BLOW-UP OF A DEGENERATE NON-LINEAR HEAT EQUATION

Chi-Cheung Poon

Abstract. We study the blowup behavior of non-negative solutions of the following problem:

$$
\begin{aligned}
u_{t} & =u^{p}\left(\Delta u+u^{q}\right) & & \text { in } \Omega \times(0, T), \\
u(x, t) & =0 & & \text { whenever } \quad x \in \partial \Omega,
\end{aligned}
$$

with $p>0$ and $q>1$. We will show that it is possible to have solutions blowing up at only one point, and

$$
\limsup _{t \rightarrow T^{-}}\left((T-t)^{1 /(p+q-1)} \max _{\Omega} u(x, t)\right)=\infty
$$

1. Introduction

Here, we study the blowup behavior of positive solutions of the following problem:

$$
\begin{align*}
u_{t} & =u^{p}\left(\Delta u+u^{q}\right) & & \text { in } \Omega \times(0, T), \\
u(x, t) & =0 & & \text { whenever } \quad x \in \partial \Omega . \tag{1.1}
\end{align*}
$$

We assume that Ω is a bounded $C^{2, \alpha}$ domain in \mathbb{R}^{n}, and

$$
q>1, \quad \text { and } \quad p>0
$$

We say a solution u blows up at a point $a \in \Omega$ at time $t=T$ if $u(x, t)$ is continuous in $\Omega \times(0, T)$ and there is a sequence $\left(x_{k}, t_{k}\right) \in \Omega \times(0, T)$ such that $x_{k} \rightarrow a$ and $t_{k} \rightarrow T$ as $k \rightarrow \infty$, and

$$
\lim _{k \rightarrow \infty} u\left(x_{k}, t_{k}\right)=\infty
$$

It is easy to see that if u blows up at $t=T$, then there is a constant $C>0$ such that

$$
\max _{x \in \Omega} u(x, t) \geq C|T-t|^{-1 /(p+q-1)}
$$

Received October 1, 2009, accepted December 29, 2009.
Communicated by J. S. Guo.
2000 Mathematics Subject Classification: 35K55.
Key words and phrases: Quasilinear parabolic equation, Blowup.

The question is: when can we have an inequality of the form

$$
\begin{equation*}
\max _{x \in \Omega} u(x, t) \leq C|T-t|^{-1 /(p+q-1)} ? \tag{1.2}
\end{equation*}
$$

When $p=0$, equation (1.1) becomes

$$
u_{t}=\Delta u+u^{q}
$$

When Ω is a bounded convex domain in \mathbb{R}^{n}, Friedman and McLeod [2], proved that for any $q>1$, there is a constant $C>0$ so that

$$
\begin{equation*}
\sup _{x} u(x, t) \leq C|T-t|^{-1 /(q-1)} \tag{1.3}
\end{equation*}
$$

provided that the initial data $u(x, 0)$ satisfies the differential inequality

$$
\begin{equation*}
\Delta u(x, 0)+u(x, 0)^{q} \geq 0 \tag{1.4}
\end{equation*}
$$

They also proved that, under the assumptions in the above, there are no boundary blowup points. Also, if Ω a ball centered at $x=0$ and $u(x, t)$ is symmetric and depends on $|x|$ and t only, and if $u_{r} \leq 0$, where $r=|x|$, then $x=0$ the only blowup point.

In [4, 5], among other results, Giga and Kohn proved that, when $1<q<$ $(n+2) /(n-2)$, or $n \leq 2, \Omega$ is a convex domain in \mathbb{R}^{n}, for any non-negative positive initial data, then there is no boundary blowup point and (1.3) is true. When Ω is a general bounded domain in \mathbb{R}^{n}, and $q \leq(n+3) /(n+1)$, using a different method, Fila and Souplet [1], showed that (1.3) holds.

When $q=1$ and $p>0$, the equation (1.1) becomes

$$
u_{t}=u^{p}(\Delta u+u)
$$

Winkler, [7, 8], proved that

$$
\max _{x \in \Omega} u(x, t) \leq C|T-t|^{-1 / p}, \quad \text { when } \quad 0<p<2
$$

and

$$
\limsup _{t \rightarrow T^{-}}\left((T-t)^{1 / p} \max _{\Omega} u(x, t)\right)=\infty, \quad \text { when } \quad p \geq 2
$$

In this paper, we always assume that the domain Ω is convex. The existence of solutions of (1.1) can be proved via many different methods. In the book [6], chapter VII, section 2, existence of solutions is obtained using Galerkin's method. Here, we follow the approach by Friedman and McLeod, [3]. From the construction, we can easily deduce some properties of the solution. For example, if the initial data satisfies the inequality (1.4), then $u_{t}(x, t) \geq 0$ whenever $u(x, t)$ is defined.

Our results are:
(i) Let $u(x, t)$ be a positive solution of (1.1) in $\Omega \times(0, T)$ with $0<p<2$ and $q>1$. Suppose that the initial data $u_{0}(x)=u(x, 0)$ satisfies the condition

$$
\frac{1}{2} \int_{\Omega}\left|D u_{0}\right|^{2}(x) d x \leq \frac{1}{q+1} \int_{\Omega} u_{0}^{q+1}(x) d x
$$

Then, $u(x, t)$ blows up in finite time.
(ii) If $q>1$ and $0<p<2$, we prove that for any solution of (1.1) which blows up at time T, then, there is $C>0$ so that

$$
\left(\int_{\Omega} u^{2-p}(x, t) d x\right)^{1 /(2-p)} \leq C|T-t|^{-1 /(q+p-1)}
$$

(iii) Suppose that Ω a ball centered at $x=0$. If the solution $u(x, t)$ is symmetric and depends on $|x|$ and t only, and if $u_{r} \leq 0$, where $r=|x|$, then $x=0$ the only blowup point.
(iv) For non-symmetric solutions, if $p>0$ and $q>1$, the solution does not blow-up in a neighborhood of $\partial \Omega$.
(v) If $p>0$ and $q>1$, and the solution blows up at time T, then we show that

$$
\max _{x \in \Omega} u(x, t) \leq C|T-t|^{-1 /(q-1)}
$$

This result is probably not optimal.
(vi) If $p \geq 2$ and $q>1$, we then show that if u is a solution of (1.1) and is symmetric and is radial decreasing, and if u blows up at $t=T$, then

$$
\limsup _{t \rightarrow T^{-}}\left((T-t)^{1 /(p+q-1)} \max _{\Omega} u(x, t)\right)=\infty
$$

2. Existence of Solution

Let Ω be a $C^{2, \alpha}$, bounded, convex domain in \mathbb{R}^{n}. Let $u_{0}(x) \in C^{2, \alpha}(\Omega) \cap C^{1}(\bar{\Omega})$ and $u_{0}(x)>0$ for $x \in \Omega$, and satisfies the differential inequality

$$
\begin{equation*}
\Delta u_{0}+u_{0}^{q} \geq 0 \tag{2.1}
\end{equation*}
$$

in Ω. Let $p>0, q>1$. Following the method of Friedman and McLeod, [3], we let $g_{\epsilon}(u)$ be a smooth function defined for $u \in(0, \infty)$ so that $g_{\epsilon}(u)=\epsilon$ for $u \in(0, \epsilon / 2)$ and $g_{\epsilon}(u)=u^{p}$ for $u \in[\epsilon, \infty)$.

For each $\epsilon>0$, we consider the problem

$$
\begin{array}{ll}
u_{t}=g_{\epsilon}(u)\left(\Delta u+u^{q}\right) & \text { in } \Omega \times(0, T), \\
u(x, t)=\epsilon & \text { whenever } x \in \partial \Omega \tag{2.2}\\
u(x, 0)=u_{0}(x)+\epsilon & \text { in } \Omega
\end{array}
$$

There is a $T_{\epsilon}>0$ so that, for $t \in\left(0, T_{\epsilon}\right)$, there is a positive solution $u_{\epsilon} \in C^{\infty}(\Omega \times$ $\left(0, T_{\epsilon}\right]$. We note that $w(x)=\epsilon$ is a sub-solution, i.e., $\Delta w+w^{q}>0$ in Ω, and $w(x)=\epsilon$ for $x \in \partial \Omega$. Therefore, by the maximum principle, $u_{\epsilon} \geq \epsilon$ in $\Omega \times\left(0, T_{\epsilon}\right)$. Thus, in fact, u_{ϵ} satisfies the equation

$$
u_{t}=u^{p}\left(\Delta u+u^{q}\right)
$$

Moreover, by the maximum principle, if $\epsilon>\delta>0$, then, we have $u_{\epsilon}(x, t) \geq$ $u_{\delta}(x, t)$, whenever both $u_{\epsilon}(x, t)$ and $u_{\delta}(x, t)$ are defined. Suppose that for $\epsilon=1$, $u_{1}(x, t)$ is defined for $t \in\left(0, T_{1}\right]$. Then, by the maximum principle, for any $0<\epsilon<1$, the function $u_{\epsilon}(x, t)$ is defined for $t \in\left(0, T_{1}\right]$.

Suppose that $x_{0} \in \partial \Omega$. Since Ω is convex, after a translation and rotation, we may assume that $x_{0}=0$ and $\Omega \subset\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}>0\right\}$. Let

$$
\begin{equation*}
0<\gamma<\max \left\{1, \frac{2}{q}\right\} \tag{2.3}
\end{equation*}
$$

be fixed and $A>1$ be a number to be determined. We define the function

$$
\begin{equation*}
\phi_{\epsilon}\left(x_{1}\right)=A\left(x_{1}^{\gamma}+\epsilon\right), \quad \text { for } \quad x_{1} \geq 0 . \tag{2.4}
\end{equation*}
$$

Let

$$
C_{0}=\max _{\Omega \times\left(0, T_{1}\right]} u_{1}(x, t)
$$

Then, by the maximum principle, for all $\epsilon \in(0,1)$, we have

$$
C_{0} \geq \max _{\Omega \times\left(0, T_{1}\right]} u_{\epsilon}(x, t)
$$

Let C_{1} be a positive constant so that

$$
u_{0}(x) \leq C_{1} x_{1} \quad \text { for } \quad x \in \Omega
$$

By (2.3), we may choose $0<L<1$ so that

$$
\begin{equation*}
L^{2-q \gamma}<\frac{\gamma(1-\gamma)}{2^{q} C_{0}^{q-1}}, \quad L^{2-\gamma}<\frac{\gamma(1-\gamma)}{2^{q}} \quad \text { and } \quad L^{\gamma-1}>C_{1} \tag{2.5}
\end{equation*}
$$

This implies that

$$
\left(\frac{C_{0}}{L^{\gamma}}\right)^{q-1}<\frac{\gamma(1-\gamma)}{2^{q} L^{2-\gamma}} \quad \text { and } \quad 1<\frac{\gamma(1-\gamma)}{2^{q} L^{2-\gamma}}
$$

Then, we choose $A>1$ such that

$$
\begin{equation*}
\left(\frac{C_{0}}{L^{\gamma}}\right)^{q-1}<A^{q-1}<\frac{\gamma(1-\gamma)}{2^{q} L^{2-\gamma}} \tag{2.6}
\end{equation*}
$$

Note that, both A and L are independent of ϵ. Let $\Omega_{L}=\Omega \cap\left\{x: x_{1}<L\right\}$. We claim that, for any $0<\epsilon<1$,

$$
\begin{equation*}
\phi_{\epsilon}(x) \geq u_{\epsilon}(x, t) \quad \text { for } \quad x \in \Omega_{L} \quad t \in\left(0, T_{1}\right] . \tag{2.7}
\end{equation*}
$$

If $x \in \Omega_{L}$, by (2.5) and (2.6), we have

$$
\begin{aligned}
\Delta \phi_{\epsilon}+\phi_{\epsilon}^{q} & =A \gamma(\gamma-1) x_{1}^{\gamma-2}+A^{q}\left(x_{1}^{\gamma}+\epsilon\right)^{q} \\
& <A \gamma(\gamma-1) x_{1}^{\gamma-2}+(2 A)^{q} \\
& <A x_{1}^{\gamma-2}\left(\gamma(\gamma-1)+2^{q} A^{q-1} x_{1}^{2-\gamma}\right) \\
& \leq A x_{1}^{\gamma-2}\left(\gamma(\gamma-1)+2^{q} A^{q-1} L^{2-\gamma}\right) \\
& <0
\end{aligned}
$$

For $x \in \Omega_{L}$, since $A>1$ and $\gamma<1$, we have

$$
\phi_{\epsilon}(x)-u_{\epsilon}(x, 0) \geq A x_{1}^{\gamma}-C_{1} x_{1}=x_{1}\left(A x_{1}^{\gamma-1}-C_{1}\right) \geq x_{1}\left(L^{\gamma-1}-C_{1}\right) \geq 0
$$

Also, for all $t \in\left(0, T_{1}\right]$, if $x \in \partial \Omega \cap\left\{x: x_{1}>0\right\}, u_{\epsilon}(x, t)=\epsilon \leq \phi_{\epsilon}$. If $x \in \Omega \cap\left\{x: x_{1}=L\right\}$, by (2.6), $\phi_{\epsilon}(x) \geq C_{0} \geq u_{\epsilon}(x, t)$. Hence, by the maximum principle, for $x \in \Omega \cap\left\{x: x_{1}<L\right\}$, and $t \in\left(0, T_{1}\right)$, we have

$$
\phi_{\epsilon}(x) \geq u_{\epsilon}(x, t)
$$

This proves the claim (2.7).
As mentioned before, for $(x, t) \in \Omega \times\left(0, T_{1}\right]$, we have

$$
u_{\epsilon}(x, t) \leq u_{\delta}(x, t) \quad \text { if } \quad 0<\epsilon \leq \delta
$$

We may define

$$
u(x, t)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x, t)
$$

By the claim (2.7), we have $u(x, t)=0$ whenever $x \in \partial \Omega$.
Let $K \subset \Omega$ be an compact set. Suppose that $u(x, t)>0$ for $(x, t) \in K \times\left[0, T_{1}\right]$. There is a constant $\kappa>0$ so that $u(x, t) \geq \kappa$ in $K \times\left[0, T_{1}\right]$. Since $u_{\epsilon}(x, t) \geq u(x, t)$, we have $u_{\epsilon}(x, t) \geq \kappa$ in $K \times\left[0, T_{1}\right]$, for all $0<\epsilon<1$. By the parabolic regularity theory, the functions u_{ϵ} is uniformly bounded in $C^{2+\alpha, 1+\alpha / 2}\left(K \times\left[0, T_{1}\right]\right)$. Thus, by choosing a subsequence, we see that u_{ϵ} converges to u in $C^{2+\beta, 1+\beta / 2}\left(K \times\left[0, T_{1}\right]\right)$, with $0<\beta<\alpha$. This implies that $u(x, t)$ is a smooth solution of the equation $u_{t}=u^{p}\left(\Delta u+u^{q}\right)$ in $K \times\left[0, T_{1}\right]$. Thus, we obtain a non-negative function $u(x, t)$, which satisfies the equation $u_{t}=u^{p}\left(\Delta u+u^{q}\right)$ in every open set where $u(x, t)>0$ holds. Moreover, by repeating the process, either $u(x, t)$ is defined for all $t>0$, or, there is $T>0$ so that $\max _{x} u(x, t) \rightarrow \infty$ as $t \rightarrow T$.

Lemma 2.1. If we further assume that the initial data $u_{0}(x)=u(x, 0)>0$ and satisfies the differential inequality (2.1) in Ω, then $u_{t}(x, t) \geq 0$ whenever $u(x, t)$ is defined.

Proof. If (2.1) holds in Ω, for any $0<\epsilon<1$, by the maximum principle, $u_{\epsilon t}(x, t) \geq 0$ whenever $u_{\epsilon}(x, t)$ is defined. Thus, for each $x \in \Omega, t \rightarrow u_{\epsilon}(x, t)$ is an increasing function. When letting $\epsilon \rightarrow 0$, for each $x \in \Omega, t \rightarrow u(x, t)$ is also an increasing function. Thus, $u_{t}(x, t) \geq 0$ whenever $u(x, t)$ is defined.

From the construction, it is easy to see that, if $u_{0} \geq 0$ in Ω, then $u(x, t) \geq 0$ for $x \in \Omega$ and $t \in\left(0, T_{1}\right]$. In general, even if $u(x, 0)>0$ for $x \in \Omega$, we do not know whether $u(x, t)>0$ for $x \in \Omega$ and $t>0$. However, if $u_{0}(x)>0$ in Ω, and if (2.1) is true, by Lemma 2.1, we always have $u(x, t)>0$ whenever $x \in \Omega$ and $t \in\left(0, T_{1}\right)$. Furthermore, for any compact subset $K \subset \Omega, u_{\epsilon}$ converges to u in $C^{2+\beta, 1+\beta / 2}\left(K \times\left[0, T_{1}\right]\right)$, with $0<\beta<\alpha$.

Let ψ_{1} be the solution of the O.D.E.

$$
\psi^{\prime \prime}+\psi^{q}=0, \quad \psi^{\prime}(0)=0, \quad \psi(0)=1
$$

For any $M>0$, let

$$
\psi_{M}(x)=M \psi_{1}\left(M^{(q-1) / 2} x\right)
$$

Then, ψ_{M} the solution of the O.D.E.

$$
\psi^{\prime \prime}+\psi^{q}=0, \quad \psi^{\prime}(0)=0, \quad \psi(0)=M
$$

Suppose that $x_{0} \in \partial \Omega$. Since Ω is convex, after a translation and rotation, we may assume that $x_{0}=0$ and $\Omega \subset\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}>0\right\}$. Let $M>0$ be a constant to be determined. For each $\epsilon>0$, let ψ^{ϵ} be a translation of ψ_{M} so that $\psi^{\epsilon}(-\epsilon)=0$ and ψ^{ϵ} is increasing for $x \in\left(-\epsilon, M^{-(q-1) / 2}-\epsilon\right)$. Let v_{ϵ} be a function defined on the region

$$
\Omega_{\epsilon}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega: x_{1} \in\left(0, M^{-(q-1) / 2}-\epsilon\right)\right\}
$$

The function v_{ϵ} is a function depending on x_{1} only and $v_{\epsilon}(x)=\psi^{\epsilon}\left(x_{1}\right)$. Then v_{ϵ} satisfies the equation $\Delta v+v^{q}=0$ on Ω_{ϵ}. Now, we choose M so that

$$
M \geq \max \left\{u(x, t): x \in \Omega, \quad t \in\left[0, T_{1}\right]\right\}
$$

and $v_{\epsilon} \geq u_{0}$ in Ω_{ϵ}. By the maximum principle, we have $u(x, t) \leq v_{\epsilon}(x)$ for all $x \in \Omega_{\epsilon}$. Since it is true for all $\epsilon>0$, we conclude that $u(x, t) \leq v_{0}(x)$. This implies that, there is a constant $A>0$, probably depending on t, so that

$$
\begin{equation*}
0 \leq u(x, t) \leq A \operatorname{dist}(x, \partial \Omega) \tag{2.8}
\end{equation*}
$$

When the domain is a ball,

$$
\Omega=\left\{x \in \mathbb{R}^{n}:|x|<R\right\}
$$

and u_{0} depends on $r=|x|$ only, then, for any $0<\epsilon<1$, the solutions, u_{ϵ}, to the problem (2.2) are symmetric. If we further assume that $u_{0 r}(x) \leq 0$ for all $x \in \Omega$, then by the reflection principle, we have $u_{\epsilon r}(x, t) \leq 0$ whenever $u_{\epsilon}(x, t)$ is defined. By letting $\epsilon \rightarrow 0$, we conclude that $u(x, t)$ is symmetric and $u_{r}(x, t) \leq 0$ whenever $\left.u_{(} x, t\right)$ is defined.

3. The Case $0<p<2$

Let $u(x, t)$ be a positive solution of (1.1), i.e., $u(x, t)>0$ for all $x \in \Omega$ and $t \in[0, T)$. Using the scheme in section 2 , we can find $T_{1}>0$ and solutions u_{ϵ} of (2.2) so that for any $K \subset \subset \Omega, u_{\epsilon}$ converges to u in $C^{2+\beta, 1+\beta / 2}\left(K \times\left[0, T_{1}\right]\right)$.

Given any $\eta>0$, we choose

$$
\Gamma=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \eta\}
$$

Since u_{ϵ} converges to u in $C^{2+\beta, 1+\beta / 2}\left(\Gamma \times\left[0, T_{1}\right]\right)$, if $\epsilon<\eta$ and is small enough,

$$
\sup _{\Gamma \times\left[0, T_{1}\right]}\left|u_{\epsilon}-u\right|<\eta .
$$

Thus, we have

$$
\sup _{\Omega \times\left[0, T_{1}\right]}\left|u_{\epsilon}-u\right| \leq \sup _{\Gamma \times\left[0, T_{1}\right]}\left|u_{\epsilon}-u\right|+\sup _{(\Omega-\Gamma) \times\left[0, T_{1}\right]}\left(u_{\epsilon}+u\right) \leq \eta+A(\eta+\eta)+A \eta
$$

Hence, we conclude that u_{ϵ} converges to u uniformly on $\Omega \times\left[0, T_{1}\right]$.
From equation (2.2), for any $0<\epsilon<1$, we have

$$
\int_{\Omega} \frac{u_{\epsilon t}^{2}}{u_{\epsilon}^{p}} d x=\int_{\Omega} u_{\epsilon t}\left(\Delta u_{\epsilon}+u_{\epsilon}^{q}\right) d x=-\frac{d}{d t} \int_{\Omega}\left(\frac{\left|D u_{\epsilon}\right|^{2}}{2}-\frac{u_{\epsilon}^{q+1}}{q+1}\right) d x
$$

Thus, if $0<s<T_{1}$,

$$
\begin{aligned}
& \int_{0}^{s} \int_{\Omega} \frac{u_{\epsilon t}^{2}(x, t)}{u_{\epsilon}^{p}(x, t)} d x d t+\frac{1}{2} \int_{\Omega}\left|D u_{\epsilon}\right|^{2}(x, s) d x \\
= & \frac{1}{q+1} \int_{\Omega} u_{\epsilon}^{q+1}(x, s) d x+\int_{\Omega}\left(\frac{\left|D u_{\epsilon}\right|^{2}(x, 0)}{2}-\frac{u_{\epsilon}^{q+1}(x, 0)}{q+1}\right) d x \\
= & \frac{1}{q+1} \int_{\Omega} u_{\epsilon}^{q+1}(x, s) d x+\int_{\Omega}\left(\frac{|D u|^{2}(x, 0)}{2}-\frac{(u(x, 0)+\epsilon)^{q+1}}{q+1}\right) d x
\end{aligned}
$$

As $\epsilon \rightarrow 0, u_{\epsilon}$ converges to u uniformly on $\Omega \times\left(0, T_{1}\right]$, and $D u_{\epsilon}, u_{\epsilon t}$ converge to $D u, u_{t}$ almost everywhere on $\Omega \times\left(0, T_{1}\right]$. By Fatou's Lemma, when $\epsilon \rightarrow 0$, we have

$$
\begin{align*}
& \int_{0}^{s} \int_{\Omega} \frac{u_{t}^{2}(x, t)}{u^{p}(x, t)} d x d t+\frac{1}{2} \int_{\Omega}|D u|^{2}(x, s) d x \\
\leq & \frac{1}{q+1} \int_{\Omega} u^{q+1}(x, s) d x+\int_{\Omega}\left(\frac{|D u|^{2}(x, 0)}{2}-\frac{u^{q+1}(x, 0)}{q+1}\right) d x \tag{3.1}
\end{align*}
$$

Equation (3.1) implies that, for $t \in\left(0, T_{1}\right)$,

$$
\begin{equation*}
\int_{\Omega}\left(\frac{|D u|^{2}(x, t)}{2}-\frac{u^{q+1}(x, t)}{q+1}\right) d x \leq \int_{\Omega}\left(\frac{|D u|^{2}(x, 0)}{2}-\frac{u^{q+1}(x, 0)}{q+1}\right) d x \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} \int_{\Omega} \frac{u_{s}^{2}(x, s)}{u^{p}(x, s)} d x d s \leq \int_{\Omega}\left(\frac{|D u|^{2}(x, 0)}{2}-\frac{u^{q+1}(x, 0)}{q+1}\right) d x . \tag{3.3}
\end{equation*}
$$

By repeating the process, we see that (3.2) and (3.3) are true for all $t \in(0, T)$.
On the other hand, let

$$
\Omega(\epsilon)=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \epsilon\} .
$$

When $0<p<2$, using integration by parts, we have

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2-p} \int_{\Omega(\epsilon)} u^{2-p} d x\right)=\int_{\Omega(\epsilon)} u^{1-p} u_{t} d x=\int_{\Omega(\epsilon)} u\left(\Delta u+u^{q}\right) d x \\
= & -\int_{\Omega(\epsilon)}\left(|D u|^{2}-u^{q+1}\right) d x+\int_{\partial \Omega(\epsilon)} u \frac{\partial u}{\partial \nu(\epsilon)} d \sigma(\epsilon)
\end{aligned}
$$

where $\nu(\epsilon)$ is the unit outward normal to $\partial \Omega(\epsilon)$ and $d \sigma(\epsilon)$ is the volume form on $\partial \Omega(\epsilon)$. For any $0<s_{1}<s_{2}<T$, we have

$$
\begin{align*}
& \frac{1}{2-p}\left(\int_{\Omega(\epsilon)} u^{2-p}\left(x, s_{2}\right) d x-\int_{\Omega(\epsilon)} u^{2-p}\left(x, s_{2}\right) d x\right) \tag{3.4}\\
= & -\int_{s_{1}}^{s_{2}} \int_{\Omega(\epsilon)}\left(|D u|^{2}-u^{q+1}\right) d x d t+\int_{s_{1}}^{s_{2}} \int_{\partial \Omega(\epsilon)} u \frac{\partial u}{\partial \nu(\epsilon)} d \sigma(\epsilon) d t,
\end{align*}
$$

We claim that for any $0<t<T$, there is $\epsilon_{i} \rightarrow 0$ as $i \rightarrow \infty$ such that

$$
\begin{equation*}
\left(\int_{\partial \Omega\left(\epsilon_{i}\right)} u^{2} d \sigma\left(\epsilon_{i}\right)\right)\left(\int_{\partial \Omega\left(\epsilon_{i}\right)}|D u|^{2} d \sigma\left(\epsilon_{i}\right)\right) \rightarrow 0 . \tag{3.5}
\end{equation*}
$$

In fact, if it is not true, there are $t \in(0, T)$ and a constant $c_{0}>0$ so that, for any $\epsilon>0$,

$$
\left(\int_{\partial \Omega(\epsilon)} u^{2} d \sigma(\epsilon)\right)\left(\int_{\partial \Omega(\epsilon)}|D u|^{2} d \sigma(\epsilon)\right) \geq c_{0} .
$$

By (2.8), when ϵ is small enough, we have

$$
\int_{\partial \Omega(\epsilon)} u^{2} d \sigma(\epsilon) \leq C \epsilon^{2}
$$

Thus,

$$
\int_{\partial \Omega(\epsilon)}|D u|^{2} d \sigma(\epsilon) \geq C \epsilon^{-2}
$$

Let $\epsilon_{0}>0$ be small enough so that the function $\operatorname{dist}(x, \partial \Omega)$ is Lipschitz continuous for $x \in\left\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)<\epsilon_{0}\right\}$. By the coarea formula,

$$
\int_{\Omega}|D u|^{2} d x \geq C \int_{0}^{\epsilon_{0}} \int_{\partial \Omega(\epsilon)}|D u|^{2} d \sigma(\epsilon) d \epsilon \geq C \int_{0}^{\epsilon_{0}} \epsilon^{-2} d \epsilon=\infty
$$

This contradicts (3.2). Therefore, (3.5) is true.
By (3.5) and Holder's inequality, we have

$$
\int_{\partial \Omega\left(\epsilon_{i}\right)} u \frac{\partial u}{\partial \nu\left(\epsilon_{i}\right)} d \sigma\left(\epsilon_{i}\right) d t \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty
$$

Now, we may replace ϵ by ϵ_{i} in (3.4) and let $i \rightarrow \infty$. Then, we have

$$
\begin{aligned}
& \frac{1}{2-p}\left(\int_{\Omega} u^{2-p}\left(x, s_{2}\right) d x-\int_{\Omega} u^{2-p}\left(x, s_{2}\right) d x\right) \\
= & -\int_{s_{1}}^{s_{2}} \int_{\Omega}\left(|D u|^{2}-u^{q+1}\right) d x d t .
\end{aligned}
$$

This implies that, for almost all $t \in(0, T)$, the function

$$
\int_{\Omega} u^{2-p}(x, t) d x
$$

is differentiable and

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2-p} \int_{\Omega} u^{2-p}(x, t) d x\right)=-\int_{\Omega}\left(|D u|^{2}-u^{q+1}\right) d x \tag{3.6}
\end{equation*}
$$

Theorem 3.2. Let $u(x, t)$ be a positive solution of (1.1) with $0<p<2$ and $q>1$. Suppose that the initial data $u_{0}(x)=u(x, 0)$ satisfies the condition

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}\left|D u_{0}\right|^{2}(x) d x \leq \frac{1}{q+1} \int_{\Omega} u_{0}^{q+1}(x) d x \tag{3.7}
\end{equation*}
$$

Then, $u(x, t)$ blows up in finite time.

We note that given any $v \in C^{1}(\bar{\Omega})$, if $k>0$ is chosen large enough, then the function $u_{0}(x)=k v(x)$ would satisfies (3.7).

Proof. From (3.2) and (3.7), for any $t>0$, we have

$$
\int_{\Omega}|D u|^{2}(x, t) d x \leq \frac{2}{q+1} \int_{\Omega} u^{q+1}(x, t) d x
$$

Thus, when $0<p<2$, from (3.6),

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2-p} \int_{\Omega} u^{2-p}(x, t) d x\right) \geq \frac{q-1}{q+1} \int_{\Omega} u^{q+1}(x, t) d x \tag{3.8}
\end{equation*}
$$

Also, by Holder's inequality, there is a constant $C_{0}>0$ so that

$$
\begin{equation*}
\int_{\Omega} u^{q+1} d x \geq C_{0}\left(\int_{\Omega} u^{2-p} d x\right)^{\frac{q+1}{2-p}} \tag{3.9}
\end{equation*}
$$

Let

$$
I(t)=\int_{\Omega} u^{2-p}(x, t) d x
$$

From (3.8) and (3.9), we obtain

$$
I^{\prime}(t) \geq C_{1} I^{\frac{q+1}{2-p}}
$$

Since $q>1$ and $p>0$, we have

$$
\gamma=\frac{q+1}{2-p}>1
$$

If the solution $u(x, t)$ exists in the time interval $(0, t)$, for certain constant $C_{1}>0$, we have

$$
I^{1-\gamma}(t) \leq I^{1-\gamma}(0)-(\gamma-1) C_{1} t
$$

or

$$
\int_{\Omega} u^{2-p}(x, t) d x \geq\left(\frac{1}{I^{1-\gamma}(0)-(\gamma-1) C_{1} t}\right)^{\frac{1}{\gamma-1}}
$$

Therefore, the solution has to blow up in finite time.
Theorem 3.3. Let $u(x, t)$ be a positive solution of (1.1) in $\Omega \times(0, T)$ with $0<p<2$ and $q>1$. Then, there is $C>0$ so that

$$
\left(\int_{\Omega} u^{2-p}(x, t) d x\right)^{\frac{1}{2-p}} \leq C|T-t|^{-1 /(q+p-1)}
$$

Proof. From (3.2), we have

$$
\int_{\Omega}|D u|^{2} d x \leq \frac{2}{q+1} \int_{\Omega} u^{q+1}(x, t) d x+B
$$

where

$$
B=\int_{\Omega}\left(\frac{|D u|^{2}(x, 0)}{2}-\frac{u^{q+1}(x, 0)}{q+1}\right) d x
$$

Thus, when $0<p<2$, from (3.6),

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2-p} \int_{\Omega} u^{2-p}(x, t) d x\right) \geq \frac{q-1}{q+1} \int_{\Omega} u^{q+1} d x-B \tag{3.10}
\end{equation*}
$$

As before, let

$$
I(t)=\int_{\Omega} u^{2-p}(x, t) d x
$$

Combining (3.10) and (3.9), we see that there are constants $C_{2}>0$ and $C_{3}>0$ so that,

$$
\begin{equation*}
I^{\prime} \geq-C_{2}+C_{3} I^{\frac{q+1}{2-p}} \tag{3.11}
\end{equation*}
$$

If

$$
\begin{equation*}
-2 C_{2}+C_{3} I^{\frac{q+1}{2-p}} \leq 0 \quad \text { for } \quad t \in(0, T) \tag{3.12}
\end{equation*}
$$

then there is constant $C_{4}>0$ so that

$$
I(t)=\int_{\Omega} u^{2-p}(x, t) d x \leq C_{4}
$$

for all $t \in(0, T)$, and the Theorem is true.
If (3.12) is not true, either there is $s_{1}>0$ such that

$$
-C_{2}+C_{3} I^{\frac{q+1}{2-p}}(t)>0
$$

for all $t \in\left(s_{1}, T\right)$, or, there is an interval $\left(s_{1}, S\right)$ such that

$$
I^{\frac{q+1}{2-p}}(t)>\frac{C_{2}}{C_{3}}
$$

for all $t \in\left(s_{1}, S\right)$, and

$$
I^{\frac{q+1}{2-p}}(S)=\frac{C_{2}}{C_{3}}
$$

The latter case implies that $I^{\prime}(t)<0$ for some $t \in\left(s_{1}, S\right)$. It contradicts the equation (3.11). Therefore, for all $t \in\left(s_{1}, T\right), I^{\prime}(t) \geq-C_{2}+C_{3} I^{\frac{q+1}{2-p}}(t)>0$, and $I(t) \geq I\left(s_{1}\right)$. Thus, we can find $C_{4}>0$ so that

$$
\begin{equation*}
I^{\prime}(t) \geq C_{4}(I(t))^{\frac{q+1}{2-p}} \quad \text { for } \quad t>s_{1} \tag{3.13}
\end{equation*}
$$

Let S_{n} be a sequence so that $S_{n}>s_{1}$ for all n and $S_{n} \rightarrow T$ as $n t o \infty$ and

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} u^{2-p}\left(x, S_{n}\right) d x=\infty
$$

After integrating equation (3.13), from t to S_{n}, with $t>s_{1}$, we have

$$
\frac{q+p-1}{2-p}\left(I^{-\frac{q+p-1}{2-p}}(t)-I^{-\frac{q+p-1}{2-p}}\left(S_{n}\right)\right) \geq C_{4}\left(S_{n}-t\right)
$$

By letting $n \rightarrow \infty$, we have

$$
\left(\int_{\Omega} u^{2-p}(x, t) d x\right)^{\frac{1}{2-p}} \leq C_{5}|T-t|^{-1 /(q+p-1)} .
$$

4. Symmetric Solutions

In this section, we let

$$
\Omega=\left\{x \in \mathbb{R}^{n}:|x|<R\right\} .
$$

Let $r=|x|$. We assume that $u(x, t)$ depends on r and t only. Then equation (1.1) becomes

$$
\begin{align*}
& u_{t}=u^{p}\left(u_{r r}+\frac{n-1}{r} u_{r}+u^{q}\right) \quad \text { for } \quad r \in(0, R), \quad t \in(0, T) \\
& u_{r}(0, t)=0, \quad u(R, t)=0 \quad \text { for } \quad t \in(0, T) \tag{4.1}\\
& u(r, 0)=u_{0}(r) \quad \text { for } \quad r \in(0, R)
\end{align*}
$$

We assume that $u_{0} \in C^{2, \alpha}(0, R) \cap C^{2}[0, R]$, and

$$
\begin{array}{ll}
u_{0}(R)=0 & u_{0}^{\prime}(0)=0, \quad u_{0}^{\prime}(R)<0 \quad \text { and } \quad u_{0}^{\prime \prime}(0)<0 \\
u_{0}(r)>0, & u_{0}^{\prime}(r)<0, \quad u_{0}^{\prime \prime}+\frac{n-1}{r} u_{0}^{\prime}+u_{0}^{q} \geq 0 \quad \text { for } \quad r \in(0, R) . \tag{4.2}
\end{array}
$$

It follows that

$$
\begin{equation*}
u_{t}(r, t) \geq 0, \quad u_{r}(r, t) \leq 0 \quad \text { for } \quad r \in(0, R), \quad t \in(0, T) \tag{4.3}
\end{equation*}
$$

Under these conditions, using the method of Friedman and McLeod, [2], we will show that $x=0$ is the only blowup point.

Lemma 4.1. Let $p>0, q>1$ and $\gamma \in(1, q)$. There is a constant $\epsilon>0$ so that

$$
-u_{r} \geq \epsilon r^{2} u^{\gamma} \quad \text { for } \quad r \in(0, R), \quad t \in(0, T) .
$$

Proof. We let $f(u)=u^{q}$ and $F(u)=u^{\gamma}$, with $1<\gamma<q$. Let $c(r)=\epsilon r^{n+1}$ and

$$
J=r^{n-1} u_{r}+c(r) F(u) .
$$

Then,

$$
\begin{aligned}
J_{t} & =r^{n-1} u_{t r}+c(r) F^{\prime} u_{t} \\
& =p r^{n-1} u^{-1} u_{t} u_{r}+r^{n-1} u^{p}\left(u_{r r r}-\frac{n-1}{r^{2}} u_{r}+\frac{n-1}{r} u_{r r}+f^{\prime} u_{r}\right), \\
J_{r} & =(n-1) r^{n-2} u_{r}+r^{n-1} u_{r r}+c, F+c F^{\prime} u_{r},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{r r}= & (n-1)(n-2) r^{n-3} u_{r}+2(n-1) r^{n-2} u_{r r}+r^{n-1} u_{r r r} \\
& +c^{\prime \prime} F+2 c^{\prime} F^{\prime} u_{r}+c F^{\prime \prime} u_{r}^{2}+c F^{\prime} u_{r r} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& J_{t}-u^{p}\left(J_{r r}-\frac{n-1}{r} J_{r}\right) \\
= & p r^{n-1} u^{-1} u_{t} u_{r}+r^{n-1} u^{p} f^{\prime} u_{r}-u^{p}\left(c^{\prime \prime} F+2 c^{\prime} F^{\prime} u_{r}+c F^{\prime \prime} u_{r}^{2}+c F^{\prime} u_{r r}\right) \\
& +\frac{n-1}{r} u^{p}\left(c^{\prime} F+c F^{\prime} u_{r}\right)+c F^{\prime} u_{t} .
\end{aligned}
$$

Using equation (4.1), we obtain

$$
\begin{aligned}
& J_{t}-u^{p}\left(J_{r r}-\frac{n-1}{r} J_{r}\right) \\
= & p r^{n-1} u^{-1} u_{t} u_{r}+r^{n-1} u^{p} f^{\prime} u_{r}-u^{p}\left(c^{\prime \prime} F+2 c^{\prime} F^{\prime} u_{r}+c F^{\prime \prime} u_{r}^{2}\right) \\
& +c F^{\prime} u^{p}\left(\frac{n-1}{r} u_{r}+f\right)+\frac{n-1}{r} u^{p}\left(c^{\prime} F+c F^{\prime} u_{r}\right) \\
= & p r^{n-1} u^{-1} u_{t}-c F^{\prime \prime} u^{p} u_{r}^{2}+u^{p}\left(r^{n-1} f^{\prime}-2 c^{\prime} F^{\prime}+\frac{2(n-1)}{r} c F^{\prime}\right) u_{r} \\
& +u^{p}\left(c F^{\prime} f+\frac{n-1}{r} c^{\prime} F-c^{\prime \prime} F\right) .
\end{aligned}
$$

Now, we use the fact that

$$
u_{r}=\frac{1}{r^{n-1}}(J-c F)
$$

and have

$$
\begin{align*}
& J_{t}-u^{p}\left(J_{r r}-\frac{n-1}{r} J_{r}\right) \\
= & p r^{n-1} u^{-1} u_{t} u_{r}-c F^{\prime \prime} u^{p} u_{r}^{2}+u^{p}\left(f^{\prime}-\frac{2}{r^{n-1}} c^{\prime} F^{\prime}+\frac{2(n-1)}{r^{n}} c F^{\prime}\right) J \tag{4.4}\\
& +u^{p}\left(c F^{\prime} f+\frac{n-1}{r} c^{\prime} F-c^{\prime \prime} F-c F f^{\prime}+\frac{2}{r^{n-1}} c c^{\prime} F^{\prime} F\right. \\
& \left.-\frac{2(n-1)}{r^{n}} c^{2} F F^{\prime}\right) .
\end{align*}
$$

Since $f=u^{q}, F=u^{\gamma}$ with $1<\gamma<q$ and $c=\epsilon r^{n+1}$, we have

$$
\begin{aligned}
& c F^{\prime} f+\frac{n-1}{r} c^{\prime} F-c^{\prime \prime} F-c F f^{\prime}+\frac{2}{r^{n-1}} c c^{\prime} F^{\prime} F-\frac{2(n-1)}{r^{n}} c^{2} F F^{\prime} \\
= & 4 \epsilon^{2} r^{n+2} u^{2 \gamma-1}-(q-\gamma) \epsilon r^{n+1} u^{q+\gamma-1}-\epsilon(n+1) r^{n-1} u^{\gamma}
\end{aligned}
$$

We choose ϵ small enough so that $4 \epsilon R \leq q-\gamma$. Then, when $u \geq 1$, since $\gamma<q$, we have
$4 \epsilon^{2} r^{n+2} u^{2 \gamma-1}-(q-\gamma) \epsilon r^{n+1} u^{q+\gamma-1} \leq 4 \epsilon^{2} R r^{n+1} u^{2 \gamma-1}-(q-\gamma) \epsilon r^{n+1} u^{q+\gamma-1}<0$.
Also, we choose ϵ small enough so that $4 \epsilon R^{3}<n+1$. When $u \leq 1$, since $\gamma>1$, we have

$$
4 \epsilon^{2} r^{n+2} u^{2 \gamma-1}-\epsilon(n+1) r^{n-1} u^{\gamma} \leq 4 \epsilon^{2} R^{3} r^{n-1} u^{2 \gamma-1}-\epsilon(n+1) r^{n-1} u^{\gamma}<0
$$

Therefore, for any $r>0$ and $u>0$, if ϵ is chosen small enough, we have

$$
c F^{\prime} f+\frac{n-1}{r} c^{\prime} F-c^{\prime \prime} F-c F f^{\prime}+\frac{2}{r^{n-1}} c c^{\prime} F^{\prime} F-\frac{2(n-1)}{r^{n}} c^{2} F F^{\prime}<0 .
$$

From (4.4) and our assumptions (4.3), the function J satisfies an equation of the form

$$
J_{t}=u^{p}\left(J_{r r}-A J_{r}+B J\right) \quad \text { for } \quad r \in(0, R) \quad \text { and } \quad t \in(0, T)
$$

where

$$
A=\frac{n-1}{r} \quad \text { and } \quad B=q u^{q-1}-2 \epsilon \gamma(n+1) r u^{\gamma-1}+2 \epsilon(n-1) r u^{\gamma-1}
$$

When $r=0$, we have $J=0$. When $r=R$, since $u_{r}(r, t) \leq 0$, we have

$$
\limsup _{r \rightarrow R} u_{r}(r, t) \leq 0
$$

This implies that

$$
\limsup _{r \rightarrow R} J(r, t) \leq 0 \quad \text { for all } \quad t \in(0, T)
$$

Also, from the fact that $u_{0}^{\prime \prime}(0)<0$ and the mean value theorem, we can see that when r is small enough, for some small constant $C>0$, we have $u_{0}^{\prime}(r) \leq-C r$. Hence, if r is small, $J(r, 0) \leq-C r^{n}+\epsilon r^{n+1} u_{0}^{q}(r)$, and $u_{0}(0)>0$. We may choose ϵ small enough, so that $J(r, 0) \leq 0$ for all $r \in(0, R)$. Then, by the maximum principle, we have $J(r, t) \leq 0$ for all $r \in(0, R)$ and $t \in(0, T)$.

Theorem 4.2. Let $u(x, t)$ be a solution of (1.1) in $B_{R}(0) \times(0, T)$ with $q>1$ and $p>0$. We assume that $u(x, t)$ depends on $r=|x|$ and t only. If the initial data $u_{0}(r)$ satisfies assumptions (4.2), then the point $x=0$ is the only blow-up point.

Proof. By Lemma 4.1, for some $\gamma>1$, we have $-u_{r} \geq r^{2} u^{\gamma}$. For any $0<r<R$ and $t \in(0, T)$, we have

$$
-\int_{0}^{r} \frac{u_{r}(s, t)}{u^{\gamma}(s, t)} d s \geq \epsilon \int_{0}^{r} s^{2} d s
$$

It follows that

$$
u^{1-\gamma}(r, t) \geq \frac{\epsilon r^{3}}{3}
$$

Thus, for any $r>0$, we have

$$
\limsup _{t \rightarrow T} u(r, t)<\infty
$$

5. Non-symmetric Solutions

In this section, we will show that if $u(x, t)$ is a non-negative solution of (1.1) in $\Omega \times(0, T)$ with $q>1$ and $p>0$, then there is a constant $C>0$ such that

$$
u(x, t) \leq C(T-t)^{-1 /(q-1)}
$$

Again, we follow the method of Friedman and McLeod, [2].
Theorem 5.1. Let Ω be a bounded convex $C^{2, \alpha}$ domain in \mathbb{R}^{n} and $u(x, t)$ be a non-negative solution of (1.1) in $\Omega \times(0, T)$ with $q>1$ and $p>0$. Let $u_{0}(x)=u(x, 0)$ be the initial data of u. We assume that $u_{0} \in C^{2, \alpha}(\Omega) \cap C^{2}(\bar{\Omega})$,

$$
\begin{equation*}
u_{0}=0 \quad \text { and } \quad \frac{\partial u_{0}}{\partial \nu}<0 \quad \text { on } \quad \partial \Omega \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0}>0 \quad \text { and } \quad \Delta u_{0}+u_{0}^{q} \geq 0 \quad \text { in } \quad \Omega \tag{5.2}
\end{equation*}
$$

Then, there are constants $\alpha>0$ and $M>0$ such that $u(x, t) \leq M$ whenever $\operatorname{dist}(x, \partial \Omega)<\alpha / 2$.

Proof. Take any $\tilde{x} \in \Omega$. After a translation and a rotation, we may assume that $\tilde{x}=0, \Omega \subset\left\{x: x_{1}<0\right\}$, and that the hyperplane $x_{1}=0$ is tangent to $\partial \Omega$ at \tilde{x}. Given $\alpha>0$, we define

$$
\Omega_{\alpha}=\left\{x \in \Omega:-\alpha<x_{1}<0\right\} .
$$

By (5.1), there is $\alpha>0$ such that

$$
\frac{\partial u_{0}}{\partial x_{1}}<0 \quad \text { for } \quad(x, t) \in \Omega_{\alpha} \times(0, T) .
$$

Moreover, the choice of α depends only on Ω and the initial data u_{0}. Then, by the reflection principle, we have

$$
\frac{\partial u}{\partial x_{1}} \leq 0 \quad \text { for } \quad(x, t) \in \Omega_{\alpha} \times(0, T)
$$

Let $f(u)=u^{q}$ and $F(u)=u^{\gamma}$ with $1<\gamma<q$. We introduce the function

$$
J=u_{x_{1}}+\epsilon\left(x_{1}+\alpha\right)^{2} F(u),
$$

where $\epsilon>0$ is to be determined. Using (1.1), we compute that
$J_{t}=u_{t x_{1}}+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime} u_{t}=p u^{-1} u_{x_{1}} u_{t}+u^{p}\left(\Delta u_{x_{1}}+f^{\prime} u_{x_{1}}\right)+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime} u_{t}$,
and
$\Delta J=\Delta u_{x_{1}}+4 \epsilon\left(x_{1}+\alpha\right) F^{\prime} u_{x_{1}}+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime \prime}|D u|^{2}+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime} \Delta u+2 \epsilon F$.
Thus, we have

$$
\begin{aligned}
& J_{t}-u^{p} \Delta J \\
= & p u^{-1} u_{x_{1}} u_{t}-\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime \prime}|D u|^{2} u^{p}+u^{p} f^{\prime} u_{x_{1}}-2 \epsilon F u^{p} \\
& -4 \epsilon\left(x_{1}+\alpha\right) F^{\prime} u^{p} u_{x_{1}}+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime} f u^{p} \\
= & p u^{-1} u_{x_{1}} u_{t}-\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime \prime}|D u|^{2} u^{p}+u^{p} f^{\prime}\left(J-\epsilon\left(x_{1}+\alpha\right)^{2} F\right)-2 \epsilon F u^{p} \\
& -4 \epsilon\left(x_{1}+\alpha\right) F^{\prime} u^{p}\left(J-\epsilon\left(x_{1}+\alpha\right)^{2} F\right)+\epsilon\left(x_{1}+\alpha\right)^{2} F^{\prime} f u^{p}
\end{aligned}
$$

In $\Omega_{\alpha} \times(0, T)$, since $u_{x_{1}} \leq 0$ and $u_{t} \geq 0$, we obtain,

$$
\begin{aligned}
& J_{t}-u^{p} \Delta J \\
\leq & \left(f^{\prime}-4 \epsilon\left(x_{1}+\alpha\right) F^{\prime}\right) u^{p} J-\epsilon\left(x_{1}+\alpha\right)^{2} u^{p}\left(f^{\prime} F-f F^{\prime}\right) \\
& +4 \epsilon^{2}\left(x_{1}+\alpha\right)^{3} u^{p} F F^{\prime}-2 \epsilon u^{p} F
\end{aligned}
$$

From the definitions of f and F, we have $f^{\prime} F-f F^{\prime}=(q-\gamma) u^{q+\gamma-1}>0$ and

$$
\begin{aligned}
& \epsilon\left(x_{1}+\alpha\right)^{2} u^{p}\left(f^{\prime} F-f F^{\prime}\right)-4 \epsilon^{2}\left(x_{1}+\alpha\right)^{3} u^{p} F F^{\prime} \\
= & \epsilon(q-\gamma)\left(x_{1}+\alpha\right)^{2} u^{p+q+\gamma-1}-4 \epsilon^{2} \gamma\left(x_{1}+\alpha\right)^{3} u^{p+2 \gamma-1} .
\end{aligned}
$$

Since $-\alpha<x_{1}<0$, if $u \geq 1$, and $\epsilon>0$ is chosen small enough, since $q>\gamma$, we have

$$
\begin{aligned}
& \epsilon\left(x_{1}+\alpha\right)^{2} u^{p}\left(f^{\prime} F-f F^{\prime}\right)-4 \epsilon^{2}\left(x_{1}+\alpha\right)^{3} u^{p} F F^{\prime} \\
\geq & \epsilon(q-\gamma)\left(x_{1}+\alpha\right)^{2} u^{p+q+\gamma-1}-4 \epsilon^{2} \alpha \gamma\left(x_{1}+\alpha\right)^{2} u^{p+2 \gamma-1} \\
\geq & 0
\end{aligned}
$$

If $0 \leq u \leq 1$, and $\epsilon>0$ is chosen small enough, since $\gamma>1$, we have

$$
\begin{aligned}
& 4 \epsilon^{2}\left(x_{1}+\alpha\right)^{3} u^{p} F F^{\prime}-2 \epsilon u^{p} F \\
= & 4 \epsilon^{2} \gamma\left(x_{1}+\alpha\right)^{3} u^{p+2 \gamma-1}-2 \epsilon u^{p+\gamma} \\
\leq & 4 \epsilon^{2} \gamma \alpha^{3} u^{p+2 \gamma-1}-2 \epsilon u^{p+\gamma} \\
\leq & 0 .
\end{aligned}
$$

Hence, when ϵ is chosen small enough, the function J satisfies an equation of the form

$$
J_{t} \leq u^{p}(\Delta J+E J)
$$

in $\Omega_{\alpha} \times(0, T)$, with $E=\left(f^{\prime}-4 \epsilon\left(x_{1}+\alpha\right) F^{\prime}\right) u^{p}$. We also choose ϵ small enough such that $J(x, 0) \leq 0$ for $x \in \Omega_{\alpha}$. It is easy to check that $J(x, t) \leq 0$ for all $x \in \partial \Omega_{\alpha}$. By the maximum principle, we have $J(x, t) \leq 0$ in $\Omega_{\alpha} \times(0, T)$. Then, for $(x, t) \in \Omega_{\alpha / 2} \times(0, T)$, we have $u_{x_{1}} \leq-\epsilon\left(x_{1}+\alpha\right)^{2} u^{\gamma}$. Fix $t \in(0, T)$. We let $w(s)=u\left(s, 0^{\prime}, t\right)$, where $0^{\prime}=(0,0, \ldots 0) \in \mathbb{R}^{n-1}$. Then, $w^{\prime} \leq-\epsilon(s+\alpha)^{2} w^{\gamma}$. For all $s \in(-\alpha, 0)$, we have

$$
-\frac{1}{\gamma-1}\left(w^{-(\gamma-1)}(s)-w^{-(\gamma-1)}(-\alpha)\right) \leq-\frac{\epsilon(s+\alpha)^{3}}{3}
$$

Then, when $s \in(-\alpha / 2,0)$, we have

$$
-\frac{1}{\gamma-1} w^{-(\gamma-1)}(s) \leq-\frac{\epsilon \alpha^{3}}{24}
$$

We note that $\gamma>1$, therefore,

$$
w^{\gamma-1}(s) \leq \frac{24}{(\gamma-1) \epsilon \alpha^{3}}
$$

and the Theorem follows.

Theorem 5.2. Let $u(x, t)$ be a non-negative solution of (1.1) in $\Omega \times(0, T)$ with $q>1$ and $p>0$. We assume that $u_{0}(x)=u(x, 0)$ is of $C^{2, \alpha}$ and satisfies (5.1) and (5.2). Then there is a constant $C>0$ such that

$$
u(x, t) \leq C(T-t)^{-1 /(q-1)}
$$

Proof. By Lemma 2.1, we have

$$
u_{t}(x, t) \geq 0 \quad \text { for } \quad \text { all } \quad(x, t) \in \Omega \times(0, T)
$$

For any $x \in \Omega, u(x, t) \geq u(x, 0)>0$. Let $\alpha>0$ be the constant in Theorem 5.1, and

$$
\Omega^{\prime}=\{x \in \Omega: \alpha / 4<\operatorname{dist}(x, \partial \Omega)<\alpha / 2\} .
$$

Let $c>0$ be a constant, so that $u_{0}(x) \geq c$ for $x \in \Omega^{\prime}$. From Theorem 5.1, there are positive constants α and M such that $u(x, t) \leq M$ whenever $\operatorname{dist}(x, \partial \Omega)<\alpha / 2$. Thus, $c \leq u(x, t) \leq M$ for $x \in \Omega^{\prime}$. By the parabolic regularity theory, there is a constant $C_{1}>0$ such that

$$
u_{t}(x, t) \leq C_{1} \quad \text { for } \quad(x, t) \in \Omega^{\prime} \times(0, T)
$$

The function $w(x, t)=u_{t}(x, t)$ satisfies the equation

$$
w_{t}=u^{p} \Delta w+\left(q u^{p+q-1}+p u^{-1} w\right) w
$$

in $\Omega^{\prime} \times(0, T)$. It follows that there is $C_{2}>0$ such that

$$
0<C_{2} \leq w(x, t) \leq C_{1} \quad \text { for } \quad(x, t) \in \Omega^{\prime \prime} \times(\alpha, T)
$$

where $\Omega^{\prime \prime}=\{x \in \Omega: 5 \alpha / 16<\operatorname{dist}(x, \partial \Omega)<7 \alpha / 16\}$. Let

$$
\tilde{\Omega}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>3 \alpha / 8\} .
$$

There is a constant $0<\delta \leq 1$ such that

$$
\begin{equation*}
u_{t}(x, t)-\delta u^{q}(x, t) \geq 0 \quad \text { for } \quad(x, t) \in \partial \tilde{\Omega} \times(\alpha, T) \tag{5.3}
\end{equation*}
$$

Moreover, by the maximum principle, we have $w(x, t)>0$ for $(x, t) \in \Omega \times(0, T)$. Therefore, we can choose δ small enough so that

$$
\begin{equation*}
u_{t}(x, \alpha)-\delta u^{q}(x, \alpha) \geq 0 \quad \text { for } \quad x \in \tilde{\Omega} \tag{5.4}
\end{equation*}
$$

Let $\gamma>1$ and δ be the constant in (5.3). Let

$$
J=u_{t}-\delta u^{\gamma}=u^{p}\left(\Delta u+u^{q}\right)-\delta u^{\gamma} .
$$

By direct computations, we have

$$
J_{t}=p u^{-1} u_{t}^{2}+u^{p}\left(\Delta u_{t}+q u^{q-1} u_{t}\right)-\delta \gamma u^{\gamma-1} u_{t},
$$

and

$$
\Delta J=\Delta u_{t}-\delta \gamma u^{\gamma-1} \Delta u-\delta \gamma(\gamma-1) u^{\gamma-2}|D u|^{2} .
$$

Thus,

$$
\begin{aligned}
& J_{t}-u^{p} \Delta J \\
= & p u^{-1} u_{t}^{2}+q u^{p+q-1} u_{t}-\delta \gamma u^{\gamma-1} u_{t}+\delta \gamma u^{p+\gamma-1} \Delta u+\delta \gamma(\gamma-1) u^{p+\gamma-2}|D u|^{2} .
\end{aligned}
$$

Using equation (1.1) and the fact that $u_{t}=J+\delta u^{\gamma}$, we have

$$
\begin{aligned}
& J_{t}-u^{p} \Delta J \\
= & p u^{-1} u_{t}^{2}+q u^{p+q-1} u_{t}-\delta \gamma u^{p+q+\gamma-1}+\delta \gamma(\gamma-1) u^{p+\gamma-2}|D u|^{2} \\
= & p u^{-1} u_{t}^{2}+\delta \gamma(\gamma-1) u^{p+\gamma-2}|D u|^{2}+q u^{p+q-1}\left(J+\delta u^{\gamma}\right)-\delta \gamma u^{p+q+\gamma-1}
\end{aligned}
$$

Thus, we conclude that

$$
\begin{align*}
& J_{t}-u^{p} \Delta J \\
= & p u^{-1} u_{t}^{2}+\delta \gamma(\gamma-1) u^{p+\gamma-2}|D u|^{2}+q u^{p+q-1} J+\delta(q-\gamma) u^{p+q+\gamma-1} . \tag{5.5}
\end{align*}
$$

Then, in equation (5.5), we choose $\gamma=q$. Then, the function satisfies an inequality of the form

$$
J_{t} \geq u^{p} \Delta J+B J \quad \text { in } \quad \tilde{\Omega} \times(\alpha, T)
$$

with $B=q u^{p+q-1}$. By (5.3), we have $J(x, t) \geq 0$ whenever $x \in \partial \tilde{\Omega}$. Also, when $t=\alpha$, by (5.4), $J=u_{t}(x, \alpha)-\delta u^{q}(x, \alpha) \geq 0$. Then, by the maximum principle, $J=u_{t}-\delta u^{q} \geq 0$ in $\tilde{\Omega} \times(\alpha, T)$. For any $\alpha<t<s<T$, we have

$$
\frac{1}{q-1}\left(u^{-(q-1)}(x, t)-u^{-(q-1)}(x, s)\right) \geq \delta(s-t) .
$$

Hence,

$$
\frac{1}{q-1} u^{-(q-1)}(x, t) \geq \delta(s-t)
$$

When letting $s \rightarrow T$, we have

$$
\frac{1}{q-1} u^{-(q-1)}(x, t) \geq \delta(T-t)
$$

and the Theorem follows.

6. The Case $p \geq 2$

Lemma 6.1. Let $0<2 R<L$, $\lambda_{1}>0,0<\lambda_{2}<1, p \geq 2, q>1$. Let $w(x) \in C^{2}(2 R, L) \cap C[2 R, L]$ be a solution of the $O D E$

$$
\begin{equation*}
w^{\prime \prime}-\lambda_{1} w^{-p} w^{\prime} x-\lambda_{2} w^{1-p}+w^{q}=0 \quad \text { on } \quad(2 R, L) \tag{6.1}
\end{equation*}
$$

which is decreasing in x and satisfies the boundary conditions: $w(2 R)=w_{0}>0$, and $w(L)=0$. Let

$$
\epsilon=\frac{\lambda_{2}}{2 \lambda_{1} L}>0 .
$$

Then, there is constant $\delta>0$ so that $w^{\prime}(x)+\epsilon w(x) \leq 0$ when $x \in(L-\delta, L)$.
Proof. Let $w(x)$ be a solution as described in the lemma. Suppose that there is a point $a \in(2 R, L)$ such that $w^{\prime}(a)+\epsilon w(a)>0$. Since w is decreasing in $(2 R, L)$ and $w(L)=0$, we have

$$
\limsup _{x \rightarrow L^{-}}\left(w^{\prime}(x)+\epsilon w(x)\right) \leq 0 .
$$

Thus, we can find an interval $(a, b) \subset(2 R, L)$ such that $w^{\prime}(x)+\epsilon w(x)>0$ for $x \in(a, b)$ and $w^{\prime}(b)+\epsilon w(b)=0$. Then, for $x \in(a, b)$, we have

$$
\begin{aligned}
w^{\prime \prime}(x)+\epsilon w^{\prime}(x) & =\lambda_{1} w^{-p} w^{\prime} x+\lambda_{2} w^{1-p}-w^{q}+\epsilon w^{\prime} \\
& \geq-\lambda_{1} \epsilon w^{1-p} x+\lambda_{2} w^{1-p}-w^{q}-\epsilon^{2} w \\
& \geq-\lambda_{1} \epsilon L w^{1-p}+\lambda_{2} w^{1-p}-w^{q}-\epsilon^{2} w \\
& \geq \frac{\lambda_{2}}{2} w^{1-p}-w^{q}-\epsilon^{2} w .
\end{aligned}
$$

We let $\eta>0$ so that if $0<w<\eta$, then

$$
\frac{1}{2} \lambda_{2} w^{1-p}-w^{q}-\epsilon^{2} w \geq 0
$$

Since w is decreasing and $w(L)=0$, there is $\delta>0$ such that $0<w(x)<\eta$ for $x \in(L-\delta, L)$. If $a>L-\delta$, then $0<w(x)<\eta$ for $x \in(a, b)$. This implies that

$$
w^{\prime \prime}(x)+\epsilon w^{\prime}(x) \geq 0 \quad \text { in } \quad(a, b) .
$$

Hence, $w^{\prime}(x)+\epsilon w(x)$ is an increasing function in (a, b). However, $w^{\prime}(x)+\epsilon w(x)>$ 0 in (a, b) and $w^{\prime}(b)+\epsilon w(b)=0$, and we have a contradiction.

We let

$$
\begin{equation*}
F(w)=\frac{\lambda_{2}}{p-2} w^{2-p}+\frac{1}{q+1} w^{q+1} \quad \text { when } \quad p>2, \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(w)=-\lambda_{2} \log w+\frac{1}{q+1} w^{q+1} \quad \text { when } \quad p=2 \tag{6.3}
\end{equation*}
$$

In both cases, we have

$$
\lim _{x \rightarrow 0^{+}} F(w)=\lim _{x \rightarrow \infty} F(w)=\infty,
$$

and the function $F(w)$ has a unique minimum at $w=\lambda_{2}^{1 /(p+q-1)}$, for $w \in(0, \infty)$. It is easy to check that, since $0<\lambda_{2}<1$, we have

$$
F\left(\lambda_{2}^{1 /(p+q-1)}\right)>0 .
$$

Lemma 6.2. Let $R>0, \lambda_{1}>0,0<\lambda_{2} \leq 1, p \geq 2, q>1$. Let $w(x)$ be a solution of the ODE (6.1) with initial data $w(2 R)=w_{0}>\lambda_{2}^{1 /(p+q-1)}>0$, and $w^{\prime}(2 R)=0$. Then, either $w(x)$ can be extended as a positive, decreasing function defined on $(2 R, \infty)$ and

$$
\begin{equation*}
F(m) \geq F\left(w_{0}\right), \quad \text { with } \quad m=\lim _{x \rightarrow \infty} w(x)<\lambda_{2}^{1 /(p+q-1)} \tag{6.4}
\end{equation*}
$$

or, there is $K>2 R$ such that $w(x)$ is decreasing in $(2 R, K), w^{\prime}(K)=0$, and

$$
\begin{equation*}
F(\eta) \geq F\left(w_{0}\right), \quad \text { with } \quad \eta=w(K)<\lambda_{2}^{1 /(p+q-1)} . \tag{6.5}
\end{equation*}
$$

Proof. By our assumption on $w(2 R)$, we have $w^{\prime \prime}(2 R)<0$. Thus w is a decreasing function near $x=2 R$.

Let $K>2 R$ be the first point where $w^{\prime}(K)=0$ and $\eta=w(K)>0$. We first assume that $p>2$. From the equation (6.1), when $p>2$, we have

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{1}{2} w^{\prime 2}+\frac{\lambda_{2}}{p-2} w^{2-p}+\frac{1}{q+1} w^{q+1}\right)=\lambda_{1} w^{-p} w^{\prime 2} x \geq 0 . \tag{6.6}
\end{equation*}
$$

Thus, if $F(w)$ is the function in (6.2), we have $F(\eta) \geq F\left(w_{0}\right)$.
Suppose that the point K in the above does not exist. Then, either $w(x)$ is defined for all $x \in(2 R, \infty)$ and is a decreasing function, or there is $L>2 R$ so that $w(x)$ is a decreasing function in $(2 R, L)$ and $w(L)=0$. In the first case, let $w(x) \rightarrow m \geq 0$ as $x \rightarrow \infty$. Then, there is an increasing sequence x_{n} such that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and $w^{\prime}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. When $p>2$, from (6.6), we have

$$
\frac{1}{2} w^{\prime 2}\left(x_{n}\right)+F\left(w\left(x_{n}\right)\right) \geq F\left(w_{0}\right)
$$

When $n \rightarrow \infty$, we see that $F(m) \geq F\left(w_{0}\right)$.

Suppose that there is $L>2 R$ so that $w(x)$ is a decreasing function in $(2 R, L)$ and $w(L)=0$. By Lemma 6.1, there are $\delta>0$ and $\epsilon>0$ such that $w^{\prime}(x)+\epsilon w(x) \geq$ 0 in $(L-\delta, L)$. Then, we have

$$
\begin{aligned}
w^{\prime \prime}-\frac{\lambda_{2}}{2} w^{1-p}+w^{q} & =w^{\prime \prime}+\epsilon \lambda_{1} L w^{1-p}-\lambda_{2} w^{1-p}+w^{q} \\
& \geq w^{\prime \prime}-\lambda_{1} w^{-p} w^{\prime} x-\lambda_{2} w^{1-p}+w^{q} \\
& =0 .
\end{aligned}
$$

Since $w^{\prime} \leq 0$, when $p>2$, we have

$$
\frac{d}{d x}\left(\frac{1}{2} w^{\prime 2}+\frac{\lambda_{2}}{2(p-2)} w^{2-p}+\frac{1}{q+1} w^{q+1}\right) \leq 0 .
$$

Thus, for $x \in(L-\delta, L)$,

$$
\begin{aligned}
& \frac{1}{2} w^{\prime 2}(x)+\frac{\lambda_{2}}{2(p-2)} w^{2-p}(x)+\frac{1}{q+1} w^{q+1}(x) \\
\leq & \frac{1}{2} w^{\prime 2}(L-\delta)+\frac{\lambda_{2}}{2(p-2)} w^{2-p}(L-\delta)+\frac{1}{q+1} w^{q+1}(L-\delta)
\end{aligned}
$$

and is bounded from above. However, since $w(x) \rightarrow 0$ as $x \rightarrow L$, this is impossible.
When $p=2$, we let $F(w)$ be the function in (6.3). Using the same arguments, we obtain the same result.

Theorem 6.3. Let $\Omega=\left\{x:|x|<R_{0}\right\}$ and let $u(x, t)$ be a positive solution of (1.1) in $\Omega \times(0, T)$ with $p \geq 2$ and $q>1$. Suppose that u is symmetric, and is radially decreasing, and blows up at $t=T$, then

$$
\limsup _{t \rightarrow T^{-}}\left((T-t)^{1 /(p+q-1)} \max _{\Omega} u(x, t)\right)=\infty .
$$

Proof. Let $u(x, t)$ be a positive solution of (1.1) in $\Omega \times(0, T)$ with $p \geq 2$ and $q>1$. We assume that u depends on r and t only, where $r=|x|$, and $u_{r}(x, t) \leq 0$ for all $(x, t) \in \Omega \times(0, T)$. Note that

$$
u(0, t)=\max _{x \in \Omega} u(x, t) .
$$

If the Theorem is not true, then there is a constant $M>0$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow T}(T-t)^{1 /(p+q-1)} u(0, t)=M<\infty \tag{6.7}
\end{equation*}
$$

Let $a=\left(-a_{1}, 0, \ldots, 0\right) \in \Omega$ with $a_{1}>0$. We let $w(y, s)$ be the rescaled function of u at a, i.e.,

$$
w(y, s)=(T-t)^{1 /(p+q-1)} u\left(a+y(T-t)^{(q-1) / 2(p+q-1)}, t\right) \text { with } s=-\log (T-t) .
$$

Then, $w(y, s)$ satisfies the equation

$$
\begin{equation*}
w_{s}=w^{p}\left(\Delta w-\frac{q-1}{2(p+q-1)} w^{-p} D w \cdot y-\frac{1}{p+q-1} w^{1-p}+w^{q}\right) \tag{6.8}
\end{equation*}
$$

on the set

$$
\Gamma_{a}\left\{(y, s): s>-\log T, a+y(T-t)^{(q-1) / 2(p+q-1)} \in \Omega\right\}
$$

Let

$$
\Gamma_{a}(s)=\left\{y: a+y(T-t)^{(q-1) / 2(p+q-1)} \in \Omega\right\} \quad \text { with } s=-\log (T-t)
$$

We note that, for each $s>0$, the set $\Gamma_{a}(s)$ is a ball centered at $(T-t)^{-(q-1) / 2(p+q-1)}$ $\left(a_{1}, 0, \ldots, 0\right)$ with radius $(T-t)^{-(q-1) / 2(p+q-1)} R_{0}$, and $s=\ln (T-t)$. When $y \in \partial \Gamma_{a}(s)$, we have $w(y, s)=0$. For $y \notin \Gamma_{a}(s)$, we let $w(y, s)=0$. Then, $w(y, s)$ is defined for all $y \in \mathbb{R}^{n}$ and $s>-\log T$. From our assumptions, we have (6.9) $\frac{\partial w}{\partial y_{1}}(y, t) \leq 0 \quad$ when $\quad y=\left(y_{1}, 0, \ldots, 0\right), \quad y_{1}>(T-t)^{-(q-1) / 2(p+q-1)} a_{1}$.

Moreover, if $y_{1} \in(T-t)^{-(q-1) / 2(p+q-1)}\left(a_{1}, a_{1}+R_{0}\right)$, and $\left(y_{1}, y^{\prime}\right) \in \Gamma_{a}(s)$, then we have $w\left(y_{1}, y^{\prime} ; t\right) \leq w\left(y_{1}, 0^{\prime} ; t\right)$. Here $y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)$ and $0^{\prime}=(0, \ldots, 0) \in \mathbb{R}^{n-1}$. By (6.7), there is a sequence t_{k} such that $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T-t_{k}\right)^{1 /(p+q-1)} u\left(0, t_{k}\right)=M \tag{6.10}
\end{equation*}
$$

Let

$$
R=T^{-(q-1) / 2(p+q-1)} R_{0}
$$

Let $\phi(z)$ be a solution of the ODE (6.1), with

$$
\lambda_{1}=\frac{q-1}{2(p+q-1)} \quad \text { and } \quad \lambda_{2}=\frac{1}{p+q-1}
$$

and $\phi(2 R)=\alpha>0$ and $\phi^{\prime}(2 R)=0$, where

$$
\alpha=2 \max \left(M, \lambda_{2}^{1 /(p+q-1)}\right)
$$

By Lemma 6.2, either ϕ can be extended as as decreasing function for $z \in(2 R, \infty)$, or $\phi(z)$ is defined on $(2 R, K), \phi^{\prime}(z) \leq 0$ in $(2 R, K)$ and $\phi^{\prime}(K)=0$. By equation (6.4) and (6.5), we choose $\alpha=\phi(2 R)$ large enough so that

$$
\begin{equation*}
m=\lim _{z \rightarrow \infty} \phi(z)<M / 2 \tag{6.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\phi(K)<M / 2 \tag{6.12}
\end{equation*}
$$

We first assume that ϕ is a decreasing function and is defined on $[2 R, \infty)$. We let $\phi(z)=\phi(2 R)$ for $z \in[0,2 R)$, and define the function $\varphi(y)$ to be a function depending on y_{1} only, and $\varphi(y)=\phi\left(y_{1}\right)$. Then, we have $\varphi(y)>w(y,-\ln T)$. Let $a=\left(a_{1}, 0^{\prime}\right)$, and

$$
s_{k}=-\log \left(T-t_{k}\right) \quad \text { and } \quad y_{k}=a\left(T-t_{k}\right)^{-(q-1) / 2(p+q-1)}
$$

where t_{k} is the sequence in (6.10). Note that

$$
\left|y_{k}\right| \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
$$

and

$$
\lim _{k \rightarrow \infty} w\left(y_{k}, s_{k}\right)=M
$$

Hence, by (6.11), when k is large, we have $w\left(y_{k}, s_{k}\right)>\varphi\left(y_{k}\right)$. Thus, there is $s_{0}>-\ln T$ such that $w(y, s)<\varphi(y)$ for all $y \in \mathbb{R}^{n}$ and $-\log T<s<s_{0}$, and, for certain $y_{0} \in \mathbb{R}^{n}, w\left(y_{0}, s_{0}\right)=\varphi\left(y_{0}\right)$. By our assumption, we must have $y_{0}=\left(y_{01}, 0^{\prime}\right)$, and $y_{01}>2 R$. Then, in a neighborhood of y_{0}, the function $\varphi(y)$ is also a solution of the equation (1.1). Also, we have $w(y, s) \leq \phi(y)$ for all y and $s<s_{0}$, but $w\left(y_{0}, s_{0}\right)=\varphi\left(y_{0}\right)$. By the maximum principle, it is impossible.

Next, we assume that ϕ is a decreasing function for $x \in(R, K), \phi^{\prime}(2 R)=$ $\phi^{\prime}(K)=0$. By (6.5), we choose $\alpha=\phi(2 R)$ large enough so that $\phi(K)<M / 2$. Then, $\phi^{\prime \prime}(K)>0$ and we may extend ϕ to be function on the interval $(2 R, \bar{K})$, for some $\bar{K}>K$ so that on (K, \bar{K}), the function ϕ is strictly increasing. When $z \in(0,2 R)$, we let $\phi(z)=\phi(2 R)$. When $z>\bar{K}$, we let $\phi(z)=\phi(\bar{K})$. We then define the function $\varphi(y)$ to be a function depending on y_{1} only, and $\varphi(y)=\phi\left(y_{1}\right)$. Then, we have $\varphi(y)>w(y,-\log T)$. As in the above, let $a=\left(a_{0}, 0^{\prime}\right)$, and

$$
s_{k}=-\log \left(T-t_{k}\right) \quad \text { and } \quad y_{k}=a\left(T-t_{k}\right)^{-(q-1) / 2(p+q-1)}
$$

Then, we have $\left|y_{k}\right| \rightarrow \infty \quad$ as $\quad k \rightarrow \infty$, and $\lim _{k \rightarrow \infty} w\left(y_{k}, s_{k}\right)=M$. Hence, by (6.12), when k is large, we have $w\left(y_{k}, s_{k}\right)>\varphi\left(y_{k}\right)$. Thus, there is $s_{0}>-\ln T$ such that $w(y, s)<\varphi(y)$ for all $y \in \mathbb{R}^{n}$ and $-\log T<s<s_{0}$, and, for certain $y_{0} \in \mathbb{R}^{n}, w\left(y_{0}, s_{0}\right)=\varphi\left(y_{0}\right)$. Let $y_{0}=\left(y_{01}, y_{0}^{\prime}\right)$. We claim that $y_{01} \in(2 R, K]$. By the choice of $\phi(2 R)$, it is clear that $y_{01}>2 R$. If $y_{01}>K$, let $\tilde{y}=\left(K, 0^{\prime}\right)$. Since $w\left(y, s_{0}\right) \leq \varphi(y)$ for all y, we have $w\left(\tilde{y}, s_{0}\right) \leq \varphi(\tilde{y})<\varphi\left(y_{0}\right)=w\left(y_{0}, s_{0}\right)$. It contradicts (6.9). Hence, $y_{01} \in(2 R, K]$. In a neighborhood of $y_{0}, \varphi(y)$ is also a solution of the equation (1.1). Also, we have $w(y, s) \leq \phi(y)$ for all y and $s<s_{0}$, but $w\left(y_{0}, s_{0}\right)=\varphi\left(y_{0}\right)$. By the maximum principle, it is also impossible.

References

1. M. Fila and P. Souplet, The blow-up rate for semilinear parabolic problems on general domains, Nonlinear Differ. Equ. Appl., 8 (2001), 473-480.
2. A. Friedman and B. McLeod, Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. Journal, 34 (1985), 425-447.
3. A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.
4. Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. Journal, 36(1) (1987), 1-40.
5. Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equation, Comm. Pure Appl. Math., 42 (1989), 845-884.
6. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gryyter, Berlin, New York, 1995.
7. M. Winkler, Blow-up of solution to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.
8. M. Winkler, Blow-up in a degenerate parabolic equation, Indiana University Math. Journal, 53(5) (2004), 1415-1442.

Chi-Cheung Poon
Department of Mathematics
National Chung Cheng University
Minghsiung, Chiayi 621, Taiwan
E-mail: ccpoon@math.ccu.edu.tw

