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STRONG AND WEAK CONVERGENCE THEOREMS FOR
GENERALIZED MIXED EQUILIBRIUM PROBLEM

WITH PERTURBATION AND FIXED POINTED PROBLEM
OF INFINITELY MANY NONEXPANSIVE MAPPINGS

L. C. Ceng1, Hui-Ying Hu2 and M. M. Wong*

Abstract. Very recently, Plubtieng and Kumam [S. Plubtieng, P. Kumam,
Weak convergence theorem for monotone mappings and a countable family
of nonexpansive mappings, J. Comput. Appl. Math. 224 (2009) 614-621]
proposed an iterative algorithm for finding a common solution of a variational
inequality problem for an inverse-strongly monotone mapping and a fixed point
problem of a countable family of nonexpansive mappings, and obtained a weak
convergence theorem. In this paper, based on Plubtieng-Kumam’s iterative
algorithm we introduce a new iterative algorithm for finding a common solution
of a generalized mixed equilibrium problem with perturbation and a fixed point
problem of a countable family of nonexpansive mappings in a Hilbert space.
We first derive a strong convergence theorem for this new algorithm under
appropriate assumptions and then consider a special case of this new algorithm.
Moreover, we establish a weak convergence theorem for this special case
under some weaker assumptions. Such a weak convergence theorem unifies,
improves and extends Plubtieng-Kumam’s weak convergence theorem. It is
worth pointing out that the proof method of strong convergence theorem is
very different from the one of weak convergence theorem.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H and S : C → C be a self-mapping on C.
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We denote by F (S) the set of fixed points of S and by PC the metric projection of
H onto C. Moreover, we also denote by R the set of all real numbers. A mapping
S is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

If C is a nonempty bounded closed convex subset and S is a nonexpansive mapping
of C into itself, then F (S) is nonempty. A mapping A of C into H is called
monotone if

〈Au − Av, u− v〉 ≥ 0, ∀u, v ∈ C.

A is called α-inverse-strongly-monotone if there exists a positive real number α
such that

〈Au − Av, u− v〉 ≥ α‖Au − Av‖2, ∀u, v ∈ C.

It is obvious that any α-inverse-strongly-monotone mapping A is monotone and
Lipschitz continuous.

Very recently, Peng and Yao [1] introduced the following generalized mixed
equilibrium problem of finding x̄ ∈ C such that

(1.1) f(x̄, y) + ϕ(y)− ϕ(x̄) + 〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C,

where A : C → H is a nonlinear mapping, ϕ : C → R is a function and f :
C × C → R is a bifunction. The set of solutions of problem (1.1) is denoted by
GMEP . Subsequently, this problem was also considered by Yao, Liou and Yao [2],
and Ceng and Yao [29]. Inspired by problem (1.1) we introduce and investigate the
following generalized mixed equilibrium problem with perturbation: Find x̄ ∈ C
such that

(1.2) f(x̄, y) + ϕ(y)− ϕ(x̄) + 〈(A + B)x̄, y − x̄〉 ≥ 0, ∀y ∈ C,

where A, B : C → H are nonlinear mappings, ϕ : C → R is a function and
f : C × C → R is a bifunction. The set of solutions of problem (1.2) is denoted
by GMEPP.

If B = 0, then problem (1.2) reduces to problem (1.1).
If A = B = 0, then problem (1.2) reduces to the following mixed equilibrium

problem of finding x̄ ∈ C such that

f(x̄, y) + ϕ(y)− ϕ(x̄) ≥ 0, ∀y ∈ C,

which was considered by Ceng and Yao [3]. The set of solutions of this problem
is denoted by MEP(f, ϕ).

If ϕ = 0 and B = 0, then problem (1.2) reduces to the following generalized
equilibrium problem of finding x̄ ∈ C such that

(1.3) f(x̄, y) + 〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C,
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which was studied by Takahashi and Takahashi [4].
If ϕ = 0 and A = B = 0, then problem (1.2) reduces to the following equilib-

rium problem of finding x̄ ∈ C such that

f(x̄, y) ≥ 0, ∀y ∈ C.

If f = 0, ϕ = 0 and B = 0, then problem (1.2) reduces to the following
classical variational inequality problem of finding x̄ ∈ C such that

(1.4) 〈Ax̄, y − x̄〉 ≥ 0, ∀y ∈ C.

The set of solutions of problem (1.4) is denoted by V I(C, A). The variational
inequality problem has been extensively studied in the literature; see [5-15,26] and
the references therein. Recently, Nadezhkina and Takahashi [12] and Zeng and Yao
[14] proposed some variants of Korpelevich’s extragradient method [13] for finding
a common element of the set of fixed points of a nonexpansive mapping and the set
of solutions of a variational inequality problem.

The problem (1.2) is very general in the sense that it includes, as special cases,
optimization problems, variational inequalities, minimax problems, Nash equilib-
rium problems in noncooperative games and others; see, e.g., [1-4,16-21,29]. In
order to solve problem (1.1), Peng and Yao [1] developed a CQ method and Ceng
and Yao [29] gave a new variant of Korpelevich’s extragradient method [13]. Peng
and Yao [1] established some strong convergence results for finding a common ele-
ment of the set of solutions of problem (1.1), the set of solutions of problem (1.4),
and the set of fixed points of a nonexpansive mapping. Moreover, Ceng and Yao
[29] derived some strong convergence theorems for finding a common element of
the set of solutions of problem (1.1), the set of solutions for a general system of
generalized equilibria, and the set of fixed points of a k-strictly pseudocontractive
mapping.

On the other hand, Aoyama, Kimura, Takahashi and Toyoda [22] recently in-
troduced an iterative scheme defined by x1 = x ∈ C and

(1.5) xn+1 = αnxn + (1− αn)Snxn, n = 1, 2, ...,

where {αn} is a sequence in [0, 1], C is a nonempty closed convex subset of H and
{Sn} is a sequence of nonexpansive mappings of C into itself with

⋂∞
n=1 F (Sn) 	=

∅. They also proved that the sequence {xn} generated by (1.5) converges strongly
to a common fixed point of nonexpansive mappings Tn, n = 1, 2, ....

Very recently, Plubtieng and Kumam [30] proposed the following iteration pro-
cess for finding a common element of the set of solutions of variational inequality
(1.4) and the set of common fixed points of infinitely many nonexpansive map-
pings {Sn}∞n=1 of C into itself and proved the weak convergence of the sequence
generated by this iteration process to an element of

⋂∞
n=1 F (Sn) ∩ V I(C, A).



1344 L. C. Ceng, Hui-Ying Hu and M. M. Wong

Theorem PK. ([30, Theorem 4]). Let C be a nonempty closed convex subset
of a real Hilbert space H . Let α > 0 and let A be an α-inverse-strongly-monotone
mapping of C into H . Let {Sn} be a sequence of nonexpansive mappings from C

into itself such that
⋂∞

n=1 F (Sn) ∩ V I(C, A) 	= ∅. Let {xn} be a sequence in C
defined by x0 ∈ C and

xn+1 = αnxn + (1− αn)SnPC(xn − λnAxn),

for all n = 0, 1, 2, ..., where 0 < a < λn < b < 2α, 0 < c < αn < d < 1 and∑∞
n=1 αn(1− αn) = ∞. Suppose that

∑∞
n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞

for any bounded subset B of C. Let S be a mapping of C into itself defined by Sz =
limn→∞ Snz for all z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then {xn}

converges weakly to z ∈ F (S)∩V I(C, A), where z = limn→∞ PF (S)∩V I(C,A)xn.

Throughout this paper, suppose that {Sn} is a sequence of nonexpansive self-
mappings on a nonempty closed convex subset C of a real Hilbert space H . Moti-
vated and inspired by Aoyama, Kimura, Takahashi and Toyoda [22], Takahashi and
Takahashi [4], Plubtieng and Kumam [30] and Ceng and Yao [29] we introduce the
following iterative algorithm for finding a common solution of problem (1.2) and
the fixed point problem of infinitely many nonexpansive mappings {Sn}: For fixed
u ∈ C and x1 ∈ C arbitrary, let {xn} ⊂ C be a sequence generated by

(1.6)
yn = T

(f,ϕ)
λn

(xn − λn(A + B)xn),
xn+1 = αnu + βnxn + γnyn + δnSnyn,

for all n = 1, 2, ..., where 0 ≤ λn ≤ min{α, β}, {αn}, {βn}, {γn}, {δn} ⊂ [0, 1]
with αn + βn + γn + δn = 1, f : C × C → R is a bifunction, ϕ : C → R is
a lower semicontinuous and convex function, and A, B : C → H are α-inverse-
strongly monotone and β-inverse-strongly monotone, respectively. On one hand,
following the idea of the proof in Ceng and Yao [29, Theorem 3.1] we derive a
strong convergence theorem for algorithm (1.6) under appropriate assumptions. On
the other hand, we consider a special case of algorithm (1.6): For fixed u ∈ C and
x1 ∈ C arbitrary, let {xn} ⊂ C be a sequence generated by

(1.7)
yn = T

(f,ϕ)
λn

(xn − λn(A + B)xn),
xn+1 = βnxn + γnyn + δnSnyn,

for all n = 1, 2, .... Following the idea of the proof in Plubtieng and Kumam [30,
Theorem 4] we establish a weak convergence theorem for algorithm (1.7) under
some weaker assumptions. Such a weak convergence theorem unifies, improves
and extends Plubtieng and Kumam [30, Theorem 4]. It is worth pointing out that
the proof method of strong convergence theorem for algorithm (1.6) is very different
from the one of weak convergence theorem for algorithm (1.7).
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2. PRELIMINARIES AND NOTATIONS

Let C be a nonempty closed convex subset of a real Hilbert space H . We write
xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → x implies
that {xn} converges strongly to x. For every point x ∈ H , there exists a unique
nearest point in C, denoted by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C.

Such a PC is called the metric projection of H onto C. We know that PC is a
firmly nonexpansive mapping of H onto C, i.e.,

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H.

It is also known that, PCx is characterized by the following properties: PCx ∈ C

and

(2.1) 〈x− PCx, y − PCx〉 ≤ 0,

(2.2) ‖x − y‖2 ≥ ‖x − PCx‖2 + ‖PCx − y‖2

for all x ∈ H and y ∈ C. In a real Hilbert space H , it is well known that

(2.3) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉

and

(2.4) ‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1]. It is also known that H satisfies the Opial condition
[23], that is, for any sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for every y ∈ H with y 	= x.
In the context of the variational inequality problem, it is easy to see that

(2.5) u ∈ V I(C, A) ⇔ u = PC(u − λAu), ∀λ > 0.

Recall that a mapping A : C → H is called α-inverse-strongly monotone if there
exists α > 0 such that

〈x − y, Ax− Ay〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ C.
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It is obvious that any α-inverse-strongly monotone mapping A is Lipschitz contin-
uous. Meantime, we have that, for all u, v ∈ C and λ > 0,

(2.6)

‖(I − λA)u − (I − λA)v‖2

= ‖(u− v)− λ(Au− Av)‖2

= ‖u − v‖2 − 2λ〈u− v, Au− Av〉+ λ2‖Au − Av‖2

≤ ‖u − v‖2 + λ(λ− 2α)‖Au − Av‖2.

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H .

The following lemmas will be used for proving the convergence result of this
paper in the sequel.

Lemma 2.1. ([22, Lemma 3.2]). Let C be a nonempty closed subset of a
Banach space and let {Tn} be a sequence of nonexpansive mappings of C into
itself. Suppose that

∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ C} < ∞ Then, for each

y ∈ C, {Tny} converges strongly to some point of C. Moreover, let T be a
mapping of C into itself defined by

Ty = lim
n→∞Tny, ∀y ∈ C.

Then limn→∞ sup{‖Tnz − Tz‖ : z ∈ C} = 0.

Lemma 2.2. (see [24]). Demiclosedness principle. Assume that T is a nonex-
pansive self-mapping of a nonempty closed convex subset C of a real Hilbert space
H . If T has a fixed point, then I − T is demiclosed. That is, whenever {xn} is a
sequence in C weakly converging to some x ∈ C and the sequence {(I − T )xn}
strongly converges to some y, it follows that (I − T )x = y. Here I is the identity
operator of H .

Lemma 2.3. (see [26]). Let {sn} be a sequence of nonnegative real numbers
satisfying the condition

sn+1 ≤ (1− αn)sn + αnβn, ∀n ≥ 1,

where {αn}, {βn} are sequences of real numbers such that
(i) {αn} ⊂ [0, 1] and

∑∞
n=1 αn = ∞, or equivalently,

∞∏

n=1

(1 − αn) := lim
n→∞

n∏

k=1

(1 − αk) = 0;

(ii) lim supn→∞ βn ≤ 0, or
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(ii)′
∑∞

n=1 αnβn is convergent.
Then, limn→∞ sn = 0.

Lemma 2.4. ([3, Lemma 3.1]). Let C be a nonempty closed convex subset of
a real Hilbert space H . Let f : C × C → R be a bifunction satisfying conditions
(H1)-(H4):

(H1) f(x, x) = 0, ∀x ∈ C;
(H2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;
(H3) for each y ∈ C, x �→ f(x, y) is weakly upper semicontinuous;
(H4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

Let ϕ : C → R be a lower semicontinuous and convex function. For r > 0
and x ∈ H , define a mapping T

(f,ϕ)
r : H → C as follows:

T (f,ϕ)
r (x) = {z ∈ C : f(z, y)+ϕ(y)−ϕ(z)+

1
r
〈y−z, z−x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H . Assume that either (A1) or (A2) holds:
(1) for each x ∈ H and r > 0, there exist a bounded subset D x ⊂ C and yx ∈ C

such that for any z ∈ C\Dx,

f(z, yx) + ϕ(yx) − ϕ(z) +
1
r
〈yx − z, z − x〉 < 0;

(2) C is a bounded set.
Then there hold following:

(i) T
(f,ϕ)
r (x) 	= ∅ for each x ∈ H and T

(f,ϕ)
r is single-valued;

(ii) T
(f,ϕ)
r is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖T (f,ϕ)
r x − T (f,ϕ)

r y‖2 ≤ 〈T (f,ϕ)
r x − T (f,ϕ)

r y, x − y〉;

(iii) F (T (f,ϕ)
r ) = MEP(f, ϕ);

(iv) MEP(f, ϕ) is closed and convex.

Remark 2.1. If ϕ = 0, then T
(f,ϕ)
r is rewritten as T f

r .

Lemma 2.5. ([29, Proposition 2.1]). Let C, H, f, ϕ and T
(f,ϕ)
r be as in Lemma

2.4. Then the following holds:

‖T (f,ϕ)
s x − T

(f,ϕ)
t x‖2 ≤ s − t

s
〈T (f,ϕ)

s x − T
(f,ϕ)
t x, T (f,ϕ)

s x − x〉

for all s, t > 0 and x ∈ H .
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Corollary 2.1. ([4, Lemma 2.3]). Let C, H, f and T f
r be as in Remark 2.1.

Then the following holds:

‖T f
s x − T

f
t x‖2 ≤ s − t

s
〈T f

s x − T
f
t x, T f

s x − x〉

for all s, t > 0 and x ∈ H .

Lemma 2.6. (see [27]). Let {xn} and {yn} be bounded sequences in a Ba-
nach space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤
lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n ≥ 0
and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞ ‖yn−xn‖ = 0.

Lemma 2.7. ([5, Lemma 3.2]). Let C be a nonempty closed convex subset of
a real Hilbert space H . Let {xn} be a sequence in H such that

‖xn+1 − y‖ ≤ ‖xn − y‖,
for all y ∈ C and n ≥ 1. Then the sequence {PC(xn)} converges strongly to some
point in C.

Lemma 2.8. (see [25, p. 303]). Let {an}∞n=1 and {bn}∞n=1 be sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 1.

If
∑∞

n=1 bn converges, then limn→∞ an exists.

Lemma 2.9. ([5, Lemma 3.1]). Let H be a real Hilbert space. Let {αn} be a
sequence of real numbers such that 0 < a ≤ αn ≤ b < 1 for all n = 1, 2, ..., and
let {vn} and let {wn} be sequences of H such that

lim sup
n→∞

‖vn‖ ≤ c, lim sup
n→∞

‖wn‖ ≤ c,

and
lim

n→∞ ‖αnvn + (1 − βn)wn‖ = c,

for some c > 0. Then,
lim

n→∞ ‖vn − wn‖ = 0.

3. STRONG AND WEAK CONVERGENCE THEOREMS

In this section, we prove some strong and weak convergence theorems for a
generalized mixed equilibrium problem with perturbation and a countable family of
nonexpansive mappings.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let f : C ×C → R be a bifunction which satisfies assumptions (H1)-(H4) and
ϕ : C → R be a lower semicontinuous and convex function with assumptions (A1)
or (A2). Let A, B : C → H be α-inverse-strongly monotone and β-inverse-strongly
monotone, respectively, and {Sn} be a sequence of nonexpansive mappings from
C into itself such that

⋂∞
n=1 F (Sn) ∩GMEPP 	= ∅. For fixed u ∈ C and x1 ∈ C

arbitrary, let {xn} ⊂ C be a sequence generated by

(3.1)
yn = T

(f,ϕ)
λn

(xn − λn(A + B)xn),
xn+1 = αnu + βnxn + γnyn + δnSnyn,

for all n = 1, 2, ..., where 0 ≤ λn ≤ min{α, β}, {αn}, {βn}, {γn}, {δn} ⊂ [0, 1]
satisfy the following conditions:

(i) αn + βn + γn + δn = 1 for all n ≥ 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0;
(iv) limn→∞( γn+1

1−βn+1
− γn

1−βn
) = 0;

(v) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β} and limn→∞(λn −
λn+1) = 0.
Suppose that

∑∞
n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded

subset B of C. Let S be a mapping of C into itself defined by Sz =
limn→∞ Snz for all z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then

{xn} converges strongly to x̄ = PF (S)∩GMEPPu.

Proof. We divide the proof into several steps.

Step 1. {xn} is bounded.
Indeed, take z ∈ F (S) ∩ GMEPP arbitrarily. Since z = T

(f,ϕ)
λn

(z − λn(A +
B)z) = Sz, A and B are α-inverse-strongly monotone and β-inverse-strongly mono-
tone, respectively, and 0 ≤ λn ≤ min{α, β}, we know that, for any n ≥ 0,

(3.2)

‖yn − z‖2

= ‖T (f,ϕ)
λn

(xn − λn(A + B)xn) − T
(f,ϕ)
λn

(z − λn(A + B)z)‖2

≤ ‖(xn − λn(A + B)xn) − (z − λn(A + B)z)‖2

= ‖1
2 [xn − z − 2λn(Axn − Az)] + 1

2 [xn − z − 2λn(Bxn − Bz)]‖2

≤ 1
2‖xn − z − 2λn(Axn − Az)‖2 + 1

2‖xn − z − 2λn(Bxn − Bz)‖2

≤ 1
2 [‖xn − z‖2 + 4λn(λn − α)‖Axn − Az‖2]
+1

2 [‖xn − z‖2 + 4λn(λn − β)‖Bxn − Bz‖2]
= ‖xn−z‖2+2λn(λn−α)‖Axn−Az‖2+2λn(λn−β)‖Bxn−Bz‖2

≤ ‖xn − z‖2,
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for every n = 1, 2, .... Hence, from (3.1) and (3.2) it follows that

(3.3)

‖xn+1 − z‖
= ‖αn(u − z) + βn(xn − z) + γn(yn − z) + δn(Snyn − z)‖
≤ αn‖u − z‖ + βn‖xn − z‖ + γn‖yn − z‖ + δn‖Snyn − z‖
≤ αn‖u − z‖ + βn‖xn − z‖ + (γn + δn)‖yn − z‖
≤ αn‖u − z‖ + βn‖xn − z‖ + (γn + δn)‖xn − z‖
≤ αn‖u − z‖ + (1− αn)‖xn − z‖.

By induction, we obtain that for all n ≥ 1

‖xn − z‖ ≤ max{‖u − z‖, ‖x0 − z‖}.
Thus, {xn} is bounded. Consequently, we deduce immediately that {Axn}, {Bxn},
{yn} and {Snyn} are bounded.

Step 2. limn→∞ ‖xn+1 − xn‖ = 0.
Indeed, define xn+1 = βnxn + (1− βn)wn for all n ≥ 1. It follows that

(3.4)

wn+1 − wn

=
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1u + γn+1yn+1 + δn+1Sn+1yn+1

1 − βn+1
− αnu + γnyn + δnSnyn

1 − βn

=
αn+1u

1−βn+1
− αnu

1−βn
+

γn+1yn+1

1−βn+1
− γnyn

1−βn
+

δn+1Sn+1yn+1

1−βn+1
− δnSnyn

1−βn

= (
αn+1

1−βn+1
− αn

1−βn
)u+

γn+1

1−βn+1
(yn+1 − yn)+(

γn+1

1−βn+1
− γn

1−βn
)yn

+
δn+1

1 − βn+1
(Sn+1yn+1 − Snyn+1) +

δn+1

1 − βn+1
(Snyn+1 − Snyn)

+(
δn+1

1 − βn+1
− δn

1 − βn
)Snyn.

Observe that

(3.5)

‖(xn+1 − λn+1(A + B)xn+1) − (xn − λn(A + B)xn)‖
= ‖xn+1 − xn − λn+1((A + B)xn+1 − (A + B)xn)

+(λn − λn+1)(A + B)xn‖
≤ ‖xn+1 − xn − λn+1((A + B)xn+1 − (A + B)xn)‖

+|λn+1 − λn|‖(A + B)xn‖
≤ 1

2 [‖xn+1 − xn − 2λn+1(Axn+1 − Axn)‖
+‖xn+1 − xn − 2λn+1(Bxn+1 − Bxn)‖]
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+|λn+1 − λn|‖(A + B)xn‖
≤ 1

2 [‖xn+1 − xn‖ + ‖xn+1 − xn‖] + |λn+1 − λn|‖(A + B)xn‖
= ‖xn+1 − xn‖ + |λn+1 − λn|‖(A + B)xn‖,

and hence

(3.6)

‖yn+1 − yn‖
= ‖T (f,ϕ)

λn+1
(xn+1−λn+1(A + B)xn+1)−T

(f,ϕ)
λn

(xn−λn(A + B)xn)‖
≤ ‖T (f,ϕ)

λn+1
(xn+1−λn+1(A + B)xn+1)−T

(f,ϕ)
λn+1

(xn−λn(A + B)xn)‖
+‖T (f,ϕ)

λn+1
(xn − λn(A + B)xn)− T

(f,ϕ)
λn

(xn − λn(A + B)xn)‖
≤ ‖(xn+1 − λn+1(A + B)xn+1) − (xn − λn(A + B)xn)‖

+‖T (f,ϕ)
λn+1

(xn − λn(A + B)xn)− T
(f,ϕ)
λn

(xn − λn(A + B)xn)‖
≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖(A + B)xn‖

+‖T (f,ϕ)
λn+1

(xn − λn(A + B)xn)− T
(f,ϕ)
λn

(xn − λn(A + B)xn)‖.
Note that

δn+1

1 − βn+1
− δn

1 − βn
=

1 − αn+1 − βn+1 − γn+1

1 − βn+1
− 1 − αn − βn − γn

1 − βn

= −(
αn+1

1 − βn+1
− αn

1 − βn
) − (

γn+1

1− βn+1
− γn

1 − βn
).

So, it follows from (3.4) and (3.6) that

(3.7)

‖wn+1 − wn‖

≤ (
αn+1

1− βn+1
+

αn

1− βn
)‖u‖+

γn+1

1 − βn+1
‖yn+1 − yn‖

+| γn+1

1 − βn+1
− γn

1 − βn
|‖yn‖+

δn+1

1 − βn+1
‖Sn+1yn+1 − Snyn+1‖

+
δn+1

1 − βn+1
‖Snyn+1 − Snyn‖ + | δn+1

1− βn+1
− δn

1 − βn
|‖Snyn‖

≤ αn+1

1−βn+1
(‖u‖+‖Snyn‖)+ αn

1−βn
(‖u‖+‖Snyn‖)

+
γn+1+δn+1

1−βn+1
‖yn+1−yn‖+| γn+1

1−βn+1
− γn

1−βn
|(‖yn‖+‖Snyn‖)

+
δn+1

1 − βn+1
‖Sn+1yn+1 − Snyn+1‖

≤ αn+1

1 − βn+1
(‖u‖+ ‖Snyn‖) +

αn

1 − βn
(‖u‖+ ‖Snyn‖)

+‖xn+1−xn‖ + |λn+1−λn|‖(A + B)xn‖
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+‖T (f,ϕ)
λn+1

(xn − λn(A + B)xn) − T
(f,ϕ)
λn

(xn − λn(A + B)xn)‖

+| γn+1

1− βn+1
− γn

1− βn
|(‖yn‖ + ‖Snyn‖)

+
δn+1

1 − βn+1
‖Sn+1yn+1 − Snyn+1‖.

Note that 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β} and limn→∞(λn −
λn+1) = 0. Then utilizing Lemma 2.5 we have

(3.8) lim
n→∞ ‖T (f,ϕ)

λn+1
(xn − λn(A + B)xn) − T

(f,ϕ)
λn

(xn − λn(A + B)xn)‖ = 0.

Since limn→∞ sup{‖Sn+1z − Snz‖ : z ∈ B} = 0 for any bounded subset B of C,
we get

(3.9) lim
n→∞ ‖Sn+1yn+1 − Snyn+1‖ = 0.

Consequently, it follows from (3.8), (3.9) and conditions (ii), (iv), (v) that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖)

≤ lim sup
n→∞

{ αn+1

1 − βn+1
(‖u‖+ ‖Snyn‖) +

αn

1 − βn
(‖u‖+ ‖Snyn‖)

+|λn+1 − λn|‖(A + B)xn‖

+‖T (f,ϕ)
λn+1

(xn − λn(A + B)xn)− T
(f,ϕ)
λn

(xn − λn(A + B)xn)‖

+| γn+1

1−βn+1
− γn

1−βn
|(‖yn‖ + ‖Snyn‖) + δn+1

1−βn+1
‖Sn+1yn+1 − Snyn+1‖}

= 0.

Therefore, by Lemma 2.6 we obtain limn→∞ ‖wn − xn‖ = 0. This implies that

(3.10) lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1− βn)‖wn − xn‖ = 0.

Step 3. limn→∞ ‖Axn − Az‖ = limn→∞ ‖Bxn − Bz‖ = 0.
Indeed, from (3.1) we get

‖xn+1 − z‖2

= 〈αn(u − z) + βn(xn − z) + γn(yn − z) + δn(Snyn − z), xn+1 − z〉
= αn〈u − z, xn+1 − z〉 + βn〈xn − z, xn+1 − z〉

+〈γn(yn − z) + δn(Snyn − z), xn+1 − z〉
≤ αn〈u − z, xn+1 − z〉 + βn‖xn − z‖‖xn+1 − z‖

+‖γn(yn − z) + δn(Snyn − z)‖‖xn+1 − z‖
≤ αn〈u − z, xn+1 − z〉 + βn‖xn − z‖‖xn+1 − z‖
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+(γn + δn)‖yn − z‖‖xn+1 − z‖
≤ αn〈u − z, xn+1 − z〉 + βn

2 (‖xn − z‖2 + ‖xn+1 − z‖2)

+γn+δn

2 (‖yn − z‖2 + ‖xn+1 − z‖2),

that is,

(3.11) ‖xn+1−z‖2≤ 2αn

1 + αn
〈u−z, xn+1−z〉+ βn

1+αn
‖xn−z‖2+

γn+δn

1+αn
‖yn−z‖2.

So, in terms of (3.2) and (3.11) we have

‖xn+1 − z‖2

≤ 2αn

1 + αn
‖u − z‖‖xn+1 − z‖ +

βn

1 + αn
‖xn − z‖2

+
γn+δn

1+αn
[‖xn−z‖2+2λn(λn−α)‖Axn−Az‖2+2λn(λn−β)‖Bxn−Bz‖2]

≤ 2αn

1 + αn
‖u − z‖‖xn+1 − z‖ +

βn

1 + αn
‖xn − z‖2 +

γn + δn

1 + αn
‖xn − z‖2

+
γn + δn

1 + αn
[2λn(λn − α)‖Axn − Az‖2 + 2λn(λn − β)‖Bxn − Bz‖2]

=
2αn

1 + αn
‖u − z‖‖xn+1 − z‖ +

1 − αn

1 + αn
‖xn − z‖2

+
γn + δn

1 + αn
[2λn(λn − α)‖Axn − Az‖2 + 2λn(λn − β)‖Bxn − Bz‖2].

Therefore,

2λn(λn − α)‖Axn − Az‖2 + 2λn(λn − β)‖Bxn − Bz‖2

≤ 2αn

γn + δn
‖u − z‖‖xn+1 − z‖ +

1 − αn

γn + δn
(‖xn − z‖2 − ‖xn+1 − z‖2)

≤ 2αn

γn+δn
‖u−z‖‖xn+1−z‖+

1−αn

γn+δn
(‖xn − z‖ + ‖xn+1 − z‖)‖xn − xn+1‖.

Since αn → 0, ‖xn − xn+1‖ → 0, 0 < lim infn→∞ λn ≤ lim supn→∞ λn <
min{α, β}, and lim infn→∞(γn + δn) > 0, we have

(3.12) lim
n→∞ ‖Axn − Az‖ = lim

n→∞ ‖Bxn − Bz‖ = 0.

Step 4. limn→∞ ‖Snyn − yn‖ = 0.
Indeed, utilizing the firm nonexpansivity of T

(f,ϕ)
λn

, we conclude from (3.2) that
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‖yn − z‖2

= ‖T (f,ϕ)
λn

(xn − λn(A + B)xn)− T
(f,ϕ)
λn

(z − λn(A + B)z)‖2

≤ 〈(xn − λn(A + B)xn)− (z − λn(A + B)z), yn − z〉
= 1

2 [‖(xn − λn(A + B)xn) − (z − λn(A + B)z)‖2 + ‖yn − z‖2

−‖(xn − λn(A + B)xn) − (z − λn(A + B)z) − (yn − z)‖2]

≤ 1
2 [‖xn − z‖2 + ‖yn − z‖2 − ‖(xn − yn)− λn((A + B)xn − (A + B)z)‖2]

and hence

(3.13)

‖yn − z‖2

≤ ‖xn − z‖2 − ‖(xn − yn)− λn((A + B)xn − (A + B)z)‖2

= ‖xn−z‖2−‖xn−yn‖2+2λn〈xn−yn, (A+B)xn−(A+B)z〉
−λ2

n‖(A + B)xn − (A + B)z‖2

≤ ‖xn−z‖2−‖xn−yn‖2+2λn‖xn−yn‖‖(A+B)xn−(A+B)z‖.
From (3.11) and (3.13), we have

‖xn+1 − z‖2

≤ 2αn

1 + αn
〈u − z, xn+1 − z〉 +

βn

1 + αn
‖xn − z‖2 +

γn + δn

1 + αn
‖yn − z‖2

≤ 2αn

1+αn
〈u−z, xn+1−z〉+ βn

1+αn
‖xn−z‖2+

γn+δn

1+αn
[‖xn−z‖2−‖xn−yn‖2

+2λn‖xn − yn‖‖(A + B)xn − (A + B)z‖].
It follows that

γn + δn

1 + αn
‖xn − yn‖2

≤ 2αn

1 + αn
〈u− z, xn+1 − z〉 +

1− αn

1 + αn
‖xn − z‖2

−‖xn+1 − z‖2 +
2λn(γn + δn)

1 + αn
‖xn − yn‖‖(A + B)xn − (A + B)z‖

≤ 2αn

1 + αn
‖u− z‖‖xn+1 − z‖+ (‖xn − z‖ + ‖xn+1 − z‖)‖xn − xn+1‖

+
2λn(γn + δn)

1 + αn
‖xn − yn‖‖(A + B)xn − (A + B)z‖.

Since αn → 0, ‖xn+1−xn‖ → 0 and ‖(A+B)xn − (A+B)z‖ → 0, we conclude
that

lim
n→∞ ‖xn − yn‖ = 0.



Strong and Weak Convergence Theorems for Generalized Mixed Equilibrium 1355

Utilizing (3.1), we deduce from lim infn→∞ δn > 0 that

‖Snyn − yn‖ =
1
δn

‖xn+1 − yn − [αn(u− yn) + βn(xn − yn)]‖

≤ 1
δn

[‖xn+1−xn‖+‖xn−yn‖+αn‖u−yn‖+βn‖xn−yn‖]→0

as n → ∞. That is,

(3.14) lim
n→∞ ‖Snyn − yn‖ = 0.

Step 5. lim supn→∞〈u − x̄, xn − x̄〉 ≤ 0 where x̄ = PF (S)∩GMEPPu.
Indeed, take a subsequence {yni} of {yn} such that

(3.15) lim sup
n→∞

〈u − x̄, yn − x̄〉 = lim
i→∞

〈u − x̄, yni − x̄〉.

Without loss of generality, we may assume that yni ⇀ w. Next, let us show that
w ∈ F (S) ∩GMEPP .

First, we show that w ∈ F (S). Indeed, since {yn} is bounded, it follows that
∞∑

n=1

sup{‖Snx − Sn+1x‖ : x ∈ {yn}} < ∞.

Observe that

‖Syn − yn‖ ≤ ‖Syn − Snyn‖ + ‖Snyn − yn‖
≤ sup

x∈{yn}
‖Sx− Snx‖ + ‖Snyn − yn‖.

Utilizing Lemma 2.1, from (3.14) we get limn→∞ ‖Syn−yn‖ = 0. Since yni ⇀ w,
it follows from the demiclosedness principle for S that z ∈ F (S).

Now, we show that w ∈ GMEPP . Indeed, from yn = T
(f,ϕ)
λn

(xn − λn(A +
B)xn), we know that

f(yn, x)+ϕ(x)−ϕ(yn)+〈(A+B)xn, x−yn〉+ 1
λn

〈x−yn, yn−xn〉 ≥ 0, ∀x ∈ C.

From (H2) it follows that

ϕ(x)−ϕ(yn)+ 〈(A+B)xn, x−yn〉+ 1
λn

〈x−yn, yn−xn〉 ≥ f(x, yn), ∀x ∈ C.

Replacing n by ni, we have

(3.16) ϕ(x)−ϕ(yni)+〈(A+B)xni , x−yni〉+〈x−yni ,
yni −xni

λni

〉≥f(x, yni), ∀x∈C.
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Put yt = tx + (1 − t)w for all t ∈ (0, 1] and x ∈ C. Then, we have yt ∈ C. So,
from (3.16) we have

〈yt − yni , (A + B)yt〉
≥ 〈yt − yni , (A + B)yt〉 − ϕ(yt) + ϕ(yni) − 〈yt − yni , (A + B)xni〉

−〈yt − yni ,
yni

−xni
λni

〉 + f(yt, yni)

= 〈yt − yni , (A + B)yt − (A + B)yni 〉 + 〈yt − yni , (A + B)yni − (A + B)xni〉
−ϕ(yt) + ϕ(yni) − 〈yt − yni ,

yni−xni
λni

〉 + f(yt, yni).

Since ‖yni − xni‖ → 0, we have ‖(A + B)yni − (A + B)xni‖ → 0. Further, from
the monotonicity of A + B, we have 〈yt − yni , (A + B)yt − (A + B)yni〉 ≥ 0. So,
from (H4), the weakly lower semicontinuity of ϕ,

yni−xni
λni

→ 0 and yni ⇀ w, we
have

(3.17) 〈yt − w, (A + B)yt〉 ≥ −ϕ(yt) + ϕ(w) + f(yt, w),

as i → ∞. From (H1), (H4) and (3.17), we also have

0 = f(yt, yt) + ϕ(yt) − ϕ(yt)

≤ tf(yt, x) + (1− t)f(yt, w) + tϕ(x) + (1− t)ϕ(w)− ϕ(yt)

= t[f(yt, x) + ϕ(x)− ϕ(yt)] + (1 − t)[f(yt, w) + ϕ(w)− ϕ(yt)]

≤ t[f(yt, x) + ϕ(x)− ϕ(yt)] + (1 − t)〈yt − w, (A + B)yt〉
≤ t[f(yt, x) + ϕ(x)− ϕ(yt)] + (1 − t)t〈x − w, (A + B)yt〉,

and hence

0 ≤ f(yt, x) + ϕ(x)− ϕ(yt) + (1 − t)〈x − w, (A + B)yt〉.

Letting t → 0, we have, for each x ∈ C,

0 ≤ f(w, x) + ϕ(x) − ϕ(w) + 〈x − w, (A + B)w〉,

which hence implies that w ∈ GMEPP . Therefore, w ∈ F (S) ∩ GMEPP . This
together with ‖xn − yn‖ → 0 and the property of metric projection, implies that

lim sup
n→∞

〈u − x̄, xn − x̄〉 = lim
i→∞

〈u − x̄, xni − x̄〉 = 〈u− x̄, w − x̄〉 ≤ 0.

Step 6. xn → x̄ as n → ∞.
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Indeed, from (3.2) and (3.11) we have

‖xn+1 − x̄‖2 ≤ 2αn
1+αn

〈u − x̄, xn+1 − x̄〉 + βn

1+αn
‖xn − x̄‖2 + γn+δn

1+αn
‖xn − x̄‖2

= (1− 2αn
1+αn

)‖xn − x̄‖2 + 2αn
1+αn

〈u − x̄, xn+1 − x̄〉.

It is clear that
∑∞

n=1
2αn

1+αn
= ∞. Hence, applying Lemma 2.3 to the last inequality,

we immediately obtain that xn → x̄ as n → ∞. This completes the proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let f : C × C → R be a bifunction which satisfies assumptions (H1)-(H4)
and ϕ : C → R be a lower semicontinuous and convex function with assumptions
(A1) or (A2). Let A, B : C → H be α-inverse-strongly monotone and β-inverse-
strongly monotone, respectively, and {Sn} be a sequence of nonexpansive mappings
from C into itself such that

⋂∞
n=1 F (Sn) ∩ GMEPP 	= ∅. For fixed u ∈ C and

x1 ∈ C arbitrary, let {xn} ⊂ C be a sequence generated by (3.1), where 0 ≤ λn ≤
min{α, β}, {αn}, {βn}, {γn}, {δn} ⊂ [0, 1] satisfy the following conditions:

(i) αn + βn + γn + δn = 1 for all n ≥ 1;

(ii)
∑∞

n=1 αn < ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0;

(iv) limn→∞( γn+1

1−βn+1
− γn

1−βn
) = 0;

(v) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β} and limn→∞(λn −
λn+1) = 0.

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset
B of C. Let S be a mapping of C into itself defined by Sz = lim n→∞ Snz for all
z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges weakly to an

element of F (S) ∩ GMEPP .

Proof. Repeating the same arguments as those of Steps 1-5 in the proof of
Theorem 3.1, we know that the following statements hold:

(a) {xn} is bounded;

(b) limn→∞ ‖xn+1 − xn‖ = 0;

(c) limn→∞ ‖Axn − Az‖ = limn→∞ ‖Bxn − Bz‖ = 0 for each z ∈ F (S) ∩
GMEPP ;

(d) limn→∞ ‖xn − yn‖ = limn→∞ ‖Snyn − yn‖ = 0;

(e) there exists a subsequence {yni} of {yn} such that yni ⇀ w ∈ F (S) ∩
GMEPP .
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Now, let us show that limn→∞ ‖xn − z‖ exists for each z ∈ F (S)∩GMEPP .
In terms of (3.3) we have

(3.18) ‖xn+1 − z‖ ≤ αn‖u− z‖+ (1− αn)‖xn − z‖ ≤ ‖xn − z‖ + αn‖u− z‖.
Utilizing Lemma 2.8, we deduce from condition (ii) that limn→∞ ‖xn − z‖ exists.

Next, let us show that xn ⇀ w ∈ F (S) ∩ GMEPP . Suppose that there exist
{xmj} ⊂ {xn} and p 	= w such that xmj ⇀ p. Then, we have p ∈ F (S)∩GMEPP .
From Opial’s condition it follows that

lim
n→∞ ‖xn − w‖ = lim

i→∞
‖xni − w‖ < lim

i→∞
‖xni − p‖

= lim
j→∞

‖xmj − p‖ < lim
j→∞

‖xmj − w‖
= lim

n→∞ ‖xn − w‖,

which leads to a contradiction. Hence xn ⇀ w ∈ F (S) ∩GMEPP .

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let f : C ×C → R be a bifunction which satisfies assumptions (H1)-(H4) and
ϕ : C → R be a lower semicontinuous and convex function with assumptions (A1)
or (A2). Let A, B : C → H be α-inverse-strongly monotone and β-inverse-strongly
monotone, respectively, and {Sn} be a sequence of nonexpansive mappings from
C into itself such that

⋂∞
n=1 F (Sn) ∩ GMEPP 	= ∅. For x1 ∈ C arbitrary, let

{xn} ⊂ C be a sequence generated by

(3.19)
yn = T

(f,ϕ)
λn

(xn − λn(A + B)xn),

xn+1 = βnxn + γnyn + δnSnyn,

for all n = 1, 2, ..., where 0 ≤ λn ≤ min{α, β}, {βn}, {γn}, {δn} ⊂ [0, 1] satisfy
the following conditions:

(i) βn + γn + δn = 1 for all n ≥ 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) lim infn→∞ δn > 0;
(iv) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β}.

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset
B of C. Let S be a mapping of C into itself defined by Sz = lim n→∞ Snz for
all z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges weakly to

w ∈ F (S) ∩GMEPP , where w = limn→∞ PF (S)∩GMEPPxn.

Proof. Take z ∈ F (S)∩GMEPP arbitrarily. Then z = J
(f,ϕ)
λn

(z−λn(A+B)z).
Utilizing (3.2) we get
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‖yn − z‖2 ≤ ‖xn−z‖2+2λn(λn−α)‖Axn−Az‖2+2λn(λn−β)‖Bxn − Bz‖2

≤ ‖xn − z‖2

for every n ≥ 1. Hence from condition (i) it follows that

‖xn+1 − z‖2

= ‖βn(xn − z) + γn(yn − z) + δn(Snyn − z)‖2

≤ βn‖xn − z‖2 + (γn + δn)‖ γn

γn+δn
(yn − z) + δn

γn+δn
(Snyn − z)‖2

≤ βn‖xn − z‖2 + (γn + δn)[ γn

γn+δn
‖yn − z‖2 + δn

γn+δn
‖Snyn − z‖2]

≤ βn‖xn − z‖2 + (γn + δn)‖yn − z‖2

≤ βn‖xn − z‖2 + (γn + δn)[‖xn − z‖2

+2λn(λn − α)‖Axn − Az‖2 + 2λn(λn − β)‖Bxn − Bz‖2]

= ‖xn − z‖2 + 2(1− βn)[λn(λn−α)‖Axn−Az‖2+λn(λn−β)‖Bxn− Bz‖2]

≤ ‖xn − z‖2

for all n ≥ 1. This implies that

(3.20) ‖xn+1 − z‖ ≤ ‖xn − z‖
for all n ≥ 1. Hence limn→∞ ‖xn − z‖ exists. Thus from conditions (ii), (iv) it
follows that

‖Axn − Az‖ → 0 and ‖Bxn − Bz‖ → 0.

Then {xn} and {yn} are bounded. From the firm nonexpansivity of J
(f,ϕ)
λn

, we have

‖yn − z‖2

= ‖J(f,ϕ)
λn

(xn − λn(A + B)xn) − J
(f,ϕ)
λn

(z − λn(A + B)z)‖2

≤ 〈yn − z, (xn − λn(A + B)xn) − (z − λn(A + B)z)〉
= 1

2{‖yn − z‖2 + ‖(xn − λn(A + B)xn) − (z − λn(A + B)z)‖2

−‖yn − z − [(xn − λn(A + B)xn) − (z − λn(A + B)z)]‖2}
≤ 1

2{‖yn − z‖2 + ‖xn − z‖2 − ‖(yn − xn) + λn(A + B)xn − (A + B)z)‖2}
= 1

2{‖yn−z‖2+‖xn−z‖2 − ‖yn−xn‖2−2λn〈yn−xn, (A+B)xn−(A+B)z〉
−λ2

n‖(A + B)xn − (A + B)z‖2}.
So, we obtain

‖yn − z‖2 ≤ ‖xn − z‖2 − ‖yn − xn‖2 − 2λn

〈yn−xn, (A + B)xn−(A + B)z〉−λ2
n‖(A + B)xn − (A + B)z‖2
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and hence

‖xn+1 − z‖2 ≤ βn‖xn − z‖2 + (γn + δn)‖yn − z‖2

≤ βn‖xn − z‖2 + (1− βn)[‖xn − z‖2 − ‖yn − xn‖2

−2λn〈yn − xn, (A + B)xn − (A + B)z〉
−λ2

n‖(A + B)xn − (A + B)z‖2]

= ‖xn−z‖2−(1−βn)‖yn−xn‖2−2λn(1−βn)〈yn−xn, (A +B)xn−(A+B)z〉
−λ2

n(1 − βn)‖(A + B)xn − (A + B)z‖2

≤ ‖xn−z‖2−(1−βn)‖yn−xn‖2+2 min{α, β}‖yn−xn‖‖(A+B)xn−(A+B)z‖,
which implies that

(1−βn)‖yn−xn‖2≤‖xn−z‖2−‖xn+1−z‖2+2 min{α, β}‖yn−xn‖‖(A+B)xn−(A+B)z‖.
Since ‖(A+B)xn−(A+B)z‖ → 0, {xn} and {yn} are bounded and limn→∞ ‖xn−
z‖ exists, so it follows from condition (ii) that

(3.21) lim
n→∞ ‖yn − xn‖ = 0.

Now, let us show that

(3.22) lim
n→∞ ‖Snyn − yn‖ = 0.

Indeed, since
‖ γn

1− βn
(yn − z) +

δn

1 − βn
(Snyn − z)‖

≤ γn

1− βn
‖yn − z‖ +

δn

1 − βn
‖Snyn − z‖

≤ γn

1− βn
‖yn − z‖ +

δn

1 − βn
‖yn − z‖

= ‖yn − z‖ ≤ ‖xn − z‖,
we get lim supn→∞ ‖ γn

1−βn
(yn−z)+ δn

1−βn
(Snyn−z)‖ ≤ c, where c = limn→∞ ‖xn−

z‖. Furthermore, we have

lim
n→∞ ‖βn(xn − z) + (1 − βn)[

γn

1− βn
(yn − z) +

δn

1 − βn
(Snyn − z)]‖

= lim
n→∞ ‖βn(xn − z) + γn(yn − z) + δn(Snyn − z)‖

= lim
n→∞ ‖xn+1 − z‖ = c.

Utilizing Lemma 2.9, we have

lim
n→∞ ‖ γn

1− βn
(yn − z) +

δn

1 − βn
(Snyn − z) − (xn − z)‖ = 0.
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Thai is,

(3.23) lim
n→∞ ‖ γn

1− βn
(yn − xn) +

δn

1− βn
(Snyn − xn)‖ = 0.

Since

δn

1 − βn
‖Snyn − xn‖

= ‖ γn

1− βn
(yn − xn) +

δn

1 − βn
(Snyn − xn) − γn

1 − βn
(yn − xn)‖

≤ ‖ γn

1− βn
(yn − xn) +

δn

1 − βn
(Snyn − xn)‖ +

γn

1 − βn
‖yn − xn‖,

from (3.21), (3.23) and conditions (ii), (iii), it follows that

(3.24) lim
n→∞ ‖Snyn − xn‖ = 0.

This together with (3.21) implies that (3.22) holds. Note that {yn} is bounded.
Hence there exists a subsequence {yni} of {yn} such that yni ⇀ w ∈ C. Repeating
the argument of Step 5 in the proof of Theorem 3.1, we can obtain w ∈ F (S) ∩
GMEPP . Also, repeating the same argument as in the proof of Theorem 3.2, we
can derive xn ⇀ w ∈ F (S) ∩GMEPP .

Finally we prove that limn→∞ zn = w, where zn = PF (S)∩GMEPPxn for each
n ≥ 1. Utilizing (3.20) and Lemma 2.7, we know that there is z0 ∈ F (S)∩GMEPP
such that zn → z0. From zn = PF (S)∩GMEPPxn and w ∈ F (S) ∩ GMEPP , we
have

〈xn − zn, zn − w〉 ≥ 0, ∀n ≥ 1.

It follows from zn → z0 and xn ⇀ w that

〈w − z0, z0 − w〉 ≥ 0

and hence z0 = w. This completes the proof.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let T : C → H be κ-inverse-strongly monotone, and {Sn} be a sequence of
nonexpansive mappings from C into itself such that

⋂∞
n=1 F (Sn)∩VI (C , T ) 	= ∅.

For x1 ∈ C arbitrary, let {xn} ⊂ C be a sequence generated by

(3.25) xn+1 = βnxn + (1 − βn)SnPC(xn − λnTxn),

for all n = 1, 2, ..., where 0 ≤ λn ≤ 2κ and {βn} ⊂ [0, 1] satisfy the following
conditions:

(i) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
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(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2κ.

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset
B of C. Let S be a mapping of C into itself defined by Sz = lim n→∞ Snz for
all z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges weakly to

w ∈ F (S) ∩VI (C , T ), where w = limn→∞ PF (S)∩VI (C ,T )xn.

Proof. Put f = 0, ϕ = 0, A = B = 1
2T, γn = 0 and δn = 1−βn in Theorem

3.3. In this case, we get GMEPP = V I(C, T ). Moreover, it is clear that

yn = T
(f,ϕ)
λn

(xn − λn(A + B)xn) = PC(xn − λnTxn)

and
xn+1 = βnxn + γnyn + δnSnyn = βnxn + (1 − βn)Snyn.

Note that 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Thus we have

lim inf
n→∞ δn = lim inf

n→∞ (1 − βn) > 0.

Since T : C → H is κ-inverse-strongly monotone, we have for all x, y ∈ C

〈Ax−Ay, x−y〉 = 〈Bx−By, x−y〉 =
1
2
〈Tx−Ty, x−y〉

≥ 1
2
κ‖Tx − Ty‖2 =

1
2
κ‖2 · Tx−Ty

2
‖2

= 2κ‖Ax−Ay‖2 = 2κ‖Bx−By‖2.

Hence both A and B are 2κ-inverse-strongly monotone. Thus we get min{α, β} =
2κ. This shows that conditions (i)-(iv) in Theorem 3.3 are satisfied. Therefore, by
Theorem 3.3 we derive the desired conclusion. This completes the proof.

Remark 3.1. Compared with Theorem 4 of Plubtieng and Kumam [30], Theo-
rem 3.4 coincides essentially with it. Therefore, Theorem 3.3 includes it as a special
case. Indeed, Theorem 3.3 unifies, improves and extends it in the following as-
pects:

(i) the problem of finding an element of F (S) ∩GMEPP is more general than
the one of finding an element of F (S) ∩ VI (C , T ) because the generalized
mixed equilibrium problem with perturbation includes the variational inequal-
ity problem as a special case.

(ii) the iterative scheme (3.1) is more general than (3.25) because (3.1) reduces
to (3.25) by putting f = 0, ϕ = 0, A = B = 1

2T, γn = 0 and δn = 1 − βn

in Theorem 3.3.
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Let F : C → C be a k-strictly pseudocontractive mapping with k ∈ [0, 1). For
recent convergence result for strictly pseudocontractive mappings, we refer to Zeng,
Wong and Yao [28]. Putting T = I − F , we know that for all x, y ∈ C

‖(I − T )x − (I − T )y‖2 ≤ ‖x− y‖2 + k‖Tx− Ty‖2.

Since

‖(I − T )x − (I − T )y‖2 = ‖x − y‖2 + ‖Tx − Ty‖2 − 2〈x− y, Tx− Ty〉,

we have for all x, y ∈ C

〈x − y, Tx− Ty〉 ≥ 1 − k

2
‖Tx − Ty‖2.

Consequently, if F : C → C is a k-strictly pseudocontractive mapping, then the
mapping T = I − F is (1− k)/2-inverse-strongly monotone.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F : C → C be k-strictly pseudocontractive mapping, and {S n} be
a sequence of nonexpansive mappings from C into itself such that

⋂∞
n=1 F (Sn) ∩

VI (C , T ) 	= ∅, where T = I − F . For x1 ∈ C arbitrary, let {xn} ⊂ C be a
sequence generated by

xn+1 = βnxn + (1 − βn)SnPC((1− λn)xn + λnFxn),

for all n = 1, 2, ..., where λn ⊂ [0, 1− k] and {βn} ⊂ [0, 1] satisfy the following
conditions:

(i) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(ii) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− k.

Suppose that
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ B} < ∞ for any bounded subset
B of C. Let S be a mapping of C into itself defined by Sz = lim n→∞ Snz for
all z ∈ C and suppose that F (S) =

⋂∞
n=1 F (Sn). Then {xn} converges weakly to

w ∈ F (S) ∩VI (C , T ), where w = limn→∞ PF (S)∩VI (C ,T )xn.

Putting Sn = S in Theorems 3.1, 3.2 and 3.3, we immediately obtain the
following strong and weak convergence results.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let f : C×C → R be a bifunction which satisfies assumptions (H1)-(H4)
and ϕ : C → R be a lower semicontinuous and convex function with assumptions
(A1) or (A2). Let A, B : C → H be α-inverse-strongly monotone and β-inverse-
strongly monotone, respectively, and S be a nonexpansive mapping from C into
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itself such that F (S) ∩ GMEPP 	= ∅. For fixed u ∈ C and x 1 ∈ C arbitrary, let
{xn} ⊂ C be a sequence generated by

(3.26)
yn = T

(f,ϕ)
λn

(xn − λn(A + B)xn),

xn+1 = αnu + βnxn + γnyn + δnSyn,

for all n = 1, 2, ..., where 0 ≤ λn ≤ min{α, β}, {αn}, {βn}, {γn}, {δn} ⊂ [0, 1]
satisfy the following conditions:

(i) αn + βn + γn + δn = 1 for all n ≥ 1;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0;
(iv) limn→∞( γn+1

1−βn+1
− γn

1−βn
) = 0;

(v) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β} and limn→∞(λn −
λn+1) = 0.

Then {xn} converges strongly to x̄ = PF (S)∩GMEPPu.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let f : C × C → R be a bifunction which satisfies assumptions (H1)-
(H4) and ϕ : C → R be a lower semicontinuous and convex function with as-
sumptions (A1) or (A2). Let A, B : C → H be α-inverse-strongly monotone
and β-inverse-strongly monotone, respectively, and S be a nonexpansive map-
ping from C into itself such that F (S) ∩ GMEPP 	= ∅. For fixed u ∈ C
and x1 ∈ C arbitrary, let {xn} ⊂ C be a sequence generated by (3.26), where
0 ≤ λn ≤ min{α, β}, {αn}, {βn}, {γn}, {δn} ⊂ [0, 1] satisfy the following condi-
tions:

(i) αn + βn + γn + δn = 1 for all n ≥ 1;
(ii)

∑∞
n=1 αn < ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1 and lim infn→∞ δn > 0;
(iv) limn→∞( γn+1

1−βn+1
− γn

1−βn
) = 0;

(v) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β} and limn→∞(λn −
λn+1) = 0.

Then {xn} converges weakly to an element w ∈ F (S) ∩ GMEPP .

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let f : C×C → R be a bifunction which satisfies assumptions (H1)-(H4)
and ϕ : C → R be a lower semicontinuous and convex function with assumptions
(A1) or (A2). Let A, B : C → H be α-inverse-strongly monotone and β-inverse-
strongly monotone, respectively, and S be a nonexpansive mapping from C into
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itself such that F (S) ∩ GMEPP 	= ∅. For x1 ∈ C arbitrary, let {xn} ⊂ C be a
sequence generated by

yn = T
(f,ϕ)
λn

(xn − λn(A + B)xn),

xn+1 = βnxn + γnyn + δnSyn,

for all n = 1, 2, ..., where 0 ≤ λn ≤ min{α, β}, {βn}, {γn}, {δn} ⊂ [0, 1] satisfy
the following conditions:

(i) βn + γn + δn = 1 for all n ≥ 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) lim infn→∞ δn > 0;
(iv) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < min{α, β}.

Then {xn} converges weakly to w ∈ F (S) ∩ GMEPP , where w = limn→∞
PF (S)∩GMEPPxn.
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