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PARA-EISENSTEIN SERIES FOR THE MODULAR GROUP GL(2, Fq[T ])

Ernst-Ulrich Gekeler

Abstract. We introduce para-Eisenstein series as a second analogue of classi-
cal elliptic Eisenstein series in the framework of Drinfeld modular forms and
show that they share many properties with ordinary Eisenstein series.

1. INTRODUCTION

In the well-known analogy between the respective arithmetics of the rational
number field Q and the rational function field K = Fq(T ) over a finite field Fq,
the part of classical modular forms is played by Drinfeld modular forms, certain
rigid-analytic functions on Drinfeld’s upper half-plane. See e.g. [4, 6, 7] for some
results as well as for a discussion of similarities and differences of both theories.

On both sides Eisenstein series are crucial in that they generate the rings of
modular forms for the modular groups Γclass := SL(2, Z) or Γ := GL(2, Fq[T ]),
respectively. The occurrence of Eisenstein series in the classical theory is (at
least) twofold: As coordinates of elliptic curves (e.g., the coefficients g2, g3 in a
Weierstrass equation) and as coefficients in the Weierstrass ℘-function ([16] p. 157),
where these data depend on a lattice Λ = Zω + Z in C.

All the named objects have their function field counterparts: elliptic curves E

correspond to rank-two Drinfeld modules φ, which, like E = C/Λ, are uniformized
by a lattice Λ in the function field version C∞ of C; the quantities g2, g3 correspond
to coefficients of φ, and the complex ℘-function ℘Λ to the rigid analytic function
eΛ of the lattice Λ in C∞.

However, the two roles of classical Eisenstein series break up on the function
field side into two different families of modular forms. While the coefficients
of φ are still described by Eisenstein series of the classical shape (introduced in
the Drinfeld module context by David Goss [10, 12]), the coefficients of eΛ are
of different nature. We baptize them para-Eisenstein series, since they still share
many features with ordinary (or “ortho-”) Eisenstein series as studied by Goss.

Received November 21, 2009, accepted February 12, 2010.
Communicated by Winnie Li.
2000 Mathematics Subject Classification: 11F52.
Key words and phrases: Drinfeld modular forms, Eisenstein series, Congruences.

1463



1464 Ernst-Ulrich Gekeler

The aim of the present note is to develop some properties of these: elementary
identities, congruence properties modulo primes p of Fq[T ] and balancedness proper-
ties (invariance properties under automorphims of Fq[T ]), and to parallel them with
similar properties of ortho-Eisenstein series. The principal results are Theorems 3.5
and 4.3.

Notation.
Fq = finite field with q elements
A = Fq[T ], the polynomial ring over Fq in an indeterminate T ,

with quotient field K = Fq(T )
K∞ = Fq((T−1)), the completion of K with respect to the ∞-adic

valuation
| | = the absolute value on K∞, normalized by |T | = q

C∞ = completed algebraic closure of K∞ with respect to
the unique extension of | | to a fixed algebraic
closure K∞

Ω = P1(C∞) − P1(K∞) = C∞ − K∞ the Drinfeld upper
half-plane

| |i : Ω −→ R the “imaginary part” function; |z|i = infx∈K∞ |z − x|
Γ = GL(2, A), the Drinfeld modular group, which acts on Ω

through fractional linear transformations
C∞{τ} (resp. C∞{{τ}}) the non-commutative polynomial ring

(resp. power series ring) over C∞ with commutation rule
τx = xqτ for constants x ∈ C∞.
We identify C∞{τ} (resp. C∞{{τ}}) with the ring (multi-
plication defined by insertion) of Fq-linear polynomials
(resp. power series ) in a variable X through∑

i

aiτ
i =

∑

i

aiX
qi

.

[k] = T qk − T ∈ A, the product of the monic irreducibles in A of
degree d dividing k, if k ∈ N, and [0] = 0

Lk =
∏

1≤i≤k

[i], Dk =
∏

1≤i≤k

[i]q
k−i

for k ≥ 1, L0 = D0 = 1

1. BACKGROUND ON DRINFELD MODULAR FORMS (see [3] for more details)

A lattice Λ in C∞ is a finitely generated (hence free) discrete A-submodule of
C∞. With such a Λ, we associate its exponential function eΛ : C∞ −→ C∞, which
is defined as the everywhere and locally uniformly convergent product

eΛ(z) := z
∏

0 �=λ∈Λ

(1 − z/λ).
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It has an additive (also everywhere convergent) expansion

(1.1) eΛ(z) =
∑

k≥0

αkz
qk

=
∑

αkτ
k

with coefficients αk ∈ C∞, and satisfies a functional equation

(1.2) eΛ(Tz) = φT (eΛ(z))

with some φT = φΛ
T ∈ C∞{τ} of shape

(1.3) φT (X) = TX + g1X
q + · · ·+ grX

qr
= Tτ0 + · · ·+ grτ

r,

where gr �= 0 and r is the rank of Λ as an A-module.
The rule Λ �−→ φΛ

T establishes a bijective correspondence between A-lattices Λ
of rank r and Drinfeld A-modules of rank r over C∞. We will only need the two
special cases: (a) Λ = L := πA has rank one, and is scaled (through the choice of
the constant π) such that the associated Drinfeld module φΛ is the Carlitz module
ρ, defined by

(1.4) ρT = TX + Xq = T + τ.

Here the exponential function is

(1.5) eL(z) =
∑

k≥0

D−1
k zqk

,

as is immediate from (1.2). Note that π is defined up to a (q − 1)-th root of
unity; hence only πq−1 is well-defined through (1.4). Many explicit formulas for
πq−1 = −T q + T − T−(q2−2q) + · · · are available, see [4] (4.9), (4.10), (4.11).

(b) Λ = π(Aω + A) with some ω ∈ Ω and the constant π above. Here
φ = φΛ = φω has rank two, and is given by

(1.6) φT = TX + gXq + ∆Xq2
= T + gτ + ∆τ2

with 0 �= ∆ ∈ C∞.
A Drinfeld modular form for Γ of weight k ∈ N ∪ {0} (and type zero: there

will be no other “types” in this paper) is a holomorphic function f : Ω −→ C∞
subject to

(1.7)
(i) f(γ(z)) = (cz + d)kf(z) for γ =

(
a b
c d

) ∈ Γ, z ∈ Ω;
(ii) f(z) =

∑
i≥0 ais

i(z) with some power series
∑

ais
i with positive conver-

gence radius in s(z) = e1−q
L (πz), the identity being valid for sufficiently large

imaginary parts |z|i.
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By abuse of notation, we often identify f =
∑

ais
i ∈ C∞[[s]], since f is uniquely

determined by its s-expansion. Letting ω vary over Ω, the quantities g = g(ω)
and ∆ = ∆(ω) in (1.6) become functions from Ω to C∞, and in fact, modular
forms of respective weights q − 1 and q2 − 1. The forms g and ∆ are algebraically
independent and generate the C∞-algebra

(1.8) M :=
⊕

k≥0

Mk = C∞[g, ∆]

of all modular forms (D. Goss [11]), where Mk is the C∞-vector space of modular
forms of weight k, which vanishes for k �≡ 0 (mod q − 1). Our normalization is
such that

(1.9) g(z) =
∑

i≥0

ais
i, ∆(z) =

∑

i≥1

bis
i

with a0 = 1, b1 = −1, and all the coefficients ai, bi lie in A. Moreover, g and
∆ generate the A-algebra MA of modular forms which have their s-expansion
coefficients in A.

Other instances of modular forms are:
(1.10) Consider the Fq-algebra homomorphism

φω : A −→ C∞{τ}
a �−→ φω

a

uniquely determined by φω
T = T + g(ω)τ + ∆(ω)τ2, and write

φω
a =

∑

0≤i≤2 deg a


i(a, ω)τ i.

Then 
i(a, ·) defines a modular form of weight k = qi − 1, a so-called coefficient
form.
(1.11) The Eisenstein series

Ek(ω) := π−k
∑

(0,0) �=(a,b)∈A×A

1
(aω + b)k

defines a non-zero element of Mk , provided that 0 < k ≡ 0(mod q − 1).
(1.12) For Λ = π(Aω + A) as before, write

eΛ(z) =
∑

i≥0

αi(ω)zqi
.

Once again, αi is a modular form of weight k = qi − 1, a para-Eisenstein series.
We will study some of its arithmetical properties.
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(1.13) Remark. Recall that classical Eisenstein series

Ek(ω) = (2πi)−k
∑

(0,0) �=(a,b)∈Z×Z

1
(aω + b)k

occur both as coefficients forms attached to elliptic curves (e.g. the coefficients
g2, g3 in a Weierstrass equation) and as the coefficients of the Weierstrass ℘-function
℘Λ of Λ = Zω+Z. Since the exponential function eΛ through its functional equation
uniformizes the Drinfeld module φΛ in the same way as ℘Λ uniformizes the elliptic
curve E = C/Λ, the αi provide a function field analogue of classical Eisenstein
series different from the one described in (1.11). This explains the terminology
used.

From (1.2) and (1.6) we get the formula

(1.14) [k]αk = gαq
k−1 + ∆αq2

k−2,

valid for k ≥ 1, where αk = 0 for k < 0 and α0 = 1. (Recall that [k] = T qk − T .)
The modular invariant is the function

(1.15) j :=
gq+1

∆
: Ω −→ C∞.

It is Γ-invariant and identifies the quotient space Γ \ Ω biholomorphically with the
affine line over C∞. Accordingly, if f ∈ Mk is a modular form of weight k, where
k = a(q2 − 1) + b(q − 1) with a ∈ N0 and 0 ≤ b ≤ q, there exists a unique
polynomial ϕ(X) = ϕf(X) ∈ C∞[X ] such that

(1.16) f = ϕ(j)∆agb.

We call it the companion polynomial of f and its zeroes the j-zeroes of f .

2. THE PARA-EISENSTEIN SERIES mk.

The Eisenstein series of weight qk −1 are particularly important. We normalize
them as follows:

(2.1) gk(z) := (−1)k+1LkEqk−1(z) (Lk = [k][k − 1] · · · [1]).

Then gk has its s-coefficients in A, with absolute term 1, and satisfies the recursion

(2.2) gk = −[k − 1]gk−2∆qk−2
+ gk−1g

qk−1
(k ≥ 2)

with g0 = 1, g1 = g (see [4] 6.9). It is easily checked that its companion polynomial
γk = ϕgk

satisfies

(2.3) γk(X) = Xλ(k)γk−1(X)− [k − 1]γk−2(X) (k ≥ 2),
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γ0 = γ1 = 1, γk is monic of degree ν(k), gk = γk(j)∆ν(k)gχ(k), where

λ(k) =
qk−1 + (−1)k

q + 1
, ν(k) =

qk − qχ(k)

q2 − 1
, χ(k) = 0(1)

if k is even (odd), respectively.
Since the lattice π(Aω + A) degenerates to πA = L for |ω|i −→ ∞, i.e.,

s(ω) −→ 0, the constant term of αk(z) equals the k-coefficient D−1
k of eL(z). We

therefore normalize the para-Eisenstein series

(2.4) mk(z) := Dkαk(z),

which has constant term 1. In analogy with (2.2) and (2.3), we have the recursions
derived from (1.14):

(2.5) mk = gmq
k−1 + [k − 1]q∆mq2

k−2

and for the companion polynomials µk = ϕmk
:

(2.6) µk(X) = Xχ(k−1)µq
k−1(X) + [k − 1]qX (q−1)χ(k)µq2

k−2(X),

both valid for k ≥ 2, with m0 = 1, m1 = g, µ0 = µ1 = 1. Since g and ∆ have
their s-coefficients in A, the same holds for the mk. Again, µk is monic of degree
ν(k) = deg γk, and mk = µk(j)∆ν(k)gχ(k).

The first few of the polynomials γk, µk are as follows.

2.7 Table.

k γk(X) µk(X)
2 X − [1] X + [1]q

3 Xq − [1]Xq−1 − [2] Xq + [2]qXq−1 + [1]q
2

4 Xq2+1 − [1]Xq2 − [2]Xq2−q+1 Xq2+1 + [3]qXq2
+ [2]q

2
Xq2−q+1

−[3]X + [1][3] +[1]q
3
X + [3]q[1]q

3

Defining the support supp(f) of a polynomial (or power series) f as the set of
exponents with nonvanishing coefficients, we observe that supp(γk) and supp(µk)
agree, although the recursions (2.3) and (2.6) are rather different. This is not
accidental, and will result from Theorem 3.5. A first step towards the proof of this
fact is:

2.8 Proposition. Let S(k) = supp(γk) and T (k) = supp(µk) be the supports.
We have for k ≥ 2

(i) S(k) = S(k − 1) + λ(k)
·∪ S(k − 2);
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(ii) T (k) = qT (k − 1) + χ(k − 1)
·∪ q2T (k − 2) + (q − 1)χ(k);

(iii) |S(k)| = |T (k)| = Fk := the k-th Fibonacci number defined by F1 = 1,
F2 = 2, Fk = Fk−1 + Fk−2 (k ≥ 3).

Proof. Consider the recursions (2.3) and (2.6).

(i) Since λ(k) > deg γk−2 = ν(k−2), there is no cancellation of terms in (2.3),
hence S(k − 1) + λ(k) and S(k − 2) are disjoint.

(ii) Similarly, the two sets in the right hand side of eq. (ii) are disjoint since they
belong to different residue classes modulo q.

(iii) is immediate from (i) and (ii).

2.9 Proposition. All the zeroes of gk and mk are simple. Equivalently, the
polynomials γk and µk are separable.

Proof. The equivalence of the two statements results from the fact that the
canonical mapping from Ω to Γ\Ω is unramified off elliptic points (i.e., those where
j(z) �= 0) and g has simple zeroes at elliptic points ([4] 5.15).

The separability of γk is shown in [6] 7.7, 7.8. That of µk will result in a
similar way from Theorem 3.5. However, there is a simple direct proof as follows.
The derivative of µk(X) is µq

k−1(X) if k is even and −[k − 1]qXq−2µq2

k−2(X) if
k is odd. Assume that µk(x) = 0 = µ′

k(x), where x �= 0 and k ≥ 3. In both cases
(k even / k odd) we conclude from (2.6) that 0 = µk(x) = µk−1(x) = µk−2(x).
Again by (2.6), this implies 0 = µk−3(x) = · · · = µ1(x), which however is not the
case. Therefore there are no multiple roots of µk .

2.10 Remark. There are two important qualitative differences between the ortho-
Eisenstein series gk and the para-Eisenstein series mk . The non-elliptic j-zeroes
x of gk (i.e., zeroes of γk) all satisfy |x| = qq, or, what amounts to the same,
gk(z) = 0 with non-elliptic z in the standard fundamental domain F ⊂ Ω of Γ
implies |z| = |z|i = 1 (see [6] 6.7). This is similar to the corresponding property
of classical Eisenstein series for SL(2, Z) (see [15]). However, the j-zeroes x of
mk (which have been determined in [7]) are in general larger than qq in absolute
value, and max{|x| | x zero of µk} −→ ∞ as k −→ ∞.

A second difference is the behavior under Hecke operators. While gk is always
an eigenform with simple eigenvalues ([4] 7.2), mk is in general not an eigenform,
as can be seen e.g. from

m2 = [2]∆ + g2,

where ∆ and g2 are eigenforms with different eigenvalues.
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3. p-ADIC CONGRUENCES

Let p be an irreducible monic prime polynomial in A of degree d. We use the
same symbol for the prime ideal generated by p and write Fp for the finite A-field
A/p, Fp for its algebraic closure, and F

(2)
p for the quadratic extension of Fp in Fp.

For the reader’s convenience, we recall some of the relevant facts about super-
singularity of Drinfeld modules, which are strikingly similar to the corresponding
facts about supersingularity of elliptic curves. Missing definitions and more details
can be found in [5]. Let L be a field subextension of Fp/Fp. A Drinfeld module φ
over L is supersingular if and only if one of the following equivalent conditions is
satisfied:

(i) φ has no p-torsion over Fp;

(ii) the “multiplication-by-p” map φp is purely inseparable;

(iii) the ring End
Fp

(φ) of endomorphisms of φ over Fp is non-commutative. (In
this case it is an order, in fact a maximal A-order, in a certain quaternion
algebra over K.)

Supersingularity of φ depends only on the Fp-isomorphism class of φ, and therefore
on its j-invariant j(φ) ∈ Fp. The set Σ(p) ⊂ Fp of supersingular invariants is
finite, contained in F

(2)
p and stable under the Galois conjugation of F

(2)
p over Fp.

Moreover, we have

0 ∈ Σ(p) ⇔ d odd ⇔ χ(d) = 1 and

|Σ(p)− {0}| = ν(d) = deg γd = deg µd.

Let ssp(X) be the polynomial
∏

0 �=j∈Σ(p)(X − j) ∈ Fp[X ]. Then in fact

(3.1) γd(X) ≡ ssp(X) (mod p).

This is implicit in [4] Cor. 12.3 and explicit in [1] and [6]. A similar congruence in
the framework of classical modular forms and elliptic curves is due to Swinnerton-
Dyer [17], see also [14]. A crucial step in the proof of (3.1) is the congruence,
valid for k ≥ 0 (see [4] 6.11):

(3.2) gk+d(s) ≡ gk(s)qd ≡ gk(sqd
) (mod p),

where we abuse notation to write gk(s) for the power series expansion of gk in s.
In particular,

(3.3) gd ≡ 1 (mod p).
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In view of [d] =
∏

(degp)|d p, the two preceding congruences hold in fact modulo
[d]. Finally, we have the periodicity relation

(3.4) γk+d(X) ≡ Xχ(k)λ(d+1)γqd

k (X)γd(X) (mod p),

valid for k ≥ 0 ([6] 7.6). We show similar p-adic properties of the para-Eisenstein
series mk and their companions µk(X).

3.5 Theorem. Let p be a prime of A of degree d.
(i) The polynomial µd(X) satisfies

µd(X) ≡ γd(X) ≡ ssp(X) (mod p).

We further have for k ≥ 0 the following congruences (mod p):
(ii) mk+d(s) ≡ mk(s);

(iii) µk+d(X) ≡ Xχ(d)λ(k+1)µqk

d (X)µk(X).

Proof. It is known ([4] (2.6)-(2.9)) that the series
∑

k≥0 αk(ω)τk and −∑
k≥0

Eqk−1(ω)τk are inverses of each other in C∞{{τ}}. Since up to the normalizations
(2.1) and (2.4) Eqk−1 and αk agree with gk and mk, respectively, we get

∑

i,j≥0
i+j=k

(−1)j+1 Dk

DiL
qi

j

mig
qi

j = 0 for k ≥ 1.

The coefficients Dk/(DiL
qi

k−i) always belong to A and are divisible by each prime
q of A of degree k if 0 < i < k, as is easily seen from their definitions, see [13]
Theorem 3.1.5. In particular,

md =
∑

0≤i<d

(−1)d−i+1 Dd

DiL
qi

d−i

mig
qi

d−i.

As mi, gj belong to A[[s]] and Dd/Ld ≡ (−1)d+1 (mod p) ([4] 11.4), we find

(3.6) md ≡ gd ≡ 1 (mod p)

as a power series. Assertion (i) is now a formal consequence of (3.6) and Theorem
12.1 of [4]. Viz, let Gd(X, Y ) and Md(X, Y ) be the polynomials in A[X, Y ] defined
by Gd(g, ∆) = gd, Md(g, ∆) = md, and G̃d, M̃d their respective reductions in
Fp[X, Y ]. Then M̃d − 1 lies in the kernel of the homomorphism ε : Fp[X, Y ] −→
Fp[[s]] which to X resp. Y associates the s-expansion (mod p) of g resp. ∆.
However, ker(ε) is generated by G̃d − 1 ([4] (12.1)+(12.2)). Comparing leading
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coefficients in X , we find M̃d = G̃d. In view of gd = Gd(g, ∆) = γd(j)∆ν(d)gχ(d)

and similarly, md = Md(g, ∆) = µd(j)∆ν(d)gχ(d), (i) follows.
From (2.5), (3.6), [d] ≡ 0, [d + k] ≡ [k] (all the congruences are (modp)), we

find md+1 ≡ g ≡ m1, which finally implies md+2 ≡ m2, md+3 ≡ m3 ..., hence
(ii). The last assertion (iii) now follows from (2.6) through a standard induction on
k (distinguishing the 4 cases k/d even/odd, respectively), which we omit.

3.7 Corollary. md ≡ 1 (mod[d])

Proof. By the theorem, the congruence holds modulo all primes p of degree
dividing d.

3.8 Corollary. The supports S(k) of γk and T (k) of µk agree.

Proof. The two sets have the same size by (2.8), hence it suffices to show an
inclusion between them. A view on (2.3) reveals that the non-vanishing coefficients
of γk are products of terms [i] with 0 < i < k, which are incongruent to zero
modulo each prime q of degree k. The assertion now results from γk ≡ µk modulo
q and the fact that for each k there exists a prime q of degree k.

4. BALANCEDNESS

Let Aff(Fq) be the group of matrices of shape
(u, v
0, 1

)
over Fq (u �= v). It acts

naturally on A by T �−→ uT + v.

4.1 Definition [8]. A polynomial or power series f(s) =
∑

cks
k in A[[s]] is

balanced if the (visibly equivalent) conditions hold:
(a) each ck as a polynomial in T satisfies ck(uT + v) = ukck(T ) for

(u, v
0,1

) ∈
Aff(Fq);

(b) (i) ck ∈ Fq[T q − T ], the ring of invariants under shifts T �−→ T + v;
(ii) if ck =

∑
j ck,jT

j with ck,j ∈Fq then ck,j �=0 implies j≡k ( mod q−1);
(c) f is invariant under the action of Aff(Fq) on A[[s]] that extends the natural

action on “constants” in A and satisfies
(
u, v
0,1

)
(s) = u−1s.

In particular, the set of balanced power series is a subring of A[[s]]. It will turn out
that most of our modular forms are balanced as power series in s.

Fix an element
(
u, v
0, 1

)
of Aff(Fq), and let T ′ = uT + v, another uniformizer for

our ring A. We may calculate all the relevant quantities, labelled by a prime ( )′

with respect to the coordinate T ′ and relate them to the corresponding quantity w.r.t.
T . Let α ∈ Fq satisfy αq−1 = u. Then

(4.2)

(i) [k]′ = u · [k]
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(ii) ρ′ = α ◦ ρ ◦ α−1 (i.e., ρ′T = α ◦ ρT ◦ α−1)
(iii) (πq−1)′ = u · πq−1.

Here (i) is obvious, (ii) is ρ′T ′ = (uT +v)+τ = α(uT +v+uτ)α−1 = α◦ρT ′ ◦α−1,
and (iii) follows from either one of the formulas (4.9), (4.10), (4.11) for πq−1 of
[4].

4.3 Theorem. The following modular forms are balanced as power series in s:
(i) g, (ii) [k]∆ (k ∈ N), (iii) gk, (iv) mk. Proof. We have g = g1 and

g
(ω)
k = (−1)k+1Lkπ

1−qk
∑

(0,0) �=(a,b)∈A2

1
(aω + b)qk−1

.

Here the lattice sum is intrinsic (independent of the choice of the coordinate T
of A). In view of (4.2), we have L′

k = ukLk and (πqk−1)′ = uk(πqk−1), which
together gives (iii) and thus (i). Now from (2.2) we have

∆ =
1
[1]

(gg+1 − g2),

which implies ∆′ = u−1∆. Together with (4.2)(i), the balancedness of [k]∆ results.
Finally, (iv) comes out from (2.5) and the fact that the balanced elements of A[[s]]
form a subring.

Remark. The present argument is essentially from [8]; however, due to different
normalizations, some formulas differ from the corresponding ones given there.

There are similar invariance properties for the polynomials γk and µk .

4.4 Proposition. If we endow the ring A[X ] = Fq[T, X ] with the degree gradu-
ation modulo q−1, the polynomials γ k and µk are homogeneous of degree [k/2]
= k/2 resp. (k − 1)/2 if k is even resp. odd. That is, regarded as polynomials in
T and X , γk(uT, uX) = u[k/2]γk(T, X) for u ∈ F∗

q, and similarly for µk .

Proof. The assertion could be formally derived from (4.3); however it is much
easier to refer to the recursions (2.2) and (2.5), from which it comes out in a
straightforward fashion.

4.5 Remark. The functions f = ∆ and f = gk satisfy k ∈ supp(f) ⇒ k ≡
0, 1(mod q), see [4] 6.10. That property also holds for the forms mk , as is evident
from (2.5). Hence the results (4.3) and (4.4) imply strong restrictions on the nature
of the coefficients of gk, mk, γk, µk. These, together with bounds on the degrees of
the coefficients, suffice to determine some of the coefficients e.g. of the gk [2]. A
similar study of coefficients of the mk would be desirable.

Resumé. We tabulate properties of classical Eisenstein series Ek for SL(2, Z)
and the corresponding properties of the ortho-Eisenstein series gk and para-Eisenstein



1474 Ernst-Ulrich Gekeler

series mk for Γ = GL(2, A), along with properties of the respective companion poly-
nomials. Here p ≥ 5 is a natural prime and p a prime of A of degree d. We don’t
give precise statements in the classical case (which would require more notation),
but content ourselves with giving references.

Ek gk mk

recursion of Eisenstein series [17] p. 19 (2.2) (2.5)
of companion polynomials to be worked out (2.3) (2.6)
simplicity of non-elliptic zeroes yes yes yes
location of zeroes z in standard |z| = 1, [15] |z| = 1, [6] different, [7]
fundamental domain F
Hecke eigenform property yes yes no
congruences mod p resp. mod p Ep−1 ≡ 1, [17] gd ≡ 1 md ≡ 1
of companions [9] Thm. 2.2 γd ≡ ss℘ µd ≡ ss℘

periodicity of companions [9] Thm. 2.4 (3.4) (3.5)(iii)
reduced mod p, mod p
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