TAIWANESE JOURNAL OF MATHEMATICS
Vol. 15, No. 2, pp. 773-786, April 2011
This paper is available online at http://www.tjm.nsysu.edu.tw/

ON THE SECOND EQUATION OF OBATA

Fazilet Erkekoglu

Abstract

In this paper we prove some results related to a certain vector field satisfying the second equation of Obata [8] on vector fields.

1. Introduction

In this paper we prove some results related to a non-zero vector field Z on an n dimensional Riemannian manifold (M, g) satisfying $\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+$ $g(Y, Z) X+g(X, Y) Z]=0$ for all $X, Y \in \Gamma(T M)$ and for $\lambda(>0) \in \mathbb{R}$. In fact, the idea underlying this paper is to characterize (or represent) Riemannian manifolds analytically by a differential equation on certain class of Riemannian manifolds determined by mild geometric/topological assumptions.

2. Preliminaries

Here, we briefly state the main concepts and definitions used throughout this paper.

Let Z be a vector field on (M, g), a Riemannian manifold of dimension n, ∇ the Levi-Civita connection and

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

the curvature tensor, where $X, Y \in \Gamma(T M)$. We write also $\langle X, Y\rangle$ if this is convenient. The Ricci curvature (tensor) is the trace of $R: \operatorname{trace}(X \rightarrow R(X, Y) Z)$ and denoted by $\operatorname{Ric}(Y, Z)$. If $\left\{X_{1}, \cdots, X_{n}\right\}$ is a local orthonormal frame for $T M$, then

$$
\operatorname{Ric}(Y, Z)=\sum_{i=1}^{n} g\left(R\left(X_{i}, Y\right) Z, X_{i}\right)=\sum_{i=1}^{n} g\left(R\left(Y, X_{i}\right) X_{i}, Z\right) .
$$

Received July 8, 2005, accepted October 20, 2009.
Communicated by Shu-Cheng Chang.
2000 Mathematics Subject Classification: 53C99, 58J99.
Key words and phrases: Second covariant differential, Divergence, Laplacian, Conformal vector field, Affine conformal vector field, k-Nullity vector field, Projective vector field, Mbius equation.

Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric $(1,1)$ tensor

$$
\operatorname{Ric}(Z)=\sum_{i=1}^{n} R\left(Z, X_{i}\right) X_{i}
$$

The scalar curvature is defined by $S c=\operatorname{tr}$ Ric. Let Z be a vector field on this n-dimensional Riemannian manifold (M, g) with Levi-Civita connection ∇. The second covariant differential $\nabla^{2} Z$ of Z is defined by

$$
\left(\nabla^{2} Z\right)(X, Y)=\nabla_{X} \nabla_{Y} Z-\nabla_{\nabla_{X} Y} Z
$$

where $X, Y \in \Gamma(T M)$. We define the Laplacian ΔZ of Z on (M, g) to be the trace of $\nabla^{2} Z$ with respect to g, that is,

$$
\Delta Z=\operatorname{trace} \nabla^{2} Z=\sum_{i=1}^{n}\left(\nabla^{2} Z\right)\left(X_{i}, X_{i}\right)
$$

where $\left\{X_{1}, \cdots, X_{n}\right\}$ is a local orthonormal frame for $T M$.
Also, the affinity tensor $L_{Z} \nabla$ of Z is defined by

$$
\left(L_{Z} \nabla\right)(X, Y)=L_{Z} \nabla_{X} Y-\nabla_{L_{Z} X} Y-\nabla_{X} L_{Z} Y
$$

where L_{Z} is the Lie derivative with respect to Z and $X, Y \in \Gamma(T M)$. (See, for example page 109 of [9]). We define the tension field $\square Z$ of Z on (M, g) to be the trace of $L_{Z} \nabla$ with respect to g that is,

$$
\square Z=\operatorname{trace} L_{Z} \nabla=\sum_{i=1}^{n}\left(L_{Z} \nabla\right)\left(X_{i}, X_{i}\right)
$$

where $\left\{X_{1}, \cdots, X_{n}\right\}$ is a local orthonormal frame for $T M$.
By a straightforward computation, it can be shown by using the torsion-free property of ∇ that

$$
\left(L_{Z} \nabla\right)(X, Y)=\left(\nabla^{2} Z\right)(X, Y)+R(Z, X) Y
$$

(see page 110 of [9]) and hence

$$
\square Z=\Delta Z+\operatorname{Ric}(Z)
$$

where $X, Y \in \Gamma(T M)$. (Also see page 40 of [11]).
The divergence of a vector field $Z, \operatorname{div} Z$, on (M, g) is defined as

$$
\operatorname{div} Z=\operatorname{tr}(\nabla Z)=\sum_{i=1}^{n} g\left(\nabla_{X_{i}} Z, X_{i}\right)
$$

if $\left\{X_{i}\right\}$ is an orthonormal basis of $T M$.

3. The Second Equation of Obata

The elementary results of this chapter could also be collected from [2]. First, we state a differential equation, which is a slight generalization of an equation given by Obata [8], characterizing Euclidian spheres. It is shown in [10] that, a necessary and a sufficient condition for a connected, simply connected, complete $n(\geq 2)$ dimensional Riemannian manifold (M, g) to be isometric with the Euclidian sphere of radius $\frac{1}{\sqrt{\lambda}}, \lambda>0$ is the existence of a nonconstant function f on M satisfying the equation

$$
\left(\nabla^{2} \nabla f\right)(X, Y)+\lambda[2 g(\nabla f, X) Y+g(Y, \nabla f) X+g(X, Y) \nabla f]=0
$$

for all $X, Y \in \Gamma(T M)$. In fact, we can replace ∇f with a nonzero vector field in the above equation.

Lemma 3.1. Let (M, g) be an n-dimensional Riemannian manifold and $\lambda \in \mathbb{R}$. If Z is a vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0
$$

for all $X, Y \in \Gamma(T M)$, then

$$
\Delta Z=-(n+3) \lambda Z
$$

Proof. If we take the trace of the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0
$$

with respect to g on (M, g) we obtain another differential equation

$$
\begin{aligned}
\Delta Z & =\operatorname{tr}\left(\nabla^{2} Z\right) \\
& =\sum_{i=1}^{n}\left(\nabla^{2} Z\right)\left(X_{i}, X_{i}\right) \\
& =\sum_{i=1}^{n}\left(-\lambda\left[2 g\left(Z, X_{i}\right) X_{i}+g\left(X_{i}, Z\right) X_{i}+g\left(X_{i}, X_{i}\right) Z\right]\right) \\
& =-\lambda \sum_{i=1}^{n}\left[3 g\left(Z, X_{i}\right) X_{i}+g\left(X_{i}, X_{i}\right) Z\right] \\
& =-\lambda(3 Z+n Z) \\
& =-(n+3) \lambda Z
\end{aligned}
$$

here $\left\{X_{i}\right\}$ is an orthonormal frame of $T M$, in fact an eigenvalue equation.

Remark 3.2. Note that, on a connected, compact Riemannian manifold (M, g) the Laplacian Δ is negative semi-definite on spaces of vector fields. Thus, if (M, g) is compact, eigenvalues of Δ are non-positive on vector fields. The case Z is an eigen vector field corresponding to the 0 eigen value occurs if and only if Z is a parallel vector field on (M, g) (see Theorem 3.2 in [4]) .

In conclusion, we can say that on a compact Riemannian manifold (M, g), the eigenspace corresponding to the zero eigenvalue of Δ consist of parallel vector fields on (M, g). Also note here that, since $\operatorname{Ric}(Z, Z)=0$ for a parallel vector field Z, the eigenspace corresponding to the zero eigenvalue of Δ does not exist if $\operatorname{Ric}(x, x) \neq 0$ for all $x(\neq 0) \in T p M$ for some $p \in M$.

Remark 3.3. Note also that, on a compact Riemannian manifold (M, g) the Laplacian is an elliptic operator. Thus, by the spectral theorem, the eigenvalues λ_{i} of Δ are of the form

$$
-\infty \leftarrow \cdots<\lambda_{i}<\cdots<\lambda_{1}<\lambda_{0}=0 .
$$

Thus, if $\operatorname{Ric}(x, x) \neq 0$ for all $x(\neq 0) \in T p M$ for some $p \in M$, then the largest eigenvalue of Δ on the vector space of vector fields on (M, g) is negative.

Lemma 3.4. Let (M, g) be an n-dimensional Riemannian manifold and $\lambda \in \mathbb{R}$. If Z is a vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0,
$$

for all $X, Y \in \Gamma(T M)$, then
(i) $R(X, Y) Z=\lambda[g(Z, Y) X-g(X, Z) Y]$,
for all $X, Y \in \Gamma(T M)$, and hence $\operatorname{Ric}(Z)=\lambda(n-1) Z$,
(ii) $\nabla \operatorname{div} Z=-2 \lambda(n+1) Z$, and hence
$\nabla^{2} \operatorname{div} Z=-2 \lambda(n+1) \nabla Z$,
where $\nabla^{2} \operatorname{div} Z$ is the Hessian tensor of $\operatorname{div} Z$.

Proof.

(i) Let $X, Y \in \Gamma(T M)$. Then,

$$
\begin{aligned}
R(X, Y) Z= & \nabla_{X, Y}^{2} Z-\nabla_{Y, X}^{2} Z \\
= & -\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]-(-\lambda)[2 g(Z, Y) X \\
& +g(X, Z) Y+g(Y, X) Z] \\
= & \lambda[2 g(Z, Y) X-2 g(Z, X) Y+g(X, Z) Y-g(Y, Z) X] \\
= & \lambda[g(Z, Y) X-g(Z, X) Y] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(\operatorname{Ric}(Z), X) & =g\left(\sum_{i=1}^{n} R\left(Z, X_{i}\right) X_{i}, X\right) \\
& =\sum_{i=1}^{n} g\left(R\left(Z, X_{i}\right) X_{i}, X\right) \\
& =\sum_{i=1}^{n} R\left(Z, X_{i}, X_{i}, X\right) \\
& =\sum_{i=1}^{n} R\left(X_{i}, X, Z, X_{i}\right) \\
& =\sum_{i=1}^{n} g\left(R\left(X_{i}, X\right) Z, X_{i}\right) \\
& =\sum_{i=1}^{n} g\left(\lambda\left[g(Z, X) X_{i}-g\left(Z, X_{i}\right) X\right], X_{i}\right) \\
& =\lambda g(Z, X) \sum_{i=1}^{n} g\left(X_{i}, X_{i}\right)-\lambda \sum_{i=1}^{n} g\left(Z, X_{i}\right) g\left(X, X_{i}\right) \\
& =\lambda n g(Z, X)-\lambda g(Z, X) \\
& =\lambda(n-1) g(Z, X)
\end{aligned}
$$

here $\left\{X_{1}, \cdots, X_{n}\right\}$ is an orthonormal frame for $T M$ near $p \in M$.
(ii) Let $\left\{X_{1}, \cdots, X_{n}\right\}$ be an adapted orthonormal frame near $p \in M$, that is, $\left\{X_{1}, \cdots, X_{n}\right\}$ is an orthonormal frame in $T M$ with $\left(\nabla X_{i}\right)_{p}=0$ for $i=$ $1, \ldots, n$, and let $X \in \Gamma(T M)$. Then at $p \in M$,

$$
\begin{aligned}
g(\nabla \operatorname{div} Z, X) & =X(\operatorname{div} Z) \\
& =\sum_{i=1}^{n} X g\left(\nabla_{X_{i}} Z, X_{i}\right) \\
& =\sum_{i=1}^{n}\left[g\left(\nabla_{X} \nabla_{X_{i}} Z, X_{i}\right)+g\left(\nabla_{X_{i}} Z, \nabla_{X} X_{i}\right)\right] \\
& =\sum_{i=1}^{n}\left[g\left(\left(\nabla^{2} Z\right)\left(X, X_{i}\right), X_{i}\right)-g\left(\nabla_{\nabla_{X} X_{i}} Z, X_{i}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{n} g\left(-\lambda\left\{2 g(Z, X) X_{i}+g\left(X_{i}, Z\right) X_{i}+g\left(X, X_{i}\right) Z\right\}, X_{i}\right) \\
= & -2 \lambda g(Z, X) \sum_{i=1}^{n} g\left(X_{i}, X_{i}\right)-\lambda \sum_{i=1}^{n} g\left(Z, X_{i}\right) g\left(X, X_{i}\right) \\
& -\lambda \sum_{i=1}^{n} g\left(X, X_{i}\right) g\left(Z, X_{i}\right) \\
= & -2 n \lambda g(Z, X)-2 \lambda g(Z, X) \\
= & -2(n+1) \lambda g(Z, X) \\
= & g(-2(n+1) \lambda Z, X) .
\end{aligned}
$$

Hence, it follows that $\nabla \operatorname{div} Z=-2(n+1) \lambda Z$ and hence $\nabla^{2} \operatorname{div} Z=-2(n+$ 1) $\lambda \nabla Z$.

Definition 3.5. Let (M, g) be a Riemannian manifold and $\lambda \in \mathbb{R}$. A vector field Z on M satisfying

$$
R(X, Y) Z=\lambda[g(Z, Y) X-g(X, Z) Y],
$$

for all $X, Y \in \Gamma(T M)$, is called a λ-nullity vector field on (M, g).
That is, Z is a nullity vector field with respect to the curvature-like tensor field

$$
F(X, Y) W=R(X, Y) W-\lambda[g(W, Y) X-g(X, W) Y],
$$

on (M, g). (See Sections 2 and 4 of [10]).
In particular, if there exist a nonzero $\lambda(\neq 0)$-nullity vector field Z on a Riemannian manifold (M, g) then (M, g) is irreducible. (see [1], [5], [10] and the references therein for details).

Remark 3.6. Let (M, g) be an n-dimensional Riemannian manifold and $\lambda \in \mathbb{R}$. If Z is a vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0,
$$

for all $X, Y \in \Gamma(T M)$ then, Z is a λ-nullity vector field by Lemma 3.4. That is, Z is a nullity vector field with respect to the curvature-like tensor field $F(X, Y) W=$ $R(X, Y) W-\lambda[g(W, Y) X-g(X, W) Y]$ on (M, g). If, in addition, Z is nonzero and $\lambda \neq 0$, then (M, g) is irreducible.

Definition 3.7. A vector field Z on (M, g) is projective if it satisfies

$$
\left(L_{Z} \nabla\right)(X, Y)=\pi(X) Y-\pi(Y) X,
$$

for any vector fields Y and Z, π being a certain 1-form.
Corollary 3.8. Let (M, g) be an n-dimensional Riemannian manifold and $\lambda \in$ \mathbb{R}. If Z is a vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0,
$$

for all $X, Y \in \Gamma(T M)$, then Z is a projective vector field.
Proof. Let $X, Y \in \Gamma(T M)$. Then,

$$
\begin{aligned}
\left(L_{Z} \nabla\right)(X, Y)= & \left(\nabla^{2} Z\right)(X, Y)+R(Z, X) Y \\
= & -\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]+\lambda[g(Y, X) Z \\
& -g(Z, Y) X] \\
= & -2 \lambda g(Z, X) Y-2 \lambda g(Z, Y) X .
\end{aligned}
$$

In fact, if (M, g) is compact, then this can be obtained differently (see Corollary 3.15 below).

Corollary 3.9. Let (M, g) be an n-dimensional Riemannian manifold and $\lambda \in$ \mathbb{R}. If Z is a vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0
$$

for all $X, Y \in \Gamma(T M)$, then

$$
\Delta(\operatorname{div} Z)=-2(n+1) \lambda \operatorname{div} Z .
$$

Proof. If we take the trace of the equation

$$
\nabla^{2} \operatorname{div} Z=-2(n+1) \lambda \nabla Z
$$

by Lemma 3.11, we obtain another differential equation

$$
\begin{aligned}
\Delta(\operatorname{div} Z) & =\operatorname{tr}\left(\nabla^{2} \operatorname{div} Z\right) \\
& =\operatorname{tr}(-2(n+1) \lambda \nabla Z) \\
& =-2(n+1) \lambda \operatorname{tr}(\nabla Z) \\
& =-2(n+1) \lambda \operatorname{div} Z,
\end{aligned}
$$

in fact an eigenvalue equation.

Remark 3.10. Considering the differential equations

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda g(Z, X) Y=0,
$$

and

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0
$$

for $\lambda>0$ on the n-dimensional Euclidian sphere of radius $\frac{1}{\sqrt{\lambda}}$, intuitively, the first differential equation corresponds to the first eigenvalue of the Laplacian (that is, $\Delta \operatorname{div} Z=-n \lambda \operatorname{div} Z)$ and the latter differential equation corresponds to the second eigenvalue of the Laplacian (that is, $\Delta \operatorname{div} Z=-2(n+1) \lambda \operatorname{div} Z$) on the Euclidian sphere of radius $\frac{1}{\sqrt{\lambda}}$. Also, a vector field satisfying the first equation is necessarily a conformal vector field (see Remark 3.5 in [6]). A vector field satisfying the latter differential equation is necessarily a projective vector field by Corollary 3.8 (see also Corollary 3.16).

Lemma 3.11. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z=0
$$

for all $X, Y \in \Gamma(T M)$ then, ∇ div Z also satisfies the same equation.
Proof. Since Z is non-zero, it follows from Lemma 3.4 that $\operatorname{div} Z$ is nonconstant and $\nabla^{2} \operatorname{div} Z=-2(n+1) \lambda \nabla Z$. Hence, ∇Z is self-adjoint and can be written as $\nabla Z=\frac{\operatorname{div} Z}{n} i d+\sigma$, where σ is the traceless self-adjoint part of ∇Z. Let $X, Y \in \Gamma(T M)$. Then, by Lemma 3.4,

$$
\begin{aligned}
(\nabla \sigma)(X, Y) & =\left(\nabla\left(\nabla Z-\frac{\operatorname{div} Z}{n} i d\right)(X, Y)\right. \\
& =(\nabla(\nabla Z))-\nabla\left(\frac{\operatorname{div} Z}{n} i d\right)(X, Y) \\
& =\nabla^{2} Z(X, Y)-\nabla_{X}\left(\frac{\operatorname{div} Z}{n} i d\right)(Y) \\
& =\nabla^{2} Z(X, Y)-\nabla_{X} \frac{\operatorname{div} Z}{n} i d(Y)+\frac{\operatorname{div} Z}{n} i d\left(\nabla_{X} Y\right) \\
& =\nabla^{2} Z(X, Y)-\nabla_{X} \frac{\operatorname{div} Z}{n} Y+\frac{\operatorname{div} Z}{n} \nabla_{X} Y \\
& =\nabla^{2} Z(X, Y)-X\left(\frac{\operatorname{div} Z}{n}\right) Y-\frac{\operatorname{div} Z}{n} \nabla_{X} Y+\frac{\operatorname{div} Z}{n} \nabla_{X} Y \\
& =\nabla^{2} Z(X, Y)-\frac{1}{n} X(\operatorname{div} Z) Y \\
& =\nabla^{2} Z(X, Y)-\frac{1}{n} g(\nabla \operatorname{div} Z, X) Y
\end{aligned}
$$

$$
\begin{aligned}
= & -2 \lambda g(Z, X) Y-\lambda g(Y, Z) X-\lambda g(X, Y) Z-\frac{1}{n} g(\nabla \operatorname{div} Z, X) Y \\
= & -2 \lambda \frac{1}{-2(n+1) \lambda} g(\nabla \operatorname{div} Z, X) Y-\lambda \frac{1}{-2(n+1) \lambda} g(Y, \nabla \operatorname{div} Z) X \\
& -\lambda \frac{1}{-2(n+1) \lambda} g(X, Y) \nabla \operatorname{div} Z-\frac{1}{n} g(\nabla \operatorname{div} Z, X) Y \\
= & \frac{1}{n+1} g(\nabla \operatorname{div} Z, X) Y+\frac{1}{2(n+1)} g(Y, \nabla \operatorname{div} Z) X \\
& +\frac{1}{2(n+1)} g(X, Y) \nabla \operatorname{div} Z-\frac{1}{n} g(\nabla \operatorname{div} Z, X) Y \\
= & \left(\frac{1}{(n+1)}-\frac{1}{n}\right) g(X, \nabla \operatorname{div} Z) Y+\frac{1}{2(n+1)} g(Y, \nabla \operatorname{div} Z) X \\
& +\frac{1}{2(n+1)} g(X, Y) \nabla \operatorname{div} Z \\
= & \frac{-1}{n(n+1)} g(X, \nabla \operatorname{div} Z,) Y+\frac{1}{2(n+1)} g(Y, \nabla \operatorname{div} Z) X \\
& +\frac{1}{2(n+1)} g(X, Y) \nabla \operatorname{div} Z
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(\nabla^{2} \nabla \operatorname{div} Z\right)(X, Y) \\
= & -2(n+1) \lambda\left(\nabla^{2} Z\right)(X, Y) \\
= & -2(n+1) \lambda \nabla\left(\frac{\operatorname{div} Z}{n} i d+\sigma\right)(X, Y) \\
= & \left.-2(n+1) \lambda\left[\nabla \frac{\operatorname{div} Z}{n} i d\right)+\nabla \sigma\right](X, Y) \\
= & -2(n+1) \lambda\left[\left(\frac{1}{n}\right) g(\nabla \operatorname{div} Z, X) Y+\nabla \sigma(X, Y)\right] \\
= & -2 \frac{n+1}{n} \lambda g(\nabla \operatorname{div} Z, X) Y-2(n+1) \lambda\left[\frac{-1}{n(n+1)} g(X, \nabla \operatorname{div} Z) Y\right. \\
& \left.+\frac{1}{2(n+1)} g(\nabla \operatorname{div} Z, Y) X+\frac{1}{2(n+1)} g(X, Y) \nabla \operatorname{div} Z\right] \\
= & -2\left(\frac{n+1}{n}-\frac{1}{n}\right) \lambda g(\nabla \operatorname{div} Z, X) Y-\lambda g(X, \nabla \operatorname{div} Z) Y \\
& -\lambda g(X, Y) \nabla \operatorname{div} Z \\
= & -\lambda[2 g(X, \nabla \operatorname{div} Z) Y+g(\nabla \operatorname{div} Z, Y) X+g(X, Y) \nabla \operatorname{div} Z] .
\end{aligned}
$$

Corollary 3.12. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Y, Z) X+g(X, Y) Z]=0
$$

for all $X, Y \in \Gamma(T M)$, then

$$
\Delta \nabla \operatorname{div} Z=-(n+3) \lambda \nabla \operatorname{div} Z
$$

Proof. If we take the trace of the equation
$\left(\nabla^{2} \nabla \operatorname{div} Z\right)(X, Y)=-\lambda[2 g(X, \nabla \operatorname{div} Z) Y+g(\nabla \operatorname{div} Z, Y) X+g(X, Y) \nabla \operatorname{div} Z]$,
with respect to g on (M, g) we obtain another differential equation
$\Delta \nabla \operatorname{div} Z=\operatorname{tr}\left(\nabla^{2} \nabla \operatorname{div} Z\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(\nabla^{2} Z\right)\left(X_{i}, X_{i}\right) \\
& =\sum_{i=1}^{n}-\lambda\left[2 g\left(X_{i}, \nabla \operatorname{div} Z\right) X_{i}+g\left(\nabla \operatorname{div} Z, X_{i}\right) X_{i}+g\left(X_{i}, X_{i}\right) \nabla \operatorname{div} Z\right. \\
& =-\lambda \sum_{i=1}^{n}\left[3 g\left(\nabla \operatorname{div} Z, X_{i}\right) X_{i}+g\left(X_{i}, X_{i}\right) \nabla \operatorname{div} Z\right] \\
& =-\lambda(3 \nabla \operatorname{div} Z+n \nabla \operatorname{div} Z) \\
& =-\lambda(n+3) \nabla \operatorname{div} Z
\end{aligned}
$$

Lemma 3.13. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0
$$

for all $X, Y \in \Gamma(T M)$, then $\square Z=-4 \lambda Z$.

Proof. It follows from Lemma 3.1 and Lemma 3.4 that,

$$
\begin{aligned}
\square Z & =\Delta Z+\operatorname{Ric}(Z) \\
& =-(n+3) \lambda Z+(n-1) \lambda Z \\
& =-4 \lambda Z .
\end{aligned}
$$

Remark 3.14. Let (M, g) be a compact $n(\geq 2)$-dimensional Riemannian manifold. Recall that the tension operator \square on $\Gamma(T M)$ is also a linear, self-adjoint, elliptic operator with respect to the inner product $<,>$ on the vector space $\Gamma(T M)$ of vector fields on M defined by $\langle X, Y\rangle=\int_{M} g(X, Y)$.

Corollary 3.15. Let (M, g) be an n-dimensional Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0
$$

for all $X, Y \in \Gamma(T M)$, then it also satisfies the equation

$$
\square Z-\frac{2}{n+1} \nabla \operatorname{div} Z=0 .
$$

Proof. By Lemma 3.4 and Lemma 3.13,

$$
\begin{aligned}
\square Z-\frac{2}{n+1} \nabla \operatorname{div} Z & =-4 \lambda Z-\frac{2}{n+1}(-2) \lambda(n+1) Z \\
& =-4 \lambda Z+4 \lambda Z \\
& =0 .
\end{aligned}
$$

Corollary 3.16. Let (M, g) be an n-dimensional compact Riemannian manifold. If Z is a non-zero vector field on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0,
$$

for all $X, Y \in \Gamma(T M)$, then Z is a projective vector field.
Proof. This can easily be obtained from Corollary 3.15 (see page 45 of [11]).

Lemma 3.17. Let (M, g) be an Einstein n-dimensional Riemannian manifold with scalar curvature τ. If Z is a non-zero vector field satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0, \lambda>0,
$$

for all $X, Y \in \Gamma(T M)$, then

$$
\lambda=\frac{\tau}{n(n-1)} .
$$

Proof. If (M, g) is an Einstein n-dimensional Riemannian manifold with scalar curvature τ and Z be a vector field on (M, g) then

$$
\operatorname{div} \Delta Z=\frac{\tau}{n} \operatorname{div} Z+\Delta \operatorname{div} Z
$$

by Lemma 3.8 of [4]. On the other hand, $\Delta Z=-(n+3) \lambda Z$ by Lemma 3.1. Hence

$$
\begin{aligned}
\operatorname{div} \Delta Z & =\operatorname{div}[-(n+3) \lambda Z] \\
& =-(n+3) \lambda \operatorname{div} Z \\
& =\frac{\tau}{n} \operatorname{div} Z+\Delta \operatorname{div} Z
\end{aligned}
$$

which implies

$$
\begin{aligned}
\Delta \operatorname{div} Z & =-(n+3) \lambda \operatorname{div} Z-\frac{\tau}{n} \operatorname{div} Z \\
& =-\left[(n+3) \lambda+\frac{\tau}{n}\right] \operatorname{div} Z
\end{aligned}
$$

Comparing this with

$$
\Delta \operatorname{div} Z=-2(n+1) \lambda \operatorname{div} Z
$$

by Corollary 3.9 yields

$$
\begin{aligned}
-\left[(n+3) \lambda+\frac{\tau}{n}\right]=-2(n+1) \lambda & \Rightarrow \frac{\tau}{n}=[2(n+1)-(n+3)] \lambda \\
& \Rightarrow \lambda=\frac{\tau}{n(n-1)}
\end{aligned}
$$

Theorem 3.18. Let (M, g) be a connected, simply connected, complete, $n(\geq 2$ dimensional Riemannian manifold. Then, a necessary and a sufficient condition for (M, g) to be isometric with the Euclidian sphere of radius $\frac{1}{\sqrt{\lambda}}, \lambda>0$, is the existence of a nonzero vector field Z on M satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0, \lambda>0
$$

for all $X, Y \in \Gamma(T M)$.
Proof. It follows from Theorem A of [10] together with Lemma 3.13 for $f=\operatorname{div} Z$.

Remark 3.19. Note that, the differential equation $\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+$ $g(Z, Y) X+g(X, Y) Z]=0, \lambda>0$, can also be considered as an analytic characterization (or representative) of Euclidian spheres in the class of connected, simply connected, complete Riemannian manifolds by Theorem 3.18.

Theorem 3.20. Let (M, g) be an, $n(\geq 2)$-dimensional Riemannian manifold. If there exist a nonzero vector field Z on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0, \lambda>0
$$

for all $X, Y \in \Gamma(T M)$ and if (M, g) contains the whole trajectory of Z with its limit points, then (M, g) is of constant curvature at each point of the trajectory.

Proof. It follows from Theorem B of [10] together with Lemma 3.13 for $f=\operatorname{div} Z$.

Remark 3.21. The assumption $\lambda>0$ implies that $\tau>0$ in Lemma 3.17 and hence below.

Theorem 3.22. Let (M, g) be a complete, $n(\geq 2)$-dimensional Einstein space of (positive) constant scalar curvature τ. If there exist a nonzero vector field Z on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0, \lambda>0
$$

for all $X, Y \in \Gamma(T M)$, then (M, g) is of constant curvature λ.

Proof. It follows from [7] together with Corollary 3.8 or Corollary 3.16 and Lemma 3.17 (see Theorem 9.1 in [10] also).

Theorem 3.23. Let (M, g) be a complete, $n(\geq 2)$-dimensional Riemannian manifold of (positive) constant scalar curvature τ. If there exist a nonzero vector field Z on (M, g) satisfying the equation

$$
\left(\nabla^{2} Z\right)(X, Y)+\lambda[2 g(Z, X) Y+g(Z, Y) X+g(X, Y) Z]=0, \lambda>0
$$

for all $X, Y \in \Gamma(T M)$, then (M, g) is of constant curvature $\lambda=\frac{\tau}{n(n-1)}$.
Proof. It follows from Theorem 9.2 of [10] together with Corollary 3.8 or Corollary 3.16 and Lemma 3.17.

Remark 3.24. Let (M, g) be a compact $n(\geq 2)$-dimensional Riemannian manifold. Recall that the tension operator \square is also a linear, self-adjoint, elliptic operator with respect to the inner product on $\Gamma(T M)$ defined by

$$
<X, Y>=\int_{M} g(X, Y)
$$

where X, Y are vector fields on (M, g). Hence furthermore, if (M, g) is Einstein with $\tau>0$ then eigenvalues of \square bounded from above by $\tau\left(\frac{n-2}{n(n-1)}\right)$ by Theorem 3.9 of [4]. That is, if Z is a nonzero vector field satisfying the eigenvalue equation $\square Z=\mu Z$, then $\mu \leq \tau\left(\frac{n-2}{n(n-1)}\right)$.

Also see [3] for a survey on characterizing specific Riemannian manifolds by differential equations.

References

1. Y. H. Clifton and R. Maltz, The k-Nullity Space of Curvature Operator, Michigan Math. J., 17 (1970), 85-89.
2. F. Erkekoglu, On Special Cases of Local Möbius Equations, Publ. Math. Debrecen, Tomus, 67 (2005), Fasc. 1-2, 155-167.
3. F. Erkekoglu, E. Garcia-Rio, D. N. Kupeli and B. Unal, Characterizing Specific Riemannian Manifolds By Differential Equations, Acta Applicandae Mathematicae, 76(2) (2003) 195-219.
4. F. Erkekoglu, D. N. Kupeli and B. Unal, Some Results Related to the Laplacian on Vector Fields, Publ. Math. Debrecen, Tomus, 69 (2006), Fasc. 1-2, 137-154.
5. D. Ferus, Totally Geodesic Foliations, Math. Ann., 188 (1970), 313-316.
6. E. Garcia-Rio, D. N. Kupeli and B. Unal, On a Differential Equation Characterizing Euclidean Sphere, Journal of Differential Equations, 194 (2003) 287-299.
7. T. Nagano, The Projective Transformation with a Parallel Ricci Tensor, Kõdai Math. Sem. Rep., 11 (1959), 131-138.
8. M. Obata, Riemannian Manifolds Admitting a Solution of a Certain System of Equations, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, (1965), 101-114.
9. W. A. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.
10. S. Tanno, Some Differential Equations on Riemannian Manifolds, J. Math. Soc. Japan, 30(3) (1978), 509-531.
11. K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

Fazilet Erkekoglu
Department of Mathematics
Hacettepe University
Beytepe, 06532 Ankara
Turkey
E-mail: fazilet@hacettepe.edu.tr

