simple, these s F-Ritz vectors must be almost parallel as they ap-
proximate the same ϕi. If λi is multiple, each of these s F-Ritz vectors is a good

approximate eigenvector of A. If we do not care the multiplicity of λi and do not

determine the whole eigenspace of A associated with λi, then we can simply use

any of the F-Ritz vectors as an approximate eigenvector of A instead of computing

all of them.

Let U
(m)
i = Vm(y(m)

i ⊗ Is) = (V1
my

(m)
i , . . . ,Vs

my
(m)
i ) = (ϕ(m)

i1 , . . . , ϕ
(m)
is ).

Then ‖U (m)
i ‖F = 1 and it is easily verified that (λ(m)

i , U
(m)
i ), i = 1, 2, . . . , m are

the solutions of

(20)

{
U

(m)
i ∈ Vm

(A− λ
(m)
i I)U (m)

i ⊥FVm.

We call the (λ(m)
i , U

(m)
i ) the F-Ritz pairs of A with respect to the matrix Krylov

subspace Km(A, V1). Therefore, the global Arnoldi method falls into a general
framework, and we call it the F-orthogonal projection.

We investigate how a F-Ritz value and a F-Ritz vector approximates an eigen-

value and its associated eigenvector of A by relating it to the standard Ritz pair

(λ(m)
i , w

(m)
i ) of A with respect to Km

(
A, vec(V1)

)
.
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Theorem 3. We have

‖(A− λ
(m)
i I)U (m)

i ‖F = hm+1,m | eH
my

(m)
i |,(21)

‖(A− λ
(m)
i I)ϕ(m)

ij ‖ ≤ hm+1,m | eH
my

(m)
i |, j = 1, 2, . . . , s.(22)

Proof. From (7) we have

‖(A− λ
(m)
i I)U (m)

i ‖F
= AVm(y(m)

i ⊗ Is)− λ
(m)
i Vm(y(m)

i ⊗ Is)

= Vm(Hmy
(m)
i ⊗ Is) + hm+1,m(0n×s, . . . , 0n×s, Vm+1)(y

(m)
i ⊗ Is)

−λ
(m)
i Vm(y(m)

i ⊗ Is)

= hm+1,m(0n×s, . . . , 0n×s, Vm+1)(y
(m)
i ⊗ Is)

= hm+1,mVm+1(eH
m ⊗ Is)(y

(m)
i ⊗ Is)

= hm+1,meH
my

(m)
i Vm+1.

Therefore, we get

‖(A− λ
(m)
i I)U (m)

i ‖F = hm+1,m | eH
my

(m)
i |,

which is just (21).

Noting that

‖AVj
my

(m)
i − λ

(m)
i Vj

my
(m)
i ‖ ≤ ‖AVm(y(m)

i ⊗ Is)− λ
(m)
i Vm(y(m)

i ⊗ Is)‖F ,

we have shown (22).

Recall (17). (21) indicates that the residual Frobenius norm of the F-Ritz pair

(λ(m)
i , U

(m)
i ) is just equal to the residual 2-norm of the Ritz pair (λ(m)

i , w
(m)
i )

obtained by the standard Arnoldi method applied to A over Km(A, vec(V1)).
(22) can be used as a stopping criterion which cheaply checks if the global

Arnoldi method converges without computing ϕ
(m)
ij by (19) until convergence oc-

curs.

Recall that for the standard Arnoldi method on A over Km(A, vec(V1)) the Ritz
vectors

w
(m)
i = Vmy

(m)
i = [(V1

m)H , . . . , (Vs
m)H ]Hy

(m)
i = [(ϕ(m)

i1 )H , . . . , (ϕ(m)
is )H ]H

with ‖w(m)
i ‖ = 1 as it is assumed that ‖y(m)

i ‖ = 1. So the ϕ
(m)
ij are unnor-

malized and their norms are always smaller than one. Since no one of the non-

orthonormal bases Vj
m is special, the ‖ϕ(m)

ij ‖ should generally be comparable in
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size, i.e., ‖ϕ(m)
ij ‖ ≈ 1√

s
. Therefore, we get

‖AVj
my

(m)
i − λ

(m)
i Vj

my
(m)
i ‖

≈ 1√
s
‖
[
(AV1

my
(m)
i − λ

(m)
i V1

my
(m)
i ), . . . , (AVs

my
(m)
i − λ

(m)
i Vs

my
(m)
i )

]
‖F

=
1√
s
‖AVm(y(m)

i ⊗ Is)− λ
(m)
i Vm(y(m)

i ⊗ Is)‖F

=
1√
s
hm+1,m | eH

my
(m)
i |,

So combining the above and the proof of Theorem 3, we have

(23) ‖r(m)
ij ‖ :=

‖(A− λ
(m)
i I)ϕ(m)

ij ‖

‖ϕ(m)
ij ‖

≈ hm+1,m | eH
my

(m)
i | .

The left-hand side of the above relation is the residual norm of the normalized F-Ritz

pair, while from (17) the right-hand side is just the residual norm of (λ(m)
i , w

(m)
i )

as an approximate eigenpair of A. So, (22) and (23) demonstrates that all the s

F-Ritz vectors ϕ
(m)
ij are good approximate eigenvectors of A associated with the

eigenvalue λi if the standard Arnoldi method applied to A converges. So the global
Arnoldi method inherits convergence properties of the standard Arnoldi method and

achieve comparable residuals for the same m. For a convergence analysis of the

standard Arnoldi method, we refer to [19, 20, 21, 26, 27].

We now present a basic global Arnoldi algorithm for eigenproblems.

Algorithm 2. A basic global Arnoldi algorithm

1. Let (λi, ϕi), i = 1, 2, . . . , k be k desired eigenpairs of A and tol a user

prescribed tolerance. Choose an n × s matrix V and take V1 = V/‖V ‖F as
the starting matrix.

2. For m = k + 1, k + 2, . . . until convergence

(a) Construct the F-orthonormal basis V1, V2, . . . , Vm by Algorithm 1.

(b) Compute the m eigenpairs (λ(m)
i , y

(m)
i ), i = 1, 2, . . . , m of the result-

ing Hessenberg matrix Hm and select k F-Ritz values, say, λ
(m)
i , i =

1, 2, . . . , k as approximations to the k desired λi, i = 1, 2, . . . , k.
(c) Form ϕ

(m)
i = ϕ

(m)
i1 = V1

myi, i = 1, 2, . . . , k.

(d) Test convergence of the k approximate eigenpairs (λ(m)
i , ϕ

(m)
i ).

(e) If they all drop below tol, then go to Step 3.

We should mention that if s = 1 then the global Arnoldi method is just the
standard basic Arnoldi method.
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4. MULTIPLE EIGENPROBLEMS

As we have seen previously, under the assumption that A is diagonalizable, if

Hm is diagonalizable, F-Ritz values are always simple even if A has multiple eigen-

values. So the global Arnoldi method works as if A has only simple eigenvalues.

As a result, when a desired λi is multiple, the method itself cannot determine the

multiplicity of λi and compute the eigenspace associated with it.

Exploiting the theoretical analysis of [21], we consider how the global Arnoldi

method can be successfully used to solve multiple eigenvalue problems. Before

discussions, we need some notations. We always assume that A is an n × n di-
agonalizable matrix and has M distinct eigenvalues λi, where the multiplicities of

λi are di, i = 1, 2, . . . , M . Let Pi be the di-dimensional eigenspace associated

with λi and the columns of Φidi = (ϕi1, ϕi2, . . . , ϕidi) form a basis of Pi, where

‖ϕij‖ = 1, j = 1, 2, . . . , di.

Write the n× s starting matrix V1 as V1 = (v11, v12, . . . , v1s). Then given Φidi ,

each v1j , 1 ≤ j ≤ s, can be uniquely expanded as

(24)
v1j = bj1ϕi1 + bj2ϕi2 + · · ·+ bjdiϕidi + uij ,

uij ∈ P1 ⊕ · · · ⊕ Pi−1 ⊕Pi+1 ⊕ · · · ⊕ PM .

Define

(25) Bs =




b11 b12 . . . b1di

b21 b22 . . . b2di

...
... . . .

...

bs1 bs2 . . . bsdi


 .

Obviously, Bs is row rank deficient when s > di. Assume that the matrix Bs is of

row full rank for s ≤ di. We rewrite the above v1j as

(26) v1j = βjϕ̃ij + uij , uij ∈ P1 ⊕ · · · ⊕ Pi−1 ⊕ Pi+1 ⊕ · · · ⊕ PM ,

where ϕ̃ij , j = 1, 2, . . . , s are also unit length eigenvectors associated with λi.

Under the assumption on Bs, just as {ϕij}di
j=1, {ϕ̃ij}di

j=1 is also a basis of Pi, and

for s > di, ϕ̃ij , j = di+1, . . . , s must be linearly dependent to ϕ̃ij , j = 1, 2, . . . , di

and belong to the span of {ϕ̃ij}di
j=1. In other words, define Φ̃is = (ϕ̃i1, ϕ̃i2, . . . , ϕ̃is)

and Φ̃(m)
is = (ϕ̃(m)

i1 , ϕ̃
(m)
i2 , . . . , ϕ̃

(m)
is ). Then Φ̃is is of full column rank for s ≤ di,

while it must be column rank deficient and the smallest singular value of it is zero

for s > di. From now on we omit the tilde in the Greek letters without ambiguity;

furthermore, we assume to have normalized ϕ
(m)
ij in the discussions below. We also

assume that the columns of Φis are strongly linear independent for s ≤ di, that

is, the smallest singular value of Φij is not small and moderate for s ≤ di. From
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the viewpoint of the probability theory, this assumption is holds for a basis of Pi

generated randomly.

The following theorem from [21] is the theoretical background for determining

di numerically by the global Arnoldi method.

Theorem 4. Let P1, . . . , PM be the spectral projectors associated with λ1,

. . . , λM , and define the matrix

Xij =

(
P1ϕ

(m)
ij

‖P1ϕ
(m)
ij ‖

, . . . ,
Pi−1ϕ

(m)
ij

‖Pi−1ϕ
(m)
ij ‖

,
Pi+1ϕ

(m)
ij

‖Pi+1ϕ
(m)
ij ‖

, . . . ,
PMϕ

(m)
ij

‖PMϕ
(m)
ij ‖

)

and gi = mink 6=i |λ(m)
i − λk|. Then

Cij =
κ(Xij)‖I − Pi‖

gi
≤ κ(Xij)(1 + ‖Pi‖)

gi
,(27)

sin∠(ϕij, ϕ
(m)
ij ) ≤ Cij‖r(m)

ij ‖,(28)

where κ(Xij) is the spectral condition number of Xij and r
(m)
ij is the residual

defined by (23). Let σmin(Φ(m)
is ) and σmin(Φis) be the smallest singular values of

the matrices Φ(m)
is and Φis, respectively. Then

(29) σmin(Φ(m)
is ) ≤ σmin(Φis) +

√
s max

1≤j≤s
‖ϕij − ϕ

(m)
ij ‖.

In particular, if s > di, then

σmin(Φ(m)
is ) ≤

√
s max

1≤j≤s
‖ϕij − ϕ

(m)
ij ‖(30)

≈
√

s ·Cij max
1≤j≤s

‖r(m)
ij ‖ for small ‖r(m)

ij ‖.(31)

The relation (28) estimates the accuracy of ϕ
(m)
ij in terms of the residual norm

‖r(m)
ij ‖, where Cij acts as a condition number and measures the conditioning of ϕij .

The bigger it is, the worse conditioned ϕij is. If one of κ(Xij) and ‖Pi‖ is big or
the separation gi of the approximate λ

(m)
i and the other exact eigenvalues λj is very

small, ϕij is ill conditioned. We can see from (31) that if Cij is comparable to or

bigger than 1

max1≤j≤s ‖r
(m)
ij ‖

then σmin(Φ(m)
is ) may not be small.

Based on this theorem, we can decide if Φ(m)
is , i = 1, 2, . . . , k, are approximately

column rank deficient in the sense of (31) and thus detect the multiplicitiesdi and get

an approximate basis of Pi. It tells us that Φ
(m)
is , i = 1, 2, . . . , k are approximately
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column rank deficient for di < s and have full column rank for di ≥ s. So

σmin(Φ(m)
is ), i = 1, 2, . . . , k are not small for di ≥ s. We decide di in such a way:

Assume that ‖r(m)
ij ‖ < tol. Then if s is the smallest integer such that

(32) σmin(Φ(m)
is ) ≤

√
s ·Cij max

1≤j≤s
‖r(m)

ij ‖

hold with a constant Cij significantly smaller than max
1≤j≤s

‖r(m)
ij ‖, λi is (s − 1)

multiple and di = s − 1. In practice, Cij is a-priori unknown. We take Cij to be

considerably less than 1
tol , say

10−3

tol or smaller, which means that ϕij , j = 1, 2, . . . , s

can be quite ill conditioned, such as Cij = 103 or 105 if max
1≤j≤s

‖r(m)
ij ‖ ≤ 10−6

or 10−8. So the procedure may fail to determine di if Cij is comparable to or

bigger than 1
tol but it is definitely reliable. Later numerical experiments will indeed

illustrate that (31) is conservative and our procedure can determine the multiplicities

of eigenvalues for quite ill-conditioned eigenproblems, e.g., Cij ≥ 4.5× 104.

In practice, s is given. A random V1 will make Bs defined by (25) satisfy the

assumption on the rank of it. With V1, if we compute an s numerically multiple
eigenvalue, then this eigenvalue is at least s multiple, so the determination of di is

not actually resolved when s ≤ di. The following approach taken from [20, 21]

can figure out this problem elegantly.

Firstly, choose a random starting matrix V
(1)
1 with s1 columns. If we have

found an s1 multiple eigenvalue, then we apply Algorithm 2 with a new starting

initial V
(2)
1 with s2 columns, which is chosen randomly. Now we can compute an

s2 ≤ s1 multiple eigenvalue, which is numerically equal to the one computed with

s1, V
(1)
1 . We then determine the rank of the matrix (Φ(m)

is1
, Φ(m)

is2
) consisting of these

s1 + s2 converged F-Ritz vectors with the numerically multiple converged F-Ritz

values. Note here that when the eigenproblem of A is not too ill conditioned, if

some singular values of this matrix are of the same order as the maximum of residual

norms of these s1 + s2 converged interior eigenpairs, then we consider them to be

zero numerically. If the numerical rank of the matrix is less than s1 + s2, then

the multiplicity of this eigenvalue is just the rank of such a matrix. Otherwise, we

repeat Algorithm 2 with s3 ≤ s1, V
(3)
1 and so on until the numerical rank of the

matrix consisting of these s1 + s2 + · · ·+ sq converged F-Ritz vectors starting with

s1, V
(1)
1 , s2, V

(2)
1 , . . . , sq, V

(q)
1 respectively, is smaller than s1 + s2 + · · ·+ sq . Then

the multiplicity di of the eigenvalue has been determined and equals the numerical

rank of this matrix.

In summary, we can present a global Arnoldi algorithm for multiple eigenprob-

lems.

Algorithm 3. A global Arnoldi algorithm for multiple eigenproblems
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1. Define the set S={1, 2, . . . , k}, Ψ=∅, q=1 and prescribe a tolerance tol.

2. Choose a starting n × sq matrix V1 with ‖V1‖F = 1.

3. For m = k + 1, k + 2, . . . until convergence

(a) Construct the F-orthonormal basis V1, V2, . . . , Vm by Algorithm 1.

(b) Compute the m eigenpairs (λ(m)
i , y

(m)
i ), i = 1, 2, . . . , m of the resulting

Hessenberg matrix Hm and use λ
(m)
i , i = 1, 2, . . . , k to approximate the

desired λi, i = 1, 2, . . . , k.

(c) Test convergence of the approximate eigenpairs (λ(m)
i , ϕ

(m)
ij ), i = 1, 2,

. . . , k; j = 1, 2, . . . , sq.

(d) If they all drop below tol, then go to Step 4.

4. For all i ∈ S, set Φ(m)
is = (Ψ, ϕ

(m)
i1 , ϕ

(m)
i2 , . . . , ϕ

(m)
isq

) and s the number of its

columns.

(a) Compute the numerical rank rs of Φ(m)
is for all i ∈ S;

(b) If rs < s, set di = rs and remove i from S;
(c) Otherwise, let Ψ = Φ(m)

is , q = q + 1 and go to Step 2.

5. AN IMPLICITLY RESTARTED GLOBAL ARNOLDI ALGORITHM

The basic global Arnoldi algorithm becomes very expensive and impractical due

to excess storage and high computational cost as m increases. So m must be limited

not to be big. To make the method practical, restarting is necessary. The implicit

restarting technique due to Sorensen [33] is a very successful and popular one.

We show how to extend it to the global Arnoldi process and develop an implicitly

restarted global Arnoldi algorithm (IRGA).

Let k be a fixed specified integer, usually the number of the desired eigenpairs

of A and the steps m = k + p. Consider the k + p step global Arnoldi process

AVk+p = Vk+p(Hk+p ⊗ Is) + rk+p(eH
k+p ⊗ Is)(33)

= (Vk+p, Vk+p+1)(

(
Hk+p

βk+pe
H
k+p

)
⊗ Is).(34)

We apply shifted QR iterations to this truncated factorization of A. Let µ be a shift
and

Hk+p − µI = QR

be the QR factorization with Q orthogonal and R upper triangular. Then

Hk+p ⊗ Is − µI = (Hk+p − µI)⊗ Is = (QR)⊗ Is = (Q⊗ Is)(R⊗ Is)
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and

(RQ)⊗ Is + µI = (RQ + µI)⊗ Is = (QHHk+pQ)⊗ Is.

Therefore, we get

(A−µI)Vk+p − Vk+p(Hk+p ⊗ Is − µI) = rk+p(eH
k+p ⊗ Is),

(A−µI)Vk+p − Vk+p(Q⊗ Is)(R⊗ Is) = rk+p(eH
k+p ⊗ Is),

(A−µI)
(
Vk+p(Q⊗ Is)

)
−
(
Vk+p(Q⊗ Is)

)(
(RQ)⊗ Is

)
=rk+p

(
(eH

k+pQ)⊗ Is

)
,

A
(
Vk+p(Q⊗ Is)

)
−
(
Vk+p(Q⊗ Is)

)(
(RQ)⊗ Is + µI

)
= rk+p

(
(eH

k+pQ)⊗ Is

)
,

i.e.,

(35) AVk+p(Q⊗ Is) =
(
Vk+p(Q⊗ Is), Vk+p+1

)(QHHk+pQ
βk+pe

H
k+pQ

)
⊗ Is.

A successive application of p implicit shifts results in

(36) AV+
k+p = (V+

k+p, Vk+p+1)

(
H+

k+p

βk+pe
H
k+pQ̂

)
⊗ Is,

where V+
k+p = Vk+p(Q̂⊗ Is), H+

k+p = Q̂HHk+pQ̂ and Q̂ = Q1Q2 . . .Qp, with Qj

the orthogonal matrix associated with the shift µj . Now, partition

V+
k+p = (V+

k , V̂k), H+
k+p =

(
H+

k M

β̂ke1e
H
k Ĥp

)

and note
βk+pe

H
k+pQ̂ = (0, 0, . . . , β̃k+p, b

H).

So we get

(37) A(V+
k , V̂p) = (V+

k , V̂p, Vk+p+1)




H+
k M

β̂ke1e
H
k Ĥ

β̃k+pe
H
k bT


⊗ Is.

Equating the first k columns on both sides of (37) gives

(38) AV+
k = V+

k (H+
k ⊗ Is) + r+

k (eH
k ⊗ Is),

where V +
k+1 = (1/β+

k )r+
k , r+

k ≡ V̂p(e1 ⊗ Is)β̂k + Vk+p+1β̃k+p and β+
k = ‖r+

k ‖.
Note that

tr
(
(V+

k )HV̂p(e1 ⊗ Is)
)

= 0

and

tr
(
(V+

k )HVk+p+1

)
= 0.
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So tr
(
(V+

k )HVk+1

)
= 0. This is a new k-step global Arnoldi process starting with

the updated V+
1 , so we do not need to restart from scratch and extend it to an m-step

one from step k + 1 upwards in a standard way.
Similarly to the implicitly restarted Arnoldi algorithm (IRA) [33], we can use

those p unwanted F-Ritz values as shifts, also called the exact shifts. So we have

developed an implicitly restarted global Arnoldi algorithm (IRGA) with the exact

shifts suggested.

Algorithm 4. IRGA with the exact shifts

1. Given the number k of desired eigenpairs, choose s, m and let p = m − k,

and take V1 = V/‖V ‖F as an n × s starting matrix.

2. Run the m-step global Arnoldi process to get [H,V , k].
3. Compute the eigenpairs of H , select k eigenvalues of H as approximations

to the desired eigenvalues and take the p unwanted eigenvalues as shifts.

4. Apply implicit restarting approach with p shifts, and the update the global
Arnoldi algorithm V ← V Q, H ← QT HQ is returned.

5. Test convergence. If yes, stop; otherwise, go to Step 2 and extend the global

Arnoldi process from step k + 1 upwards.
In order to determine the multiplicities of the desired eigenvalues, we combine

Algorithm 3 with Algorithms 4 and present the following algorithm.

Algorithm 5. IRGA for multiple eigenproblems

1. Given the number k of desired eigenpairs, choose s, m and let p = m − k.
Define the set S = {1, 2, . . . , k}, Φ=∅, q=1 and prescribe a tolerance tol.

2. Take V1 = V/‖V ‖F as an n × sq starting matrix.

3. Run the m-step global Arnoldi process to get [H,V , k].

4. Compute the eigenpairs (λ(m)
i , y

(m)
i ), i = 1, 2, . . . , m of H , select λ

(m)
i , i =

1, 2, . . . , k as approximations to the desired eigenvalues λi, i = 1, 2, . . . , k

and take the p unwanted λ
(m)
i , i = k + 1, . . . , m as shifts.

5. Apply implicit restarting approach with p shifts, and the update the global
Arnoldi algorithm V ← V Q, H ← QT HQ is returned.

6. Test convergence. If yes, go to Step 7; otherwise, go to Step 3 and extend

the global Arnoldi process from step k + 1 upwards.

7. For all i ∈ S, set Φ(m)
is = (Ψ, ϕ

(m)
i1 , ϕ

(m)
i2 , . . . , ϕ

(m)
isq

) and s the number of its

columns.

(a) Compute the numerical rank rs of Φ(m)
is for all i ∈ S;

(b) If rs < s, set di = rs and remove i from S;
(c) Otherwise, let Ψ = Φ(m)

is , q = q + 1 and go to Step 2.
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We comment that if A is real symmetric then Algorithm 4 naturally works

by simplifying the global Arnoldi process as a symmetric global Lanczos process.

For s = 1, Algorithm 4 mathematically reduces to the implicitly restarted Arnoldi
algorithm [33], whose standard Matlab code is the function eigs.m.

6. NUMERICAL EXPERIMENTS

We present numerical examples to illustrate the efficiency and reliability of

IRGA. All experiments were run on a PC with 2.2 GHz Intel Core 2 Duo T7500

processor using MATLAB 7.1 with the machine precision ε = 2.22× 10−16 under

the Window XP operating system. If the relative residual norm

‖r(m)
ij ‖
‖A‖1

=
‖(A− λ

(m)
i I)ϕ(m)

ij ‖
‖A‖1

≤ tol

with tol a prescribed tolerance, then (λ(m)
i , ϕ

(m)
ij ) is accepted to have converged.

Based on the previous analysis, we assume that

Cij ≤ C ′
ij =

10−3

max1≤j≤s ‖r(m)
ij ‖

in (32), which allows the multiple eigenproblems to be quite ill conditioned for

small tol. As tol diminishes, Algorithm 5 is more applicable and works for worse

conditioned multiple eigenproblems.

We took random V1’s in all the examples. In all the tables below, we denote

by iter the number of restarts and by Residual norms the above relative residual
norms.

Example 1. This test problem is taken from the set of test matrices in netlib,
and the matrix A is of form




0 1
n − 1 0 2

. . .
. . .

. . .

2 0 n− 1
1 0




A has zero diagonal entries and known eigenvalues, and is singular if n is odd. The

eigenvalues are plus and minus n − 1, n − 3, n − 5, . . ., (1 or 0). The eigenvalue
problem of A is highly ill conditioned for n = 2000, the computed condition number
of the eigenvector matrix is 4.5e + 220. Moreover, the smallest spectral condition
number of an individual eigenvalue is large up to 5.6e+ 201. So it is expected that
it may be very difficult to compute a few largest eigenpairs of A using Arnoldi type

algorithms.
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We perform Algorithm 4 on the 2000 × 2000 matrix A, and require that the

algorithm stops as soon as all actual residual norms of the approximating eigen-

pairs are below tol = 10−6. We want to compute the four largest eigenvalues

1999, 1997, 1995, 1993. Table 1 shows the results obtained. The left part of Fig-
ure 1 depicts the convergence curves for m = 30. We see the algorithm used almost
the same restarts to achieve the prescribed accuracy for different s. This justifies
that the global Arnoldi algorithm has the same convergence speed as the standard

Arnoldi algorithm, i.e., s = 1, as far as iter is concerned. It is also seen from
the table that the bigger m is, fewer restarts the algorithm uses and the algorithm

converges faster for exterior eigenvalues.

Fig. 1. Left: A(2000) with m = 30, s = 2; right: dw8192 with m = 20, s = 2.
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Example 2. We test the 8192× 8192 unsymmetric matrix DW8192 from [3].
The stopping criterion and the notation used are as before. We compute the largest

four eigenvalues in magnitude

λ1 ≈ −109.8278, λ2 ≈ −109.8236,

λ3 ≈ −109.8168, λ4 ≈ −109.8079,

which are quite clustered but numerically distinct. So this problem may not be easy

for Arnoldi type algorithms. Table 2 reports the results, where we see the proposed

algorithm solved the problem effectively and reliably. The right part of Figure 1

depicts the convergence curves for m = 20. Besides, we have observations similar
to those for Example 1.

Example 3. We test the matrix OLM1000 [3], a 1000× 1000 real unsymmetric
matrix. The stopping criterion as well as the notation used are as before. We want

to compute the largest four eigenvalues in magnitude

λ1 ≈ −1.01633831, λ2 ≈ −1.01630831,

λ3 ≈ −1.01625831, λ4 ≈ −1.01618831,

which are quite clustered but numerically distinct. So like Example 1, this problem

may not be easy for the proposed algorithm. Table 3 lists the results obtained.

The right part of Figure 2 depicts the convergence curves for m = 30. From both
the table and the figure, we see the algorithm solved the problem effectively and

reliably. Again, we have similar observations to those for Example 1.

Example 4. Consider convection diffusion differential operator

−4 u(x, y) + ρux(x, y) = λu(x, y)
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Fig. 2. Left: olm1000 with m = 30, s = 2; right: A100 with m = 20, s = 2.

on a square region [0, 1]× [0, 1] with the boundary condition u(x, y) = 0. Taking
ρ = 1 and discretizing with centered differences yield a block tridiagonal matrix
An = tri(−I, Bn,−I), where Bn = tri(b, 4, a) is a tridiagonal matrix with a =
−1 + 1/2(n+ 1) and b = −1− 1/2(n+ 1), and n is chosen the number of interior

mesh points on each side of the square. An is of order N = n2. The eigenvalues

λ2 and λ3 are very clustered and they get closer as n increases.

We test Algorithm 4 on the 10000 × 10000 matrix A100 obtained by taking

n = 100. We are interested in the four eigenvalues with the largest real parts, and
the stopping criterion as well as the notation used are as before. The initial V1 were
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chosen randomly in a normal distribution, and the computed eigenvalues are

λ1 ≈ 7.99804063, λ2 ≈ 7.99513930

λ3 ≈ 7.99513926, λ4 ≈ 7.99223793

Table 4 lists the results obtained and the right part of Figure 2 depicts the conver-

gence curves for m = 20.

In what follows, we show how to use the global Arnoldi method and Al-

gorithm 5 to solve multiple eigenproblems and determine the multiplicities di of

λi, i = 1, 2, . . . , k and the associated eigenspaces. Differently from that done in

Examples 1–4, for each F-Ritz value we now compute all the s F-Ritz vectors by
(19) simultaneously. Examples 5–8 reports the numerical results, where in the tables

we list all the residual norms of the s F-Ritz pairs for each F-Ritz value used to

approximate a desired eigenvalue.

Example 5. In this example, we test a multiple eigenproblem. Let B = I2⊗A,
where A is the one presented in Example 1. The 4000 × 4000 real unsymmetric
matrix B has eigenvalues with multiplicity two. Algorithm 5 is run on B. As

have been seen from Example 1, the eigenvalue problem of A is very highly ill

conditioned and Cij is very huge. We use the same stopping criterion and the

notation as before. Both the number of restarts and CPU time (in seconds) are used

to measure the cost of the algorithm. Table 5 reports the results for various s and

m and the experiments of determining di for m = 30, 40, where svd(X) is the set
of all the singular values of the matrix X and Φ(m)

is = (Φ(m)
s1 , . . . , Φ(m)

sq ) in all the
tables. We see from Table 5 that Algorithm 5 has found λi, di, i = 1, 2, 3, 4 reliably.
This is very surprising since the true Cij are much larger than

1
tol . It is observed

that for the same m and different s the algorithm used almost the same restarts and

the bigger s is, the more costly the algorithm is. However, if one is required to
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determine di and compute a basis of Pi, then IRGA for s > 1 is preferable and
advantageous to IRGA for s = 1, i.e., IRA, since it uses less CPU time. Note that
for the same m, running IRGA for s > 1 once is less costly than running IRA s

times. For example, we have to run IRGA for s = 1 three times to achieve the aim
but only need to run IRGA for each s = 1, 2 once or IRGA for s = 3 once, while
the latter is cheaper than the former.

Example 6. The matrix B = A⊗ I2, where A is the one presented in Example

2. This 16384×16384 real unsymmetric matrix B has eigenvalues with multiplicity
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two, and the four desired eigenvalues are clustered. We find g1 ≈ g2 ≈ 4.2× 10−3

and g3 ≈ g4 ≈ 6.9 × 10−3. So C1j ≥ 1
g1
≈ 238.1, C2j ≥ 1

g2
≈ 238.1, C3j ≥

1
g3
≈ 144.9, C4j ≥ 1

g4
≈ 144.9. The eigenvectors associated with λ1, . . . , λ4 may

be moderately ill conditioned. Algorithm 5 is run on B. The stopping criterion and
the notation used are as before. Table 6 lists the results. We see from Table 6 that

Algorithm 5 has found di, i = 1, 2, 3, 4 reliably. Other observations are similar to
those for Example 5.

Example 7. We construct a 2000× 2000 matrix B = A⊗ I2, where A is the

one presented in Example 3. The matrix B has eigenvalues with multiplicity two
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and the four desired eigenvalues are clustered. We find g1 ≈ g2 ≈ 3.0 × 10−5

and g3 ≈ g4 ≈ 5.0 × 10−5, so C1j ≥ 1
g1
≈ 33333, C2j ≥ 1

g2
≈ 33333, C3j ≥

1
g3
≈ 20000, C4j ≥ 1

g4
≈ 20000. It is clear that the eigenvectors associated with

λ1, . . . , λ4 are quite ill-conditioned Algorithm 5 is run on B. The stopping criterion
and the notation used are as before. Table 7 reports the results. We see from Table 7

that for this ill-conditioned problem Algorithm 5 has found di, i = 1, 2, 3, 4 reliably.
Other observations are similar to those for Example 5.

Example 8. This test matrix B = A⊗ I2 is a 20000× 20000 matrix, where A
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is the one presented in Example 4. The matrix B has eigenvalues with multiplicity

two and the four desired eigenvalues are clustered. We find g1 ≈ 2.9 × 10−3,

g2 ≈ g3 ≈ 4.0 × 10−7 and g4 ≈ 2.9× 10−3, so C1j ≥ 1
g1
≈ 344.8, C2j ≥ 1

g2
≈

2.5×106, C3j ≥ 1
g3
≈ 2.5×106, C4j ≥ 1

g4
≈ 344.8. It is seen that the eigenvectors

associated with λ1, λ4 may be moderately ill conditioned but the ones with λ2, λ3

are definitely very ill conditioned. Algorithm 5 is run on B. The stopping criterion
and the notation used are as before. Table 8 lists the results. We see from Table

8 that for this very ill-conditioned problem Algorithm 5 has found di, i = 1, 2, 3, 4
reliably. Other observations are similar to those for Example 5.
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