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EXISTENCE OF MULTIPLE POSITIVE RADIAL SOLUTIONS FOR
p-LAPLACIAN PROBLEMS WITH AN L1-INDEFINITE WEIGHT

Chan-Gyun Kim and Yong-Hoon Lee

Abstract. In this paper we study the existence, multiplicity and nonexistence of
positive solutions for p-Laplacian problems with L1-indefinite weight. As an
application, we give some existence and multiplicity results for Emden-Fowler
type p-Laplacian radial problems defined on an exterior domain depending on
the boundary value which plays the role of a parameter.

1. INTRODUCTION

In this paper, we consider the existence, multiplicity, and nonexistence of positive
solutions for the following p-Laplacian problems.

(Pλ)




ϕp(u′(t))′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = a > 0, u(1) = 0,

where ϕp(s) = |s|p−2s, p > 1, λ is a nonnegative real parameter, f ∈ C(R+, R+)
and h ∈ C((0, 1), R

+) may be singular at t = 0 and/or 1 with R+ = [0,∞), R
+ =

(0,∞). Throughout this paper, we assume f(u) > 0 for u > 0.

By a positive solution to this problem we understand a function u ∈ C1[0, 1]
with ϕp(u′) ∈ C1[0, 1] satisfying (Pλ) and u ≥ 0 on [0, 1].

Recently, Kong-Wang [5] and Agarwal-Lü-O’Regan [1] proved that if f satisfies
assumptions f0 � limu→0

f(u)
up−1 = 0 and f∞ � limu→∞

f(u)
up−1 = 0, then the Dirichlet

boundary value problem

(Dλ)




ϕp(u′(t))′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) = 0,
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has at least two positive solutions for sufficiently large λ. Sánchez [7] proved a
similar result for the case f0 = ∞ and f∞ = ∞. Wang [8] proved that if f satisfies
assumptions f0 = 0 and f∞ = ∞, then problem (Dλ) has at least one positive
solution for all λ.

By the effect of boundary condition we concern in (Pλ), do not giving any
growth restriction on f near 0, we obtain the following main results. For this, we
give the list of assumptions first.

(F1) h ∈ L1(0, 1),

(F2) f∞ = ∞,

(F ′
2) f∞ = 0,

(F3) f is nondecreasing.

Result 1. Assume (F1) and (F ′
2). Then (Pλ) has at least one positive solution

for all λ > 0.

Result 2. Assume (F1), (F2) and (F3). Then, there exists λ∗ > 0 such that
(Pλ) has at least two positive solutions for λ ∈ (0, λ∗), at least one positive solution
for λ = λ∗ and no solution for λ > λ∗.

As an application, let us consider the following p-Laplacian radial problems
depending on the boundary value µ as a parameter

(P ) div(|∇u|p−2∇u) + K(|x|)uq = 0 in Ω,

(D1) u|∂Ω = 0 and u → µ > 0 as |x| → ∞,

(D2) u|∂Ω = µ and u → 0 as |x| → ∞,

where Ω = {x ∈ R
N : |x| > r0}, r0 > 0, N > p > 1, µ a positive real parameter,

K ∈ C(Ω, (0,∞)).
Deng and Li ([3]) considered a semilinear problem of the form

(DL)




∆u + K(x)uq = 0 in Ω,

u > 0 in Ω, u ∈ H1
loc(Ω) ∩ C(Ω̄),

u|∂Ω = 0, u → µ > 0 as |x| → ∞,

where Ω = R
N\ω is an exterior domain in R

N , ω ⊂ R
N is a bounded domain

with smooth boundary and N > 2, q > 1. Consider the following hypotheses;

(K1) K ∈ Cα
loc(Ω), K ≥ 0, K �≡ 0 and there exist C, ε, M > 0 such that

|K(x)| ≤ C|x|−l for |x| ≥ M with l ≥ 2 + ε.
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(K2) K(x) > 0 in a neighborhood V of some point x0 ∈ Ω such that

K(x0) = sup
x∈Ω

K(x) and K(x) = K(x0) + O(|x − x0|2) near x0.

Assuming (K1), they proved that there exists µ∗ > 0 such that (DL) has at least
one solution for µ ∈ (0, µ∗) and no solution for µ ∈ (µ∗,∞). Furthermore, if
K ∈ L1(Ω), then the solution at µ = µ∗ exists and is unique. On the other hand,
when q = N+2

N−2 , assuming (K1), (K2) and 0 ≤ K(x) ∈ L1(Ω), they also proved
that there exists µ∗ > 0 such that (DL) has at least two solutions for µ ∈ (0, µ∗),
(unique) solution for µ = µ∗ and no solution for µ ∈ (µ∗,∞).

As a corollary of Result 2, we see that for radial problem (P ), the second result
is true without the restriction on the exponent q. More precisely, assume

(K) K ∈ L1(Ω) with K > 0 in Ω,

and q > p−1. Then there exists µ∗ > 0 such that (P )+ (Di), i = 1, 2 has at least
two positive radial solutions for µ ∈ (0, µ∗), at least one positive radial solution for
µ = µ∗ and no positive radial solution for µ > µ∗.

This paper is organized as follows. In Section 2, we introduce well-known
theorems such as Global Continuation Theorem, the generalized Picone identity
and a fixed point index Theorem for the index computation. In Section 3, we
state and prove the main results. In section 4, introducing several transformations
to obtain equivalent one-dimensional p-Laplacian problems, we give the existence,
multiplicity or nonexistence of positive radial solutions for problems (P )+(Di), i =
1, 2.

2. PRELIMINARIES

In this section, We introduce some known theorems which will be used in the
following sections.

Theorem 2.1. ([9], Global Continuation Theorem). Let X be a Banach space
and K an order cone in X. Consider

(2.1) x = H(µ, x),

where µ ∈ R+ and x ∈ K. If H : R+ × K → K is completely continuous and
H(0, x) = 0 for all x ∈ K. Then C+(K), the component of the solution set of (2.1)
containing (0, 0) is unbounded.

Theorem 2.2. ([6], Generalized Picone Identity). Let us define

lp[y] = (ϕp(y′))′ + b1(t)ϕp(y),

Lp[z] = (ϕp(z′))′ + b2(t)ϕp(z).
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If y and z are any functions such that y, z, b 1ϕp(y′), b2ϕp(z′) are differentiable
on I and z(t) �= 0 for t ∈ I , then the generalized Picone identity can be written as

d

dt

{ |y|pϕp(z′)
ϕp(z)

− yϕp(y′)
}

(2.2)

= (b1 − b2)|y|p(2.3)

−
[
|y′|p + (p − 1)

∣∣∣∣yz′

z

∣∣∣∣
p

− pϕp(y)y′ϕp

(
z′

z

)]
(2.4)

− ylp(y) +
|y|p

ϕp(z)
Lp(z).(2.5)

Remark 2.3. By Young’s inequality, we get

|y′|p + (p − 1)
∣∣∣∣yz′

z

∣∣∣∣
p

− pϕp(y)ϕp

(
z′

z

)
≥ 0,

and the equality holds if and only if sgn y′ = sgn z′ and | y′y |p = | z′z |P .

Theorem 2.4. ([4]). Let X be a Banach space, K a cone in X and O bounded
open in X. Let 0 ∈ O and A : K∩ Ō → K be condensing. Suppose that Ax �= νx
for all x ∈ K ∩ ∂O and all ν ≥ 1. Then i(A,K∩O,K) = 1.

3. MAIN RESULT

In this section, we state and prove the main results for problem (Pλ).

Theorem 3.1. Assume (F1) and (F ′
2). Then (Pλ) has at least one positive

solution for all λ > 0.

Theorem 3.2. Assume (F1), (F2) and (F3). Then, there exists λ∗ > 0 such
that (Pλ) has at least two positive solutions for λ ∈ (0, λ ∗), at least one positive
solution for λ = λ∗ and no solution for λ > λ ∗.

To fulfil conditions in Global Continuation Theorem, we need to consider prob-
lems with Dirichlet boundary condition. For this, we substitute v(t) = u(t)−a(1−t)
in problem (Pλ) to get the following equivalent problem;

(P̂λ)




ϕp(v′(t) − a)′ + λh(t)f(v(t) + a(1 − t)) = 0, t ∈ (0, 1),

v(0) = 0 = v(1).
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Denote K = {w ∈ C1
0 [0, 1] : w is concave }. Then, it is easy to check that K is an

ordered cone. For u ∈ K and λ > 0, define xλ,u by

xλ,u(t) =
∫ t

0
ϕ−1

p

(∫ t

s
λh(τ)f(u(τ) + a(1− τ))dτ − ϕp(a)

)
ds + at

−
[∫ 1

t

ϕ−1
p

(∫ s

t

λh(τ)f(u(τ)+a(1− τ))dτ+ϕp(a)
)

ds−a(1−t)
]
,

for 0 < t < 1. Clearly, xλ,u is continuous. For 0 < s < t, we have∫ t

s

λh(τ)f(u(τ) + a(1 − τ))dτ − ϕp(a) > −ϕp(a).

Since ϕ−1
p is increasing, we get

ϕ−1
p

(∫ t

s
λh(τ)f(u(τ) + a(1− τ))dτ − ϕp(a)

)
> −ϕ−1

p (ϕp(a)) = −a.

Therefore,

(3.1) ϕ−1
p

(∫ t

s
λh(τ)f(u(τ) + a(1− τ))dτ − ϕp(a)

)
+ a > 0.

Similarly, for t < s < 1, we have

(3.2) ϕ−1
p

(∫ s

t
λh(τ)f(u(τ) + a(1 − τ))dτ + ϕp(a)

)
− a > 0.

It follows from (3.1) and (3.2) that xλ,u is strictly increasing in (0, 1) and xλ,u(0+) <
0 < xλ,u(1−). Thus xλ,u has a unique zero in (0, 1) so let Aλ,u be the zero of xλ,u

in (0, 1). Then∫ Aλ,u

0
ϕ−1

p

(∫ Aλ,u

s
λh(τ)f(u(τ) + a(1− τ))dτ − ϕp(a)

)
ds + aAλ,u

=
∫ 1

Aλ,u

ϕ−1
p

(∫ s

Aλ,u

λh(τ)f(u(τ) + a(1− τ))dτ + ϕp(a)

)
ds − a(1 − Aλ,u).

Let us define operator H : R+ ×K → C1
0 [0, 1] as follows.

For λ > 0,

H(λ, v)(t) =




∫ t

0
ϕ−1

p

(∫ Aλ,v

s
λh(τ)f(v(τ) + a(1 − τ))dτ − ϕp(a)

)
ds + at,

if 0 ≤ t ≤ Aλ,v,∫ 1

t
ϕ−1

p

(∫ s

Aλ,v

λh(τ)f(v(τ)+a(1−τ))dτ + ϕp(a)

)
ds − a(1 − t),

if Aλ,v ≤ t ≤ 1,
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where

(3.3)

∫ Aλ,v

0

ϕ−1
p

(∫ Aλ,v

s

λh(τ)f(v(τ)+a(1−τ))dτ−ϕp(a)
)

ds+aAλ,v

=
∫ 1

Aλ,v

ϕ−1
p

(∫ s

Aλ,v

λh(τ)f(v(τ)+a(1−τ))dτ+ϕp(a)

)
ds−a(1−Aλ,v),

and for λ = 0, H(λ, v) = 0. Then by the definition of Aλ,v, we can easily see that
H is well-defined and H(R+ × K) ⊂ K. Furthermore, u is a positive solution of
(P̂λ) if and only if u = H(λ, u) on K.

To apply Global Continuation Theorem, we need to guarantee the compactness
of H on R+ × K. The proof basically follows on the lines of Lemmas 2 and 3 in
[1] or in [7].

Lemma 3.3. H : [0,∞)× K → K is completely continuous.

Since H(0, u) = 0, for all u ∈ K, by Lemma 3.3 and Global Continuation
Theorem (Theorem 2.1), we know that there exists an unbounded continuum C
of positive solutions of (P̂λ) emanating from (0, 0). Equivalently, there exists an
unbounded continuum C ′ of positive solutions of (Pλ) emanating from (0, a(1−t)).
We now give a priori estimate for problem (Pλ).

Lemma 3.4. Assume (F1), (F ′
2) and let J = [0, l] with l > 0. Then there exists

MJ > 0 such that for all possible positive solution u of (P λ) with λ ∈ J, we have

‖u‖ ≤ MJ .

Proof. Suppose on the contrary that there exists a sequence {un} of posi-
tive solutions of (Pλn) with {λn} ⊂ J � [0, l] and ‖un‖ → ∞ as n → ∞.

Then, we can easily see that ‖un‖∞ → ∞. Let α ∈
(
0, 1

lϕp(4γpQ)

)
, where

γp = max
{
1, 2

−p+2
p−1

}
, Q = ϕ−1

p

(∫ 1
0 h(s)ds

)
. Then by (F ′

2), there exists uα > 0

such that u > uα implies f(u) < αup−1. Let mα � maxu∈[0,uα] f(u) and let
An � {t ∈ [0, 1] : un(t) ≤ uα} and Bn � {t ∈ [0, 1] : un(t) > uα}. Put
un(δn) = ‖un‖∞. By the facts un(0) = a and ‖un‖∞ → ∞ as n → ∞, we may
assume δn > 0 and un(δn) > 2a for all n. By simple calculation, we know that

un(δn) =
∫ δn

0

ϕ−1
p

(
λn

∫ δn

s

h(τ)f(un(τ))dτ

)
ds + a.

Then we have
1
2
un(δn)
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≤
∫ δn

0
ϕ−1

p

(
λn

∫ δn

0
h(τ)f(un(τ))dτ

)
ds

≤ ϕ−1
p (λn)

∫ δn

0
ϕ−1

p

(∫
An

h(τ)f(un(τ))dτ +
∫

Bn

h(τ)f(un(τ))dτ

)
ds

≤ ϕ−1
p (λn)

∫ δn

0

ϕ−1
p

(
mα

∫
An

h(τ)dτ +
∫

Bn

h(τ)f(un(τ))dτ

)
ds

≤ ϕ−1
p (λn)

∫ δn

0
γp

[
ϕ−1

p

(
mα

∫
An

h(τ)dτ

)
+ ϕ−1

p

(∫
Bn

h(τ)f(un(τ))dτ

)]
ds.

Thus

1
2ϕ−1

p (λn)
≤ γp

∫ δn

0

[
ϕ−1

p (mα)Q
||un||∞ + ϕ−1

p

(∫
Bn

h(τ)f(un(τ))
||un||p−1∞

dτ

)]
ds.

On Bn, un(s) > uα implies f(un(s))

||un||p−1
∞

≤ f(un(s))

up−1
n (s)

≤ α. Thus

1
2ϕ−1

p (λn)
≤ γp

[
ϕ−1

p (mα)Q
||un||∞ + ϕ−1

p (α)Q

]
.

Since λn ≤ l for all n, we have 1
ϕ−1

p (λn)
≥ 1

ϕ−1
p (l)

for all n and thus

1
2ϕ−1

p (l)
≤ γp

[
ϕ−1

p (mα)Q
||un||∞ + ϕ−1

p (α)Q

]
.

By the fact ||un||∞ → ∞ as n → ∞, we get

1
2ϕ−1

p (l)
≤ γpϕ

−1
p (α)Q ≤ γpϕ

−1
p

(
1

lϕp(4γpQ)

)
Q =

1
4ϕ−1

p (l)
.

This contradiction completes the proof.
The proof of Theorem 3.1 is straightforward from Lemma 3.4 and the existence

of unbounded continuum C ′. We now prove the second main theorem. Using the
generalized Picone identity and the properties of the p-sine function ([2], [10]), we
obtain the following lemmas.

Lemma 3.5. Assume (F1), (F2). Then there exists λ̄ > 0 such that if (Pλ) has
a positive solution uλ, then λ ≤ λ̄.
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Proof. Let problem (Pλ) have a positive solution uλ, then uλ is concave and
uλ(0) = a, uλ(t) ≥ 1

4a for all t ∈ (0, 3
4). It follows from (F2) that there exists

A > 0 such that f(u) > Aup−1 for u ≥ 1
4a. This implies

ϕp(u′
λ(t))′ + λAh(t)ϕp(uλ(t)) < ϕp(u′

λ(t))′ + λh(t)f(uλ(t)) = 0, t ∈ (0,
3
4
).

Putting m := mint∈[ 1
4
, 3
4
] h(t) > 0, we have

ϕp(u′
λ(t))′ + λAmϕp(uλ(t)) < 0, t ∈ (

1
4
,
3
4
).

It is easy to check that w(t) = Sq

(
2πp(t − 1

4 )
)

is a solution of


ϕp(w′(t))′ + (2πp)pϕp(w(t)) = 0, t ∈ ( 1
4 , 3

4 )

w( 1
4) = 0 = w( 3

4),

where Sq is the q-sine function with 1
p + 1

q = 1 and πp = 2π(p−1)1/p

p sin(π/p) . Taking y = w

and z = uλ in (2.2)-(2.5) and integrating from 1/4 to 3/4, we have∫ 3/4

1/4

((2πp)p − λAm)|w|pdt ≥ 0.

This implies

λ ≤ (2πp)p

Am
� λ

and the proof is complete.

Lemma 3.6. Assume (F1), (F2). Let I be a compact interval in (0,∞). Then
there exists bI > 0 such that for all possible positive solution u of (P λ) with λ ∈ I,

we have
‖u‖ ≤ bI.

Proof. Suppose on the contrary that there exists a sequence (un) of positive
solutions of (Pλn) with (λn) ⊂ J = [α, β] and ||un|| → ∞ as n → ∞. Then, we
can easily see that ‖un‖∞ → ∞. It follows from the concavity of un,

un(t) ≥ 1
4
‖un‖∞,

for all n and t ∈ (1
4 , 3

4 ). Take M = 2 (2πp)p

αm , where m := mint∈[ 1
4
, 3
4
] h(t) > 0.

By (F2), there exists K > 0 such that f(u) > Mϕp(u), for all u > K. From the
assumption, we get ||uN ||∞ > 4K, for sufficiently large N. Therefore, we have

f(uN (t)) > Mϕp(uN(t)), t ∈ (
1
4
,
3
4
).
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This implies

ϕp(u′
N(t))′ + αMmϕp(uN (t)) < 0, t ∈ (

1
4
,
3
4
).

As in the proof of Lemma 3.5, if we take w(t) = Sq

(
2πp(t − 1

4 )
)
, we obtain

M ≤ (2πp)p

αm
.

This is a contradiction.
Let us assume that problem (P̂λ) has a positive solution say, u∗ at λ∗ > 0 i.e.,

u∗ satisfies

(3.4) ϕp(u′
∗(t) − a)′ + λ∗h(t)f(u∗(t) + a(1 − t)) = 0, t ∈ (0, 1).

Consider a fixed parameter λ ∈ (0, λ∗). For N > 0, put

ΣN = {u ∈ C1
0 [0, 1]| 0 < u(t) < u∗(t), t ∈ (0, 1), 0 < u′(0) < u′

∗(0),

u′
∗(1) < u′(1) < 0 and ‖u′‖∞ < N}.

Then, ΣN is bounded and open in C1
0 [0, 1]. Consider the following modified problem

(Mλ)




ϕp(u′(t) − a)′ + λh(t)f(γ(t, u(t))+ a(1− t)) = 0, t ∈ (0, 1)

u(0) = 0 = u(1),

where γ : (0, 1)× R → R+ by γ(t, u) =




u∗(t) if u > u∗(t)

u if 0 ≤ u ≤ u∗(t)

0 if u < 0.

Lemma 3.7. Assume (F1), (F2), (F3) and let λ ∈ (0, λ∗). Then, there exists
N > 0 such that u ∈ ΣN ∩K, for all positive solution u of (M λ).

Proof. Let u be a positive solution of (Mλ). Clearly, u(t) > 0, t ∈ (0, 1).
First, we claim u(t) ≤ u∗(t), t ∈ (0, 1). If not, there exists t1 ∈ (0, 1) such that
u(t1) > u∗(t1). Since u − u∗ ∈ C0[0, 1], there exists A ∈ (0, 1) such that

(3.5) u′(A) = u′
∗(A) and u(A) > u∗(A).

Since λ < λ∗ and f is nondecreasing,

λ∗f(u∗(t) + a(1 − t)) > λf(γ(t, u(t))+ a(1 − t)), t ∈ (0, 1).
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This implies

(3.6) ϕp(u′(t) − a)′ + λ∗h(t)f(u∗(t) + a(1 − t)) > 0, t ∈ (0, 1).

By (3.4) and (3.6), we have

(3.7) ϕp(u′
∗(t) − a)′ − ϕp(u′(t) − a)′ < 0, t ∈ (0, 1).

For t ∈ (A, 1), integrating (3.7) from A to t, we have u′∗(t) ≤ u′(t). Again,
integrating this from A to 1, we get

u∗(A) ≥ u(A).

This contradicts (3.5).
Second, we claim u(t) < u∗(t), t ∈ (0, 1). If not, by (3.7), we have only one case;
there exist t2 ∈ (0, 1) and δ1 > 0 such that

(3.8) u(t2) = u∗(t2),

(3.9) u(t) < u∗(t), t ∈ (t2 − δ1, t2 + δ1)\{t2}

and

(3.10) u′(t2) = u′
∗(t2).

For t ∈ (t2 − δ1, t2), integrating (3.7) from t to t2, by (3.10) we have

u′
∗(t) ≥ u′(t), t ∈ (t2 − δ1, t2).

Again, integrating this from t2 − δ1
2 to t2, by (3.8) we get

u∗(t2 − δ1

2
) ≤ u(t2 − δ1

2
).

This contradicts (3.9).
Third, we claim 0 > u′(1) > u′∗(1). We first show that there exists c ∈ (0, 1) such
that u′(c) > u′∗(c). If not, for all t ∈ (0, 1), u′(t) ≤ u′∗(t). Integrating this from t

to 1, we have u(t) ≥ u∗(t), t ∈ (0, 1) and this is a contradiction. Integrating (3.7)
from c to 1, we get

u′
∗(1) < u′(1).

Since u is a positive solution of (Mλ), clearly, u′(1) < 0 and the claim is valid.
Similarly, we can prove 0 < u′(0) < u′∗(0).
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Finally, we claim ‖u′‖∞ < N for some N > 0. Since 0 ≤ u(t) ≤ u∗(t), t ∈ [0, 1],
we can easily obtain

|u′(t)| ≤ ϕ−1
p

(∫ 1

0
f∗h(τ)dτ + ϕp(a)

)
ds + a � N

where f∗ =: λ supv∈[0,‖u∗‖+a] f(v) and this completes the proof.

Now, we give the proof of the second main theorem.

Proof of Theorem 3.2. Let λ∗ = sup{λ̂| (P̂λ) has at least two positive solutions
for λ ∈ (0, λ̂)}. Then, by Lemma 3.5 and Lemma 3.6, λ∗ is well defined in (0, λ̄].
By the choice of λ∗, (P̂λ) has at least two positive solutions for λ ∈ (0, λ∗), at least
one positive solution for λ = λ∗. We will show that (P̂λ) has no positive solution
for all λ > λ∗. On the contrary, suppose that there exists λ∗ > λ∗ such that (P̂λ∗)
has a positive solution. If we show that (P̂λ) has at least two positive solutions for
λ ∈ [λ∗, λ∗), then the contradiction to the choice of λ∗ completes the proof. Define
M : K → K by

Mu(t) =




∫ t

0
ϕ−1

p

(∫ Au

s
λh(τ)f(γ(τ, u(τ))+ a(1− τ))dτ − ϕp(a)

)
ds + at,

0 ≤ t ≤ Au,∫ 1

t
ϕ−1

p

(∫ s

Au

λh(τ)f(γ(τ, u(τ))+a(1−τ))dτ+ϕp(a)
)

ds−a(1−t),

Au ≤ t ≤ 1,

where∫ Au

0
ϕ−1

p

(∫ Au

s
λh(τ)f(γ(u(τ))+ a(1− τ))dτ − ϕp(a)

)
ds + aAu

=
∫ 1

Au

ϕ−1
p

(∫ s

Au

λh(τ)f(γ(u(τ))+ a(1− τ))dτ + ϕp(a)
)

ds − a(1− Au).

Then M : K → K is completely continuous and u is a solution of (Mλ) if and only
if u = Mu on K. By simple calculations, we see that there exists R1 > 0 such that
‖Mu‖ < R1, for all u ∈ K. Since a completely continuous operator is condensing,
applying Theorem 2.4 with O = BR1, we get

i(M, BR1 ∩K,K) = 1.

By Lemma 3.7 and excision property, we get

i(M, ΣN ∩K,K) = i(M, BR1 ∩K,K) = 1.
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Since problem (P̂λ) is equivalent to the problem (Mλ) on ΣN ∩ K, we conclude
that (P̂λ) has a positive solution in ΣN ∩ K. Assume H(λ, ·) has no fixed point
in ∂ΣN ∩ K (otherwise, the proof is done!). Then by Lemma 3.5, (PλN0

) has no
solution in K for λN0 > λ. By a priori estimate (Lemma 3.6) with I = [λ, λN0],
there exists R2(> R1) > 0 such that for all possible positive solution u of (P̂µ)
with µ ∈ [λ, λN0], we have

‖u‖ < R2.

Define h : [0, 1]× (BR2 ∩K) → K by

h(τ, u) = H(τλN0 + (1 − τ)λ, u).

Then, h is completely continuous on [0, 1] × K, h(τ, u) �= u, for all (τ, u) ∈
[0, 1]× (∂BR2 ∩ K). By the property of homotopy invariance,

i(H(λ, ·), BR2 ∩K,K) = i(H(λN0, ·), BR2 ∩K,K) = 0.

By additivity property,

i(H(λ, ·), (BR2 \ ΣN) ∩ K,K) = −1.

Therefore, (P̂λ) has another positive solution in (BR2\ΣN) ∩ K and the proof is
complete.

4. AN APPLICATION

In this section, we introduce several transformations to obtain equivalent one-
dimensional p-Laplacian problems which we mainly analyzed in the previous section
and give the existence, multiplicity or nonexistence of positive radial solutions for
problems (P ) + (Di), i = 1, 2. Let us consider problems (P ) + (Di), i = 1, 2

(P ) div(|∇u|p−2∇u) + K(|x|)uq = 0 in Ω,

(D1) u|∂Ω = 0 and u → µ > 0 as |x| → ∞,

(D2) u|∂Ω = µ and u → 0 as |x| → ∞,

where µ a positive real parameter, N > p and K ∈ C(Ω, (0,∞)).
By applying consecutive changes of variables, r = |x|, u(r) = u(|x|) and

t =
(

r
r0

)−N+p
p−1

, z(t) = u(r), problem (P ) + (D1) is equivalently written as

(4.1)




ϕp(z′(t))′ + h(t)z(t)q = 0, t ∈ (0, 1),

z(0) = µ > 0, z(1) = 0,
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where h is given by

h(t) =
(

p − 1
N − p

)p

rp
0t

−p(N−1)
N−p K

(
r0t

−(p−1)
N−p

)
.

We notice that h is singular at t = 0 and h ∈ L1(0, 1] by the fact K ∈ L1(Ω).
Introducing u(t) = z(t)

µ , we can rewrite problem (4.1) as

(4.2)




ϕp(u′(t))′ + λh(t)u(t)q = 0, t ∈ (0, 1),

u(0) = 1, u(1) = 0,

where λ = µq−p+1. Problems (4.1) and (4.2) share the same bifurcation phenomena
with respect to µ and λ respectively. Similarly, if we use transformation t =

1 −
(

r
r0

)−(N−p)
p−1

, then h in (4.1) is given by

h(t) =
(

p − 1
N − p

)p

rp
0 (1 − t)

−p(N−1)
N−p K

(
r0(1 − t)

−(p−1)
N−p

)
.

Notice that h is singular at t = 1 and h ∈ L1[0, 1). Consequently, for radial problems
(P ) + (Di), i = 1, 2 it is enough to consider problem (4.2) with h ∈ L1(0, 1).

Direct applications of Theorems 3.1 and 3.2 lead to the following corollaries for
problems (P ) + (Di), i = 1, 2.

Corollary 4.1. Assume 0 < q < p− 1 and K ∈ L1(Ω) with K > 0 in Ω. Then
(P ) + (Di), i = 1, 2 has at least one positive radial solutions for all µ > 0.

Corollary 4.2. Assume q > p − 1 and K ∈ L1(Ω) with K > 0 in Ω. Then
there exists µ∗ > 0 such that (P ) + (Di), i = 1, 2 has at least two positive radial
solutions for µ ∈ (0, µ∗), at least one positive radial solution for µ = µ ∗ and no
positive radial solution for µ > µ ∗.
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