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CUSPIDAL Q-RATIONAL TORSION SUBGROUP OF J(Γ) OF LEVEL P

Yao-Han Chen

Abstract. For p>3 an odd prime, let Γ be a congruence subgroup between
Γ1(p) and Γ0(p). In this article, we give an explicit basis for the group of
modular units on X(Γ) that have divisors defined over Q. As an application,
we determine the order of the cuspidal Q-rational torsion subgroup of J(Γ)
generated by the divisor classes of cuspidal divisors of degree 0 defined over
Q.

1. INTRODUCTION

Let Γ be a congruence subgroup between Γ1(N) and Γ0(N) for some positive
integer N . Denote by X(Γ) the modular curve over Q(µN ), where µN is the group

of N th roots of unity, and let J(Γ) be the Jacobian variety of X(Γ). In number
theory, it is very important to understand X(Γ) and J(Γ). For example, by the
modularity theorem, any elliptic curve over Q can be obtained from X0(N) for
some positive integer N . Besides, the existence of rational N -isogenies and the
existence of rational torsion points of order N on elliptic curves essentially depend

on the existence of non-cuspidal rational points on X(Γ0(N)) and X(Γ1(N)),
respectively. In this article, we are interested in the arithmetic aspects of X(Γ) and
J(Γ). In particular, suppose X(Γ) is defined over Q. Then we will study modular
units of X(Γ) that have divisors defined over Q and the cuspidal Q-rational torsion
subgroup of J(Γ) for the case the level N is a prime.

Let C(Γ) denote the Q-rational cuspidal subgroup of J(Γ) generated by the
divisor classes of cuspidal divisors of degree 0 defined over Q. It is of finite order
by the result of Manin and Drinfeld [7]. In general, it is believed that the cuspidal

rational torsion subgroup should be the whole rational torsion subgroup of J(Γ).
(For Γ = Γ1(p), the conjecture was formally stated in [2, Conjecture 6.2.2]).

The study of cuspidal torsion subgroup of J(Γ) is essentially the same as the
study of modular units on Γ because the divisor of a modular unit corresponds to the
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zero of the Jacobian J(Γ). In the case Γ = Γ0(N), a good source of modular units
comes from the Dedekind eta functions. M. Newman [9, 10] determined sufficient

conditions for a product
∏

d|N η(dτ)rd of Dedekind eta functions to be modular on

Γ0(N). In [14], Takagi showed that for square-free integers N , these functions
generate the group of modular units on Γ0(N). When N = p is a prime, Ogg [11]

computed that C(Γ0(p)) is cyclic of order p−1
(p−1,12). Moreover, Ogg [12] conjectured

and Mazur [8] proved that the full rational torsion subgroup of J(Γ0(p)) is C(Γ0(p))
generated by [(0) − (∞)]. For N = pr with p ≥ 3 a prime, Ling [6] computed
C(Γ0(pr)) and apply it to determine the component group of the Néron model of
J(Γ0(pr)) over Zp. When N = pq, where p, q are two distinct primes, Chua
and Ling [1] studied in C(Γ0(pq)) and use their results to refine some results of
Berkovic on the nontriviality of the Mordell-Weil group of some Eisenstein factors

of J(Γ0(pq)).
In this article, first we will prove the group of modular units on X(Γ) that have

divisors defined over Q is generated by Siegel functions for intermediate subgroups

Γ between Γ1(p) and Γ0(p), and then we will give an explicit basis for this group.
(The result is too complicated to be stated here. We refer the reader to Theorem 3

for details.) As an application, we determine the orders h(Γ) of C(Γ). (We note
that it seems that our proof can be easily derived from the methods and results of

Yang [16] at first glance. However and in fact, our proofs are independent on [16]

and hard to derived from it directly).

Here given a Dirichlet character χ moduloN , we letBk,χ denote the generalized

Bernoulli numbers defined by the power series

N∑

a=1

χ(a)
teat

eNt − 1
=

∞∑

k=0

Bk,χ

k!
tk.

In particular, if we let {x} be the fractional part of a real number x, then we have

B2,χ = N

N∑

a=1

χ(a)B2(a/N),

where

B2(x) = {x}2 − {x}+
1
6
.

Theorem 1. Let p > 3 be an odd prime, n := [Γ : Γ1(p)], and k := [Γ0(p) : Γ].
Then

h(Γ) = pc n

(6, n)

∏

χ 6=χ0, χk=χ0 , even

1
4
B2,χ,

where the product is taken over all even nonprincipal Dirichlet characters χ modulo

p satisfying χk = χ0, and
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c =

{
1, if Γ = Γ1(p),
0, otherwise.

(For Γ = Γ0(p), the product is empty and should be interpreted as 1.)

We remark that many mathematicians, for example, Klimek [3], Kubert and Lang

[4], Yu [17], and Yang [16], have studied cuspidal Q-rational torsion subgroups of
J(Γ). However, all of their works only considered a special subgroup C∞(Γ1(N))
of C(Γ1(N)) for different levels N , where C∞(Γ1(N)) is generated by the divisor
classes of the differences of the cusps of X(Γ1(N)) lying over ∞ of X(Γ0(N)).
(In fact, Klimek [3], Kubert and Lang [4], Yu [17] considered the the subgroup gen-

erated by the divisor classes of the differences of the cusps of X(Γ1(N)) lying over

0 of X(Γ0(N)). However, it is plain that the Atkin-Lehner involution
(

0 −1
N 0

)

gives rise to an isomorphism between the two divisor class groups.) In [17], Yu

showed that for arbitrary levelN , all modular units onX(Γ1(N)) that have divisors
supported on cusps lying over ∞ of X(Γ0(N)) are generated by Siegel functions
and then he computed the order of C∞(Γ1(N)). In [16], Yang used Yu’s order
formula to construct a basis of the modular units on X(Γ1(N)) that have divisors
supported on cusps lying over ∞ of X(Γ0(N)). In general, C∞(Γ) is not equal to
C(Γ). Thus, now it is more important to consider C(Γ). However, for the whole
C(Γ), it is unknown whether modular units on X(Γ) that have divisors defined over
Q are still generated by Siegel functions. Moreover, there is no information about

the order of C(Γ). Hence, it is very difficult to study in the case of arbitrary level
N even if N is a prime power or square-free integer. (Please see the remark in the

end of Sec. 2.1).

The rest of this article is organized as follows. In Section 2, we will recall some

notion and properties about cuspidal Q-rational torsion subgroups of Jacobians of
modular curves and Siegel functions. In Section 3, we will prove our main result

(Theorem 3). Then Theorem 1 is a consequence of Theorem 3. (The proof will

appear after Theorem 3.)

2. PRELIMINARIES

In this section, we will briefly review basics of modular curves that are relevant

to our problem. We then describe properties of Siegel functions, which will be the

building blocks for modular units on modular curves.

2.1. Cuspidal Q-rational torsion subgroups of J(Γ)

Let Γ be a congruence subgroup between Γ1(N) and Γ0(N) for some positive
integerN . Denote by X(Γ) the modular curve over Q(ζN ), where ζN is a primitive

N th root of unity, and let J(Γ) be the Jacobian variety of X(Γ). We know the cusps
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of X(Γ) are rational over Q(ζN ). Herein, we suppose X(Γ) is defined over Q.
The following lemma describes the action of the Galois group Gal(Q(ζN)/Q) on
the cusps in the case N = p is a prime.

Lemma 1. Let p be an odd prime, n = [Γ : Γ1(p)], and k = [Γ0(p) : Γ]. Let a
be a generator of (Z/pZ)×. Then the cusps on X(Γ) can be represented by

ai/p and 1/ai,

for i = 0, . . . , k−1. Moreover, for 0 ≤ j < p−1 and σaj ∈ Gal(Q(ζp)/Q) defined
by σaj : ζp 7→ ζaj

p , we have

σaj(ai/p) = ai/p, σaj(1/ai) = 1/ai−j ,

where 0 ≤ i − j ≤ k − 1 such that i − j ≡ ĩ − j mod k for 0 ≤ ĩ − j ≤
(p − 1)/2− 1 and ĩ− j ≡ ±(i − j) mod p − 1.

Proof. The cusps of X(Γ1(p)) fall into two categories, one consisting of cusps
c/(dp), where p - c, lying over ∞ of X(Γ0(p)) and the other consisting of cusps
c/d, where p - d, lying over 0 of X(Γ0(p)). Moreover, two cusps c1/(d1p) and
c2/(d2p) with p - ci are equivalent under Γ1(p) if and only if c1 ≡ ±c2 mod p.

Likewise, two cusps c1/d1 and c2/d2 with p - di are equivalent under Γ1(p) if
and only if d1 ≡ ±d2 mod p. Thus, there are totally p − 1 inequivalent cusps
of X(Γ1(p)), represented by i/p and 1/i for i = 1, . . . , (p − 1)/2. In addition,
ai goes through the representatives {1, . . . , (p− 1)/2} modulo p and ±1 as i runs

through 0, . . . , (p− 1)/2− 1, so we know that inequivalent cusps of X(Γ1(p)) can
be represented by ai/p and 1/ai for i = 0, . . . , (p−1)/2−1. Because Γ0(p)/Γ1(p)
is cyclic, we can write

Γ = 〈Γ1(p), γ〉

for some γ =
(

ak ∗
p ∗

)
. Thus, the inequivalent cusps of X(Γ) can be represented by

ai/p and 1/ai for i = 0, . . . , k − 1. For the second part of this lemma, it directly
follows from [13, Theorem 1.3.1]. Note that 1/ai−j and 1/aĩ−j is equivalent under

Γ.

Note that since the cusps ai/p are lying over ∞ of X0(p), we call them the
∞-cusps. Likewise, the cusps 1/ai are lying over 0 of X0(p), and they are referred
to as the 0-cusps of X0(p).

LetK be a subfield of Q(ζp). A cusp P is said to be defined overK, if P σ = P
for all σ ∈ Gal(Q(ζp)/K). More generally, a cuspidal divisor D =

∑
niPi is

defined over K, if Dσ :=
∑

niP
σ
i satisfies Dσ = D for all σ ∈ Gal(Q(ζN)/K).

Here we are interested in the case K = Q. From the above lemma, we immediately
obtain the following information about the Q-rational cuspidal divisor group of
X(Γ).
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Corollary 2. Let all the notations be given as in Lemma 1. Then the Q-rational
cuspidal divisor group of X(Γ) is a free abelian group of rank k + 1 generated by
the divisors

a0/p, a1/p, . . . , ak−1/p and

k−1∑

i=0

1/ai.

Proof. Let D be a Q-rational cuspidal divisor of X(Γ). Because D is a

cuspidal divisor, we have

D =
k−1∑

i=0

mi(ai/p) +
k−1∑

i=0

ni(1/ai)

for some integers mi and ni. Let σaj ∈ Gal(Q(ζp)/Q), where j = 0, ..., p− 1. By
above lemma,

Dσaj =
k−1∑

i=0

miσaj(ai/p) +
k−1∑

i=0

niσaj(1/ai) =
k−1∑

i=0

mi(ai/p) +
k−1∑

i=0

ni(1/ai−j),

where i − j is defined in above lemma. Because D is defined over Q, i.e., Dσ
aj =

D for all σaj ∈ Gal(Q(ζp)/Q), we know ni must be the same. Thus, D is generated

by {ai/p}k−1
i=0 and

∑k−1
i=0 1/ai. Then, clearly, the Q-rational cuspidal divisor group

of X(Γ) is a free abelian group of rank k + 1.

Now if D =
∑

niPi is a Q-rational cuspidal divisor of degree 0, then the
divisor class [D] is a Q-rational point on J(Γ). Moreover, by the result of Manin
and Drinfeld [7], this is a torsion point on J(Γ). We call the subgroup C(Γ) of
J(Γ) generated by all such divisor classes the cuspidalQ-rational torsion subgroup
of J(Γ). In order to investigate the order and the structure of this torsion subgroup,
we will study the group of modular units on X(Γ) that have divisors defined over
Q. In the next subsection, we will introduce the Siegel functions, which will be
used to construct an explicit basis for the group of modular units.

Remark. Cusps of X(Γ) lying over∞ of X(Γ0(N)) are defined over Q. Thus,
the subgroup C∞(Γ), which is generated by the divisor classes of the differences of
the cusps of X(Γ) lying over ∞ of X(Γ0(N)), is a subgroup of C(Γ). However,
C∞(Γ) is not equal to C(Γ) in general. (This follows from the coming examples
and the references [3, 4], and [17].) For instance, consider p = 41, let Γ be the
group corresponds to k = 4 and n = 5. We have

C∞(Γ) =
〈
{[(6i

p
) − (∞)]}3

i=0

〉

and

C(Γ) =

〈
{[(6i

p
)− (∞)]}3

i=0,

3∑

i=0

[(
1
6i

) − (∞)]

〉



1310 Yao-Han Chen

but C∞(Γ) 6= C(Γ) by Theorem 1 and Corollary 9. Consider another example

Γ1(35). Cusps of X1(35) consist of ∞-cusps, 0-cusps, 1/5-cusps, and 1/7-cusps,
where i-cusps are cusps of X(Γ1(35)) lying over i of X(Γ0(35)). Then we get
C∞(Γ1(35)) is generated by divisor classes {[(i/35)−(∞)]}1≤i≤35/2:(i,35)=1. More-

over, C(Γ1(35)) is generated by

{[(i/35)− (∞)]}1≤i≤35/2:(i,35)=1,
∑

1≤i≤35/2:(i,35)=1

[(1/i)− (∞)],

∑

1≤i<7:(i,35)=1

[(1/5i)− (∞)],
∑

1≤i<5:(i,35)=1

[(1/7i)− (∞)],

and many other classes of Q-rational cuspidal divisor of degree 0. We can see that
C(Γ1(35)) is potentially bigger than C∞(Γ1(35)). Besides, it contains more kinds
of divisor classes than the prime case. Moreover, as we mentioned before, it is

unknown whether modular units on X(Γ) that have divisors defined over Q are

still generated by Siegel functions. Also, there is no information about the order of

C(Γ). Hence, it is not an easy job to study in the case of arbitrary level N even if

N is a prime power or square-free integer.

2.2. Siegel functions

In this subsection we will introduce and discuss properties of Siegel functions

we will use. (See Section 2 in [16] for details.)

Let

B(x) = x2 − x +
1
6

be the second Bernoulli polynomial. For a given integer N , as in [16] we consider

a class of Siegel functions

E(N)
a (τ) = qNB(a/N)/2

∞∏

n=1

(1− q(n−1)N+a)(1 − qnN−a),

for integers a not congruent to 0 modulo N , where q = e2πiτ . Since we only

consider congruence groups of a fixed level in this note, we shall omit the superscript

from the notation E
(N)
a .

Note that it is easy to see that Eg+N = E−g = −Eg. Hence, there are only

d(N − 1)/2e essentially distinct Eg, indexed over the set (Z/NZ)/± 1− {0}, for
given N . Thus, a product

∏
g E

eg
g is taken over g ∈ (Z/NZ)/± 1 − {0}.

Now we give some properties of Eg relevant to our consideration. The first is

the transformation law for Eg.

Proposition 3. [15, Corollary 2]. The functions Eg satisfy
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Eg+N = E−g = −Eg.

Moreover, let γ =
(

a b

c d

)
∈ Γ0(N). We have, for c = 0,

Eg(τ + b) = eπibNB(g/N)Eg(τ),

and, for c > 0,

Eg(γτ) = ε(a, bN, c, d)eπi(g2ab/N−gb)Eag(τ),

where

ε(a, b, c, d) =

{
eπi(bd(1−c2)+c(a+d−3))/6, if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6, if d is odd.

From Proposition 3, we give sufficient conditions for a product
∏

g E
eg
g to be

modular on Γ1(N).

Proposition 4. [5, Chapter 3], [15, Corollary 3]. Consider a function f(τ) =∏
g Eg(τ)eg , where g and eg are integers with g not divisible by N . Suppose that

one has

(1)
∑

g

eg ≡ 0 mod 12,
∑

g

geg ≡ 0 mod 2

and

(2)
∑

g

g2eg ≡ 0 mod 2N.

Then f is a modular function on Γ1(N). Furthermore, for the cases where N is a

positive odd integer, conditions (1) and (2) can be reduced to
∑

g

eg ≡ 0 mod 12

and ∑

g

g2eg ≡ 0 mod N,

respectively.

The following proposition gives the order of Eg at cusps of X(Γ1(N)).

Proposition 5. [15, Lemma 2]. The order of the function Eg at a cusps a/c of
X1(N) with (a, c) = 1 is (c, N)B2(ag/(c, N))/2, where B2(x) = {x}2−{x}+1/6
and {x} denotes the fractional part of a real number x.
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3. MAIN RESULTS

3.1. Notations

Throughout this section, we let p > 3 be a prime and Γ be an intermediate group
between Γ0(p) and Γ1(p). Suppose X(Γ) is defined over Q. Set n := [Γ : Γ1(p)]
and k := [Γ0(p) : Γ]. Let a be an even generator of (Z/pZ)×. Note that we have

nk = [Γ0(p) : Γ1(p)] = φ(p)/2 = (p − 1)/2

and

Γ = 〈Γ1(p), γ〉
for some

γ =
(

ak ∗
p ∗

)
.

We shall adopt the following notations for X(Γ).

D (Γ) = the group of cuspidal divisors of degree 0 on X(Γ) having divisors defined
over Q,

F (Γ) = the group of modular units on Γ that have divisors defined over Q,

C(Γ) = D (Γ)/divF (Γ), the cuspidal rational torsion subgroup of J(Γ),
h(Γ) = |C(Γ)|, the order of C(Γ).

By Lemma 1, all cusps of X(Γ) lying over ∞ of X0(p) are rational over Q.
In our approach, these cusps play an important role. Thus, we also introduce the

following notations.

D
∞(Γ) = the group of cuspidal divisors of degree 0 on X(Γ) having divisors

supported on cusps lying over ∞ of X0(p),
F

∞(Γ) = the group of modular units on Γ that have divisors supported on cusps
lying over ∞ of X0(p),

C∞(Γ) = D
∞(Γ)/divF ∞(Γ),

h∞(Γ) = |C∞(Γ)|, the order of C∞(Γ).

3.2. Reduction to the study of F ∞(Γ) and h∞(Γ)

The main purpose of this subsection is to show that the problem of determining

F(Γ) and h(Γ) can be reduced to that of F∞(Γ) and h∞(Γ).

Lemma 6. Let f be a modular unit in F (Γ). Then f is of the form
∏

g

E
eg
g ,

where 12|
∑

g eg.
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Proof. Because F (Γ) ⊆ F (Γ1(p)), it suffices to show the case F (Γ1(p)).
Let Pi denote the cusps ai/p and Qi the cusps 1/ai. Because f ∈ F (Γ1(p)) has
divisor defined over Q, the orders of div (f) at Qi, i = 0, 1, . . . , (p − 1)/2 − 1,
must be the same. That is,

div (f) =
(p−1)/2−1∑

i=0

ci(Pi) + c

(p−1)/2−1∑

i=0

(Qi)

for some integers ci and c. Now by Lagrange’s four square theorem, p is the sum

of at most 4 squares, say p = g2
1 + . . . + g2

` , where ` ≤ 4. Set

h = (Eg1 . . .Eg`
)12/`.

By Proposition 4, h is a modular function on Γ1(p) whose poles and zeros are all
at Pi and Qi. Furthermore, the order of h at Qi are all 1 by Proposition 5. Thus,
div (f/hc) = div (f)− cdiv (h) has support on Pi. By the works of [17, Theorem

4] or [16, Theorem1], we know f/hc is of the form
∏

g′ E
eg′

g′ with
∑

g′ eg′ = 0.

Thus, f = (hc)(̇f/hc) is the form
∏

g E
eg
g , where 12|

∑
g eg .

Lemma 7. Let p > 3 be a prime, n = [Γ : Γ1(p)], and k = [Γ0(p) : Γ]. Let a

be an even generator of (Z/pZ)×. Assume that n > 1. Then the function

f0 = (Ea0Eak . . .Ea(n−1)k)12/(6,n)

is a modular unit in F(Γ). Moreover, f0 is a generator of F(Γ)/F∞(Γ).

Proof. First, we use Proposition 4 to show that f0 is modular on Γ1(p). Because
n > 1, we have k < (p − 1)/2 and then a2k 6≡ 1 mod p. Thus,

n−1∑

s=0

a2sk ≡ (a2kn − 1)(a2k − 1)−1 ≡ 0 mod p.

Hence, Condition (2) of Proposition 4 is satisfied. Condition (1) is trivial. Then

f0 is modular on Γ1(p). Next, we show f0 is modular on Γ. As above discussion,
we know

∑n−1
s=0 2ask ≡ 0 mod 2 and

∑n−1
s=0 2a2sk ≡ 0 mod 2p. Then by using the

transformation law of Proposition 3, we know

f0(γτ) =
n−1∏

s=0

Eask(γτ)12/(6,n) =

(
Eank(τ)

n−1∏

s=1

Eask(τ)

)12/(6,n)

.

Let

ank = −1 + up
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for some integer u. Because Eank = (−1)u+1Ea0 , the above product is equal to

(
(−1)u+1

n−1∏

s=0

Eask(τ)

)12/(6,n)

=

(
n−1∏

s=0

Eask(τ)

)12/(6,n)

= f0(τ).

Thus, f0 is modular on Γ. Note that by Proposition 5, f0 has order n/(6, n) at
cusps 1/ai for all i = 0, . . . , k − 1.

Now we want to show the second part of this lemma. Let f ∈ F (Γ). Because
f is modular on Γ, by Lemma 6, we know

f =
∏

g

E
cg
g ,

where 12|
∑

g cg. From f(γτ) = f(τ), we must have caikg = cg for all i, g. Hence,
we can write

f = Ee0

a0E
e1

a1 . . .E
ek−1

ak−1E
e0

akEe1

a1+k . . .E
ek−1

a2k−1E
e0

a(n−1)kE
e1

a1+(n−1)k . . .E
ek−1

ank−1

=
k−1∏

i=0

(EaiEai+k . . .Eai+(n−1)k)ei

for some integers ei with 12|(e0 + . . . + ek−1)n.
First, we show that 2|

∑k−1
i=0 ei. Because f is modular on Γ, we have

f(τ) = f(γτ).

From Eank = (−1)u+1Ea0, we know that f(γτ) is equal to

(−1)e0(u+1)
k∏

i=1

n−1∏

s=0

Eei

ai+sk(γτ),

where we set

ek := e0.

Because a is even, as above discussions, this implies
∑n−1

s=0 a2(i+sk) ≡ 0 mod 2p,
and

∑n−1
s=0 ai+sk ≡ 0 mod 2 for i = 1, . . . , k. Then, by the transformation law of

Proposition 3, the above product equals

(−1)e0(u+1)

(
k∏

i=1

n−1∏

s=1

Eei

ai+sk(τ)

)
k∏

i=1

Eei

ai+nk(τ).

Because ai+nk =−ai+aiup, from Proposition 3, we knowEai+nk =(−1)aiu+1Eai

and then the above product is equal to

(−1)e0(u+1)(−1)
∑k

i=1 ei(a
iu+1)

k∏

i=1

n−1∏

s=0

Eei

ai+sk(τ) = (−1)
∑k

i=1 ei(a
iu+1)f(τ),
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Thus, 2 |
∑k

i=1 ei(aiu + 1). Moreover, because 2 | a implies 2 |
∑k

i=1 eia
iu, we

get 2 |
∑k

i=1 ei =
∑k−1

i=0 ei.

Now we can show f0 is a generator of F(Γ)/F∞(Γ). Let Pi denote the cusps

ai/p and Qi the cusps 1/ai. Then

div (f) =

p−1
2

−1∑

i=0

ci(Pi) +
n

12

(
k−1∑

i=0

ei

) p−1
2

−1∑

i=0

(Qi)

for some integers ci. Let e :=
∑k−1

i=0 ei. Then 2 | e by above discussions. From
Lemma 6, we know that

e · n
(6,n)

2 · 6
(6,n)

=
en

12
∈ Z.

If 2 | n, because ( n
(6,n)

, 6
(6,n)

) = 1, 2 | e, and 2 - 6
(6,n)

, we know
e(6,n)

12 = e
2· 6

(6,n)

∈ Z.

If 2 - n, because ( n
(6,n) ,

6
(6,n)) = 1, we also get e(6,n)

12 = e
2· 6

(6,n)

∈ Z. Thus, the

orders of f at Qi are the same and are a multiple of
n

(6,n) . Because f0 has order
n

(6,n)
at cusps Qi for all i = 0, . . . , k − 1, we get

div (f/f
e(6,n)

12
0 ) = div (f) − e(6, n)

12
div (f0) =

p−1
2

−1∑

i=0

c′i(Pi)

for some integers c′i. Therefor, f0 is a generator of F(Γ)/F∞(Γ).

3.3. A basis for F ∞(Γ) and computation of h∞(Γ)

In view of Lemma 7, to determine F(Γ) and h(Γ), it suffices to determine
F
∞(Γ) and h∞(Γ). This will be achieved in this subsection.
We first describe a construction of modular functions belonging to F ∞(Γ) for

Γ 6= Γ1(p), Γ0(p).

Lemma 8. Let p > 3 be an odd prime, n := [Γ : Γ1(p)], and k := [Γ0(p) : Γ].
Let a be an even generator of (Z/pZ)×. Suppose Γ 6= Γ1(p), Γ0(p). Then

EaiEai+k . . .Eai+(n−1)k

Eak−1Eak−1+k . . .Eak−1+(n−1)k

is a modular function in F ∞(Γ) for all i = 0, 1, . . . , k − 2.

Proof. Given 0 < i < k− 1, by Proposition 5, we know fi :=
∏n−1

s=0 (Eai+sk/

Eak−1+sk) has zeros and poles only at cusps of X(Γ) lying over ∞ of X(Γ0(N)).
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It remains to show it is modular on Γ and then it is in F ∞(Γ). First, we use
Proposition 4 to show that it is modular on Γ1(p). Because Γ 6= Γ1(p), i.e. n 6= 1,
we have k < (p − 1)/2 and then a2k 6≡ 1 mod p. Thus,

a2i + a2(i+k) + . . . + a2(i+(n−1)k) ≡ a2i(a2kn − 1)(a2k − 1)−1 ≡ 0 mod p.

Also, a2(k−1) + a2(2k−1) + . . . + a2(nk−1) ≡ 0 mod p. Hence, Condition (2) of
Proposition 4 is satisfied. Condition (1) is trivial. Then fi is modular on Γ1(p).

Next, we want to show fi(γτ) = fi(τ). Because 2|a, we see that

n−1∑

s=0

(ai+sk − ak−1+sk) ≡ 0 mod 2

and
n−1∑

s=0

(a2(i+sk) − a2(k−1+sk)) ≡ 0 mod 2p.

Then by the transformation law in Proposition 3, we know

fi(γτ) =
n−1∏

s=0

Eai+sk+k

Eak−1+sk+k

(τ) =
Eai+nk

Eak−1+nk

(τ)
n−1∏

s=1

Eai+sk

Eak−1+sk

(τ).

Let ank = −1 + up for some integer u. Then aj+nk = −aj + uajp for j =
1, . . . , k − 1. From Proposition 3, we know Eaj+nk = (−1)uaj+1Eaj . Thus,

Eai+nk

Eak−1+nk

= (−1)u(ai−ak−1) Eai

Eak−1

.

Because 2|(ai − ak−1), this equals

Eai

Eak−1

.

Then fi(γτ) = f(τ). Therefore, fi is in F
∞(Γ).

For i = 0, we know
∏n−1

s=0 (Eask/Eak−1+sk) = (−1)u+1
∏n−1

s=0 (Eak+sk/
Eak−1+sk) because Eank = (−1)u+1Ea0 . Then it is in F ∞(Γ) by a similar discus-
sion as above.

Now we can give a basis for F ∞(Γ) for Γ 6= Γ1(p), Γ0(p). We remark that
a basis for F ∞(Γ1(p)) modulo C× is given by Yang in [16]. (Note that at first
glance, it seems that it would be easy to get following theorem from [16]. However

and actually, it is hard to get the results from [16] directly.)
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Theorem 2. Let p > 3 be an odd prime, n := [Γ : Γ1(p)], and k := [Γ0(p) : Γ].
Let a be an even generator of (Z/pZ)×. Suppose Γ 6= Γ1(p), Γ0(p). Then

{
EaiEai+k . . .Eai+(n−1)k

Eak−1Eak−1+k . . .Eak−1+(n−1)k

}

i=0,...,k−2

is a basis for F ∞(Γ) modulo C×.

Proof. Let f ∈ F
∞(Γ). Then f ∈ F

∞(Γ1(p)). By the works of [17,
Theorem 4] or [16, Theorem 1], we can write f =

∏
g E

eg
g , where

∑
g eg = 0.

Because f(γτ) = f(τ), we must have eaikg = eg for all i, g. Hence,

f = Ec0
a0E

c1
a1 . . .E

ck−1

ak−1E
c0
akE

c1
a1+k . . .E

ck−1

a2k−1E
c0
a(n−1)kEc1

a1+(n−1)k . . .E
ck−1

ank−1

=
k−2∏

i=0

(
EaiEai+k . . .Eai+(n−1)k

Eak−1Eak−1+k . . .Eak−1+(n−1)k

)ci

for some ci with
∑k−1

i=0 ci = 0. Thus, by above lemma, these functions form a basis
for F ∞(Γ) modulo C×.

Using the result above and a simple argument in linear algebra, we can easily

compute the order h∞(Γ) = |C∞(Γ)| = |D ∞(Γ)/divF ∞(Γ)|. Note that

h∞(Γ1(p)) = p
∏

χ 6=χ0, even

1
4
B2,χ,

where the product is taken over all even non-principal Dirichlet characters modulo

p, is given by Klimek [3].

Corollary 9. Let p > 3 be an odd prime and let k := [Γ0(p) : Γ].

h∞(Γ) =
∏

χ 6=χ0, χk=χ0 , even

1
4
B2,χ,

where the product is taken over all even non-principal Dirichlet characters χ mod-

ulo p satisfying χk = χ0. (As before, when Γ = Γ0(p), the product is empty and is
understood to equal 1.)

Before proving the corollary, we need the following elementary lemma from

linear algebra. (For a proof, see [16, Lemma 6].)

Lemma 10. Let Λ ⊂ Rn be the lattice of rank n − 1 spanned by the vectors
of the form (0, . . . , 1,−1, 0, . . . , 0). Let Λ′ be a sublattice of Λ of the same rank



1318 Yao-Han Chen

generated by v1, . . . , vn−1 ∈ Λ. Let vn = (c1, . . . , cn) be any vector such that∑
i ci 6= 0, and M be the n × n matrix whose ith row is vi. Then we have

(Λ : Λ′) =

∣∣∣∣∣∣

(
n∑

i=1

ci

)−1

det M

∣∣∣∣∣∣
.

Now we can start to prove Corollary 9. Proof. [Proof of Corollary 9] For all

i = 0, . . . , k − 1, set

ci :=
p

2

n−1∑

s=0

B2

(
ai+sk

p

)
,

where B2(x) = {x}2 − {x} + 1/6. The inequivalent cusps of Γ lying over ∞
of X0(p) are {aj

p }
k−1
j=0 . Then, by Proposition 5, it is easy to see that for i, j =

0, . . . , k−1, the order of EaiEai+k . . .Eai+k(n−1) at aj

p is ci+j . Thus, from Theorem

2 and Lemma 10, we know

h∞(Γ)

=

∣∣∣∣∣∣∣∣∣∣∣

(
k−1∑

i=0

ci)−1 det




c0 − ck−1 c1 − c0 · · · ck−2 − ck−3 ck−1 − ck−2

c1 − ck−1 c2 − c0 · · · ck−1 − ck−3 c0 − ck−2
...

...
...

...
...

ck−2 − ck−1 ck−1 − c0 · · · ck−4 − ck−3 ck−3 − ck−2

ck−1 c0 · · · ck−3 ck−2




∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(
k−1∑

i=0

ci)−1 det




c0 c1 · · · ck−2 ck−1

c1 c2 · · · ck−1 c0
...

...
...

...
...

ck−2 ck−1 · · · ck−4 ck−3

ck−1 c0 · · · ck−3 ck−2




∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

(
k−1∑

i=0

ci)−1 det




c0 c1 · · · ck−2 ck−1

ck−1 c0 · · · ck−3 ck−2
...

...
...

...
...

c2 c3 · · · c0 c1

c1 c2 · · · ck−1 c0




∣∣∣∣∣∣∣∣∣∣∣

.

Let ξ be a primitive kth roots of unity, λs = c0 + c1ξ
s + . . . + ck−1ξ

s(k−1), and

vs = (1, ξs, . . . , ξs(k−2), ξs(k−1))t, for s = 0, . . . , k − 1. It is easy to see that


c0 c1 · · · ck−2 ck−1

ck−1 c0 · · · ck−3 ck−2
...

...
...

...
...

c2 c3 · · · c0 c1

c1 c2 · · · ck−1 c0




vs = λsvs.
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Hence,

det




c0 c1 · · · ck−2 ck−1

ck−1 c0 · · · ck−3 ck−2
...

...
...

...
...

c2 c3 · · · c0 c1

c1 c2 · · · ck−1 c0




=
k−1∏

s=0

λs =
k−1∏

s=0

(
k−1∑

t=0

ctξ
st

)
.

Consider
∑k−1

t=0 ctξ
st for each fixed s. Recall that B2(x) is an even and periodic

function. Then it is easy to see that

k−1∑

t=0

ctξ
st =

p

2

k−1∑

t=0

n−1∑

r=0

ξstB2

(
at+rk

p

)
=

p

2

k−1∑

t=0

n−1∑

r=0

χ(a)tB2

(
at+rk

p

)

=
p

2

kn−1∑

t=0

χ(at)B2

(
at

p

)
=

1
4
B2,χ,

where χ is the Dirichlet character determined by χ(a) = ξs. Therefore, we get

h∞(Γ) =

∣∣∣∣∣
k−1∏

s=1

(
k−1∑

t=0

ctξ
st

)∣∣∣∣∣ =
∏

χk=χ0 , χ 6=χ0, χ even

1
4
B2,χ.

This completes the proof of the corollary.

3.4. A basis for F (Γ) and computation of h(Γ)

All notations are as before.

Combining Lemma 7 and Theorem 2, we immediately obtain the main result of

this paper.

Theorem 3. Let p > 3 be an odd prime, n := [Γ : Γ1(p)], and k := [Γ0(p) : Γ].
Let a be an even generator of (Z/pZ)×. Assume that n > 1. Then

{
EaiEai+k . . .Eai+(n−1)k

Eak−1Eak−1+k . . .Eak−1+(n−1)k

}

i=0,...,k−2

and

(Ea0Eak . . .Ea(n−1)k)12/(6,n)

form a basis for F (Γ) modulo C×. (For Γ = Γ0(p), it is understood that there
are no functions of first form.)
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Remark. When n = (p − 1)/2 and k = 1, i.e. Γ = Γ0(p),

(Ea0Ea1 . . .Ea((p−1)/2−1))12/(6,(p−1)/2) = (η(τ)/η(pτ))24/(12,p−1)

generates F (Γ0(p)) modulo C× and then it is easy to see C(Γ0(p)) is cyclic of
order

p−1
(p−1,12). Thus, our results recover Ogg’s results in [11]. Also observe that

for n = 1 and k = (p − 1)/2, i.e. Γ = Γ1(p), from the proof of Lemma 6, we can
get a basis for F (Γ1(p)) modulo C× by joining the function (Eg1 . . .Eg`

)12/` to

the basis for F ∞(Γ1(p)) modulo C× given in [16, Theorem 1].)
Finally, we want to compute h(Γ) = |C(Γ)|. Note that h(Γ0(p)) = p−1

(p−1,12) is

computed by Ogg [11]. (We also recover this result by above remark.)

Proof of Theorem 1. Let Pi denote the cusps ai/p and Qi the cusps 1/ai. Let

D be a cuspidal divisor defined over Q. Because D is defined over Q, the orders
of D at Qi, i = 0, 1, . . . , k − 1, must be the same. That is,

D =
k−1∑

i=0

ci(Pi) + c

k−1∑

i=0

(Qi)

for some integers ci and c.

If Γ = Γ1(p), we consider the modular function (Eg1 . . .Eg`
)12/` on Γ1(p)

appeared in the proof of Lemma 6. It has orders 1 at Qi for all i. Then, it is easy to

see that for each cuspidal divisor D defined over Q, there exists a cuspidal divisor
D′ with support on the ∞-cusps (i.e. Pi = ai/p), such that D − D′ is principal.

Thus, we know

h(Γ1(p)) = h∞(Γ1(p)) = p
∏

χ 6=χ0 even

1
4
B2,χ.

For the cases Γ 6= Γ1(p), Γ0(p), we consider (Ea0Eak . . .Ea(n−1)k)
12

(6,n) . It is a

modular unit in F (Γ). Also it has order n
(6,n) at cusps Qi for all i = 0, . . . , k− 1.

Then, by the same token, we know that for each cuspidal divisor D defined over Q
whose orders at Qi are a multiple of

n
(6,n) , there exists a cuspidal divisor D′ with

support on the∞-cusps (i.e. Pi), such that D−D′ is principal. Moreover, for each

f ∈ F (Γ), as in the proof of Lemma 7, we know that its orders at Qi must be a

multiple of n
(6,n) . Hence, we get that

h(Γ) =
n

(6, n)
h∞(Γ) =

n

(6, n)

∏

χ 6=χ0 , χk=χ0, even

1
4
B2,χ.

This completes the proof of Theorem 1.
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3.5. Numerical Results

In this subsection, we give a table of numerical results, which describes the

order h(Γ) and the group structure of C(Γ), where Γ is an intermediate subgroup

Table 1. The order h(Γ) and the group structure of C(Γ)

p k n h(Γ) structure

11 1 5 5 cyclic
11 5 1 5 cyclic

13 1 6 1 cyclic
13 2 3 1 cyclic

13 3 2 1 cyclic

13 6 1 19 cyclic
17 1 8 22 cyclic

17 2 4 22 [2, 2]
17 4 2 22 cyclic

17 8 1 23 · 73 cyclic
19 1 9 3 cyclic

19 3 3 3 cyclic
19 9 1 32 · 487 cyclic

23 1 11 11 cyclic

23 11 1 11 · 37181 cyclic
29 1 14 7 cyclic

29 2 7 3 · 7 cyclic
29 7 2 23 · 7 · 43 [2, 2, 602]
29 14 1 26 · 3 · 7 · 43 · 17837 [4, 4, 64427244]
31 1 15 5 cyclic

31 3 5 22 · 5 · 7 [2, 70]
31 5 3 52 · 11 [5, 55]
31 15 1 22 · 52 · 7 · 11 · 2302381 [10, 1772833370]
37 1 18 3 cyclic
37 2 9 3 · 5 cyclic

37 3 6 3 · 7 cyclic
37 6 3 3 · 5 · 7 · 37 cyclic

37 9 2 32 · 7 · 19 · 577 cyclic

37 18 1 32 · 5 · 7 · 19 · 37 · 73 · 577 · 17209 cyclic
41 1 20 2 · 5 cyclic

41 2 10 23 · 5 cyclic
41 4 5 24 · 5 · 13 cyclic

41 5 4 2 · 5 · 431 cyclic
41 10 2 23 · 5 · 312 · 431 cyclic

41 20 1 24 · 5 · 13 · 312 · 431 · 250183721 cyclic

43 1 21 7 cyclic
43 3 7 22 · 7 · 19 [2, 266]
43 7 3 7 · 29 · 463 cyclic
43 21 1 22 · 7 · 19 · 29 · 463 · 1051 · 416532733 [2, 1563552532984879906]
47 1 23 23 cyclic
47 23 1 23 · 139 · 82397087 · 12451196833 cyclic
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between Γ1(p) and Γ0(p) for a prime p ≤ 50. (Note that for p = 5, 7, the Jacobian
is trivial.) As before, we let n := [Γ : Γ1(p)], and k := [Γ0(p) : Γ]. Note that the
cases k = 1 or n = 1 are covered by Ogg [16] and Yang [16], respectively. Herein,
the notation [d1, . . . , dm]means that the group structure is (Z/d1Z)×. . .×(Z/dmZ).

We give a example to explain our ideas about numerical computation.

Example. For p = 41, let Γ be the group corresponds to k = 4 and n = 5. We
consider the k × k matrix

H =




−6 7 −2 0
1 5 −1 0
−1 6 −7 0
−59 25 1 5


 .

For i = 0, . . . , k − 2, the i + 1th row of H represents the order of
∏n−1

s=0 (Eai+sk/

Eak−1+sk) at the ∞-cusps aj/p, j = 0, . . . , k − 1 and the 0-cusp 1. The kth
row represents the orders of (Ea0 . . .Ea(n−1)k)12/(6,n) at the ∞-cusps aj/p, j =
1, . . . , k − 1, and the 0-cusp 1. Note that we only consider one 0-cusp because
a Q-rational cuspidal divisor has the same order at 0-cusps.Thus, H represents a

basis of divF (Γ). Then the Smith normal form of H , which is




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1040


 ,

gives us the structure of C(Γ).
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