PARA-EISENSTEIN SERIES FOR THE MODULAR GROUP GL $\left(2, \mathbb{F}_{q}[T]\right)$

Ernst-Ulrich Gekeler

Abstract

We introduce para-Eisenstein series as a second analogue of classical elliptic Eisenstein series in the framework of Drinfeld modular forms and show that they share many properties with ordinary Eisenstein series.

1. Introduction

In the well-known analogy between the respective arithmetics of the rational number field \mathbb{Q} and the rational function field $K=\mathbb{F}_{q}(T)$ over a finite field \mathbb{F}_{q}, the part of classical modular forms is played by Drinfeld modular forms, certain rigid-analytic functions on Drinfeld's upper half-plane. See e.g. [4, 6, 7] for some results as well as for a discussion of similarities and differences of both theories.

On both sides Eisenstein series are crucial in that they generate the rings of modular forms for the modular groups $\Gamma_{\text {class }}:=\mathrm{SL}(2, \mathbb{Z})$ or $\Gamma:=\mathrm{GL}\left(2, \mathbb{F}_{q}[T]\right)$, respectively. The occurrence of Eisenstein series in the classical theory is (at least) twofold: As coordinates of elliptic curves (e.g., the coefficients g_{2}, g_{3} in a Weierstrass equation) and as coefficients in the Weierstrass \wp-function ([16] p. 157), where these data depend on a lattice $\Lambda=\mathbb{Z} \omega+\mathbb{Z}$ in \mathbb{C}.

All the named objects have their function field counterparts: elliptic curves E correspond to rank-two Drinfeld modules ϕ, which, like $E=\mathbb{C} / \Lambda$, are uniformized by a lattice Λ in the function field version C_{∞} of \mathbb{C}; the quantities g_{2}, g_{3} correspond to coefficients of ϕ, and the complex \wp-function \wp_{Λ} to the rigid analytic function e_{Λ} of the lattice Λ in C_{∞}.

However, the two roles of classical Eisenstein series break up on the function field side into two different families of modular forms. While the coefficients of ϕ are still described by Eisenstein series of the classical shape (introduced in the Drinfeld module context by David Goss [10, 12]), the coefficients of e_{Λ} are of different nature. We baptize them para-Eisenstein series, since they still share many features with ordinary (or "ortho-") Eisenstein series as studied by Goss.

[^0]The aim of the present note is to develop some properties of these: elementary identities, congruence properties modulo primes \mathfrak{p} of $\mathbb{F}_{q}[T]$ and balancedness properties (invariance properties under automorphims of $\mathbb{F}_{q}[T]$), and to parallel them with similar properties of ortho-Eisenstein series. The principal results are Theorems 3.5 and 4.3.

Notation.

$\mathbb{F}_{q}=$ finite field with q elements
$A=\mathbb{F}_{q}[T]$, the polynomial ring over \mathbb{F}_{q} in an indeterminate T, with quotient field $K=\mathbb{F}_{q}(T)$
$K_{\infty}=\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)$, the completion of K with respect to the ∞-adic valuation
$\left|\mid=\right.$ the absolute value on K_{∞}, normalized by $| T \mid=q$
$C_{\infty}=$ completed algebraic closure of K_{∞} with respect to the unique extension of $\|$ to a fixed algebraic closure \bar{K}_{∞}
$\Omega=\mathbb{P}^{1}\left(C_{\infty}\right)-\mathbb{P}^{1}\left(K_{\infty}\right)=C_{\infty}-K_{\infty}$ the Drinfeld upper half-plane
$\left.\left|\left.\right|_{i}: \quad \Omega \longrightarrow \mathbb{R}\right.$ the "imaginary part" function; $| z\right|_{i}=\inf _{x \in K_{\infty}}|z-x|$
$\Gamma=\mathrm{GL}(2, A)$, the Drinfeld modular group, which acts on Ω through fractional linear transformations
$C_{\infty}\{\tau\} \quad$ (resp. $C_{\infty}\{\{\tau\}\}$) the non-commutative polynomial ring (resp. power series ring) over C_{∞} with commutation rule $\tau x=x^{q} \tau$ for constants $x \in C_{\infty}$.
We identify $C_{\infty}\{\tau\}$ (resp. $C_{\infty}\{\{\tau\}\}$) with the ring (multiplication defined by insertion) of \mathbb{F}_{q}-linear polynomials (resp. power series) in a variable X through $\sum_{i} a_{i} \tau^{i}=\sum_{i} a_{i} X^{q^{i}}$.
$[k]=T^{q^{k}}-T \in A$, the product of the monic irreducibles in A of degree d dividing k, if $k \in \mathbb{N}$, and $[0]=0$

$$
L_{k}=\prod_{1 \leq i \leq k}[i], D_{k}=\prod_{1 \leq i \leq k}[i]^{q^{k-i}} \text { for } k \geq 1, L_{0}=D_{0}=1
$$

1. Background on Drinfeld Modular Forms (see [3] for more details)

A lattice Λ in C_{∞} is a finitely generated (hence free) discrete A-submodule of C_{∞}. With such a Λ, we associate its exponential function $e_{\Lambda}: C_{\infty} \longrightarrow C_{\infty}$, which is defined as the everywhere and locally uniformly convergent product

$$
e_{\Lambda}(z):=z \prod_{0 \neq \lambda \in \Lambda}(1-z / \lambda)
$$

It has an additive (also everywhere convergent) expansion

$$
\begin{equation*}
e_{\Lambda}(z)=\sum_{k \geq 0} \alpha_{k} z^{q^{k}}=\sum \alpha_{k} \tau^{k} \tag{1.1}
\end{equation*}
$$

with coefficients $\alpha_{k} \in C_{\infty}$, and satisfies a functional equation

$$
\begin{equation*}
e_{\Lambda}(T z)=\phi_{T}\left(e_{\Lambda}(z)\right) \tag{1.2}
\end{equation*}
$$

with some $\phi_{T}=\phi_{T}^{\Lambda} \in C_{\infty}\{\tau\}$ of shape

$$
\begin{equation*}
\phi_{T}(X)=T X+g_{1} X^{q}+\cdots+g_{r} X^{q^{r}}=T \tau^{0}+\cdots+g_{r} \tau^{r}, \tag{1.3}
\end{equation*}
$$

where $g_{r} \neq 0$ and r is the rank of Λ as an A-module.
The rule $\Lambda \longmapsto \phi_{T}^{\Lambda}$ establishes a bijective correspondence between A-lattices Λ of rank r and Drinfeld A-modules of rank r over C_{∞}. We will only need the two special cases: (a) $\Lambda=L:=\bar{\pi} A$ has rank one, and is scaled (through the choice of the constant $\bar{\pi}$) such that the associated Drinfeld module ϕ^{Λ} is the Carlitz module ρ, defined by

$$
\begin{equation*}
\rho_{T}=T X+X^{q}=T+\tau \tag{1.4}
\end{equation*}
$$

Here the exponential function is

$$
\begin{equation*}
e_{L}(z)=\sum_{k \geq 0} D_{k}^{-1} z^{q^{k}} \tag{1.5}
\end{equation*}
$$

as is immediate from (1.2). Note that $\bar{\pi}$ is defined up to a $(q-1)$-th root of unity; hence only $\bar{\pi}^{q-1}$ is well-defined through (1.4). Many explicit formulas for $\bar{\pi}^{q-1}=-T^{q}+T-T^{-\left(q^{2}-2 q\right)}+\cdots$ are available, see [4] (4.9), (4.10), (4.11).
(b) $\Lambda=\bar{\pi}(A \omega+A)$ with some $\omega \in \Omega$ and the constant $\bar{\pi}$ above. Here $\phi=\phi^{\Lambda}=\phi^{\omega}$ has rank two, and is given by

$$
\begin{equation*}
\phi_{T}=T X+g X^{q}+\Delta X^{q^{2}}=T+g \tau+\Delta \tau^{2} \tag{1.6}
\end{equation*}
$$

with $0 \neq \Delta \in C_{\infty}$.
A Drinfeld modular form for Γ of weight $k \in \mathbb{N} \cup\{0\}$ (and type zero: there will be no other "types" in this paper) is a holomorphic function $f: \Omega \longrightarrow C_{\infty}$ subject to
(i) $f(\gamma(z))=(c z+d)^{k} f(z)$ for $\gamma=\binom{a b}{c d} \in \Gamma, z \in \Omega$;
(ii) $f(z)=\sum_{i \geq 0} a_{i} s^{i}(z)$ with some power series $\sum a_{i} s^{i}$ with positive convergence radius in $s(z)=e_{L}^{1-q}(\bar{\pi} z)$, the identity being valid for sufficiently large imaginary parts $|z|_{i}$.

By abuse of notation, we often identify $f=\sum a_{i} s^{i} \in C_{\infty}[[s]]$, since f is uniquely determined by its s-expansion. Letting ω vary over Ω, the quantities $g=g(\omega)$ and $\Delta=\Delta(\omega)$ in (1.6) become functions from Ω to C_{∞}, and in fact, modular forms of respective weights $q-1$ and $q^{2}-1$. The forms g and Δ are algebraically independent and generate the C_{∞}-algebra

$$
\begin{equation*}
M:=\bigoplus_{k \geq 0} M_{k}=C_{\infty}[g, \Delta] \tag{1.8}
\end{equation*}
$$

of all modular forms (D. Goss [11]), where M_{k} is the C_{∞}-vector space of modular forms of weight k, which vanishes for $k \not \equiv 0(\bmod q-1)$. Our normalization is such that

$$
\begin{equation*}
g(z)=\sum_{i \geq 0} a_{i} s^{i}, \Delta(z)=\sum_{i \geq 1} b_{i} s^{i} \tag{1.9}
\end{equation*}
$$

with $a_{0}=1, b_{1}=-1$, and all the coefficients a_{i}, b_{i} lie in A. Moreover, g and Δ generate the A-algebra M_{A} of modular forms which have their s-expansion coefficients in A.

Other instances of modular forms are:
(1.10) Consider the \mathbb{F}_{q}-algebra homomorphism

$$
\begin{aligned}
\phi^{\omega}: A & \longrightarrow C_{\infty}\{\tau\} \\
a & \longmapsto \phi_{a}^{\omega}
\end{aligned}
$$

uniquely determined by $\phi_{T}^{\omega}=T+g(\omega) \tau+\Delta(\omega) \tau^{2}$, and write

$$
\phi_{a}^{\omega}=\sum_{0 \leq i \leq 2 \operatorname{deg} a} \ell_{i}(a, \omega) \tau^{i}
$$

Then $\ell_{i}(a, \cdot)$ defines a modular form of weight $k=q^{i}-1$, a so-called coefficient form.
(1.11) The Eisenstein series

$$
E_{k}(\omega):=\bar{\pi}^{-k} \sum_{(0,0) \neq(a, b) \in A \times A} \frac{1}{(a \omega+b)^{k}}
$$

defines a non-zero element of M_{k}, provided that $0<k \equiv 0(\bmod q-1)$.
(1.12) For $\Lambda=\bar{\pi}(A \omega+A)$ as before, write

$$
e_{\Lambda}(z)=\sum_{i \geq 0} \alpha_{i}(\omega) z^{q^{i}}
$$

Once again, α_{i} is a modular form of weight $k=q^{i}-1$, a para-Eisenstein series. We will study some of its arithmetical properties.

Remark. Recall that classical Eisenstein series

$$
\begin{equation*}
E_{k}(\omega)=(2 \pi i)^{-k} \sum_{(0,0) \neq(a, b) \in \mathbb{Z} \times \mathbb{Z}} \frac{1}{(a \omega+b)^{k}} \tag{1.13}
\end{equation*}
$$

occur both as coefficients forms attached to elliptic curves (e.g. the coefficients g_{2}, g_{3} in a Weierstrass equation) and as the coefficients of the Weierstrass \wp-function \wp_{Λ} of $\Lambda=\mathbb{Z} \omega+\mathbb{Z}$. Since the exponential function e_{Λ} through its functional equation uniformizes the Drinfeld module ϕ^{Λ} in the same way as \wp_{Λ} uniformizes the elliptic curve $E=\mathbb{C} / \Lambda$, the α_{i} provide a function field analogue of classical Eisenstein series different from the one described in (1.11). This explains the terminology used.

From (1.2) and (1.6) we get the formula

$$
\begin{equation*}
[k] \alpha_{k}=g \alpha_{k-1}^{q}+\Delta \alpha_{k-2}^{q^{2}}, \tag{1.14}
\end{equation*}
$$

valid for $k \geq 1$, where $\alpha_{k}=0$ for $k<0$ and $\alpha_{0}=1$. (Recall that $[k]=T^{q^{k}}-T$.)
The modular invariant is the function

$$
\begin{equation*}
j:=\frac{g^{q+1}}{\Delta}: \Omega \longrightarrow C_{\infty} . \tag{1.15}
\end{equation*}
$$

It is Γ-invariant and identifies the quotient space $\Gamma \backslash \Omega$ biholomorphically with the affine line over C_{∞}. Accordingly, if $f \in M_{k}$ is a modular form of weight k, where $k=a\left(q^{2}-1\right)+b(q-1)$ with $a \in \mathbb{N}_{0}$ and $0 \leq b \leq q$, there exists a unique polynomial $\varphi(X)=\varphi_{f}(X) \in C_{\infty}[X]$ such that

$$
\begin{equation*}
f=\varphi(j) \Delta^{a} g^{b} . \tag{1.16}
\end{equation*}
$$

We call it the companion polynomial of f and its zeroes the j-zeroes of f.

2. The Para-eisenstein Series m_{k}.

The Eisenstein series of weight $q^{k}-1$ are particularly important. We normalize them as follows:

$$
\begin{equation*}
g_{k}(z):=(-1)^{k+1} L_{k} E_{q^{k}-1}(z) \quad\left(L_{k}=[k][k-1] \cdots[1]\right) . \tag{2.1}
\end{equation*}
$$

Then g_{k} has its s-coefficients in A, with absolute term 1, and satisfies the recursion

$$
\begin{equation*}
g_{k}=-[k-1] g_{k-2} \Delta^{\mathrm{g}^{k-2}}+g_{k-1} g^{g^{k-1}} \quad(k \geq 2) \tag{2.2}
\end{equation*}
$$

with $g_{0}=1, g_{1}=g$ (see [4] 6.9). It is easily checked that its companion polynomial $\gamma_{k}=\varphi_{g_{k}}$ satisfies

$$
\begin{equation*}
\gamma_{k}(X)=X^{\lambda(k)} \gamma_{k-1}(X)-[k-1] \gamma_{k-2}(X) \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

$\gamma_{0}=\gamma_{1}=1, \gamma_{k}$ is monic of degree $\nu(k), g_{k}=\gamma_{k}(j) \Delta^{\nu(k)} g^{\chi(k)}$, where

$$
\lambda(k)=\frac{q^{k-1}+(-1)^{k}}{q+1}, \nu(k)=\frac{q^{k}-q^{\chi(k)}}{q^{2}-1}, \chi(k)=0(1)
$$

if k is even (odd), respectively.
Since the lattice $\bar{\pi}(A \omega+A)$ degenerates to $\bar{\pi} A=L$ for $|\omega|_{i} \longrightarrow \infty$, i.e., $s(\omega) \longrightarrow 0$, the constant term of $\alpha_{k}(z)$ equals the k-coefficient D_{k}^{-1} of $e_{L}(z)$. We therefore normalize the para-Eisenstein series

$$
\begin{equation*}
m_{k}(z):=D_{k} \alpha_{k}(z) \tag{2.4}
\end{equation*}
$$

which has constant term 1 . In analogy with (2.2) and (2.3), we have the recursions derived from (1.14):

$$
\begin{equation*}
m_{k}=g m_{k-1}^{q}+[k-1]^{q} \Delta m_{k-2}^{q^{2}} \tag{2.5}
\end{equation*}
$$

and for the companion polynomials $\mu_{k}=\varphi_{m_{k}}$:

$$
\begin{equation*}
\mu_{k}(X)=X^{\chi(k-1)} \mu_{k-1}^{q}(X)+[k-1]^{q} X^{(q-1) \chi(k)} \mu_{k-2}^{q^{2}}(X) \tag{2.6}
\end{equation*}
$$

both valid for $k \geq 2$, with $m_{0}=1, m_{1}=g, \mu_{0}=\mu_{1}=1$. Since g and Δ have their s-coefficients in A, the same holds for the m_{k}. Again, μ_{k} is monic of degree $\nu(k)=\operatorname{deg} \gamma_{k}$, and $m_{k}=\mu_{k}(j) \Delta^{\nu(k)} g^{\chi(k)}$.

The first few of the polynomials γ_{k}, μ_{k} are as follows.

2.7 Table.

k	$\gamma_{k}(X)$	$\mu_{k}(X)$
2	$X-[1]$	$X+[1]^{q}$
3	$X^{q}-[1] X^{q-1}-[2]$	$X^{q}+[2]^{q} X^{q-1}+[1]^{q^{2}}$
4	$X^{q^{2}+1}-[1] X^{q^{2}}-[2] X^{q^{2}-q+1}$	$X^{q^{2}+1}+[3]^{q} X^{q^{2}}+[2]^{q^{2}} X^{q^{2}-q+1}$
	$-[3] X+[1][3]$	$+[1]^{q^{3}} X+[3]^{q}[1]^{q^{3}}$

Defining the support $\operatorname{supp}(f)$ of a polynomial (or power series) f as the set of exponents with nonvanishing coefficients, we observe that $\operatorname{supp}\left(\gamma_{k}\right)$ and $\operatorname{supp}\left(\mu_{k}\right)$ agree, although the recursions (2.3) and (2.6) are rather different. This is not accidental, and will result from Theorem 3.5. A first step towards the proof of this fact is:
2.8 Proposition. Let $S(k)=\operatorname{supp}\left(\gamma_{k}\right)$ and $T(k)=\operatorname{supp}\left(\mu_{k}\right)$ be the supports. We have for $k \geq 2$
(i) $S(k)=S(k-1)+\lambda(k) \dot{\cup} S(k-2) ;$
(ii) $T(k)=q T(k-1)+\chi(k-1) \dot{\cup} q^{2} T(k-2)+(q-1) \chi(k)$;
(iii) $|S(k)|=|T(k)|=F_{k}:=$ the k-th Fibonacci number defined by $F_{1}=1$, $F_{2}=2, F_{k}=F_{k-1}+F_{k-2}(k \geq 3)$.

Proof. Consider the recursions (2.3) and (2.6).
(i) Since $\lambda(k)>\operatorname{deg} \gamma_{k-2}=\nu(k-2)$, there is no cancellation of terms in (2.3), hence $S(k-1)+\lambda(k)$ and $S(k-2)$ are disjoint.
(ii) Similarly, the two sets in the right hand side of eq. (ii) are disjoint since they belong to different residue classes modulo q.
(iii) is immediate from (i) and (ii).
2.9 Proposition. All the zeroes of g_{k} and m_{k} are simple. Equivalently, the polynomials γ_{k} and μ_{k} are separable.

Proof. The equivalence of the two statements results from the fact that the canonical mapping from Ω to $\Gamma \backslash \Omega$ is unramified off elliptic points (i.e., those where $j(z) \neq 0)$ and g has simple zeroes at elliptic points ([4] 5.15).

The separability of γ_{k} is shown in [6] 7.7, 7.8. That of μ_{k} will result in a similar way from Theorem 3.5. However, there is a simple direct proof as follows. The derivative of $\mu_{k}(X)$ is $\mu_{k-1}^{q}(X)$ if k is even and $-[k-1]^{q} X^{q-2} \mu_{k-2}^{q^{2}}(X)$ if k is odd. Assume that $\mu_{k}(x)=0=\mu_{k}^{\prime}(x)$, where $x \neq 0$ and $k \geq 3$. In both cases (k even / k odd) we conclude from (2.6) that $0=\mu_{k}(x)=\mu_{k-1}(x)=\mu_{k-2}(x)$. Again by (2.6), this implies $0=\mu_{k-3}(x)=\cdots=\mu_{1}(x)$, which however is not the case. Therefore there are no multiple roots of μ_{k}.
2.10 Remark. There are two important qualitative differences between the orthoEisenstein series g_{k} and the para-Eisenstein series m_{k}. The non-elliptic j-zeroes x of g_{k} (i.e., zeroes of γ_{k}) all satisfy $|x|=q^{q}$, or, what amounts to the same, $g_{k}(z)=0$ with non-elliptic z in the standard fundamental domain $\mathcal{F} \subset \Omega$ of Γ implies $|z|=|z|_{i}=1$ (see [6] 6.7). This is similar to the corresponding property of classical Eisenstein series for $\operatorname{SL}(2, \mathbb{Z})$ (see [15]). However, the j-zeroes x of m_{k} (which have been determined in [7]) are in general larger than q^{q} in absolute value, and $\max \left\{|x| \mid x\right.$ zero of $\left.\mu_{k}\right\} \longrightarrow \infty$ as $k \longrightarrow \infty$.

A second difference is the behavior under Hecke operators. While g_{k} is always an eigenform with simple eigenvalues ([4] 7.2), m_{k} is in general not an eigenform, as can be seen e.g. from

$$
m_{2}=[2] \Delta+g_{2},
$$

where Δ and g_{2} are eigenforms with different eigenvalues.

3. \mathfrak{p}-Adic Congruences

Let \mathfrak{p} be an irreducible monic prime polynomial in A of degree d. We use the same symbol for the prime ideal generated by \mathfrak{p} and write $\mathbb{F}_{\mathfrak{p}}$ for the finite A-field $A / \mathfrak{p}, \overline{\mathbb{F}}_{\mathfrak{p}}$ for its algebraic closure, and $\mathbb{F}_{\mathfrak{p}}^{(2)}$ for the quadratic extension of $\mathbb{F}_{\mathfrak{p}}$ in $\overline{\mathbb{F}}_{\mathfrak{p}}$.

For the reader's convenience, we recall some of the relevant facts about supersingularity of Drinfeld modules, which are strikingly similar to the corresponding facts about supersingularity of elliptic curves. Missing definitions and more details can be found in [5]. Let L be a field subextension of $\overline{\mathbb{F}}_{\mathfrak{p}} / \mathbb{F}_{\mathfrak{p}}$. A Drinfeld module ϕ over L is supersingular if and only if one of the following equivalent conditions is satisfied:
(i) ϕ has no \mathfrak{p}-torsion over $\overline{\mathbb{F}}_{\mathfrak{p}}$;
(ii) the "multiplication-by-p" map $\phi_{\mathfrak{p}}$ is purely inseparable;
(iii) the ring $\operatorname{End}_{\overline{\mathbb{F}}_{\mathfrak{p}}}(\phi)$ of endomorphisms of ϕ over $\overline{\mathbb{F}}_{\mathfrak{p}}$ is non-commutative. (In this case it is an order, in fact a maximal A-order, in a certain quaternion algebra over K.)

Supersingularity of ϕ depends only on the $\overline{\mathbb{F}}_{\mathfrak{p}}$-isomorphism class of ϕ, and therefore on its j-invariant $j(\phi) \in \overline{\mathbb{F}}_{\mathfrak{p}}$. The set $\Sigma(\mathfrak{p}) \subset \overline{\mathbb{F}}_{\mathfrak{p}}$ of supersingular invariants is finite, contained in $\mathbb{F}_{\mathfrak{p}}^{(2)}$ and stable under the Galois conjugation of $\mathbb{F}_{\mathfrak{p}}^{(2)}$ over $\mathbb{F}_{\mathfrak{p}}$. Moreover, we have

$$
\begin{aligned}
& 0 \in \Sigma(\mathfrak{p}) \Leftrightarrow d \text { odd } \Leftrightarrow \chi(d)=1 \quad \text { and } \\
& |\Sigma(\mathfrak{p})-\{0\}|=\nu(d)=\operatorname{deg} \gamma_{d}=\operatorname{deg} \mu_{d} .
\end{aligned}
$$

Let $s s_{\mathfrak{p}}(X)$ be the polynomial $\prod_{0 \neq j \in \Sigma(\mathfrak{p})}(X-j) \in \mathbb{F}_{\mathfrak{p}}[X]$. Then in fact

$$
\begin{equation*}
\gamma_{d}(X) \equiv s s_{\mathfrak{p}}(X)(\bmod \mathfrak{p}) \tag{3.1}
\end{equation*}
$$

This is implicit in [4] Cor. 12.3 and explicit in [1] and [6]. A similar congruence in the framework of classical modular forms and elliptic curves is due to SwinnertonDyer [17], see also [14]. A crucial step in the proof of (3.1) is the congruence, valid for $k \geq 0$ (see [4] 6.11):

$$
\begin{equation*}
g_{k+d}(s) \equiv g_{k}(s)^{q^{d}} \equiv g_{k}\left(s^{q^{d}}\right)(\bmod \mathfrak{p}), \tag{3.2}
\end{equation*}
$$

where we abuse notation to write $g_{k}(s)$ for the power series expansion of g_{k} in s. In particular,

$$
\begin{equation*}
g_{d} \equiv 1(\bmod \mathfrak{p}) . \tag{3.3}
\end{equation*}
$$

In view of $[d]=\prod_{(\operatorname{deg} \mathfrak{p}) \mid d} \mathfrak{p}$, the two preceding congruences hold in fact modulo $[d]$. Finally, we have the periodicity relation

$$
\begin{equation*}
\gamma_{k+d}(X) \equiv X^{\chi(k) \lambda(d+1)} \gamma_{k}^{q^{d}}(X) \gamma_{d}(X)(\bmod \mathfrak{p}), \tag{3.4}
\end{equation*}
$$

valid for $k \geq 0$ ([6] 7.6). We show similar \mathfrak{p}-adic properties of the para-Eisenstein series m_{k} and their companions $\mu_{k}(X)$.

3.5 Theorem. Let \mathfrak{p} be a prime of A of degree d.

(i) The polynomial $\mu_{d}(X)$ satisfies

$$
\mu_{d}(X) \equiv \gamma_{d}(X) \equiv s s_{\mathfrak{p}}(X)(\bmod \mathfrak{p}) .
$$

We further have for $k \geq 0$ the following congruences $(\bmod \mathfrak{p})$:
(ii) $m_{k+d}(s) \equiv m_{k}(s)$;
(iii) $\mu_{k+d}(X) \equiv X^{\chi(d) \lambda(k+1)} \mu_{d}^{q^{k}}(X) \mu_{k}(X)$.

Proof. It is known ([4] (2.6)-(2.9)) that the series $\sum_{k \geq 0} \alpha_{k}(\omega) \tau^{k}$ and $-\sum_{k \geq 0}$ $E_{q^{k}-1}(\omega) \tau^{k}$ are inverses of each other in $C_{\infty}\{\{\tau\}\}$. Since up to the normalizations (2.1) and (2.4) $E_{q^{k}-1}$ and α_{k} agree with g_{k} and m_{k}, respectively, we get

$$
\sum_{\substack{i, j \geq 0 \\ i+j=k}}(-1)^{j+1} \frac{D_{k}}{D_{i} L_{j}^{q^{i}}} m_{i} g_{j}^{q^{i}}=0 \quad \text { for } k \geq 1 .
$$

The coefficients $D_{k} /\left(D_{i} L_{k-i}^{q^{i}}\right)$ always belong to A and are divisible by each prime \mathfrak{q} of A of degree k if $0<i<k$, as is easily seen from their definitions, see [13] Theorem 3.1.5. In particular,

$$
m_{d}=\sum_{0 \leq i<d}(-1)^{d-i+1} \frac{D_{d}}{D_{i} L_{d-i}^{q^{i}}} m_{i} g_{d-i}^{q^{i}} .
$$

As m_{i}, g_{j} belong to $A[[s]]$ and $D_{d} / L_{d} \equiv(-1)^{d+1}(\bmod \mathfrak{p})([4] 11.4)$, we find

$$
\begin{equation*}
m_{d} \equiv g_{d} \equiv 1(\bmod \mathfrak{p}) \tag{3.6}
\end{equation*}
$$

as a power series. Assertion (i) is now a formal consequence of (3.6) and Theorem 12.1 of [4]. Viz, let $G_{d}(X, Y)$ and $M_{d}(X, Y)$ be the polynomials in $A[X, Y]$ defined by $G_{d}(g, \Delta)=g_{d}, M_{d}(g, \Delta)=m_{d}$, and $\tilde{G}_{d}, \tilde{M}_{d}$ their respective reductions in $\mathbb{F}_{\mathfrak{p}}[X, Y]$. Then $\tilde{M}_{d}-1$ lies in the kernel of the homomorphism $\epsilon: \mathbb{F}_{\mathfrak{p}}[X, Y] \longrightarrow$ $\mathbb{F}_{\mathfrak{p}}[[s]]$ which to X resp. Y associates the s-expansion $(\bmod \mathfrak{p})$ of g resp. Δ. However, $\operatorname{ker}(\epsilon)$ is generated by $\tilde{G}_{d}-1([4](12.1)+(12.2))$. Comparing leading
coefficients in X, we find $\tilde{M}_{d}=\tilde{G}_{d}$. In view of $g_{d}=G_{d}(g, \Delta)=\gamma_{d}(j) \Delta^{\nu(d)} g^{\chi(d)}$ and similarly, $m_{d}=M_{d}(g, \Delta)=\mu_{d}(j) \Delta^{\nu(d)} g^{\chi(d)}$, (i) follows.

From (2.5), (3.6), $[d] \equiv 0,[d+k] \equiv[k]$ (all the congruences are (modp)), we find $m_{d+1} \equiv g \equiv m_{1}$, which finally implies $m_{d+2} \equiv m_{2}, m_{d+3} \equiv m_{3} \ldots$, hence (ii). The last assertion (iii) now follows from (2.6) through a standard induction on k (distinguishing the 4 cases k / d even/odd, respectively), which we omit.
3.7 Corollary. $m_{d} \equiv 1(\bmod [d])$

Proof. By the theorem, the congruence holds modulo all primes \mathfrak{p} of degree dividing d.
3.8 Corollary. The supports $S(k)$ of γ_{k} and $T(k)$ of μ_{k} agree.

Proof. The two sets have the same size by (2.8), hence it suffices to show an inclusion between them. A view on (2.3) reveals that the non-vanishing coefficients of γ_{k} are products of terms [i] with $0<i<k$, which are incongruent to zero modulo each prime \mathfrak{q} of degree k. The assertion now results from $\gamma_{k} \equiv \mu_{k}$ modulo \mathfrak{q} and the fact that for each k there exists a prime \mathfrak{q} of degree k.

4. Balancedness

Let $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ be the group of matrices of shape $\binom{u, v}{0,1}$ over $\mathbb{F}_{q}(u \neq v)$. It acts naturally on A by $T \longmapsto u T+v$.
4.1 Definition [8]. A polynomial or power series $f(s)=\sum c_{k} s^{k}$ in $A[[s]]$ is balanced if the (visibly equivalent) conditions hold:
(a) each c_{k} as a polynomial in T satisfies $c_{k}(u T+v)=u^{k} c_{k}(T)$ for $\binom{u, v}{0,1} \in$ Aff $\left(\mathbb{F}_{q}\right)$;
(b) (i) $c_{k} \in \mathbb{F}_{q}\left[T^{q}-T\right]$, the ring of invariants under shifts $T \longmapsto T+v$;
(ii) if $c_{k}=\sum_{j} c_{k, j} T^{j}$ with $c_{k, j} \in \mathbb{F}_{q}$ then $c_{k, j} \neq 0$ implies $j \equiv k(\bmod q-1)$;
(c) f is invariant under the action of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$ on $A[[s]]$ that extends the natural action on "constants" in A and satisfies $\binom{u, v}{0,1}(s)=u^{-1} s$.
In particular, the set of balanced power series is a subring of $A[[s]]$. It will turn out that most of our modular forms are balanced as power series in s.

Fix an element $\binom{u, v}{0,1}$ of $\operatorname{Aff}\left(\mathbb{F}_{q}\right)$, and let $T^{\prime}=u T+v$, another uniformizer for our ring A. We may calculate all the relevant quantities, labelled by a prime ()$^{\prime}$ with respect to the coordinate T^{\prime} and relate them to the corresponding quantity w.r.t. T. Let $\alpha \in \overline{\mathbb{F}}_{q}$ satisfy $\alpha^{q-1}=u$. Then
(i) $[k]^{\prime}=u \cdot[k]$
(ii) $\rho^{\prime}=\alpha \circ \rho \circ \alpha^{-1}$ (i.e., $\rho_{T}^{\prime}=\alpha \circ \rho_{T} \circ \alpha^{-1}$)
(iii) $\left(\bar{\pi}^{q-1}\right)^{\prime}=u \cdot \bar{\pi}^{q-1}$.

Here (i) is obvious, (ii) is $\rho_{T^{\prime}}^{\prime}=(u T+v)+\tau=\alpha(u T+v+u \tau) \alpha^{-1}=\alpha \circ \rho_{T^{\prime}} \circ \alpha^{-1}$, and (iii) follows from either one of the formulas (4.9), (4.10), (4.11) for $\bar{\pi}^{q-1}$ of [4].
4.3 Theorem. The following modular forms are balanced as power series in s : (i) g, (ii) $[k] \Delta(k \in \mathbb{N})$, (iii) g_{k}, (iv) m_{k}. Proof. We have $g=g_{1}$ and

$$
g_{k}^{(\omega)}=(-1)^{k+1} L_{k} \bar{\pi}^{1-q^{k}} \sum_{(0,0) \neq(a, b) \in A^{2}} \frac{1}{(a \omega+b)^{q^{k}-1}} .
$$

Here the lattice sum is intrinsic (independent of the choice of the coordinate T of A). In view of (4.2), we have $L_{k}^{\prime}=u^{k} L_{k}$ and $\left(\bar{\pi}^{q^{k}-1}\right)^{\prime}=u^{k}\left(\bar{\pi}^{q^{k}-1}\right)$, which together gives (iii) and thus (i). Now from (2.2) we have

$$
\Delta=\frac{1}{[1]}\left(g^{g+1}-g_{2}\right),
$$

which implies $\Delta^{\prime}=u^{-1} \Delta$. Together with (4.2)(i), the balancedness of $[k] \Delta$ results. Finally, (iv) comes out from (2.5) and the fact that the balanced elements of $A[[s]]$ form a subring.

Remark. The present argument is essentially from [8]; however, due to different normalizations, some formulas differ from the corresponding ones given there.

There are similar invariance properties for the polynomials γ_{k} and μ_{k}.
4.4 Proposition. If we endow the ring $A[X]=\mathbb{F}_{q}[T, X]$ with the degree graduation modulo $q-1$, the polynomials γ_{k} and μ_{k} are homogeneous of degree $[k / 2]$ $=k / 2$ resp. $(k-1) / 2$ if k is even resp. odd. That is, regarded as polynomials in T and $X, \gamma_{k}(u T, u X)=u^{[k / 2]} \gamma_{k}(T, X)$ for $u \in \mathbb{F}_{q}^{*}$, and similarly for μ_{k}.

Proof. The assertion could be formally derived from (4.3); however it is much easier to refer to the recursions (2.2) and (2.5), from which it comes out in a straightforward fashion.
4.5 Remark. The functions $f=\Delta$ and $f=g_{k}$ satisfy $k \in \operatorname{supp}(f) \Rightarrow k \equiv$ $0,1(\bmod q)$, see [4] 6.10. That property also holds for the forms m_{k}, as is evident from (2.5). Hence the results (4.3) and (4.4) imply strong restrictions on the nature of the coefficients of $g_{k}, m_{k}, \gamma_{k}, \mu_{k}$. These, together with bounds on the degrees of the coefficients, suffice to determine some of the coefficients e.g. of the g_{k} [2]. A similar study of coefficients of the m_{k} would be desirable.

Resume. We tabulate properties of classical Eisenstein series E_{k} for $\operatorname{SL}(2, \mathbb{Z})$ and the corresponding properties of the ortho-Eisenstein series g_{k} and para-Eisenstein
series m_{k} for $\Gamma=\mathrm{GL}(2, A)$, along with properties of the respective companion polynomials. Here $p \geq 5$ is a natural prime and \mathfrak{p} a prime of A of degree d. We don't give precise statements in the classical case (which would require more notation), but content ourselves with giving references.

	E_{k}	g_{k}	m_{k}
recursion of Eisenstein series	$[17]$ p. 19	(2.2)	(2.5)
of companion polynomials	to be worked out	(2.3)	(2.6)
simplicity of non-elliptic zeroes	yes	yes	yes
location of zeroes z in standard	$\|z\|=1,[15]$	$\|z\|=1,[6]$ different, [7]	
fundamental domain \mathcal{F}			
Hecke eigenform property	yes	yes	no
congruences mod p resp. $\bmod \mathfrak{p}$	$E_{p-1} \equiv 1,[17]$	$g_{d} \equiv 1$	$m_{d} \equiv 1$
of companions	$[9] \mathrm{Thm} .2 .2$	$\gamma_{d} \equiv s s_{\wp}$	$\mu_{d} \equiv s s_{\wp}$
periodicity of companions reduced $\bmod p, \bmod \mathfrak{p}$	$[9] \mathrm{Thm} .2 .4$	(3.4)	$(3.5)($ (iii $)$

Acknowledgment

The author would like to thank the referee for his or her careful reading and suggestions, which made the paper easier to read. It was finished during a visit at the National Center for Theoretical Sciences in Hsinchu, Taiwan, whose hospitality is gratefully acknowledged.

References

1. G. Cornelissen, Geometric properties of modular forms over rational function fields, Thesis Universiteit Gent, 1997.
2. J. Gallardo and B. Lopez, "Weak" congruences for coefficients of the Eisenstein series for $\mathbb{F}_{q}[T]$ of weight $q^{k}-1$, J. Number Theory, 102 (2003), 107-117.
3. E.-U. Gekeler, Drinfeld Modular Curves, Lect. Notes Math. Vol. 1231, Springer, 1986.
4. E.-U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math., 93 (1988), 667-700.
5. E.-U. Gekeler, On finite Drinfeld modules, J. Algebra, 141 (1991), 187-203.
6. E.-U. Gekeler, Some new results on modular forms for $\mathrm{GL}\left(2, \mathbb{F}_{q}[T]\right)$, Contemp. Math., 224 (1999), 111-141.
7. E.-U. Gekeler, A survey on Drinfeld modular forms, Turk. J. Math. 23 (1999), 485-518.
8. E.-U. Gekeler, Growth order and congruences of coefficients of the Drinfeld discriminant function, J. Number Theory, 77 (1999), 314-325.
9. E.-U. Gekeler, Some observations on the arithmetic of Eisenstein series for the modular group $\operatorname{SL}(2, \mathbb{Z})$, Arch. Math., 77 (2001), 5-21.
10. D. Goss, π-adic Eisenstein series for function fields, Comp. Math., 41 (1980), 3-38.
11. D. Goss, Modular forms for $\mathbb{F}_{r}[T]$, J. Reine Angew. Math., 317 (1980), 16-39.
12. D. Goss, The algebraist's upper half-plane, Bull. AMS (n.S.), 2 (1980), 391-415.
13. D. Goss, Basic Structures of Function Field Arithmetic, Springer, 1996.
14. M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series, and Atkin's orthogonal polynomials, in: Studies in Advanced Mathematics, Vol. 7, 1998, pp. 97-126.
15. F. C. K. Rankin and H. P. F. Swinnerton-Dyer, On the zeros of Eisenstein series, Bull. London Math. Soc., 2 (1970), 169-170.
16. J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
17. H. P. F. Swinnerton-Dyer, On ℓ-adic representations and congruences for coefficients of modular forms, Lect. Notes Math. Vol. 350, Springer, 1973, pp. 1-55.

Ernst-Ulrich Gekeler

FR 6.1 Mathematik
Universitat des Saarlandes
Postfach 151150
D-66041 Saarbrücken
Germany
E-mail: gekeler@math.uni-sb.de

[^0]: Received November 21, 2009, accepted February 12, 2010.
 Communicated by Winnie Li.
 2000 Mathematics Subject Classification: 11F52.
 Key words and phrases: Drinfeld modular forms, Eisenstein series, Congruences.

