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ERGODIC RETRACTIONS FOR SEMIGROUPS IN STRICTLY CONVEX
BANACH SPACES

Wiesl/awa Kaczor and Simeon Reich

Abstract. We study the existence of ergodic retractions for semigroups of
mappings in strictly convex Banach spaces. We prove, for instance, the fol-
lowing theorem. Let (X, ‖ · ‖) be a strictly convex Banach space and let Γ
be a norming set for X. Let C be a bounded and convex subset of X, and
suppose C is compact in the Γ-topology. If S is a right amenable semigroup,
ϕ = {Ts : s ∈ S} is a semigroup on C with a nonempty set F = F (ϕ) of
common fixed points, and each Ts is (F -quasi-) nonexpansive, then there
exists an (F -quasi-) nonexpansive retraction R from C onto F such that
RTs = TsR = R for each s ∈ S, and every Γ-closed, convex and ϕ-invariant
subset of C is also R-invariant.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper all Banach spaces are real. Let (X, ‖·‖) be a Banach
space and let Γ be a nonempty subspace of its dual X ∗. If

sup {x∗ (x) : x∗ ∈ Γ, ‖x∗‖ = 1} = ‖x‖
for each x ∈ X, then we say that Γ is a norming set for X . In the sequel we will
always assume that Γ is indeed a norming set for X .

It is obvious that a norming set generates a Hausdorff linear topology σ (X, Γ)
to which we shall refer as the Γ-topology. Directly from the definition of the Γ-
topology we know that it is weaker than the weak topology. Next, it is easy to
observe that the norm of X is lower semicontinuous with respect to the Γ-topology,
namely,

lim inf
α

‖xα‖ ≥ ‖x‖
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for any net {xα} which converges to x in the Γ-topology.
Throughout this paper we use the following notation. If A is a subset of X ,

then Γ
A will stand for the closure of A in the Γ-topology and A

∗ will denote the
weak* closure of A with respect to an appropriate predual. If x∗ ∈ X∗ and x ∈ X ,
then the value of x∗ at x will be denoted by x∗(x) or by 〈x, x∗〉. If X is the dual
space of a Banach space Z, then there is a natural embedding n of Z into X∗. To
unify our notations we will write 〈x, z〉 instead of 〈x, n(z)〉 for each z ∈ Z and
each x ∈ X .

Our paper is motivated by certain recent results obtained by S. Saeidi [18]. We
show that his theorems are valid under weaker assumptions. Namely, we replace
the weak compactness of the subset C with Γ-compactness of this set and some
additional properties of Γ. We refer the reader to [6] and [13] for more information
concerning the Γ-topology and its applications.

We now recall several definitions and notations. A Banach space X is said to
be strictly convex (or rotund) if ‖(x + y)/2‖ < 1 for every x, y ∈ X such that
‖x‖ = ‖y‖ = 1 and ‖x− y‖ > 0 (see [10] and [17]).

Let T : C → C, where C ⊂ X , be a mapping. We denote by F (T ) the set of
all fixed points of T .

The mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. The mapping T : C → C is said to be F -quasi-nonexpansive
if ‖Tx − f‖ ≤ ‖x − f‖ for all x ∈ C and f ∈ F ⊂ F (T ). In the case where
F = F (T ), the mapping T is called quasi-nonexpansive. We say that T is F -quasi-
contractive if ‖Tx − f‖ < ‖x − f‖ for all x ∈ C \ F (T ) and f ∈ F ⊂ F (T ). If
F = F (T ) we say that T is quasi-contractive.

In our paper we study semigroups of (quasi-) nonexpansive mappings. Through-
out the paper S is a semigroup and B(S) is the space of all bounded real-valued
functions defined on S with the supremum norm. For s ∈ S and f ∈ B(S), we set

(lsf)(t) = f(st) and (rsf)(t) = f(ts)

for t ∈ S . If Y is a subspace of B(S) such that 1 ∈ Y , then µ ∈ Y ∗ is said to
be a mean on Y if ‖µ‖ = µ(1) = 1. We will sometimes write µt (f(t)) instead of
µ(f). The following theorem characterizes means [19].

Theorem 1.1. ([8], [11]). Let Y be a subspace of B(S) containing the constants
and µ ∈ Y ∗. Then the following conditions are equivalent:

(1) µ is a mean on Y ,
(2) the inequalities

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

hold for each f ∈ Y .
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If Y is ls-invariant (respectively, rs-invariant), that is, if ls(Y ) ⊂ Y (respec-
tively, rs(Y ) ⊂ Y ), then a mean µ is said to be left (respectively, right) invariant if
µ (lsf) = µ(f) (respectively, µ (rsf) = µ(f)) for any s ∈ S . We say that a mean
µ is invariant if it is both left and right invariant. Y is said to be (right) amenable
provided there is a (right) invariant mean on Y . It is well known that if S is a
commutative semigroup, then B(S) is amenable [8]. A family ϕ = {Ts : s ∈ S}
of self-mappings of C is a semigroup on C if Tts = TtTs for any t, s ∈ S . The
common fixed point set of ϕ will be denoted by F (ϕ).

2. MAIN RESULTS

We first prove the following lemma.

Lemma 2.1. Suppose X1 is the dual space of a Banach space Z and X 2

is a Banach space. Let X = X1 × X2 be equipped with the l2-norm, that is,
‖(x1, x2)‖ =

√‖x1‖2
1 + ‖x2‖2

2. Let Γ = Z × X2
∗. Assume that f : S → X is

a function such that the Γ-closure of conv{f(s) : s ∈ S} is Γ-compact and let Y

be a subspace of B(S) containing all functions of the form s 	→ 〈f(s), x ∗〉 with
x∗ ∈ Γ. Then for any µ ∈ Y ∗, there exists a unique element fµ ∈ X such that

〈fµ, x∗〉 = µs〈f(s), x∗〉

for all x∗ ∈ Γ. Moreover, if µ is a mean on Y , then

fµ ∈ C0 =
Γ
conv {f(s) : s ∈ S}.

(Sometimes we will denote fµ by
∫

f(s)dµ(s).)

Proof. We define a linear functional f̃ on Γ by setting

f̃(x∗) = µs〈f(s), x∗〉
for each x∗ ∈ Γ. Since

|f̃(x∗)| = |µs〈f(s), x∗〉| ≤ sups∈S|〈f(s), x∗〉|‖µ‖
≤ (sups∈S‖f(s)‖)‖x∗‖‖µ‖

for every x∗ ∈ Γ, f̃ is continuous, and therefore writing f̃ = 〈f̃1, f̃2〉, we have
f̃1 ∈ X1 and f̃2 ∈ X2

∗∗. We need to show that f̃2 ∈ X2. By assumption,
the set C0 =

Γ
conv {f(s) : s ∈ S} is Γ-compact and convex. Therefore the sets

C1 = {‖µ‖x : x ∈ C0}, C2 = {ry : 0 ≤ r ≤ 1, y ∈ C1} and C3 = C2 − C2 are
also Γ-compact and convex. Moreover, the latter set C3 is circled. Let n2 be the
natural embedding of X2 into X2

∗∗. Setting n(x) = n(x1, x2) = (x1, n2(x2)) for
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(x1, x2) ∈ X = X1 ×X2, we get the embedding of X = X1×X2 into X1×X2
∗∗.

So, the set n(C3) ⊂ X1 × X2
∗∗ is also convex, circled and compact in the Γ-

topology on X1 × X2
∗∗. Now it is sufficient to prove that f̃ = (f̃1, f̃2) ∈ n(C3).

If not, then by the separation theorem, there exists x∗ ∈ Γ such that

f̃(x∗) > sup{|〈x∗, c0〉)| : c0 = (c1, c
∗∗
2,0) ∈ n(C3) ⊂ X1 × X∗∗

2 }.
But we also have

sup{|〈x∗, c0〉| : c0 = (c1, c
∗∗
2,0) ∈ n(C3) ⊂ X1 × X2

∗∗}
= sup{|〈c, x∗〉| : c = (c1, c2) ∈ C3 ⊂ X1 × X2}
≥ sup{|〈c, x∗〉| : c = (c1, c2) ∈ C2 ⊂ X1 × X2}
= sup{r|〈c, x∗〉| : 0 ≤ r ≤ 1, c = (c1, c2) ∈ C1 ⊂ X1 × X2}
≥ sup{‖µ‖|〈f(s), x∗〉| : s ∈ S}
= ‖µ‖sups∈S |〈f(s), x∗〉|

≥
∣∣∣∣
∫

〈f(s), x∗〉dµ(s)
∣∣∣∣ = f̃(x∗),

that is, an inequality in the opposite sense. Hence for each µ ∈ Y ∗, there exists a
unique fµ ∈ X such that

〈fµ, x∗〉 = µs〈f(s), x∗〉 =
∫
〈f(s), x∗〉dµ(s)

for all x∗ ∈ Γ.

Now assume that µ is a mean and suppose that fµ /∈ C0 =
Γ

conv {f(s) : s ∈ S}.
Then by the separation theorem, there exists x∗ ∈ Γ such that

〈fµ, x∗〉 < inf{〈x, x∗〉 : x ∈ C0}.
Consequently, by Theorem 1.1, we get the following contradiction:

inf{〈f(s), x∗〉 : s ∈ S} ≤ µs〈f(s), x∗〉 = 〈fµ, x∗〉
< inf{〈x, x∗〉 : x ∈ C0}
≤ inf{〈f(s), x∗〉 : s ∈ S}.

Hence fµ ∈ C0 =
Γ
conv {f(s) : s ∈ S}.

Taking X1 = {0} and X2 = {0}, respectively, we get the following corollaries.

Corollary 2.2. ([12], [14] and [15]). Suppose X is a Banach space. Let
f : S → X be a function such that the closure of conv{f(s) : s ∈ S} is w-
compact and let Y be a subspace of B(S) containing all functions s 	→ 〈f(s), x ∗〉
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with x∗ ∈ X∗. Then for any µ ∈ Y ∗, there exists a unique element fµ ∈ X such
that

〈fµ, x∗〉 = µs〈f(s), x∗〉
for all x∗ ∈ X∗. Moreover, if µ is a mean on Y , then

fµ ∈ conv {f(s) : s ∈ S.

Corollary 2.3. Suppose X is the dual space of a Banach space Z. Let f : S →
X be a function such that the w ∗-closure of conv{f(s) : s ∈ S} is w∗-compact and
let Y be a subspace of B(S) containing all functions s 	→ 〈f(s), z〉 with z ∈ Z.
Then for any µ ∈ Y ∗, there exists a unique element fµ ∈ X such that

〈fµ, z〉 = µs〈f(s), z〉

for all z ∈ Z. Moreover, if µ is a mean on Y , then

fµ ∈ conv {f(s) : s ∈ S} ∗
.

Lemma 2.1 implies that in our applications the Γ-topology can be different from
both the weak and the weak∗ topologies. In our next lemma we need a Γ-topology
for which the conclusion of Lemma 2.1 holds. Therefore we introduce the following
definition.

Definition 2.1. Let X be a Banach space and let Γ be a norming set. Let
Y be a subspace of B(S) containing all functions of the form s 	→ 〈f(s), x∗〉
for each x∗ ∈ Γ and for each function f : S → X such that the Γ-closure of
conv{f(s) : s ∈ S} is Γ-compact. If the following two conditions are satisfied:

(a) for any µ ∈ Y ∗, there exists a unique element fµ ∈ X such that

〈fµ, x∗〉 = µs〈f(s), x∗〉
for all x∗ ∈ Γ;

(b) if µ is a mean on Y , then

fµ ∈ C0 =
Γ

conv {f(s) : s ∈ S},

then we say that Γ is mean-admissible or that the Γ-topology is mean-admissible.

Before stating the next lemma, we exhibit a nontrivial example of a mean-
admissible Γ-topology on a Banach space X . To apply this example to our lemma,
we need, in addition, the strict convexity of X .
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Example 2.1. It is known that the Banach space C([0, 1], R) does not have a
predual space under any renorming (see [1] and [16]), and that C([0, 1], R) can
be renormed to be a strictly convex Banach space. Also, the Banach space l1 can
be renormed to be a strictly convex Banach space and c0 with a suitable norm
is still a predual of l1 with the new norm. Now, taking the Cartesian product of
these two spaces with the l2-norm, we get a strictly convex Banach space for which
Γ = c0×C([0, 1], R)∗ is a norming set. It is easy to observe that in l1×C([0, 1], R)
one can find nontrivial, convex and norm-bounded subsets which are compact in
the Γ-topology. Clearly, by Lemma 2.1, this Γ-topology is mean-admissible.

Now we can state and prove our second lemma.

Lemma 2.4. Suppose X is a Banach space and Γ is mean-admissible. Let C
be a nonempty Γ-closed convex subset of X and let µ be a mean on X . Let S be
a semigroup and let ϕ = {Ts : s ∈ S} be an (F -quasi-) nonexpansive semigroup
on C such that the Γ-closure of conv{T sx : s ∈ S} is Γ-compact for each x ∈ C.
Suppose also that Y is a subspace of B(S) containing all functions s 	→ 〈T sx, x∗〉
with x ∈ C and x∗ ∈ Γ, and such that 1 ∈ Y . If Tµx =

∫
Tsxdµ(s), then the

following conditions are satisfied:

(i) Tµ is an (F -quasi-) nonexpansive self-mapping of C.

(ii) Tµx = x for each x ∈ F (ϕ).

(iii) Tµx ∈ Γ
conv {Tsx : s ∈ S} for each x ∈ C.

(iv) If Y is rs-invariant for each s ∈ S , then TµTs = Tµ for any s ∈ S .

(v) If Y is rs-invariant for each s ∈ S , F = F (ϕ) and ϕ is an F -quasi-
contractive semigroup on C, then Tµ is also F -quasi-contractive.

(vi) If the mappings in ϕ are affine, then so is T µ.

Proof. Let T be nonexpansive. For ε > 0 and x, y ∈ C, there exists x∗ ∈ Γ
such that ‖x∗‖ = ‖Tµx − Tµy‖ and ‖Tµx − Tµy‖2 ≤ 〈Tµx − Tµy, x∗〉 + ε. Thus
we have

‖Tµx − Tµy‖2 ≤ 〈Tµx − Tµy, x∗〉 + ε

= µs〈Tsx − Tsy, x∗〉 + ε

≤ sup
s∈S

‖Tsx − Tsy‖‖Tµx − Tµy‖ + ε

≤ ‖x− y‖‖Tµx − Tµy‖+ ε

and therefore Tµ is nonexpansive.
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If T is F -quasi-nonexpansive and f ∈ F , then for each ε > 0 and x ∈ C, there
exists x∗ ∈ Γ such that ‖x∗‖ = ‖Tµx − f‖ and ‖Tµx − f‖2 ≤ 〈Tµx − f, x∗〉 + ε.
To see that Tµ is F -quasi-nonexpansive, observe that

‖Tµx − f‖2 ≤ 〈Tµx − f, x∗〉+ ε

= µs〈Tsx − f, x∗〉 + ε

≤ sup
s∈S

‖Tsx − f‖‖Tµx − f‖ + ε

≤ ‖x − f‖‖Tµx − f‖ + ε.

Thus the proof of (i) is complete.
To prove (ii), take x ∈ F (ϕ) and x∗ ∈ Γ. Then we have

〈Tµx, x∗〉 = µs〈Tsx, x∗〉 = µs〈x, x∗〉 = 〈x, x∗〉.
By the definition of mean admissibility of Γ we get (iii).
To show (iv), it is sufficient to observe that

〈Tµ(Tsx), x∗〉 = µs1〈Ts1sx, x∗〉 = µs1〈Ts1x, x∗〉 = 〈Tµx, x∗〉
for each x ∈ C and each x∗ ∈ Γ.

To prove (v), observe that if x /∈ F , then there exists s0 ∈ S such that Ts0x /∈ F

and by (i), (iv) and the F -quasi-contractivity of Ts0 this yields

‖Tµx − f‖ = ‖TµTs0x − f‖ ≤ ‖Ts0x − f‖ < ‖x − f‖
for each f ∈ F .

If ϕ is affine, then for x1, x2 ∈ C, 0 ≤ α ≤ 1 and x∗ ∈ Γ, we obtain

〈Tµ(αx1 + (1− α)x2), x∗〉 = µs〈Ts(αx1 + (1− α)x2), x∗〉
= αµs〈Tsx1, x

∗〉 + (1− α)µs〈Tsx2, x
∗〉

= α〈Tµx1, x
∗〉+ (1− α)〈Tµx2, x

∗〉
= 〈αTµx1 + (1 − α)Tµx2, x

∗〉
and this completes the proof of the lemma.

We are now able to establish a nonlinear ergodic theorem using Bruck’s method
([2-4] and [5]) and some ideas from [18].

Theorem 2.5. Suppose X is a Banach space and Γ is mean-admissible. Let
C be a nonempty locally Γ-compact and convex subset of X , and let µ be a right
invariant mean on X . Let S be a semigroup and let ϕ = {T s : s ∈ S} be a
semigroup on C such that F (ϕ) 
= ∅. Suppose also that Y ⊂ B(S) is an r s-
invariant subspace for any s ∈ S containing all functions s 	→ 〈T sx, x∗〉 with
x ∈ C and x∗ ∈ Γ, and such that 1 ∈ Y .
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(a) If F = F (ϕ) and every mapping Ts is F -quasi-contractive, then there is an
F -quasi-contractive retraction R : C → F (ϕ) such that RT s = TsR = R
for any s ∈ S , and each Γ-closed and convex ϕ-invariant subset of C is also
R-invariant.

(b) If X is strictly convex and every mapping T s is (F -quasi-) nonexpansive,
then there is an (F -quasi-) nonexpansive retraction R : C → F (ϕ) such that
RTs = TsR = R for any s ∈ S , and each Γ-closed and convex ϕ-invariant
subset of C is also R-invariant.

(c) If every mapping Ts is continuous and affine, and either condition (a) or (b)
is satisfied, then R is also affine.

Proof. Without loss of generality we may assume that C is Γ-compact. Suppose
that ϕ = {Ts : s ∈ S} is an F -quasi-nonexpansive semigroup on C. Let the family
N consist of all T ∈ CC such that

‖Tx − f‖ ≤ ‖x − f‖ for any x ∈ C, f ∈ F,

TTs = T for any s ∈ S,

and such that every Γ-closed and convex ϕ-invariant subset of C is also T -invariant.
Note that by Lemma 2.4 we get Tµ ∈ N . Next, observe that by Tychonoff’s theorem,
CC with the product topology generated by the Γ-topology on C is compact [9].
Since the norm is lower semicontinuous with respect to the Γ-topology, we see that
N is also compact in the Γ-topology. Let us preorder N in the following way:

U � V if and only if ‖U(x)− f‖ ≤ ‖V (x) − f‖

for any x ∈ C and f ∈ F . Using once more the lower semicontinuity of the norm
with respect to the Γ-topology and Zorn’s lemma, we conclude that N contains a
minimal element R with respect to the above preordering. This means that if T ∈ N
and

‖Tx − f‖ ≤ ‖Rx − f‖
for each x ∈ C and f ∈ F , then ‖Tx− f‖ = ‖Rx− f‖. Since TsR belongs to N ,
‖TsRx− f‖ ≤ ‖Rx− f‖ for any x ∈ C, and TsR is F -quasi-contractive for each
s ∈ S , we see that TsRx = Rx for every x ∈ C and s ∈ S , that is, Rx ∈ F . We
also have TsR = RTs = R. Thus R is indeed an F -quasi-contractive retraction.

When X is strictly convex, we repeat our arguments and in the end instead of the
F -quasi-contractivity of Ts we apply the inequalities ‖TsRx−f‖ ≤ ‖Rx−f‖ and
‖1

2(TsRx + Rx)− f‖ ≤ ‖Rx− f‖ to get TsRx = Rx for every x ∈ C and s ∈ S
by appealing to the strict convexity of X . Hence R is an F -quasi-nonexpansive
retraction, as reuqired.
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For affine mappings we proceed as above. We only replace the family N by
the family Ñ consisting of all affine T ∈ CC such that

‖Tx − f‖ ≤ ‖x − f‖ for any x ∈ C, f ∈ F,

TTs = T for any s ∈ S,

and such that every Γ-closed, convex and ϕ-invariant subset of C is also T -
invariant. Note that by Lemma 2.4 we get Tµ ∈ Ñ . Hence there exists an F -
quasi-nonexpansive affine retraction R : C → F (ϕ) such that TsR = RTs = R
for each s ∈ S , and each Γ-closed, convex and ϕ-invariant subset of C is also
R-invariant.

If ϕ is a nonexpansive semigroup on C, then the proof is analogous. Thus the
proof of our theorem is complete.

Finally, we mention that a recent general result on intersections of nonexpansive
retracts in strictly convex Banach spaces can be found in [7].
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