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GENERALIZED PROJECTION ALGORITHMS FOR MAXIMAL
MONOTONE OPERATORS AND RELATIVELY NONEXPANSIVE

MAPPINGS IN BANACH SPACES

Chakkrid Klin-Eam, Suthep Suantai and Wataru Takahashi*

Abstract. In this paper, we prove strong convergence theorems of modified
Halpern’s iteration for finding a common element of the zero point set of a
maximal monotone operator and the fixed point set of a relatively nonexpan-
sive mapping in a Banach space by using two hybrid methods. Using these
results, we obtain new convergence results for resolvents of maximal monotone
operators and relatively nonexpansive mappings in Banach spaces.

1. INTRODUCTION

Let E be a real Banach space with ‖ · ‖ and let E ∗ be the dual space of E .
Let A be a maximal monotone operator from E to E∗. It is well-known that many
problems in nonlinear analysis and optimization can be formulated as follows: Find
a point u ∈ E satisfying

0 ∈ Au.

We denote by A−10 the set of all points u ∈ C such that 0 ∈ Au. Such a problem
contains numerous problems in economics, optimization and physics. A well-known
method for solving this problem is called the proximal point algorithm: x 0 ∈ E
and

xn+1 = Jrnxn, n = 0, 1, 2, 3, ...,

where {rn} ⊂ (0,∞) and Jrn are the resovents of A. Many researchers have studied
this algorithm in a Hilbert space; see, for instance, [5, 6, 18, 19] and in a Banach
space; see, for instance, [7, 8]. Let C be a nonempty closed convex subset of E .
Recall that a self-mapping T : C → C is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
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for all x, y ∈ C. We use F (T ) to denote the set of fixed points of T , that is,
F (T ) = {x ∈ C : x = Tx}.

Two classical iteration processes are often used to approximate a fixed point
of a nonexpansive mapping. The first one was introduced in 1953 by Mann [10]
which is well-known as Mann’s iteration process and is defined as follows: Take
an initial guess x0 ∈ C arbitrarily and define {xn} recursively by

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where the sequence {αn} is in the interval [0, 1]. Fourteen year later, Halpern [3]
proposed the new innovation iteration process which is resemble in Mann’s iteration
(1.1). It is defined as follows:

(1.2) xn+1 = αnu + (1− αn)Txn, n ≥ 0,

where u ∈ C is an arbitrary (but fixed) element, the initial guess x0 is taken in C
and the sequence {αn} is in the interval [0, 1].

Next, we recall that for all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x
by 〈x, x∗〉. Then, the normalized duality mapping J on E is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

By the Hahn-Banach theorem, Jx is nonempty. We know that if E is smooth, then
the duality mapping J is single-valued. Next, we assume that E is a smooth Banach
space and define the function φ : E × E → R by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E.

A point u ∈ C is said to be an asymptotic fixed point of T [16] if C contains
a sequence {xn} which converges weakly to u and lim

n→∞ ‖xn − Txn‖ = 0. We

denote the set of all asymptotic fixed points of T by F̂ (T ). Following Matsushita
and Takahashi [12], a mapping T : C → C is said to be relatively nonexpansive if
F̂ (T ) = F (T ) �= ∅ and φ(u, Tx) ≤ φ(u, x) for all u ∈ F (T ) and x ∈ C.

In 2004, Mastsushita and Takahashi [13] proposed the following modification
of the Mann iteration method for a relatively nonexpansive mapping T in a Banach
space E: Take an initial guess x0 ∈ C arbitrarily and define {xn} by

un = J−1
(
αnJxn + (1 − αn)JTxn

)
,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0

(1.3)
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for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1]. In
particular, in a Hilbert space the iteration processes (1.3) was considered by Nakajo
and Takahashi [14].

Recently, Qin and Su [15] has adapted Mastsushita and Takahashi’s idea [13]
to modify the process (1.2) for a relatively nonexpansive mapping T in a Banach
space E: Take an initial guess x0 ∈ C arbitrarily and define {xn} recursively by

un = J−1
(
αnJx0 + (1 − αn)JTxn

)
,

Cn = {z ∈ C : φ(z, un) ≤ αnφ(z, x0) + (1− αn)φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0

(1.4)

for all n ∈ N ∪ {0}, where J is the duality mapping on E and {αn} ⊂ [0, 1].
In particular, in a Hilbert space the iteration processes (1.4) was considered by
Martinez-Yanes and Xu [11].

Very recently, Inoue, Takahashi and Zembayashi [4] proved the following strong
convergence theorem for finding a common element of the zero point set of a
maximal monotone operator and the fixed point set of a relatively nonexpansive
mapping by using the hybrid method:

Theorem 1.1. (Inoue, Takahashi and Zembayashi [4]). Let E be a uniformly
convex and uniformly smooth Banach space and let C be a nonempty closed convex
subset of E . Let A ⊂ E×E∗ be a maximal monotone operator satisfying D(A) ⊂
C and let Jr = (J + rA)−1J for all r > 0. Let T : C → C be a relatively
nonexpansive mapping such that F (T ) ∩ A−10 �= ∅. Let {xn} be a sequence
generated by x0 = x ∈ C and

un = J−1
(
αnJxn + (1 − αn)JTJrnxn

)
,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. If lim inf

n→∞ (1 − αn) > 0, then {xn} converges
strongly to ΠF (T )∩A−10x0, where ΠF (T )∩A−10 is the generalized projection of E
onto F (T ) ∩ A−10.

Let us call the hybrid method in Theorem 1.1 the normal hybrid method. Inoue,
Takahashi and Zembayashi also proved the following theorem by using another
hybrid method called the shrinking projection method.
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Theorem 1.2. (Inoue, Takahashi and Zembayashi [4]). Let E be a uniformly
convex and uniformly smooth Banach space and let C be a nonempty closed convex
subset of E . Let A ⊂ E×E∗ be a maximal monotone operator satisfying D(A) ⊂
C and let Jr = (J + rA)−1J for all r > 0. Let T : C → C be a relatively
nonexpansive mapping such that F (T ) ∩ A−10 �= ∅. Let {xn} be a sequence
generated by x0 = x ∈ C, C0 = C and

un = J−1
(
αnJxn + (1− αn)JTJrnxn

)
,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. If lim inf

n→∞ (1 − αn) > 0, then {xn} converges
strongly to ΠF (T )∩A−10x0, where ΠF (T )∩A−10 is the generalized projection of E
onto F (T ) ∩ A−10.

The purpose of this paper is to employ Inoue, Takahashi and Zembayashi’s idea
[4] to modify the process (1.4) for finding a common element of the zero point set
of a maximal monotone operator and the fixed point set of a relatively nonexpansive
mapping by using the normal hybrid method and the shrinking projection method.
We have two strong convergence theorems in a Banach space and using these results,
we obtain new convergence results for resolvents of maximal monotone operators
and relatively nonexpansive mappings in a Banach space.

2. PRELIMINARIES

Throughout this paper, all linear spaces are real. Let N and R be the sets of all
positive integers and real numbers, respectively. Let E be a Banach space and let
E∗ be the dual space of E . For a sequence {xn} of E and a point x ∈ E , the weak
convergence of {xn} to x and the strong convergence of {xn} to x are denoted by
xn ⇀ x and xn → x, respectively.

Let E be a Banach space. Then the duality mapping J from E into 2E∗ is
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E . Then the space E is
said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists
uniformly in x, y ∈ S(E). A Banach space E is said to be strictly convex if
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‖x+y
2 ‖ < 1 whenever x, y ∈ S(E) and x �= y. It is said to be uniformly convex

if for each ε ∈ (0, 2], there exists δ > 0 such that ‖ x+y
2 ‖ < 1 − δ whenever

x, y ∈ S(E) and ‖x− y‖ ≥ ε. We know the following; see [20]:
(i) If E in smooth, then J is single-valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone;
(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E .

A Banach space E is said to have Kadec-Klee property if a sequence {xn} of
E satisfying that xn ⇀ x and ‖xn‖ → ‖x‖, then xn → x. It is known that if
E uniformly convex, then E has the Kadec-Klee property; see [20, 21] for more
details. Let E be a smooth, strictly convex and reflexive Banach space and let
C be a closed convex subset of E . Throughout this paper, define the function
φ : E × E → R by

(2.5) φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E.

Observe that, in a Hilbert space H , (2.5) reduces to φ(x, y) = ‖x − y‖2 for all
x, y ∈ H . Following Alber [1], the generalized projection ΠC from E onto C
is the map that assigns to an arbitrary point x ∈ E the minimum point x̄ of the
functional φ(y, x), that is, x̄ is the solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follow from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J . In a Hilbert space,
ΠC is the metric projection of H onto C. We need the following lemmas for the
proofs of our main results.

Lemma 2.3. (Kamimura and Takahashi [6]). Let E be a uniformly convex and
smooth Banach space and let {xn} and {yn} be two sequences in E such that either
{xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn −yn‖ = 0.

Lemma 2.4. (Matsushita and Takahashi [13]). Let C be a closed convex subset
of a smooth, strictly convex, and reflexive Banach space E and let T be a relatively
nonexpansive mapping from C into itself. Then F(T) is closed and convex.

Lemma 2.5. (Alber [1])., Kamimura and Takahashi [6]). Let C be a closed
convex subset of a smooth, strictly convex and reflexive Banach space, x ∈ E and
let z ∈ C. Then, z = ΠCx if and only if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C.



1232 Chakkrid Klin-Eam, Suthep Suantai and Wataru Takahashi

Lemma 2.6. (Alber [1], Kamimura and Takahashi [6]). Let C be a closed
convex subset of a smooth, strictly convex and reflexive Banach space. Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.

Let E be a smooth, strictly convex and reflexive Banach space, and let A be a
set-valued mapping from E to E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax}, domain
D(A) = {z ∈ E : Az �= ∅} and range R(A) = ∪{Az : z ∈ D(A)}. We denote a
set-valued operator A from E to E∗ by A ⊂ E × E∗. A is said to be monotone if
〈x−y, x∗−y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ G(A). A monotone operator A ⊂ E ×E∗

is said to be maximal monotone if its graph is not properly contained in the graph of
any other monotone operator. We know that if A is a maximal monotone operator,
then A−10 is closed and convex; see [20] for more details. The following theorem
is well-known.

Lemma 2.7. (Rockafellar [17]). Let E be a smooth, strictly convex and reflexive
Banach space and let A ⊂ E ×E ∗ be a monotone operator. Then A is maximal if
and only if R(J + rA) = E ∗ for all r > 0.

Let E be a smooth, strictly convex and reflexive Banach space, let C be a
nonempty closed convex subset of E and let A ⊂ E × E∗ be a monotone operator
satisfying

D(A) ⊂ C ⊂ J−1(∩r>0R(J + rA)).
Then we can define the resolvent Jr : C → D(A) of A by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz}, ∀x ∈ C.

We know that Jrx consists of one point. For r > 0, the Yosida approximation
Ar : C → E∗ is defined by Arx = Jx−JJrx

r for all x ∈ C.

Lemma 2.8. (Kohsaka and Takahashi [9]). Let E be a smooth, strictly convex
and reflexive Banach space, let C be a nonempty closed convex subset of E and
let A ⊂ E × E∗ be a monotone operator satisfying

D(A) ⊂ C ⊂ J−1(∩r>0R(J + rA)).

Let r > 0 and Jr and Ar be the resolvent and the Yosida approximation of A,
respectively. Then, the following hold:

(i) φ(u, Jrx) + φ(Jrx, x) ≤ φ(u, x), ∀x ∈ C, y ∈ A−10;
(ii) (Jrx, Arx) ∈ A, ∀x ∈ C;
(iii) F (Jr) = A−10.

3. CONVERGENCE THEOREM BY THE NORMAL HYBRID METHOD

In this section, we prove a strong convergence theorem for finding a common
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element of the zero point set of a maximal monotone operator and the fixed point
set of a relatively nonexpansive mapping in a Banach space by using the normal
hybrid method.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E . Let A ⊂ E×E ∗ be a maximal
monotone operator satisfying D(A) ⊂ C and let J r = (J + rA)−1J for all r > 0.
Let T : C → C be a relatively nonexpansive mapping such that F (T )∩A−10 �= ∅.
Let {xn} be a sequence generated by x0 = x ∈ C and

un = J−1
(
αnJx0 + (1− αn)JTJrnxn

)
,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)},

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. If lim

n→∞αn = 0, then {xn} converges strongly to
ΠF (T )∩A−10x0, where ΠF (T )∩A−10 is the generalized projection of E onto F (T )∩
A−10.

Proof. We first show that Cn and Qn are closed and convex for each n ≥ 0.
From the definitions of Cn and Qn, it is obvious that Cn is closed and Qn is closed
and convex for each n ≥ 0. Next, we prove that Cn is convex.
Since

φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)

is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈z, Jxn − Jun〉 + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)
,

which is affine in z, and hence Cn is convex. So, Cn ∩ Qn is a closed and convex
subset of E for all n ≥ 0. Let u ∈ F (T ) ∩ A−10. Put yn = Jrnxn for all n ≥ 0.
Since T and Jrn are relatively nonexpansive mappings, we have

(3.1)

φ(u, un)
= φ(u, J−1

(
αnJx0+(1 − αn)JTyn

)
)

= ‖u‖2−2〈u, αnJx0+(1 − αn)JTyn〉+‖αnJx0+(1 − αn)JTyn‖2

≤ ‖u‖2−2αn〈u, Jx0〉−2(1−αn)〈u, JTyn〉+αn‖x0‖2+(1−αn)‖Tyn‖2

= αn

(‖u‖2−2〈u, Jx0〉+‖x0‖2
)
+(1−αn)

(‖u‖2−2〈u, JTyn〉+‖Tyn‖2
)

= αnφ(u, x0)+(1 − αn)φ(u, Tyn)
≤ αnφ(u, x0)+(1 − αn)φ(u, yn)
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= αnφ(u, x0)+(1 − αn)φ(u, Jrnxn)
≤ αnφ(u, x0)+(1 − αn)φ(u, xn)
= φ(u, xn)+αn

(
φ(u, x0) − φ(u, xn)

)
= φ(u, xn)+αn

(‖u‖2 − 2〈u, Jx0〉+‖x0‖2 − ‖u‖2+2〈u, Jxn〉 − ‖xn‖2
)

≤ φ(u, xn)+αn

(‖x0‖2+2〈u, Jxn − Jx0〉
)
.

So, u ∈ Cn for all n ≥ 0, which implies that F (T ) ∩ A−10 ⊂ Cn. Next, we
show by induction that F (T ) ∩ A−10 ⊂ Qn for all n ≥ 0. For k = 0, we have
F (T ) ∩ A−10 ⊂ C = Q0. Assume that F (T ) ∩ A−10 ⊂ Qk for k ≥ 0. Because
xk+1 is the projection of x0 onto Ck ∩ Qk , by Lemma 2.5 we have

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0, ∀z ∈ Ck ∩ Qk.

Since F (T ) ∩ A−10 ⊂ Ck ∩ Qk, we have

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0, ∀z ∈ F (T ) ∩ A−10.

This together with definition of Qn+1 implies that F (T )∩A−10 ⊂ Qk+1 and hence
F (T ) ∩ A−10 ⊂ Qn for all n ≥ 0. So, we have that F (T ) ∩ A−10 ⊂ Cn ∩ Qn for
all n ≥ 0. This implies that {xn} is well defined. From the definition of Qn, we
have that xn = ΠQnx0. So, from xn+1 = ΠCn∩Qnx0 ∈ Cn ∩ Qn ⊂ Qn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.

Therefore, {φ(xn, x0)} is nondecreasing. It follows from Lemma 2.6 and xn =
ΠQnx0 that

φ(xn, x0) = φ(ΠQnx0, x0) ≤ φ(u, x0) − φ(u, ΠQnx0) ≤ φ(u, x0)

for all u ∈ F (T ) ∩ A−10 ⊂ Qn. Therefore, {φ(xn, x0)} is bounded. So, the limit
of {φ(xn, x0)} exists. Moreover, by the definition of φ, we know that {xn} and
{Jrnxn} = {yn} are bounded. From xn = ΠQnx0, we also have

φ(xn+1, xn) = φ(xn+1, ΠQnx0)

≤ φ(xn+1, x0)− φ(ΠQnx0, x0) = φ(xn+1, x0) − φ(xn, x0)

for all n ≥ 0. This implies that lim
n→∞ φ(xn+1, xn) = 0. From xn+1 = ΠCn∩Qnx0 ∈

Cn, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + αn

(‖x0‖2 + 2〈xn+1, Jxn − Jx0〉
)
.

By lim
n→∞αn = 0, we obtain that lim

n→∞φ(xn+1, un) = 0.
Since lim

n→∞ φ(xn+1, xn) = lim
n→∞φ(xn+1, un) = 0 and E is uniformly convex and

smooth, we have from Lemma 2.3 that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖xn+1 − un‖ = 0.
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So, we have lim
n→∞ ‖xn − un‖ = 0. Since J is uniformly norm-to-norm continuous

on bounded sets, we have

(3.2) lim
n→∞ ‖Jxn+1 − Jxn‖ = lim

n→∞ ‖Jxn+1 − Jun‖ = lim
n→∞ ‖Jxn − Jun‖ = 0.

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − αnJx0 − (1− αn)JTyn‖
= ‖αn(Jxn+1 − Jx0) + (1 − αn)(Jxn+1 − JTyn)‖
= ‖(1− αn)(Jxn+1 − JTyn)− αn(Jx0 − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JTyn‖ − αn‖Jx0 − Jxn+1‖.

This follows that

‖Jxn+1 − JTyn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jun‖ + αn‖Jx0 − Jxn+1‖
)
.

From (3.2) and lim
n→∞ αn = 0, we obtain that lim

n→∞ ‖Jxn+1 − JTyn‖ = 0.
Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖xn+1 − Tyn‖ = 0.

From
‖xn − Tyn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tyn‖,

we have
lim

n→∞ ‖xn − Tyn‖ = 0.

From (3.1), we have

φ(u, yn) ≥ 1
1 − αn

(
φ(u, un) − αnφ(u, x0)

)
.

Using yn = Jrnxn and Lemma 2.8, we have

φ(yn, xn) = φ(Jrnxn, xn) ≤ φ(u, xn) − φ(u, Jrnxn) = φ(u, xn) − φ(u, yn).

It follows that
φ(yn, xn)

≤ φ(u, xn) − φ(u, yn)

≤ φ(u, xn) − 1
1 − αn

(
φ(u, un) − αnφ(u, x0)

)
=

1
1 − αn

(
(1 − αn)φ(u, xn) − φ(u, un) + αnφ(u, x0)

)
=

1
1 − αn

(
φ(u, xn) − φ(u, un) + αn(φ(u, x0) − φ(u, xn))

)
≤ 1

1 − αn

(
φ(u, xn) − φ(u, un) + αnφ(u, x0)

)
=

1
1 − αn

(‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉 + αnφ(u, x0)
)
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≤ 1
1 − αn

(|‖xn‖2 − ‖un‖2| + 2|〈u, Jxn − Jun〉| + αnφ(u, x0)
)

≤ 1
1−αn

(|‖xn‖−‖un‖|(‖xn‖+‖un‖)+2‖u‖‖Jxn−Jun‖+αnφ(u, x0)
)

≤ 1
1−αn

(|‖xn−un‖(‖xn‖+‖un‖)+2‖u‖‖Jxn−Jun‖+αnφ(u, x0)
)
.

From (3.2), lim
n→∞ ‖xn − un‖ = 0 and lim

n→∞αn = 0, we have lim
n→∞φ(yn, xn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.3 that

(3.3) lim
n→∞ ‖yn − xn‖ = 0.

From lim
n→∞ ‖xn − Tyn‖ = 0, we have

lim
n→∞ ‖yn − Tyn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀

v. From lim
n→∞ ‖xn−yn‖ = 0, we have ynk

⇀ v. Since T is relatively nonexpansive,

we have that v ∈ F̂ (T ) = F (T ). Next, we show v ∈ A−10. Since J is uniformly
norm-to-norm continuous on bounded sets, from (3.3) we have

lim
n→∞ ‖Jxn − Jyn‖ = 0.

From rn ≥ a, we have
lim

n→∞
1
rn

‖Jxn − Jyn‖ = 0.

Therefore, we have

lim
n→∞ ‖Arnxn‖ = lim

n→∞
1
rn

‖Jxn − Jyn‖ = 0.

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p − yn, p∗ − Arnxn〉 ≥ 0
for all n ≥ 0. Replacing n by nk and letting k → ∞, we get 〈p − v, p∗〉 ≥ 0.
From the maximallity of A, we have v ∈ A−10. Let w = ΠF (T )∩A−10x0. From
xn+1 = ΠCn∩Qnx0 and w ∈ F (T ) ∩ A−10 ⊂ Cn ∩ Qn, we obtain that

φ(xn+1, x0) ≤ φ(w, x0).

Since the norm is weakly lower semicontinuous, we have

φ(v, x0) = ‖v‖2 − 2〈v, Jx0〉+ ‖x0‖2

≤ lim inf
k→∞

(‖xnk
‖2 − 2〈xnk

, Jx0〉+ ‖x0‖2
)

= lim inf
k→∞

φ(xnk
, x0) ≤ lim sup

k→∞
φ(xnk

, x0) ≤ φ(w, x0).
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From the definition of ΠF (T )∩A−10, we obtain v = w. This means that

lim
k→∞

φ(xnk
, x0) = φ(w, x0).

Therefore we have

0 = lim
k→∞

(
φ(xnk

, x0) − φ(w, x0)
)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2 − 2〈xnk

− w, Jx0〉
)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2

)
.

Since E has the Kadec-Klee property, we obtain that xnk
→ w = ΠF (T )∩A−10x0.

Therefore, {xn} converges strongly to ΠF (T )∩A−10x0. This completes the proof.

As a direct consequence of Theorem 3.1, we can obtain the following result.

Corollary 3.2. (Inoue, Takahashi and Zembayashi [4]). Let E be a uniformly
convex and uniformly smooth Banach space. Let A ⊂ E × E ∗ be a maximal
monotone operator with A−10 �= ∅ and let Jr = (J + rA)−1J for all r > 0. Let
{xn} be a sequence generated by x0 = x ∈ E and

un = Jrnxn,

Cn = {z ∈ E : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ E : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to ΠA−10x0, where
ΠA−10 is the generalized projection of E onto A−10.

Proof. Putting T = I , C = E and αn = 0 in Theorem 3.1, we obtain
Corollary 3.2.

Let E be a Banach space and let f : E → (−∞,∞] be a proper lower semi-
continuous convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E : f(y) ≥ 〈y − x, x∗〉 + f(x), ∀y ∈ E}

for each x ∈ E . Then, we know that ∂f is a maximal monotone operator; see [20]
for more details. From Theorem 3.1, we also have the following result.

Corollary 3.3. (Qin and Su [15]). Let E be a uniformly convex and uniformly
smooth Banach space and let C be a nonempty closed convex subset of E and let
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T be a relatively nonexpansive mapping from C into itself such that F (T ) �= ∅.
Let {xn} be a sequence generated by x0 = x ∈ C and

un = J−1
(
αnJx0 + (1− αn)JTxn

)
,

Cn = {z ∈ C : φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)},

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1]. If
lim

n→∞ αn = 0, then {xn} converges strongly to ΠF (T )x0, where ΠF (T ) is the gen-
eralized projection of E onto F (T ).

Proof. Set A = ∂iC in Theorem 3.1, where iC is the indicator function, that
is,

iC(x) =

{
0, x ∈ C,

∞, otherwise.

Then, we have that A is a maximal monotone operator and Jr = ΠC for r > 0. In
fact, we have from Lemma 2.5 that for any x ∈ E and r > 0,

z = Jrx ⇔ Jz + r∂iC(z) � Jx

⇔ Jx − Jz ∈ r∂iC(z)

⇔ iC(y) ≥ 〈y − z,
Jx − Jz

r
〉+ iC(z), ∀y ∈ E

⇔ 0 ≥ 〈y − z, Jx − Jz〉, ∀y ∈ C

⇔ z = arg min
y∈C

φ(y, x)

⇔ z = ΠCx.

So, from Theorem 3.1, we obtain Corollary 3.3.

4. CONVERGENCE THEOREM BY THE SHRINKING PROJECTION METHOD

In this section, we prove a strong convergence theorem for finding a common
element of the zero point set of a maximal monotone operator and the fixed point
set of a relatively nonexpansive mapping in a Banach space by using the shrinking
projection method.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E . Let A ⊂ E×E ∗ be a maximal
monotone operator satisfying D(A) ⊂ C and let J r = (J + rA)−1J for all r > 0.
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Let T : C → C be a relatively nonexpansive mapping such that F (T )∩A−10 �= ∅.
Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C and

un = J−1
(
αnJx0 + (1 − αn)JTJrnxn

)
,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)},

xn+1 = ΠCn+1x0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. If lim

n→∞αn = 0, then {xn} converges strongly to
ΠF (T )∩A−10x0, where ΠF (T )∩A−10 is the generalized projection of E onto F (T )∩
A−10.

Proof. We first show that Cn is closed and convex for each n ≥ 0. From the
definition of Cn, it is obvious that Cn is closed. Since

φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)

is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈z, Jxn − Jun〉 + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)
,

which is affine in z, and hence Cn is convex. So, Cn is a closed and convex
subset of E for all n ≥ 0. Next, we show by induction that F (T ) ∩ A−10 ⊂ Cn

for all n ≥ 0. For k = 0, we have F (T ) ∩ A−10 ⊂ C = C0. Suppose that
F (T ) ∩ A−10 ⊂ Ck for k ≥ 0. Let u ∈ F (T ) ∩ A−10. Put yn = Jrnxn for all
n ≥ 0. Since T and Jrn are relatively nonexpansive mappings, we have

(4.1)

φ(u, un)
= φ(u, J−1

(
αnJx0 + (1 − αn)JTyn

)
)

= ‖u‖2 − 2〈u, αnJx0 + (1 − αn)JTyn〉 + ‖αnJx0 + (1 − αn)JTyn‖2

≤ ‖u‖2 − 2αn〈u, Jx0〉 − 2(1 − αn)〈u, JTyn〉 + αn‖x0‖2 + (1 − αn)‖Tyn‖2

= αn

(‖u‖2 − 2〈u, Jx0〉 + ‖x0‖2
)

+ (1 − αn)
(‖u‖2 − 2〈u, JTyn〉 + ‖Tyn‖2

)
= αnφ(u, x0) + (1 − αn)φ(u, Tyn)
≤ αnφ(u, x0) + (1 − αn)φ(u, yn)
= αnφ(u, x0) + (1 − αn)φ(u, Jrnxn)
≤ αnφ(u, x0) + (1 − αn)φ(u, xn)
= φ(u, xn) + αn

(
φ(u, x0) − φ(u, xn)

)
≤ φ(u, xn) + αn

(‖x0‖2 + 2〈u, Jxn − Jx0〉
)
.

So, we have u ∈ Ck+1 and hence F (T ) ∩ A−10 ⊂ Cn for all n ≥ 0. This implies
that {xn} is well defined. From Cn+1 ⊂ Cn and xn = ΠCnx0, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0.
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Therefore, {φ(xn, x0)} is nondecreasing. It follows from Lemma 2.6 and xn =
ΠCnx0 that

φ(xn, x0) = φ(ΠCnx0, x0)≤φ(u, x0)− φ(u, ΠCnx0) ≤ φ(u, x0)

for all u ∈ F (T ) ∩ A−10 ⊂ Qn. So, the limit of {φ(xn, x0)} exists. Therefore,
{φ(xn, x0)} is bounded. Moreover, by the definition of φ, we know that {xn} and
{Jrnxn} = {yn} are bounded. Since xn = ΠCnx0, we have

φ(xn+1, xn) = φ(xn+1, ΠQnx0)
≤ φ(xn+1, x0) − φ(ΠQnx0, x0) = φ(xn+1, x0) − φ(xn, x0)

for all n ≥ 0. This implies that lim
n→∞ φ(xn+1, xn) = 0. From xn+1 = ΠCn+1x0 ∈

Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + αn

(‖x0‖2 + 2〈xn+1, Jxn − Jx0〉
)
.

By lim
n→∞αn = 0, we obtain that lim

n→∞φ(xn+1, un) = 0.
Since lim

n→∞ φ(xn+1, xn) = lim
n→∞φ(xn+1, un) = 0 and E is uniformly convex and

smooth, we have from Lemma 2.3 that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖xn+1 − un‖ = 0.

So, we have lim
n→∞ ‖xn − un‖ = 0. Since J is uniformly norm-to-norm continuous

on bounded sets, we have

(4.2) lim
n→∞ ‖Jxn+1 − Jxn‖ = lim

n→∞ ‖Jxn+1 − Jun‖ = lim
n→∞ ‖Jxn − Jun‖ = 0.

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − αnJx0 − (1 − αn)JTyn‖
= ‖αn(Jxn+1 − Jx0) + (1− αn)(Jxn+1 − JTyn)‖
= ‖(1 − αn)(Jxn+1 − JTyn) − αn(Jx0 − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JTyn‖ − αn‖Jx0 − Jxn+1‖.

This follows that

‖Jxn+1 − JTyn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jun‖ + αn‖Jx0 − Jxn+1‖
)
.

From (4.2) and lim
n→∞ αn = 0, we obtain that lim

n→∞ ‖Jxn+1 − JTyn‖ = 0.
Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖xn+1 − Tyn‖ = 0.
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From
‖xn − Tyn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tyn‖,

we have
lim

n→∞ ‖xn − Tyn‖ = 0.

From (4.1), we have

φ(u, yn) ≥ 1
1 − αn

(
φ(u, un) − αnφ(u, x0)

)
.

Using yn = Jrnxn and Lemma 2.8, we have

φ(yn, xn) = φ(Jrnxn, xn) ≤ φ(u, xn) − φ(u, Jrnxn) = φ(u, xn) − φ(u, yn).

It follows that

φ(yn, xn)
≤ φ(u, xn) − φ(u, yn)

≤ φ(u, xn) − 1
1 − αn

(
φ(u, un) − αnφ(u, x0)

)
=

1
1 − αn

(
(1− αn)φ(u, xn)− φ(u, un) + αnφ(u, x0)

)
=

1
1 − αn

(
φ(u, xn) − φ(u, un) + αn(φ(u, x0) − φ(u, xn))

)
≤ 1

1 − αn

(
φ(u, xn) − φ(u, un) + αnφ(u, x0)

)
=

1
1 − αn

(‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉+ αnφ(u, x0)
)

≤ 1
1 − αn

(|‖xn‖2 − ‖un‖2| + 2|〈u, Jxn − Jun〉|+ αnφ(u, x0)
)

≤ 1
1 − αn

(|‖xn‖ − ‖un‖|(‖xn‖+ ‖un‖) + 2‖u‖‖Jxn − Jun‖+ αnφ(u, x0)
)

≤ 1
1 − αn

(|‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖+ αnφ(u, x0)
)
.

From (4.2), lim
n→∞ ‖xn − un‖ = 0 and lim

n→∞αn = 0, we have lim
n→∞φ(yn, xn) = 0.

Since E is uniformly convex and smooth, we have from Lemma 2.3 that

(4.3) lim
n→∞ ‖yn − xn‖ = 0.

From lim
n→∞ ‖xn − Tyn‖ = 0, we have

lim
n→∞ ‖yn − Tyn‖ = 0.
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Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀

v. From lim
n→∞ ‖xn−yn‖ = 0, we have ynk

⇀ v. Since T is relatively nonexpansive,

we have that v ∈ F̂ (T ) = F (T ). Next, we show v ∈ A−10. Since J is uniformly
norm-to-norm continuous on bounded sets, from (4.3) we have

lim
n→∞ ‖Jxn − Jyn‖ = 0.

From rn ≥ a, we have
lim

n→∞
1
rn

‖Jxn − Jyn‖ = 0.

Therefore, we have

lim
n→∞ ‖Arnxn‖ = lim

n→∞
1
rn

‖Jxn − Jyn‖ = 0.

For (p, p∗) ∈ A, from the monotonicity of A, we have 〈p − yn, p∗ − Arnxn〉 ≥ 0
for all n ≥ 0. Replacing n by nk and letting k → ∞, we get 〈p − v, p∗〉 ≥ 0.
From the maximallity of A, we have v ∈ A−10. Let w = ΠF (T )∩A−10x0. From
xn+1 = ΠCn∩Qnx0 and w ∈ F (T ) ∩ A−10 ⊂ Cn ∩ Qn, we obtain that

φ(xn+1, x0) ≤ φ(w, x0).

Since the norm is weakly lower semicontinuous, we have

φ(v, x0) = ‖v‖2 − 2〈v, Jx0〉 + ‖x0‖2

≤ lim inf
k→∞

(‖xnk
‖2 − 2〈xnk

, Jx0〉 + ‖x0‖2
)

= lim inf
k→∞

φ(xnk
, x0) ≤ lim sup

k→∞
φ(xnk

, x0) ≤ φ(w, x0).

From the definition of ΠF (T )∩A−10, we obtain v = w. This means that

lim
k→∞

φ(xnk
, x0) = φ(w, x0).

Therefore we have

0 = lim
k→∞

(
φ(xnk

, x0)− φ(w, x0)
)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2 − 2〈xnk

− w, Jx0〉
)

= lim
k→∞

(‖xnk
‖2 − ‖w‖2

)
.

Since E has the Kadec-Klee property, we obtain that xnk
→ w = ΠF (T )∩A−10x0.

Therefore, {xn} converges strongly to ΠF (T )∩A−10x0. This completes the proof.

As direct consequences of Theorem 4.1, we can obtain the following corollaries.
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Corollary 4.2. (Inoue, Takahashi and Zembayashi [4]). Let E be a uniformly
convex and uniformly smooth Banach space. Let A ⊂ E × E ∗ be a maximal
monotone operator with A−10 �= ∅ and let Jr = (J + rA)−1J for all r > 0. Let
{xn} be a sequence generated by x0 = x ∈ E and

un = Jrnxn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1x0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1] and
{rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to ΠA−10x0, where
ΠA−10 is the generalized projection of E onto A−10.

Proof. Putting T = I , C = C0 = E and αn = 0 in Theorem 4.1, we obtain
Corollary 4.2.

Corollary 4.3. Let E be a uniformly convex and uniformly smooth Banach
space and let C be a nonempty closed convex subset of E and let T be a relatively
nonexpansive mapping from C into itself such that F (T ) �= ∅. Let {x n} be a
sequence generated by x0 = x ∈ C, C0 = C and

un = J−1
(
αnJx0 + (1 − αn)JTxn

)
,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + αn

(‖x0‖2 + 2〈z, Jxn − Jx0〉
)},

xn+1 = ΠCn+1x0

for all n ∈ N ∪ {0}, where J is the duality mapping on E , {α n} ⊂ [0, 1]. If
lim

n→∞ αn = 0, then {xn} converges strongly to ΠF (T )x0, where ΠF (T ) is the gen-
eralized projection of E onto F (T ).

Proof. Set A = ∂iC in Theorem 4.1, where iC is the indicator function. So,
from Theorem 4.1, we obtain Corollary 4.3.

5. APPLICATIONS

In this section, using Theorem 3.1 and Theorem 4.1, we obtain the following
results in a Hilbert space.

Theorem 5.4. Let C be a nonempty closed convex subset of a Hilbert space
H . Let A ⊂ H × H be a maximal monotone operator satisfying D(A) ⊂ C and
let Jr = (I + rA)−1 for all r > 0. Let T : C → C be a nonexpansive mapping
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such that F (T ) ∩ A−10 �= ∅. Let {xn} be a sequence generated by x0 = x ∈ C

and
un = αnx0 + (1 − αn)TJrnxn,

Cn = {z ∈ C : ‖z − un‖2 ≤ ‖z − xn‖2 + αn

(‖x0‖2 + 2〈z, xn − x0〉
)},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0

for all n ∈ N ∪ {0}, where {αn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If
lim

n→∞ αn = 0, then {xn} converges strongly to PF (T )∩A−10x0, where PF (T )∩A−10

is the metric projection of H onto F (T ) ∩ A−10.

Proof. In a Hilbert space setting we know that every nonexpansive mapping
is relatively nonexpansive, therefore T and Jr are relatively nonexpansive and we
also know that φ(x, y) = ‖x−y‖2 for all x, y ∈ H . By using Theorem 3.1, we are
easily able to obtain the desired conclusion by putting J = I . This completes the
proof.

Theorem 5.5. Let C be a nonempty closed convex subset of a Hilbert space
H . Let A ⊂ H × H be a maximal monotone operator satisfying D(A) ⊂ C and
let Jr = (I + rA)−1 for all r > 0. Let T : C → C be a nonexpansive mapping
such that F (T ) ∩ A−10 �= ∅. Let {xn} be a sequence generated by x0 = x ∈ C
and

un = αnx0 + (1− αn)TJrnxn,

Cn+1 = {z ∈ Cn : ‖z − un‖2 ≤ ‖z − xn‖2 + αn

(‖x0‖2 + 2〈z, xn − x0〉
)},

xn+1 = PCn+1x0

for all n ∈ N ∪ {0}, where {αn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If
lim

n→∞ αn = 0, then {xn} converges strongly to PF (T )∩A−10x0, where PF (T )∩A−10

is the metric projection of H onto F (T ) ∩ A−10.

Proof. In a Hilbert space, it is known that T and Jr are relatively nonexpansive.
By putting J = I in Theorem 4.1, we obtain the desired conclusion.
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