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CLASSIFICATION OF RULED SURFACES WITH POINTWISE 1-TYPE

GAUSS MAP IN MINKOWSKI 3-SPACE

Miekyung Choi1, Young Ho Kim2 and Dae Won Yoon3

Abstract. We study the ruled surfaces in Minkowski 3-space with pointwise
1-type Gauss map. As a result, we introduce some new examples of the ruled

surfaces with pointwise 1-type Gauss map in Minkowski 3-space.

1. INTRODUCTION

The notion of finite type immersions has played an important role in classifying

and characterizing the submanifolds in Euclidean space or pseudo-Euclidean space

since it was introduced by B.-Y. Chen in the late 1970s ([3, 4]). Also, we can

apply it to the smooth maps in Euclidean space or pseudo-Euclidean space naturally

([1, 2, 6]). A smooth map φ of a submanifold M of Euclidean space or pseudo-

Euclidean space is said to be of finite type if φ can be expressed as a finite sum of

eigenfunctions of the Laplacian ∆ of M , that is, φ = φ0 +
∑k

i=1 φi, where φ0 is a

constant function, φi(i = 1, · · · , k) non-constant functions satisfying ∆φi = λiφi,

λi ∈ R.
In this regards, it is worth investigating the classification of the submanifolds

in Euclidean space or pseudo-Euclidean space in terms of finite type Gauss map.

In general, the Laplacian of 1-type Gauss map of a submanifold in Euclidean or

pseudo-Euclidean space satisfies∆G = λ(G+C) for some constant λ and a constant
vector C.

On the other hand, the Gauss map of some minimal surfaces such as a helicoid

of the first kind, a helicoid of the second kind, a helicoid of the third kind and the

conjugate of Enneper’s surface of the second kind in Minkowski 3-space satisfies

∆G = fG for some smooth function f . It looks like an eigenvalue problem but the
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function f turns out to be non-constant for such surfaces. For this reason, the notion

of pointwise 1-type Gauss map in Euclidean space or pseudo-Euclidean space was

initiated: A submanifoldM in Euclidean space Em or pseudo-Euclidean space Em
s

of index s is said to have pointwise 1-type Gauss map if

(1.1) ∆G = f(G + C)

for a nonzero smooth function f and some constant vector C. In particular, if C is

zero, it is said to be of the first kind. Otherwise, it is said to be of the second kind

([5, 7, 8, 9, 10, 11, 12, 14, 15]).

Recently, the present authors have introduced some new examples of the ruled

surfaces with pointwise 1-type Gauss map of the second kind in E3 called a cylinder

of an infinite type and a rotational ruled surface ([10]). Two of the present authors

gave the classification of the ruled surfaces with pointwise 1-type Gauss map of the

first kind in Minkowski 3-space E3
1 ([14]).

In the present paper, we mainly focus on a ruled surface in Minkowski 3-space

E3
1 with pointwise 1-type Gauss map of the second kind. In fact, the class of solution

spaces of equation (1.1) could be very big because it could have infinitely many

solutions associated with a function f and a constant vector C.
As a consequence, by combining the results in [14], we give a complete classi-

fication of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space

E3
1:

Theorem A (Classification). Let M be a ruled surface in Minkowski 3-space

E3
1 with pointwise 1-type Gauss map. Then, M is an open part of a Euclidean

plane, a Minkowski plane, a hyperbolic cylinder, a Lorentz circular cylinder, a

circular cylinder of index 1, a cylinder of an infinite type, a helicoid of the first
kind, a helicoid of the second kind, a helicoid of the third kind, the conjugate of

Enneper’s surface of the second kind, a rotational ruled surface of type I or type

II, a transcendental ruled surface, or a B-scroll.

2. PRELIMINARIES

Let E3
1 be Minkowski 3-space with the Lorentz metric ds2 = −dx2

1+dx2
2+dx2

3,
where (x1, x2, x3) denotes the standard coordinate system in E3

1. Let M be a non-

degenerate connected surface in E3
1. The map G : M → Q2(ε) ⊂ E3

1 which maps

each point of M to the unit normal vector to M at the point is called the Gauss

map of M , where ε (= ±1) denotes the sign of the vector field G and Q2(ε) is a
2-dimensional space form with constant sectional curvature ε.

Now, we define a ruled surface M in Minkowski 3-space E3
1. Let I and J be

some open intervals in the real line R. Let α = α(s) be a curve in E3
1 defined on I
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and β = β(s) a transversal vector field with α′(s) along α. Then, a parametrization

of a ruled surface M is given by

x(s, t) = α(s) + tβ(s), s ∈ I, t ∈ J.

The curve α = α(s) is called a base curve and β = β(s) a director vector field. In
particular, if β is constant, M is said to be cylindrical. Otherwise, it is said to be

non-cylindrical.

First, we consider a base curve α is space-like or time-like. Then, the base

curve α can be chosen to be orthogonal to the director vector field β which can be
normalized as 〈β, β〉 = ±1. In this case, we have five different types according to
the character of α and β as follows: According as the base curve α is space-like or
time-like, the ruled surface M is said to be of type M+ or M−, respectively. Also,

the ruled surface of type M+ can be divided into three types. If β is space-like,
it is said to be of type M1

+ or M2
+ if β′ is non-null or null, respectively. When

β is time-like, β′ is space-like because of the causal vector of β, which is said to
be of type M3

+. On the other hand, when α is time-like, β is always space-like.

Accordingly, it is also said to be of type M1
− or M2

− if β′ is non-null or null,
respectively. The ruled surface of type M1

+ or M2
+ (resp. M3

+, M1
− or M2

−) is

clearly space-like (resp. time-like).

A curve in E3
1 is said to be null or light-like if its tangent vector field is null

along it. If the base curve α is null and the director vector field β along α is null,

then the ruled surface M is called a null scroll . It is evidently a time-like surface.
Other cases such as α is non-null and β is null, or α is null and β is non-null

are reduced to one of the typesM1
±, M2

± andM3
+, or a null scroll by an appropriate

change of the base curve ([13]).

3. CYLINDRICAL RULED SURFACES

In this section, we examine the cylindrical ruled surfaces with pointwise 1-type

Gauss map of the second kind in Minkowski 3-space.

LetM be a cylindrical ruled surface in Minkowski 3-space E3
1 of typeM1

+, M1
−

or M3
+. For a unit constant vector field β, M is parameterized by

x(s, t) = α(s) + tβ

such that 〈α′, α′〉 = ε1 (= ±1), 〈α′, β〉 = 0 and 〈β, β〉 = ε2 (= ±1).
We consider two cases separately.

Case 1. Let M be a cylindrical ruled surface of type M1
+ or M1

−, i.e., ε2 = 1.
Without loss of generality, we may assume that α(s) = (α1(s), α2(s), 0) is a plane
curve parameterized by the arc-length s and the constant vector field β is chosen
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as β = (0, 0, 1). Then, the Gauss map G and its Laplacian ∆G of M are given by

G = α′ × β = (−α2
′,−α1

′, 0) and ∆G = (ε1α
′′′
2 , ε1α

′′′
1 , 0), respectively, where the

prime denotes the differentiation with respect to s.

Suppose thatM has pointwise 1-type Gauss map of the second kind, that is, the

Gauss map G satisfies equation (1.1). Then, the third component of the constant

vector C is zero and we have a system of differential equations:

(3.1)
ε1α

′′′
2 = f(−α′

2 + c1),

ε1α
′′′
1 = f(−α′

1 + c2),

where C = (c1, c2, 0).

First, we consider the case thatM is of typeM1
+. Since 〈α′, α′〉 = −α′

1
2+α′

2
2 =

1, we may put
α′

1(s) = sinh θ, α′
2(s) = cosh θ

for a function θ = θ(s). Therefore, equation (3.1) can be written as

(θ′)2 cosh θ + θ′′ sinh θ = f(− cosh θ + c1),

(θ′)2 sinh θ + θ′′ cosh θ = f(− sinh θ + c2).

It follows

(3.2) (θ′)2 = f(−1 + c1 cosh θ − c2 sinh θ)

and

(3.3) θ′′ = f(−c1 sinh θ + c2 cosh θ).

Suppose θ′ ≡ 0. Then, obviously ∆G = 0. Since f is non-zero, (3.1) implies

α′
1 = c2, α′

2 = c1 and thus G = −C. Therefore, M is an open part of a Euclidean

plane. If the interior Int(U) of a closed subset U = {p ∈ M |θ′(p) = 0} is non-
empty, U must be M by the above argument and connectedness of M . Otherwise,

if θ′ has zeros, the set of zeros of θ′ has measure zero.
Now we suppose θ′ 6= 0. (3.1) shows that f depends only on the parameter s,

i.e., f(s, t) = f(s). Differentiating (3.2) with respect to s and using (3.2) and (3.3),
we obtain

(3.4) θ′ = c 3
√

f

for some non-zero constant c. On the other hand, combining (3.2) and (3.3), we get

the following differential equation

(3.5)

(
(θ′)2

f
+ 1
)2

−
(

θ′′

f

)2

= c2
1 − c2

2.
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By using (3.4), equation (3.5) gives

(3.6)
(
c2f− 1

3 + 1
)2

−
(
− c

2

(
f− 2

3

)′)2

= c2
1 − c2

2.

If we put f− 1
3 = y, then equation (3.6) becomes

(c2y + 1)2 − (cyy′)2 = c2
1 − c2

2.

If C is null, then the solution of the differential equation (c2y + 1)2 − (cyy′)2 = 0
is given by

c2y − ln |c2y + 1| = ±c3(s + k),

or, equivalently,

(3.7) c2f− 1
3 − ln |c2f− 1

3 + 1| = ±c3(s + k)

for some constant k.
If C is non-null, the solution of (3.6) is obtained as follows:

(3.8)

√(
c2f− 1

3 +1
)2

+(−c2
1+c2

2)

− ln

(
c2f− 1

3 +1+

√(
c2f− 1

3 +1
)2

+(−c2
1+c2

2)

)

+ ln
√

| − c2
1+c2

2|=±c3(s+k)

for some constant k.
We now consider the case that M is of type M1

−. Since −α′
1
2 + α′

2
2 = −1, we

may put

α′
1(s) = cosh θ, α′

2(s) = sinh θ

for a function θ = θ(s). As is the previous case, if θ′ ≡ 0, M is an open portion of

a Minkowski plane. If θ′ is non-zero, we get θ′ = c 3
√

f and

(3.9)
(
c2f− 1

3 − 1
)2

−
(
− c

2

(
f− 2

3

)′)2

= −c2
1 + c2

2

for some non-zero constant c. In this case, if C is null or non-null, then its solution
is obtained as, respectively,

(3.10) c2f− 1
3 + ln |c2f− 1

3 − 1| = ±c3(s + k)
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or

(3.11)

√(
c2f− 1

3 − 1
)2

− (−c2
1 + c2

2)

+ ln

(
c2f− 1

3 − 1 +

√(
c2f− 1

3 − 1
)2

+ | − c2
1 + c2

2|

)

− ln
√

| − c2
1 + c2

2| = ±c3(s + k),

where k is a constant.

Case 2. LetM be a cylindrical ruled surface of typeM3
+. Then we may assume

that β = (1, 0, 0) and α(s) = (0, α2(s), α3(s)) without loss of generality. Hence,
the Gauss map G and its Laplacian ∆G of M are obtained by G = (0, α3

′,−α2
′)

and ∆G = (0,−α
′′′
3 , α

′′′
2 ), respectively.

Suppose that the Gauss map G of M is of pointwise 1-type of the second kind.

Then, we have

−α
′′′
3 = f(α′

3 + c2),

α
′′′
2 = f(−α′

2 + c3),

where C = (0, c2, c3). Since α(s) is parameterized by the arc length, i.e., 〈α′, α′〉 =
α′

2
2 + α′

3
2 = 1, we may put

α′
2(s) = cos θ, α′

3(s) = sin θ

for a function θ = θ(s). Like a similar discussion developed in Case 1, M is an

open portion of a Minkowski plane when θ′ ≡ 0. Otherwise, we can have θ′ = c 3
√

f
for some non-zero constant c. Moreover, the smooth function f and the constant

vector C satisfy

(3.12)

√
c2
2 + c2

3 −
(
c2f− 1

3 − 1
)2

− sin−1

(
c2f− 1

3 − 1√
c2
2 + c2

3

)
= ±c3(s + k),

where c is a non-zero constant and k a constant.

Definition 3.1. ([10]). A cylindrical ruled surface over an infinite type base

curve in Minkowski space is called a cylinder of an infinite type.

Thus, we have

Proposition 3.1. Let M be a cylindrical ruled surface over a non-null base

curve in Minkowski 3-space E3
1 with pointwise 1-type Gauss map of the second

kind. If M is not totally geodesic, then the non-zero smooth function f satisfies
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one of the equations (3.7), (3.8), (3.10), (3.11) or (3.12) depending upon the types

of the base curve.

Combining the results above and [14], we have

Theorem 3.2. Let M be a cylindrical ruled surface over a non-null base curve

in Minkowski 3-space E3
1 with pointwise 1-type Gauss map of the first kind. Then,

the curvature of the base curve is a non-zero constant. In other words, M is an

open part of a hyperbolic cylinder, a Lorentz circular cylinder or a circular cylinder

of index 1.

Theorem 3.3. (Classification). Let M be a cylindrical ruled surface over a

non-null base curve in Minkowski 3-space E3
1. Then, M has pointwise 1-type Gauss

map of the second kind if and only if M is an open part of a Euclidean plane,

a Minkowski plane or a cylinder of an infinite type satisfying (3.7), (3.8), (3.10),

(3.11) or (3.12) up to rigid motion.

4. NON-CYLINDRICAL RULED SURFACES

In this section, we classify the non-cylindrical ruled surfaces in Minkowski

3-space E3
1 with pointwise 1-type Gauss map.

LetM be a non-cylindrical ruled surface of type M1
+, M

3
+ or M1

− whose Gauss

map is of pointwise 1-type of the second kind. Then, M is parameterized by, up to

rigid motion,

x(s, t) = α(s) + tβ(s)

such that 〈α′, β〉 = 0, 〈β, β〉 = ε2 (= ±1) and 〈β′, β′〉 = ε3 (= ±1). For later
use, we define the smooth functions q, u, Q and R as follows:

q = ||xs||2 = ε4〈xs, xs〉, u = 〈α′, β′〉, Q = 〈α′, β × β′〉, R = 〈β′′, β × β′〉,

where ε4 (= ±1) is the sign of the coordinate vector field xs = ∂x
∂s . For an

orthonormal frame {β, β′, β × β′} along the base curve α, we have

(4.1)

α′ = ε3uβ′ − ε2ε3Qβ × β′,

β′′ = −ε2ε3β − ε2ε3Rβ × β′,

α′ × β = −ε3uβ × β′ + ε3Qβ′,

β × β′′ = −ε3Rβ′,

which imply the smooth function q given by

q = ε4(ε3t2 + 2ut + ε3u
2 − ε2ε3Q

2).

We note that t must be chosen so that q takes positive values.
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Furthermore, the Gauss map G and the mean curvature H of M are straight-

forwardly obtained by, respectively,

G = q−
1
2 (ε3Qβ′ − (ε3u + t)β × β′),

H =
1
2
ε2q

−3/2(Rt2 + (2ε3uR + Q′)t + u2R + ε3uQ′ − ε3u
′Q − ε2Q

2R).

On the other hand, the Laplacian ∆G of the Gauss map G can be expressed as

follows ([14]):

(4.2) ∆G = q−7/2ε4(A1β + A2β
′ + A3β × β′),

where we have put

A1 = ε2Rt5+(2ε2Q
′+5ε2ε3uR)t4+(−3ε2ε3ε4u

′Q−2Q2R+8ε2ε3uQ′+10ε2u
2R)t3

+(−4Q2Q′+3ε4Q
2Q′−9ε2ε4uu′Q−6ε3uQ2R+12ε2u

2Q′+10ε2ε3u
3R)t2

+(3ε3ε4u
′Q3+ε2Q

4R−8ε3uQ2Q′+6ε3ε4uQ2Q′−9ε2ε3ε4u
2u′Q−6u2Q2R+8ε2ε3u

3Q′

+5ε2u
4R)t+2ε2Q

4Q′−3ε2ε4Q
4Q′+3ε4uu′Q3+ε2ε3uQ4R−4u2Q2Q′+3ε4u

2Q2Q′

−3ε2ε4u
3u′Q−2ε3u

3Q2R+2ε2u
4Q′+ε2ε3u

5R,

A2 =−ε3R
′t5+(u′R−ε2ε3QR2−ε3Q

′′−5uR′)t4+(u′′Q+2ε2ε3Q
2R′+3u′Q′−3ε2ε3QQ′R

+4ε3uu′R−4ε2uQR2−4uQ′′−10ε3u
2R′)t3+(−3ε3u

′2Q−2Q3+ε2u
′Q2R+2ε3Q

3R2

−4ε2ε3QQ′2+ε2ε3Q
2Q′′+3ε3uu′′Q+6ε2uQ2R′+9ε3uu′Q′−9ε2uQQ′R+6u2u′R

−6ε2ε3u
2QR2−6ε3u

2Q′′−10u3R′)t2+(−ε2u
′′Q3−ε3Q

4R′+5ε2u
′Q2Q′+3ε3Q

3Q′R

−6uu′2Q−4ε3uQ3+2ε2ε3uu′Q2R+4uQ3R2−8ε2uQQ′2+2ε2uQ2Q′′+3u2u′′Q

+6ε2ε3u
2Q2R′+9u2u′Q′−9ε2ε3u

2QQ′R+4ε3u
3u′R−4ε2u

3QR2−4u3Q′′−5ε3u
4R′)t

−ε2ε3u
′2Q3+2Q5−2u′Q4R−ε3Q

5R2−ε2ε3uu′′Q3−uQ4R′+5ε2ε3uu′Q2Q′+3uQ3Q′R

−3ε3u
2u′2Q−2u2Q3+ε2u

2u′Q2R+2ε3u
2Q3R2−4ε2ε3u

2QQ′2+ε2ε3u
2Q2Q′′+ε3u

3u′′Q

+2ε2u
3Q2R′+3ε3u

3u′Q′−3ε2u
3QQ′R+u4u′R−ε2ε3u

4QR2−ε3u
4Q′′−u5R′,

A3 = ε2R
2t5+(ε2QR′+2ε2Q

′R+5ε2ε3uR2)t4+(2ε3Q
2−3ε2ε3u

′QR−2Q2R2+ε2Q
′2

+ε2QQ′′+4ε2ε3uQR′+8ε2ε3uQ′R+10ε2u
2R2)t3+(−ε2ε3u

′′Q2−2Q3R′−5ε2ε3u
′QQ′

−Q2Q′R+6uQ2−9ε2uu′QR−6ε3uQ2R2+3ε2ε3uQ′2+3ε2ε3uQQ′′+6ε2u
2QR′

+12ε2u
2Q′R+10ε2ε3u

3R2)t2+(4ε2u
′2Q2−2ε2ε3Q

4+3ε3u
′Q3R+ε2Q

4R2+3Q2Q′2

−Q3Q′′−2ε2uu′′Q2−4ε3uQ3R′−10ε2uu′QQ′−2ε3uQ2Q′R+6ε3u
2Q2−9ε2ε3u

2u′QR

−6u2Q2R2+3ε2u
2Q′2+3ε2u

2QQ′′+4ε2ε3u
3QR′+8ε2ε3u

3Q′R+5ε2u
4R2)t+ε3u

′′Q4

+ε2Q
5R′−3ε2u

′Q3Q′−ε2Q
4Q′R+4ε2ε3uu′2Q2−2ε2uQ4+3uu′Q3R+ε2ε3uQ4R2

+3ε3uQ2Q′2−ε3uQ3Q′′−ε2ε3u
2u′′Q2−2u2Q3R′−5ε2ε3u

2u′QQ′−u2Q2Q′R+2u3Q2

−3ε2u
3u′QR−2ε3u

3Q2R2+ε2ε3u
3Q′2+ε2ε3u

3QQ′′+ε2u
4QR′+2ε2u

4Q′R+ε2ε3u
5R2.

Now, we suppose that M has pointwise 1-type Gauss map of the second kind.

Then, equation (1.1) together with (4.2) gives
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(4.3) q−7/2ε4(A1β+A2β
′+A3β×β′) = f{q−1/2(ε3Qβ′−(ε3u+ t)β×β′)+C}.

If we respectively take the scalar product to equation (4.3) with β, β′ and β×β′,

then we have the following system of equations:

(4.4) q−7/2ε4A1 = fc1,

(4.5) q−7/2ε4A2 = f(q−1/2ε3Q + c2),

(4.6) −q−7/2ε4A3 = f(q−1/2(ε3u + t) − c3),

where c1 = ε2〈C, β〉, c2 = ε3〈C, β′〉 and c3 = −ε2ε3〈C, β × β′〉. Differentiating
the functions c1, c2 and c3 with respect to s, we get

(4.7) c′1 = ε2ε3c2,

(4.8) c1 + c′2 − ε3c3R = 0,

(4.9) c′3 − ε2ε3c2R = 0.

Combining equations (4.4), (4.5) and (4.6), we find

(4.10) q(A2c1 − A1c2)2 − Q2A2
1 = 0,

(4.11) q(A1c3 − A3c1)2 − A2
1(ε3u + t)2 = 0,

(4.12) q(A2c3 − A3c2)2 − (A2(ε3u + t) + ε3QA3)
2 = 0.

The left hand sides of (4.10), (4.11) and (4.12) are polynomials in t with functions

of s as the coefficients. Therefore, all of them as functions of s of polynomials in
t must be zero.

First, from the leading coefficient in t of the left hand side of (4.10) with the

help of (4.7), we get

(4.13) c1R = a constant.

Also, the leading coefficient in t of the left hand side of (4.11) gives

(4.14) ε3ε4(c3 − c1R)2R2 = R2.

If ε3ε4 = −1, then R is identically zero. In this case, the leading coefficient of the

left hand side of (4.11) implies

(c2
3 + 1)Q′2 = 0,
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from which, Q is a constant. If we consider the coefficient of t8 of the left hand

side of (4.11), we also get

(
(3ε2c3u

′ − 2ε3c1Q)2 + 9u′2)Q2 = 0.

If Q 6= 0, then we have

(3ε2c3u
′ − 2ε3c1Q)2 + 9u′2 = 0,

which implies u′ = 0. It follows the mean curvature H vanishes on M . It con-

tradicts that the Gauss map of M is of pointwise 1-type of the second kind. Thus,

Q = 0. In turn, the mean curvature is zero identically, which is a contradiction,
too. Consequently, we have

ε3ε4 = 1.

Case 1. R is not identically zero on M .

We now consider an open subset U = {p ∈ M |R(p) 6= 0}. Suppose U is not

empty. Then, (4.14) yields

(4.15) (c3 − c1R)2 = 1

on U. Differentiating equation (4.15), we obtain c3 is a constant on a connected

component U0 of U because c1R is a constant. Therefore, (4.9) implies c2 = 0
on U0. In view of (4.7), c1 is a constant on U0. So, equation (4.8) yields R is

a constant on U0. By continuity of R and connectedness of M , R is a non-zero

constant on M. Therefore, by (4.7), (4.8) and (4.13), c1 and c3 are constants and

c2 = 0 on M . Thus, equations (4.10), (4.11) and (4.12) can be rewritten as follows:

(4.16) qc2
3R

2A2
2 − Q2A2

1 = 0,

(4.17) qc2
3(A1 − ε3RA3)2 − A2

1(ε3u + t)2 = 0,

(4.18) qc2
3A

2
2 − (A2(ε3u + t) + ε3QA3)

2 = 0.

Moreover, combining equations (4.16) and (4.18), we get

(4.19) Q2A2
1 − R2 (A2(ε3u + t) + ε3QA3)

2 = 0.

From the leading coefficient of (4.17), we have

(4.20) c2
3(1 − ε3R

2)2 = 1.

If we examine the coefficients of t10 and t9 of the left hand side of (4.17) with the

help of (4.20), respectively, we get
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(4.21) 2Q2 − 5ε2Q
2 + 4u′QR − 6ε3u

′QR + ε2ε3Q
2R2 − 2ε3Q

′2 = 0

and

(4.22) 2QQ′ − u′′QR − 3u′Q′R + ε2ε3QQ′R2 = 0.

Furthermore, considering the leading coefficient of the left hand side of (4.19), we

obtain

(4.23) (u′R − ε3Q
′′)2 = Q2.

Without loss of generality, we may assume

u′R − ε3Q
′′ = Q.

From the coefficients of t8 and t7 of the left hand side of (4.19), respectively, we
have

(4.24) Q2(u′Q − ε3u
′2R − ε2ε3Q

′2R) = 0

and

(4.25) Q2(2u′R − ε3Q
′ + 2ε3uR) = 0.

Suppose the open subset O = {p ∈ M |Q(p) 6= 0} is not empty. Then, (4.24) and
(4.25) imply

(4.26) u′Q − ε3u
′2R − ε2ε3Q

′2R = 0

and

(4.27) 2u′R − ε3Q
′ + 2ε3uR = 0.

On the other hand, considering the coefficient of t8 of the left hand side of (4.16)
with the help of (4.21), (4.22) and (4.26), we obtain

(4.28) ε2Q
3 − Q3 = 0.

If we think of the non-empty subset O, ε2 must be 1. Therefore, (4.21) implies

(4.29) −3Q2 + 4u′QR − 6ε3u
′QR + ε3Q

2R2 − 2ε3Q
′2 = 0.

Differentiating equation (4.29) with respect to s, we obtain

(4.30)
−3QQ′ + 2u′′QR + 2u′Q′R − 3ε3u

′′QR

−3ε3u
′Q′R + ε3QQ′R2 − 2ε3Q

′Q′′ = 0.
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Suppose ε3 = 1. Combining equations (4.22) and (4.30), we get QQ′ = 0. Hence,
Q is a non-zero constant on a connected component O0 of O. By connectedness
of M and continuity of Q, Q is a non-zero constant on M . Therefore, equations

(4.22) and (4.27) respectively give the following

u′′ = 0 and u′ + u = 0.

Thus, we have u′ = 0. It implies that Q = 0 because of (4.23), a contradiction. So,
O is empty and thus, Q ≡ 0 on M .

Let us now assume ε3 = −1. Then, (4.30) with the help of (4.22) implies

(4.31) Q′(3Q− 4u′R − 2QR2) = 0.

Consider an open subset O1 = {p ∈ O|Q′(p) 6= 0} and suppose O1 is not empty.

Then (4.31) gives

(4.32) 3Q− 4u′R − 2QR2 = 0.

Since u′R + Q′′ = Q, we have the following differential equation from (4.32)

(4.33) Q′′ − k2Q = 0,

where k2 = 1+2R2

4 (k > 0), a constant. Thus,

(4.34) u′R = (1− k2)Q,

or, Q is given by

Q = K̃1 coshks + K̃2 sinh ks

for some constants K̃1 and K̃2. Together (4.34) with (4.22), we have

2 − 4(1− k2)− R2 = 0,

or, using k2 = 1+2R2

4 , we get

R2 = 1

on O1. Putting this into (4.26) and using (4.34), we get

Q = 0,

which is a contradiction on O1. Therefore, the open subset O1 is empty and Q
is a non-zero constant on a connected component O0 of O. Again, connectedness
of M and continuity of Q imply Q is a non-zero constant on M . Hence, we

have u′R = Q. Together with (4.26), u′ = 0 is induced and we get Q = 0, a
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contradiction. Consequently, the open subset O is empty and Q ≡ 0 on M . Hence,

no matter what cases of ε3 may be, we have Q is zero on M .

Therefore, u is a non-zero constant by virtue of (4.23) and the first equation of

(4.1) with the help of the fact that α is non-null.
On the other hand, it follows from the second equation in (4.1) that

β′′′ + ε2ε3(1 − ε3R
2)β′ = 0.

Let us give the initial conditions β(0) = (a1, 0, a2), β′(0) = (b1, b2, 0) and β′′(0) =
−ε2ε3(a1 + a2b2R, a2b1R, a2 + a1b2R) of the above differential equation, where
a1, a2, b1 and b2 are some constants satisfying −a2

1 + a2
2 = ε2, −b2

1 + b2
2 = ε3 and

a1b1 = 0 with (a1, b1) 6= (0, 0).
Considering equation (4.20), we only have the cases: ε2ε3(1 − ε3R

2) > 0 or
ε2ε3(1 − ε3R

2) < 0.
First, if ε2ε3(1− ε3R

2) > 0, then we have β′′′(s)+a2β′(s) = 0 and its solution
β(s) is

(4.35)

β(s) =
(
−ε2ε3

a2
(ε3a1R

2+a2b2R)+
ε2ε3
a2

(a1+a2b2R) cosas+
b1

a
sinas,

−ε2ε3
a2

a2b1R+
ε2ε3
a2

a2b1R cos as+
b2

a
sin as,

−ε2ε3
a2

(ε3a2R
2+a1b2R)+

ε2ε3
a2

(a2+a1b2R) cosas
)

,

where a =
√

ε2ε3(1 − ε3R2).
If ε2ε3(1− ε3R

2) < 0, then the solution of β′′′(s)− a2β′(s) = 0 is obtained as
follows

(4.36)

β(s) =
(

ε2ε3
a2

(ε3a1R
2+a2b2R)− ε2ε3

a2
(a1+a2b2R) coshas+

b1

a
sinhas,

ε2ε3
a2

a2b1R − ε2ε3
a2

a2b1R cosh as +
b2

a
sinh as,

ε2ε3
a2

(ε3a2R
2 + a1b2R)− ε2ε3

a2
(a2 + a1b2R) coshas

)
,

where a =
√

ε2ε3(ε3R2 − 1).
By applying the first equation of (4.1), α′ = ε3uβ′ for some non-zero constant

u. Therefore, we can easily obtain the base curve α(s) by means of β(s) of the
form (4.35) or (4.36).

Definition 4.1. A non-cylindrical ruled surface M generated by a base curve

α(s) and the director vector field β(s) satisfying (4.35) or (4.36) is called a rota-
tional ruled surface of type I or a rotational ruled surface of type II, respectively.
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Case 2. R ≡ 0 on M .

From (4.9), we see that c3 is a constant. Combining equations (4.7) and (4.8),

we have c1 + ε2ε3c
′′
1 = 0. Thus, depending upon the sign of ε2 and ε3, we get

(4.37) c1 = K1 cosh s + K2 sinh s or c1 = K3 sin(s + s0)

for some constants Ki (i = 1, 2, 3) and s0.

If we think of the leading coefficient of the left hand side of (4.11) with c1 as

above, we have

(c2
3 − 1)Q′2 = 0.

Suppose c2
3 6= 1. Then Q′ = 0, that is, Q is a constant. If Q = 0, the mean

curvature H vanishes on M , which is a contradiction. Therefore, Q is a non-zero

constant.

If we consider the leading coefficients of the left hand sides of (4.10) and (4.11),

respectively, we get

(4.38) c1u
′′ + 3ε2c2u

′ = 0 and (3ε2c3u
′ + 2ε3c1Q)2 = 9u′2.

Since c′1 = ε2ε3c2, the first equation of (4.38) implies

c1u
′′ + 3ε3c

′
1u

′ = 0.

Suppose c1 is non-trivial. Then, the solution of the above differential equation is

given by

(4.39) u′ = k1c
±3
1 ,

where k1 is a constant. Putting (4.37) and (4.39) into the second equation of (4.38),

we obtain k1 = 0 and Ki = 0 (i = 1, 2, 3), which is a contradiction. Thus, we
have c1 = 0. From (4.4), we get A1 = 0. It implies that u′ = 0, that is, u is a
constant. Hence we see that the mean curvature H vanishes identically that is again

a contradiction. Consequently, we get c2
3 = 1.

Now, if we consider the leading coefficient of the left hand side of (4.10) with

the help of (4.7), we have

c1Q
′′ + 2c′1Q

′ = 0.

Suppose c1 is non-zero. Then the solution of the above equation is given by

(4.40) Q′ = k2c
−2
1 ,

where k2 is a constant. Since the coefficient of t9 of the left hand side of (4.11)

with c2
3 = 1 is zero, we have

Q′(QQ′′ + Q′2 + 2ε2ε3Q
2) = 0.
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Consider an open set V = {p ∈ M |Q′(p) 6= 0}. Suppose V is not empty. Then

we get

(4.41) QQ′′ + Q′2 + 2ε2ε3Q
2 = 0.

Equations (4.37), (4.40) and (4.41) lead to k2 = 0 and so Q′ = 0, a contradiction.
Therefore, V is empty and Q is a non-zero constant on M sinceM is not minimal.

Thus, the fact that the leading coefficient of the left hand side of (4.10) is zero gives

c1u
′′ + 3ε3c

′
1u

′ = 0 because of (4.7). If c1 is non-trivial, we have a solution of the

form (4.39). Since c2
3 = 1, from the leading coefficient of (4.11), we also get

(4.42) c1Q ± 3ε2ε3u
′ = 0.

Putting (4.37) and (4.39) into (4.42), we obtain c1 = 0.
Similarly as before, (4.4) yields u′ = 0. Therefore, the mean curvature H

vanishes, which is a contradiction. As a consequence, the case of R = 0 can never
occur.

Consequently, we have

Theorem 4.1. Let M be a non-cylindrical ruled surface of type M1
+, M1

− or
M3

+ in Minkowski 3-space E3
1. Suppose that M has pointwise 1-type Gauss map

of the second kind. Then, M is an open part of a rotational ruled surfaces of type

I or type II.

Now we examine a non-cylindrical ruled surface of typeM2
+ or M2

− with point-

wise 1-type Gauss map of the second kind.

Let M be a non-cylindrical ruled surface of type M2
+ or M2

−. Then, the para-
metrization for M is given by

x(s, t) = α(s) + tβ(s)

such that 〈α′, α′〉 = ε1(= ±1), 〈β, β〉 = 1, 〈α′, β〉 = 0 and β′ is null. Let us also
put

q = ||xs||2 = ε4〈xs, xs〉, u = 〈α′, β′〉.
On the other hand, it is easy to see that β × β′ is null. Since the null vector

fields β′ and β × β′ are orthogonal, we may take

(4.43) β′ = β × β′.

Moreover, we may assume β(0) = (0, 0, 1). Thus, β(s) is given by

(4.44) β(s) = (as, as, 1)

for a non-zero constant a. For an orthonormal frame {α′, β, α′ × β} along α, we
have

(4.45) β′ = ε1u(α′ − α′ × β) and α′′ = −uβ +
u′

u
α′ × β.
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Let α(s) = (α1(s), α2(s), α3(s)). Since 〈α′, β′〉 = u and 〈α′, β〉 = 0, we obtain

(4.46) α′
1 − α′

2 = −u

a
and α′

3 = −us.

Equation (4.46) together with 〈α′, α′〉 = ε1 implies

(4.47) α′
1 + α′

2 =
aε1
u

− aus2.

Combining equations (4.46) and (4.47), we get

(4.48) α′(s) =
(

1
2

(aε1
u

− aus2 − u

a

)
,
1
2

(aε1
u

− aus2 +
u

a

)
,−us

)
.

On the other hand, the Gauss map G of M is given by

(4.49) G = q−
1
2 (A − tβ′),

where we put A = α′×β. By a straightforward computation, the Laplacian ∆G of

the Gauss map G can be expressed as ([14])

∆G = q−
7
2

(
(−2u2q + u′′tq − 4ε4u

′2t2)(A − tβ′) − ε4uβ′q2 + 3u′tA′q − ε4A
′′q2
)

.

Now we suppose that M has pointwise 1-type Gauss map of the second kind.

Then, we obtain

(4.50)
(−2u2q+u′′tq−4ε4u

′2t2)(A−tβ′)−ε4uβ′q2+3u′tA′q−ε4A
′′q2

= f(q3(A − tβ′) + q
7
2 C)

for some non-zero smooth function f and a constant vector C.
If we take the scalar product to equation (4.50) with α′, β and α′ × β, respec-

tively, then we obtain the following:

(4.51) B1 = f(−q3tu + q
7
2 〈C, α′〉),

(4.52) B2 = fq
7
2 〈C, β〉,

(4.53) B3 = f(−ε1q
3 − uq3t + q

7
2 〈C, α′ × β〉),

where

B1 = 2u3qt − uu′′t2q + 4ε4uu′2t3 + 3ε1
u′2

u
tq − ε1ε4

u′′

u
q2 + ε1ε4

u′2

u2
q2,

B2 = −3uu′tq + 2ε4u
′q2,

B3 = 2ε1u
2q − ε1u

′′tq + 4ε1ε4u
′2t2 + 2u3qt − uu′′t2q + 4ε4uu′2t3 + ε1ε4q

2u′2

u2
.
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If we put C = c1α
′ + c2β + c3α

′ × β, (4.51)-(4.53) imply

(4.54) (c2B1 − ε1c1B2)2q = u2t2B2
2 ,

(4.55) (c2B3 + ε1c3B2)2q = (ε1 + ut)2B2
2 ,

(4.56) (utB3 − (ε1 + ut)B1)2 = q(c1B3 + c3B1)2,

which are polynomials in t with functions of s as the coefficients. Hence, the leading

coefficient of the left hand side of (4.54) must be zero, which means c2
2u

3(uu′′ −
2u′2)2 = 0. Because u 6= 0, we get

(4.57) c2
2(uu′′ − 2u′2)2 = 0.

Consider an open subset U = {p ∈ M |(uu′′ − 2u′2)(p) 6= 0}. Suppose U is not

empty. Then, c2 = 0 on U. Therefore, equation (4.54) can be reduced to

(4.58) B2
2(c2

1q − u2t2) = 0.

Since the leading coefficient of the left hand side of (4.58) must be zero, u6u′2 = 0
on U, from which, u′ = 0 on U. It is a contradiction. Thus, U is empty and we

have

(4.59) uu′′ − 2u′2 = 0.

Suppose there is a point s0 ∈ domain (α) such that u′(s0) = 0. Then, (4.54) implies
c2 = 0. Also, (4.59) gives u′′(s0) = 0. If we evaluate the left hand side of (4.56),
it turns out to be zero at s0 and thus

ε1c1 + (c1 + c3)u(s0)t = 0.

It holds for each t and hence c1 = c3 = 0, that is, C is zero vector, which is a

contradiction. Therefore, u′ 6= 0 everywhere. From (4.59), we get

u′′

u′ −
2u′

u
= 0,

from which,

u(s) =
1

bs + c

for some constants b 6= 0 and c. Thus, from (4.48), the base curve α(s) is given by

(4.60)

α(s) =
1
2

(
aε1(

b

2
s2 + cs) − a

2b
s2 +

ac

b2
s − (

ac2

b3
+

1
ab

)ln |bs + c|+ d1,

aε1(
b

2
s2 + cs)− a

2b
s2 +

ac

b2
s − (

ac2

b3
− 1

ab
)ln |bs + c| + d2,

−2
b
s +

2c

b
ln |bs + c| + d3

)
,
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where di (i = 1, 2, 3) are some integration constants.

Definition 4.2. A ruled surface M generated by the base curve of the form

(4.60) and the director vector field given by (4.44) is called a transcendental ruled

surface.

Consequently, we have

Theorem 4.2. Let M be a non-cylindrical ruled surface of type M2
+ or M2

− in

Minkowski 3-space E3
1. Suppose that the Gauss map G of M is of pointwise 1-type

of the second kind. Then, M is an open portion of a transcendental ruled surface.

Combining Theorem 4.1, Theorem 4.2 and the results of [14], we have

Theorem 4.3. (Classification). Let M be a non-cylindrical ruled surface over

a non-null base curve in Minkowski 3-space E3
1. Then, M has pointwise 1-type

Gauss map if and only ifM is an open part of a helicoid of the first kind, a helicoid

of the second kind, a helicoid of the third kind, the conjugate of Enneper’s surface

of the second kind, a rotational ruled surface of type I or II, or a transcendental

ruled surface.

5. NULL SCROLLS

In this section, we study a null scroll with pointwise 1-type Gauss map in

Minkowski 3-space E3
1. We mainly focus to prove the following theorem.

Theorem 5.1. Let M be a null scroll with pointwise 1-type Gauss map of the

second kind in Minkowski 3-space E3
1. Then, M is an open part of a Minkowski

plane.

Proof. Let α = α(s) be a null curve in E3
1 and β = β(s) a null vector field

satisfying 〈α′, β〉 = 1 along α. For a null scroll M parameterized by

x = x(s, t) = α(s) + tβ(s),

we have the natural coordinate frame {xs, xt} given by

xs = α′ + tβ′ and xt = β(s).

Furthermore, we may choose an appropriate parameter s in such a way that u =
〈α′, β′〉 = 0, which is possible if the base curve α is chosen as a null geodesic of
M . Again, we define the smooth functions q and v as follows:

q = 〈xs, xs〉 and v = 〈β′, β′〉.

On the other hand, the Gauss map G of M is determined by

(5.1) G = xs × xt = α′ × β + tβ′ × β
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and the Laplacian of the Gauss map G is obtained by ([14])

(5.2) ∆G = −2β′′ × β + 2vtβ′ × β.

In terms of the pseudo-orthonormal frame {α′, β, α′ × β}, we obtain

(5.3) β′ = −Qα′ × β, β′ × β = Qβ and β′′ × β = Rβ − vα′ × β,

where Q = 〈α′, β′ × β〉 and R = 〈α′, β′′ × β〉.
We now suppose that M has pointwise 1-type Gauss map of the second kind.

Then, with the help of (5.3), we have

(5.4) (2vtQ− 2R)β + 2vα′ × β = f(α′ × β + tQβ + C)

for some non-zero smooth function f and a constant vector C.
If we take the scalar product to equation (5.4) with α′, β and α′×β, respectively,

then we have the following system of equations:

(5.5) 2vtQ − 2R = f(Qt + c2),

(5.6) c1f = 0,

(5.7) 2v = f(1 + c3),

where c1 = 〈C, β〉, c2 = 〈C, α′〉 and c3 = 〈C, α′ × β〉. Clearly, (5.6) gives c1 = 0.
From (5.7), the function f depends only on the parameter s. Therefore, from (5.5),
we can obtain

(2v − f)Q = 0 and 2R + fc2 = 0.

Consider an open subset U = {p ∈ M |Q(p) 6= 0}. Suppose that U is not empty.

Then f = 2v on U which implies c3f = 0 by (5.7) and thus c3 = 0. Therefore, the
constant vector C can be written as C = c2β. Differentiating the constant vector

C with respect to s, we have 0 = c′2β(s) + c2β
′(s). Since β and β′ are linearly

independent for each s, c2 vanishes, which is a contradiction because C is not zero
vector. Therefore, the open subset U is empty, that is, Q = 0. Hence, (5.3) gives
β is a constant vector. It follows that R = 0 and v = 0. Thus, ∆G = 0. Since the
Gauss map is of pointwise 1-type of the second kind, we may get G = −C. Thus,
the surface M is an open part of a Minkowski plane. Consequently, the proof is

completed.

Combining Theorem 5.1 and the results in [14], we have

Theorem 5.2. (Classification). Let M be a null scroll with pointwise 1-type

Gauss map in Minkowski 3-space E3
1. Then, M is an open part of a Minkowski

plane or a B-scroll.
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Remark. Summing up all the cases, Theorem 3.2, Theorem 3.3, Theorem 4.3

and Theorem 5.2, we have a complete classification theorem of the ruled surfaces

in Minkowski 3-space E3
1 with pointwise 1-type Gauss map, which is described in

Section 1.

Fig. 1. Fig. 2. Fig. 3.
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