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Lp RADIAL MINKOWSKI HOMOMORPHISMS

Wei Wang*, Lijuan Liu and Binwu He

Abstract. Intersection bodies define a continuous and GL(n) contravariant
valuation which plays a crucial role in the solution of the Busemann-Petty prob-
lem. In this paper, we introduce the concept of Lp radial Minkowski homomor-
phisms and consider the Busemann-Petty type problem whether ΦpK ⊆ ΦpL

implies V (K) ≤ V (L), where Φp is a homogeneous of degree
(

n

p
− 1

)
,

continuous operator on star bodies which is an SO(n) equivariant valuation.
Previous results by Schuster are generalized to a large class of Lp radial val-
uations.

1. INTRODUCTION

Let volk(K) denote the k-dimensional Lebesgue measure of a compact convex
set K. Instead of voln we usually write V . Let B denote the Euclidean unit ball
and Sn−1 the Euclidean unit sphere in R

n. Let K be a body that is star-shaped
with respect to the origin in Rn. The radial function of K is given by

(1.1) ρK(u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1.

We call K a star body if ρK(·) is continuous on Sn−1 and K contains the ori-
gin in its interior. The radial distance of star bodies K and L is defined by
δ(K, L) =maxu∈Sn−1 |ρK(u) − ρL(u)|. A compact, convex set in Rn is said to
be a convex body if it has non-empty interior.

The Busemann-Petty problem (see [5]) asks the following question: Suppose
that K and L are origin-symmetric convex bodies in R

n such that

voln−1(K ∩ u⊥) ≤ voln−1(L ∩ u⊥), ∀u ∈ Sn−1.

Received October 3, 2009, accepted December 25, 2009.
Communicated by J. C. Yao.
2000 Mathematics Subject Classification: 52A40, 52A20.
Key words and phrases: Valuations, L p radial sum, Busemann-Petty problem.
Supported in part by the National Natural Science Foundation of China, (Grant NO.11071156 and No.
10971128), Shanghai Leading Academic Discipline Project (Project No. J50101) and the Innovation
Funds for Graduates of Shanghai University (SHUCX092003).
*Corresponding author.

1183



1184 Wei Wang, Lijuan Liu and Binwu He

Does it follow that
V (K) ≤ V (L)?

The Busemann-Petty problem has an affirmative answer if n ≤ 4 and a negative
answer if n ≥ 5. The solution appeared as the result of a sequence of papers:
[20]n ≥ 12, [3] n ≥ 10, [10] and [4] n ≥ 7, [29] and [6] n ≥ 5, [7] n = 3, [37]
and [9] n = 4. For a detailed account of the interesting history of the Busemann-
Petty problem, see the books by Gardner [8] and Koldobsky [19].

The key to the complete solution of the Busemann-Petty problem in all dimen-
sions, a connection between the problem and intersection bodies, was discovered by
Lutwak [25] in 1988. The intersection body IK of a star body K is defined by

ρ(IK, u) = voln−1(K ∩ u⊥), u ∈ Sn−1.

From (1.1) and the fact that star bodies K and L satisfy K ⊂ L if and only if
ρ(K, ·) ≤ ρ(L, ·), we see that the Busemann-Petty problem can be rephrased in the
following way: Let K and L be origin-symmetric convex bodies in R

n. Is there
the implication

(1.2) IK ⊂ IL ⇒ V (K) ≤ V (L)?

If K is restricted to the class of intersection bodies, the Busemann-Petty problem has
an affirmative answer. In addition, if L is a sufficiently smooth origin-symmetric
star body with positive radial function which is not an intersection body, then there
exists an origin-symmetric star body K such that IK ⊂ IL but V (K) > V (L) (see
[25]). It is well known that the intersection body operator is a radial valuation.

A function Φ defined on the space Sn of star bodies in Rn and taking values
in an abelian semigroup is called a radial valuation if

(1.3) Φ(K ∪ L)+̃Φ(K ∩ L) = ΦK+̃ΦL,

whenever K, L, K ∪ L, K ∩ L ∈ Sn, respectively.
The theory of real valued valuations is at the center of convex geometry. Blaschke

started a systematic investigation in the 1930s and then Hadwiger focused on clas-
sifying valuations on compact convex sets in R

n and obtained famous Hadwiger’s
Characterization Theorem. The survey [28] and the book[18] are an excellent source
for the classical theory of valuations. For some of the more recent results, see [1,
2, 13-17, 20-24, 31-35].

First results on star body valued valuations were obtained by Klain [17] in 1996,
where addition of star bodies is radial sum defined by K+̃L = {x+̃y : x ∈ K, y ∈
L}, where x+̃y is defined to be the usual vector sum of the points x and y, if both
of them are contained in a line through origin, and 0 otherwise. Moreover, he
obtained a classification theorem for homogeneous valuations on star-shaped bodies
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which is a dual analogue of Hadwiger’s Characterization Theorem of the elementary
Minkowski mixed volumes.

A valuation Φ is called SO(n) equivariant, if for all ϑ ∈ SO(n) and all K ∈ Sn,

(1.4) Φ(ϑK) = ϑΦK.

A valuation Φ is called p-homogeneous, if for K ∈ Sn and λ ≥ 0,

(1.5) Φ(λK) = λpΦK.

A map Φ : Sn → Sn is called an (n − 1)-homogeneous radial Blaschke-
Minkowski homomorphism if it is continuous, SO(n) equivariant and satisfies
Φ(K+̃n−1L) = ΦK+̃ΦL. Here K+̃n−1L denotes the Ln−1 radial sum of the
star bodies K and L (see Section 2 for a precise definition). Obviously, a ra-
dial Blaschke-Minkowski homomorphism is a continuous radial valuation which is
SO(n) equivariant and (n−1)-homogeneous. Schuster introduced radial Blaschke-
Minkowski homomorphisms and studied the Busemann-Petty problem type problem
for them.

Theorem A. ([34]). Let Φ : Sn → Sn be a radial Blaschke-Minkowski
homomorphism. If K ∈ ΦS n and L ∈ Sn, then

ΦK ⊆ ΦL ⇒ voln(K) ≤ voln(L),

and V (K) = V (L), if and only if K = L.

Theorem B. ([34]). Let Φ : Sn → Sn be a radial Blaschke-Minkowski
homomorphism. If S n(Φ) does not coincide with S n, then there exist star bodies
K, L ∈ Sn, such that

ΦK ⊆ ΦL,

but
V (K) > V (L).

Here Sn(Φ) denotes the injectivity set of Φ (see Section 3 for a precise definition).

In recent years the investigations of convex body and star body valued valua-
tions have received great attention from a series of articles by Ludwig[21-24], see
also[14]. She started systematic studies and established complete classifications of
convex and star body valued valuations with respect to Lp Minkowski sum and
Lp radial which are compatible with the action of the group GL(n). Based on
these results, we study in this article the Busemann-Petty type problem for Lp radial
Minkowski homomorphisms. We generalize the results of Schucher as follows:
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Theorem 1.1. Let 0 < p < n and let Φp : Sn → Sn be an Lp radial
Minkowski homomorphism. If K ∈ ΦpSn and L ∈ Sn, then

(1.6) ΦpK ⊆ ΦpL ⇒ V (K) ≤ V (L),

and V (K) = V (L), if and only if K = L.
If p > n, then

ΦpK ⊆ ΦpL ⇒ V (K) ≥ V (L),

and V (K) = V (L), if and only if K = L.

Theorem 1.2. Let 0 < p < n and let Φp : Sn → Sn be an Lp radial
Minkowski homomorphism. If S n(Φp) does not coincide with S n, then there exist
star bodies K, L ∈ Sn, such that

(1.7) ΦpK ⊆ ΦpL,

but

(1.8) V (K) > V (L).

If p > n, the inequality (1.8) is reverse.

2. NOTATION AND BACKGROUND MATERIAL

Let Sn be the space of star bodies in R
n and let Sn

e denote the subset of Sn that
contains the origin-symmetric star bodies. We call a star body trivial if it contains
only the origin. A star body L ∈ Sn is defined by the values of its radial function
ρ(L, ·) on Sn−1. From the definition of ρ(L, ·), it follows immediately that for
λ > 0 and ϑ ∈ SO(n),

(2.1) ρ(λL, u) = λρ(L, u) and ρ(ϑL, u) = ρ(L, ϑ−1u).

For K, L ∈ Sn, p ∈ R and p �= 0, the Lp radial sum K+̃pε · L is the star body
defined by

(2.2) ρ(K+̃pε · L, ·)p = ρ(K, ·)p + ερ(L, ·)p,

where this addition and scalar multiplication are obviously dependent on p. The Lp

dual mixed volume, Ṽp(K, L), of K and L is defined by (see [27])

n

p
Ṽp(K, L) = lim

ε→0+

V (K+̃pε · L) − V (K)
ε

.
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The definition above and the polar coordinate formula for volume give the following
integral representation of the dual mixed volume Ṽp(K, L)

(2.3) Ṽp(K, L) =
1
n

∫
Sn−1

ρ
n−p
K (v)ρp

L(v)dS(v),

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the formula (2.3), it follows immediately that for each K ∈ Sn,

(2.4) Ṽp(K, K) = V (K).

From an application of the Hölder inequality, one can get the Minkowski inequality
for the Lp dual mixed volume ( see [12]).

Lemma 2.1. For K, L ∈ Sn, if 0 < p < n, then

(2.5) Ṽp(K, L) ≤ V (K)
n−p

n V (L)
p
n ,

with equality if and only if K and L are dilates;
If p < 0 or p > n, then

(2.6) Ṽp(K, L) ≥ V (K)
n−p

n V (L)
p
n ,

with equality if and only if K and L are dilates.

The quasi-Lp intersection body IpK of a star body was introduced in [36]: Let
K be a star body in R

n, the quasi-Lp intersection body IpK is defined by:

(2.7) ρ(IpK, u)p =
∫

Sn−1∩u⊥
ρ(K, u)n−pdS(u).

It is easy to check that I1K = (n − 1)IK and InK = ((n − 1)ωn−1)
1
n B.

Lemma 2.2. The operator Ip : Sn → Sn has the following properties:
(a) Ip is continuous with respect to radial metric.
(b) Ip(K +̃n−p L) = IpK +̃p IpL for all K, L ∈ Sn.
(c) Ip is SO(n) equivariant, i.e., Ip(ϑK) = ϑIpK for all ϑ ∈ SO(n).

Proof. Since the p-th power of a continuous function is still continuous, (a)
holds. From (2.7) and (2.2), we have

ρ(Ip(K +̃n−p L), u)p =
∫

Sn−1∩u⊥
ρ(K +̃n−p L, u)n−pdS(u)

=
∫

Sn−1∩u⊥
ρ(K, u)n−pdS(u)+

∫
Sn−1∩u⊥

ρ(L, u)n−pdS(u)

= ρ(IpK, u)p + ρ(IpL, u)p

= ρ(IpK+̃pIpL, u)p.
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It remains to prove (b).
Using definition (2.7) and noting (2.1), for any ϑ ∈ SO(n) and u ∈ Sn−1,

ϑu ∈ Sn−1, and u · v = 0 if and only if ϑtu · ϑ−1v = 0, we have that

ρ(IpϑK, u)p =
∫

Sn−1∩u⊥
ρ(ϑK, u)n−pdS(u)

=
∫

Sn−1∩u⊥
ρ(K, ϑtu)n−pdS(u)

=
∫

Sn−1∩(ϑtu)⊥
ρ(K, u)n−pdS(u)

= ρ(IpK, ϑtu)p = ρ(ϑ−tIpK, u)p

= ρ(ϑIpK, u)p.

This proves (c).

Some basic notions on spherical harmonics will be required. The background
material on spherical harmonics is presented as in Schuster [34]. As usual, SO(n)
and Sn−1 will be equipped with the invariant probability measures. Let C(SO(n)),
C(Sn−1) be the spaces of continuous functions on SO(n) and Sn−1 with uniform
topology and let M(SO(n)),M(Sn−1) denote their dual spaces of signed finite
Borel measures with weak∗ topology. The group SO(n) acts on these spaces by
left translation, i.e., for f ∈ C(Sn−1) and µ ∈ M(Sn−1), we have ϑf(u) =
f(ϑ−1u), ϑ ∈ SO(n), and ϑµ is the image measure of µ under the rotation ϑ. If
µ, σ ∈ M(SO(n)), the convolution µ ∗ σ is defined by[34]:

(2.8)
∫

SO(n)
f(ϑ)d(µ ∗ σ)(ϑ) =

∫
SO(n)

∫
SO(n)

f(ητ)dµ(η)dσ(τ),

for every f ∈ C(SO(n)). The sphere Sn−1 is identified with the homogeneous
space SO(n)/SO(n − 1), where SO(n − 1) denotes the subgroup of rotations
leaving the pole ê of Sn−1 fixed. The projection from SO(n) onto Sn−1 is ϑ 
→
ϑ̂ := ϑê. Right SO(n − 1)-invariant functions on SO(n) are defined by f̌(ϑ) =
f(ϑ̂), for f ∈ C(Sn−1). In fact, C(Sn−1) is isomorphic to the subspace of right
SO(n−1)-invariant functions in C(SO(n)) and this correspondence carries over to
an identification of the space M(Sn−1) with right SO(n−1)-invariant measures in
M(SO(n)). It is easy to check that the Dirac measure δê is the unique rightneutral
element for the convolution on M(Sn−1).
The convolution µ ∗ f ∈ C(Sn−1) of a measure µ ∈ M(SO(n)) and a function
f ∈ C(Sn−1) is defined by [34]

(2.9) (µ ∗ f)(u) =
∫

SO(n)
ϑf(u)dµ(ϑ).
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The canonical pairing of f ∈ C(Sn−1) and µ ∈ M(Sn−1) is defined by [34]

(2.10) 〈µ, f〉 = 〈f, µ〉 =
∫

Sn−1
f(u)dµ(u).

If µ, ν ∈ M(Sn−1) and f ∈ C(Sn−1), then

(2.11) 〈µ ∗ ν, f〉 = 〈µ, f ∗ ν〉.

A function f ∈ C(Sn−1) is called zonal, if ϑf = f for every ϑ ∈ SO(n−1). Zonal
functions depend only on the value u · ê. The set of continuous zonal functions on
Sn−1 will be denoted by C(Sn−1, ê) and the definition of M(Sn−1, ê) is analogous.
A map Λ : C[−1, 1] → C(Sn−1, ê) defined by

(2.12) Λf(u) = f(u · ê), u ∈ Sn−1.

The map Λ is also an isomorphism between functions on [−1, 1] and zonal functions
on Sn−1.
If f ∈ C(Sn−1), µ ∈ M(Sn−1, ê) and η ∈ SO(n), then

(2.13) (f ∗ µ)(η̂) =
∫

Sn−1

f(ηu)dµ(u).

If µ ∈ M(Sn−1, ê), for each f ∈ C(Sn−1) and every ϑ ∈ SO(n), then

(2.14) (ϑf) ∗ µ = ϑ(f ∗ µ).

We use Hn
k to denote the finite dimensional vector space of spherical harmonics

of dimension n and order k. Let N (n, k) denote the dimension of Hn
k . The

space of all finite sums of spherical harmonics of dimension n is denoted by Hn.
The spaces Hn

k are pairwise orthogonal with respect to the usual inner product on
C(Sn−1). Clearly, Hn

k is invariant with respect to rotations.
Let Pn

k ∈ C[−1, 1] denote the Legendre polynomial of dimension n and order
k. The zonal function ΛPn

k is up to a multiplicative constant the unique zonal
spherical harmonic in Hn

k . In each space Hn
k we choose an orthonormal basis

Hk1, · · · , HkN(n,k). The collection {Hk1, · · · , HkN(n,k) : k ∈ N} forms a complete
orthogonal system in L2(Sn−1). In particular, for every f ∈ L2(Sn−1), the series

f ∼
∞∑

k=0

πkf

converges to f in the L2(Sn−1)-norm, where πkf ∈ Hn
k is the orthogonal projection

of f on the space Hn
k . Using well-known properties of the Legendre polynomials,

it is not hard to show that

(2.15) πkf = N (n, k)(f ∗ΛPn
k ).
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This motivates the spherical expansion of a measure µ ∈ M(Sn−1),

(2.16) µ ∼
∞∑

k=0

πkµ,

where πkµ ∈ Hn
k is defined by

(2.17) πkµ = N (n, k)(µ ∗ ΛPn
k ).

From Pn
0 (t) = 1, N (n, 0) = 1 and Pn

1 (t) = t, N (n, 1) = n, we obtain, for µ ∈
M(Sn−1), the following special cases of (2.17):

(2.18) π0µ = µ(Sn−1) and (π1µ)(u) = n

∫
Sn−1

u · vdµ(v).

Let κn denote the volume of the Euclidean unit ball B. By definition (2.3) and
(2.18), for every star body K ∈ Sn, it follows that

(2.19) κnπ0ρ(K, ·)p = Ṽp(B, K) and κnπ0ρ(K, ·)n−p = Ṽp(K, B).

A measure µ ∈ M(Sn−1) is uniquely determined by its series expansion (2.16).
Using the fact that ΛP n

k is (essentially) the unique zonal function in Hn
k , a simple

calculation shows that for µ ∈ M(Sn−1, ê) formula (2.17) becomes

(2.20) πkµ = N (n, k)〈µ, ΛPn
k 〉ΛPn

k .

Thus, a zonal measure µ ∈ M(Sn−1, ê) is defined by its so-called Legendre co-
efficients µk := 〈µ, ΛPn

k 〉. Using πkH = H for every H ∈ Hn
k and the fact that

spherical convolution of zonal measures is commutative, we have the Funk-Hecke
Theorem: If µ ∈ M(Sn−1, ê) and H ∈ Hn

k , then H ∗ µ = µkH .
A map Φ : D ⊆ M(Sn−1) → M(Sn−1). is called a multiplier transformation[34]

if there exist real numbers ck, the multipliers of Φ, such that, for every k ∈ N,

(2.21) πkΦµ = ckπkµ, ∀µ ∈ D.

3. Lp RADIAL MINKOWSKI HOMOMORPHISMS AND CONVOLUTIONS

A map Φp : Sn → Sn is called an Lp radial valuation[14]: if

(3.1) Φ(K ∪ L)+̃pΦ(K ∩ L) = ΦK+̃pΦL,

whenever K, L, K ∪ L, K ∩ L ∈ Sn.

Definition 3.1. A map Φp : Sn → Sn satisfying properties (a), (b) and (c)
from Lemma 2.2 is called an Lp radial Minkowski homomorphism.
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It is easy to check that an Lp radial Minkowski homomorphism is an Lp radial
valuation.

In order to prove our results, we need to quote some lemmas. We call a map
Φ : C(Sn−1) → C(Sn−1) monotone, if non-negative functions are mapped to non-
negative ones.

Lemma 3.1. ([32]). A map Φ : C(Sn−1) → C(Sn−1) is a monotone, linear
map that is SO(n) equivariant if and only if there is a measure µ ∈ M(S n−1, ê)
such that

(3.2) Φf = f ∗ µ.

Lemma 3.2. ([11]). Let µm, µ ∈ M(SO(n)), m = 1, 2, · · · and f ∈ C(SO(n)).
If µm → µ weakly, then f ∗ µm → f ∗ µ and µm ∗ f → µ ∗ f uniformly.

Theorem 3.3. A map Φp : Sn → Sn is an Lp radial Minkowski homomorphism
if and only if there is a non-negative measure µ ∈ M(S n−1, ê) such that

(3.3) ρ(ΦpK, ·)p = ρ(K, ·)n−p ∗ µ.

Proof. Suppose that a map Φp : Sn → Sn satisfies ρ(ΦpK, ·)p = ρ(K, ·)n−p∗µ,
where µ ∈ M(Sn−1, ê) is a nonnegative measure. The continuity of Φp follows
from the fact that the radial function ρ(K, ·) is continuous with respect to radial
metric. From (2.1), for ϑ ∈ SO(n), we obtain

ρ(ΦpϑK, ·)p=ρ(ϑK, ·)n−p∗µ=ρ(K, ϑ−1·)n−p∗µ = ρ(ΦpK, ϑ−1·)p=ρ(ϑΦpK, ·)p.

Taking K = L in (3.3), we have

(3.4) ρ(ΦpL, ·)p = ρ(L, ·)n−p ∗ µ.

Combining with (2.2) (3.3) and (3.4), we obtain

(3.5)

ρ(ΦpK+̃pΦpL, ·)p = ρ(ΦpK, ·)p + ρ(ΦpL, ·)p

= ρ(K, ·)n−p ∗ µ + ρ(L, ·)n−p ∗ µ

= (ρ(K, ·)n−p + ρ(L, ·)n−p) ∗ µ

= ρ(K+̃n−pL, ·)n−p ∗ µ

= ρ(Φp(K+̃n−pL), ·)p.

Thus maps of the form of (3.3) are Lp radial Minkowski homomorphisms (satisfy
the properties (a), (b)and (c) from Lemma 2.2). Thus, we have to show that for
every such operator Φp, there is a measure µ ∈ M(Sn−1, ê) such that (3.3) holds.
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Since every positive continuous function on Sn−1 can be the radial function of
some star body, the vector space {ρ(K, ·)n−p− ρ(L, ·)n−p : K, L ∈ Sn} coincides
with C(Sn−1). The operator Φ̄ : C(Sn−1) → C(Sn−1) is defined by

(3.6) Φ̄f = ρ(ΦpK1, ·)p − ρ(ΦpK2, ·)p,

where f = ρ(K1, ·)n−p − ρ(K2, ·)n−p.
The operator Φ̄ for g = ρ(L1, ·)n−p − ρ(L2, ·)n−p immediately yields:

(3.7) Φ̄g = ρ(ΦpL1, ·)p − ρ(ΦpL2, ·)p.

Combining with (3.6), (3.7), (2.2), and (3.5), we obtain

Φ̄f + Φ̄g = ρ(ΦpK1, ·)p − ρ(ΦpK2, ·)p + ρ(ΦpL1, ·)p − ρ(ΦpL2, ·)p

= ρ(ΦpK1+̃pΦpL1, ·)p − ρ(ΦpK2+̃pΦpL2, ·)p

= ρ(Φp(K1+̃n−pL1), ·)p − ρ(Φp(K2+̃n−pL2), ·)p

= Φ̄(ρ(K1+̃n−pL1, ·)n−p − ρ(K2+̃n−pL2, ·)n−p)

= Φ̄(ρ(K1, ·)n−p + ρ(L1, ·)n−p − ρ(K2, ·)n−p − ρ(L2, ·)n−p)

= Φ̄(f + g)

.

So the operator Φ̄ is linear.
Noting that Φp is an Lp radial Minkowski homomorphism and ϑf(u) = f(ϑ−1u),
we obtain that the operator Φ̄ is SO(n) equivariant.
Since the cone of radial functions is invariant under Φ̄, it is also monotone. Hence,
by Lemma 3.1, there is a non-negative measure µ ∈ M(Sn−1, ê) such that Φ̄f =
f ∗ µ. The statement now follows from Φ̄ρ(K, ·)n−p = ρ(ΦpK, ·)p. �

For example, the generating measure of the quasi-Lp intersection body operator
Ip : Sn → Sn is the invariant measure µSn−2

0
concentrated on Sn−2

0 = Sn−1 ∩ ê⊥

with total mass (n − 1)ωn−1:

ρ(IpK, ·)p = ρ(K, ·)n−p ∗ µSn−2
0

.

Theorem 3.4. If Φp : Sn → Sn is an Lp radial Minkowski homomorphism,
then, for K, L ∈ Sn,

(3.8) Ṽp(K, ΦpL) = Ṽp(L, ΦpK).

Proof. Let µ ∈ M(Sn−1, ê) be the generating measure of Φp. Applying
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definition (2.3), Theorem 3.3 and (2.11), it follows that

Ṽp(K, ΦpL) = κn〈ρ(ΦpL, ·)p, ρ(K, ·)n−p〉
= κn〈ρ(L, ·)n−p ∗ µ, ρ(K, ·)n−p〉
= κn〈ρ(L, ·)n−p, ρ(K, ·)n−p ∗ µ〉

= κn〈ρ(L, ·)n−p, ρ(ΦpK, ·)p〉
= Ṽp(L, ΦpK).

Using Theorem 3.3 and the fact that spherical convolution operators are multiplier
transformations, one obtains that

Lemma 3.5. If Φp is an Lp radial Minkowski homomorphism which is gener-
ated by the zonal measure µ, then, for every star body K ∈ S n,

(3.9) πkρ(ΦpK, ·)p = µkπkρ(K, ·)n−p,

where the numbers µk are the Legendre coefficients of µ.

Definition 3.2. If Φp is an Lp radial Minkowski homomorphism, generated by
the zonal measure µ, then we call the subset Sn(Φp) of Sn, defined by

(3.10) Sn(Φp) = {K ∈ Sn : πkρ(K, ·)n−p = o if µk = 0},
the injectivity set of Φp. It is easy to verify that for every Lp radial Minkowski
homomorphism, the set Sn(Φp) is a non-empty rotation and dilatation invariant
subset of which is closed under Lp radial sum. By Lemma 3.5, a star body K ∈
Sn(Φp) is uniquely determined by its image ΦpK.

Definition 3.3. A star body K ∈ Sn is called p-polynomial if ρ(K, ·)p ∈ Hn.
Clearly, the set of p-polynomial star bodies is dense in Sn and the set of all origin-
symmetric polynomial star bodies is dense in Sn

e .

Theorem 3.6. If Φp : Sn → Sn is an Lp radial Minkowski homomorphism
such that Sn

e ⊆ Sn(Φp), then for every p-polynomial star body L ∈ S n
e , there exist

origin-symmetry star bodies K 1, K2 ∈ Sn
e such that

(3.11) L+̃pΦK1 = ΦK2.

Proof. Let L ∈ Sn be a p-polynomial star body. From definition (3.3) we have

(3.12) ρ(L, ·)p =
m∑

k=0

πkρ(L, ·)p.
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Since L ∈ Sn
e and by the properties of the orthogonal projection of f on the space

Hn
k , we have πkρ(L, ·)p = 0 for all odd k ∈ N.

Let µ ∈ M(Sn−1, ê) be the generating measure of Φp and let µk denote the Legendre
coefficients of µ. From Sn

e ⊆ Sn(Φp) and definition (3.2), it follows that µk �= 0
for every even k ∈ N. We define

(3.13) f :=
m∑

k=0

ckπkρ(L, ·)p,

where ck = 0 for odd and ck = µ−1
k if k is even. Clearly, f is an even con-

tinuous function on Sn−1 and since spherical convolution operators are multiplier
transformations, one can obtain

(3.14) f ∗ µ =
m∑

k=0

ckµkπkρ(L, ·)p =
m∑

k=0

πkρ(L, ·)p = ρ(L, ·)p.

Denote by f+ and f− the positive and negative parts of f and let K1 and K2 be
the star bodies such that ρ(K1, ·)n−p = f− and ρ(K2, ·)n−p = f+. Hence, (3.14)
can be rewritten as

ρ(K2, ·)n−p ∗ µ = ρ(K1, ·)n−p ∗ µ + ρ(L, ·)p.

By Theorem 3.3, it follows that

L+̃pΦpK1 = ΦpK2.

4. MAIN RESULTS

Let Φp : Sn → Sn be a non-trivial Lp radial Minkowski homomorphism,
i.e., Φp is a continuous and SO(n) equivariant map satisfying Φp(K+̃n−pL) =
ΦpK+̃pΦpL and Φp does not map every star body to the origin. In this section, we
study the Busemann-Petty type problem for Lp radial Minkowski homomorphisms.

Problem 4.1. Let K and L be star bodies in Sn, is there the implication:
If 0 < p < n, then

(4.1) ΦpK ⊆ ΦpL ⇒ V (K) ≤ V (L)?

If p > n, then

(4.2) ΦpK ⊆ ΦpL ⇒ V (K) ≥ V (L)?

Proof of Theorem 1.1. For K ∈ ΦpSn, there exists a star body K0 such that
K = ΦpK0. Using Lemma (3.3) and the fact that if 0 < p < n, the Lp dual mixed
volume Ṽp is monotone with respect to set inclusion, we can conclude
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Ṽp(L, K)= Ṽp(L, ΦpK0)= Ṽp(K0, ΦpL) ≥ Ṽp(K0, ΦpK)= Ṽp(K, ΦpK0)=V (K).

Applying the Minkowski inequality (2.5), we obtain

V (K) ≤ V (L).

Note that if p > n, we only need to consider Ṽp(K, L). And the same argument
yields: if p > n,

ΦpK ⊆ ΦpL ⇒ V (K) ≥ V (L).

Equality holds if and only if K and L are dilatations of each other. Clearly, star
bodies of equal volume which are dilatations of each other must be equal.

Unfortunately, whether the set of Lp radial Minkowski homomorphisms coin-
cides with the set of continuous radial valuations which are SO(n) equivariant and
(
n

p
− 1)- homogeneous is not known.

Proof of Theorem 1.2. Let µ ∈ M(Sn−1, ê) be the generating measure of Φp

and µk denote its Legendre coefficients. Since Sn(Φp) �= Sn and Φp is non-trivial,
by definition (3.2) there exists an integer k ∈ N and k ≥ 1 such that µk = 0. We
can choose α > 0 such that the function f(u) = 1 + αP n

k (u · ê), u ∈ Sn−1, is
positive. Let K ∈ Sn be the star body with ρ(K, ·)n−p = f . Since πkρ(K, ·)n−p =
πk(1 + αPn

k (u · ê)) �= 0, from definition (3.2) we have K /∈ Sn(Φp).
From (2.19) and the properties of the orthogonal projection on the space Hn

k , we
have

(4.3) Ṽp(K, B) = κnπ0ρ(K, ·)n−p = κn = V (B).

Using the fact a star body K ∈ Sn(Φp) is uniquely determined by its image ΦpK ,
we see that ΦpB = ΦpK.
If 0 < p < n, noting that K is just a perturbation of B, we use (4.3) and the
Minkowski inequality (2.5) to get

V (B) = Ṽp(K, B) < V (K)
n−p

n V (B)
p
n .

Hence
V (B) < V (K).

If p > n, the same argument yields:

V (B) > V (K).

Theorem 4.1. Suppose Sn
e ⊆ Sn(Φp) and 0 < p < n. If L ∈ Sn

e is a
p-polynomial star body whose radial function is positive, then, if L /∈ Φ pSn, there
exists a star body K ∈ S n

e , such that

ΦpK ⊆ ΦpL,
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but
V (K) > V (L).

Proof. Let µ ∈ M(Sn−1, ê) be the generating measure of Φp. Since L ∈ Sn
e

is p-polynomial, it follows from the proof Theorem 3.6 that there exists an even
function f ∈ Hn ,such that

(4.4) ρ(L, ·)p = f ∗ µ.

The function must assume negative values, otherwise, by Lemma 3.2 we have L =
ΦpL0, where L0 is the star body with ρ(L0, ·)n−p = f . Let F ∈ C(Sn−1) be a
non-constant even function, such that F (u) ≥ 0 if f(u) < 0, and F (u) = 0 if
f(u) ≥ 0. By suitable approximation of the function F with spherical harmonics,
we can find a non-negative, even function G ∈ Hn and an even function H ∈ Hn

such that

(4.5) 〈f, G〉 < 0, and G = H ∗ µ.

Since the radial function ρ(L, ·) is positive, there exists a β > 0 and an origin-
symmetric star body K such that

(4.6) ρ(K, ·)n−p = ρ(L, ·)n−p − βH.

From (4.4) and Theorem 3.3, we see that ρ(ΦpK, ·)p = ρ(ΦpL, ·)p − βG. Since
G ≥ 0, it follows that

(4.7) ρ(ΦpK, ·) ≤ ρ(ΦpL, ·),

or equivalently
ΦpK ⊆ ΦpL.

On the other hand, applying (2.3) (4.4) (4.6) and (2.11), we obtain

(4.8)

V (L)− Ṽp(K, L) =
1
n

∫
Sn−1

ρ(L, ·)p(ρ(L, ·)n−p − ρ(K, ·)n−p)dS(u)

= κnβ〈f ∗ µ, H〉
= κnβ〈f, H ∗ µ〉
= κnβ〈f, G〉
< 0.

To complete the proof, we can use (2.5) to conclude

V (K) > V (L).
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Combining Theorems 1.1, 1.2 and 4.1, we obtain

Corollary 4.2. For origin-symmetric star bodies in S n, when 0 < p < n,
Problem 4.1 has an affirmative answer if and only if every polynomial star body
L ∈ Sn

e with positive radial function is contained in Φ pSn.

If we restrict to origin-symmetric convex bodies and p = 1, Problem 4.1 is just
the well-known Busemann-Petty problem.

Remark. If p = 1, Ludwig completely characterized the intersection body
operator: A map Φ : Sn → Sn is a continuous GL(n) contravariant radial valuation
if and only if there exists a constant c ≥ 0 such that Φ = cI . However, for
radial valuations which are SO(n) equivariant, the following conjecture is still open
(see [34]): The set of radial Blaschke-Minkowski homomorphisms coincides with
the set of continuous radial valuations which are SO(n) equivariant and (n − 1)-
homogeneous.
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