PRINCIPAL QUASI-BAERNESS OF MODULES OF GENERALIZED POWER SERIES

Renyu Zhao and Yujuan Jiao

Abstract

Let R be a ring, M a right R-module and (S, \leq) a strictly totally ordered monoid. It is shown that $\left[\left[M^{S, \leq}\right]\right]$, the module of generalized power series with coefficients in M and exponents in S, is a p.q.Baer right $\left[\left[R^{S, \leq} \leq\right]\right.$ module if and only if the right annihilator of any S-indexed family of cyclic submodules of M in R is generated by an idempotent of R. Furthermore, we will show that for a ring R with all left semicentral idempotents are central, the ring $\left[\left[R^{S, \leq}\right]\right]$ consisting of generalized power series over R is a right p.q.Baer ring if and only if R is a right p.q. Baer ring and any S-indexed family of central idempotents of R has a generalized join in $I(R)$, where $I(R)$ is the set of all idempotents of R.

1. Introduction

Throughout this paper all rings R are associative with identity and modules are unital right R-modules. We write $M[x], M[[x]], M\left[x, x^{-1}\right]$ and $\left.M\left[x^{-1}, x\right]\right]$ for the polynomial extension, the power series extension, the Laurent polynomial extension and the Laurent series extension of a module M, respectively. For a subset X of a module M_{R}, let $r_{R}(X)=\{r \in R \mid X r=0\}$.

Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset (every right ideal) of R is generated by an idempotent. A lot of works on Baer rings and quasi-Baer rings appears in [3-6, 9]. As a generalization of quasi-Baer rings, G.F. Birkenmeier, J.Y. Kim and J.K. Park in [7] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent. Similarly, left p.q.Baer rings can be defined. A ring is called p.q.Baer if it is both right and left p.q.Baer. Observe that every biregular ring and every

[^0]quasi-Baer ring is a p.q.Baer ring. For more details and examples of right p.q.Baer rings, see [7].

It was proved in [6, Theorem 1.8] that a ring R is quasi-Baer if and only if $R[X]$ is quasi-Baer if and only if $R[[X]]$ is quasi-Baer, where X is an arbitrary nonempty set of not necessarily commuting indeterminates. If R is a reduced ring, then R is Baer if and only if $R[X]$ is Baer if and only if $R[[X]]$ is Baer [6, Corollary 1.10]. If α is an endomorphism and δ an α-derivation of the ring R such that R is α-rigid, then it is shown in [9, Theorem 11 and Theorem 21] that R is Baer if and only if the Ore extension $R[x ; \alpha, \delta]$ is Baer if and only if the skew power series ring $R[[x ; \alpha]]$ is Baer. If R is commutative and (S, \leq) is a strictly totally ordered monoid, then it is shown in [12, Theorem 7] that R is Baer if and only if $\left[\left[R^{S, \leq]] \text {, }}\right.\right.$ the ring of generalized power series with coefficients in R and exponents in S, is Baer. In [8, Theorem 2.1], the authors showed that R is a right p.q.Baer ring if and only if $R[x]$ is a right p.q.Baer ring. Also an example was given in [8, Example 2.6] which shows that there exists a commutative von Neumann regular ring R (hence p.q.Baer) such that the ring $R[[x]]$ is not p.q.Baer. Let R be a ring such that all left semicentral idempotents are central. It is shown in [13] that $R[[x]]$ is right p.q.Baer if and only if R is right p.q.Baer and any countable family of idempotents in R has a generalized join in $I(R)$.

In [10] Lee-Zhou introduced Baer and quasi-Baer modules as follows: (a) M_{R} is called Baer if, for any subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$; (b) M_{R} is called quasi-Baer if, for any submodule N of $M, r_{R}(N)=e R$ where $e^{2}=e \in R$. Also, the Baerness and quasi-Baerness of the (Laurent) polynomial extension and the (Laurent) power series extension of rings were extended to modules, see [10], for more details.

Recently, in [2], the notion of principally quasi-Baer modules was introduced. A module M_{R} is called principally quasi-Baer (p.q.-Baer for short) if, for any $m \in M$, $r_{R}(m R)=e R$ where $e^{2}=e \in R$. It is clear that R is a right p.q.-Baer ring if and only if R_{R} is a p.q.-Baer module. Some of the results related to this paper can be recalled as following.

Theorem. [2, Theorem 7]. Let $\alpha: R \longrightarrow R$ be an endomorphism of R and assume that, for $m \in M$ and $a \in R, m a=0 \Longleftrightarrow m \alpha(a)=0$. Then the following hold:
(1) (a) If $M[x ; \alpha]_{R[x ; \alpha]}$ is a p.q.-Baer module, then M_{R} is a p.q.-Baer module. The converse holds if in addition M_{R} is α-reduced.
(b) If $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is p.q.-Baer, then M_{R} is p.q.-Baer.
(2) Let $\alpha \in \operatorname{Aut}(R)$.
(a) If $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is a p.q.-Baer module, then M_{R} is a p.q.-Baer module. The converse holds if in addition M_{R} is α-reduced.
(b) If $\left.M\left[x^{-1}, x ; \alpha\right]\right]_{\left.R\left[x^{-1}, x ; \alpha\right]\right]}$ is a p.q.-Baer module, then M_{R} is a p.q.Baer module.
where M_{R} is an α-reduced module if, for any $m \in M$ and $a \in R$, ma=0 implies $m R \cap M a=0$, and $m a=0 \Longleftrightarrow m \alpha(a)=0$.

Thus, a natural question of sufficient conditions for modules under which the skew power series extension and the skew Laurent series extension of a module are p.q.Baer modules arisen. In this paper, we investigate the necessary and sufficient conditions under which the skew power series modules $M[[x ; \alpha]]$ and the skew Laurent series modules $\left.M\left[x^{-1}, x ; \alpha\right]\right]$ are p.q.Baer modules. In fact, we worked for a more general module extension which is called skew generalized power series modules and introduced in Section 2.

2. Skew Generalized Power Series Modules

Let (S, \leq) be an ordered set. Recalled that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0 . The following definition is due to [15].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $\left.s+t<s^{\prime}+t\right), R$ a ring and $\lambda: S \longrightarrow \operatorname{End}(R)$ be a monoid homomorphism. Consider the set A of all maps $f: S \longrightarrow R$ whose support $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, A is an abelian additive group. For every $s \in S$ and $f, g \in A$, let $X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=s, f(u) \neq 0, g(v) \neq 0\}$. It follows from [17, 4.1] that $X_{s}(f, g)$ is finite. This fact allows to define the operation of convolution as follows:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) \lambda(u)(g(v))
$$

and $(f g)(s)=0$ if $X_{s}(f, g)=\emptyset$. With this operation, and pointwise addition, A becomes a ring, which is called the ring of skew generalized power series with coefficients in R and exponents in S, and we denote by $\left[\left[R^{S, \leq}, \lambda\right]\right]$.

Let M be a right R-module, we let B be the set of all maps $\phi: S \longrightarrow M$ such that the set $\operatorname{supp}(\phi)=\{s \in S \mid \phi(s) \neq 0\}$ is artinian and narrow. With pointwise addition, B is an abelian additive group. For each $f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ and each $\phi \in B$, by [11, Lemma 1], the set $X_{s}(\phi, f)=\{(u, v) \in S \times S \mid u+v=$ $s, \phi(u) \neq 0, f(v) \neq 0\}$ is finite. This allows to define the scalar multiplication as following:

$$
(\phi f)(s)=\sum_{(u, v) \in X_{s}(\phi, f)} \phi(u) \lambda(u)(f(v))
$$

and $(\phi f)(s)=0$ if $X_{s}(\phi, f)=\emptyset$. With this operation and pointwise addition, by analogy with the discussion of [15], one can easily to show that B is a right $\left[\left[R^{S, \leq}, \lambda\right]\right]$-module, which is called the module of skew generalized power series with coefficients in M and exponents in S, and we denote by $\left[\left[M^{S, \leq}, \lambda\right]\right]$.

Example 2.1.

1. If $\lambda(s)=1$, the identity map of R for every $s \in S$, then $\left[\left[R^{S, \leq}, \lambda\right]\right]=$ $\left[\left[R^{S, \leq]]}\right.\right.$ is the ring of generalized power series in the sense of Ribenboim [17] and $\left[\left[M^{S, \leq}, \lambda\right]\right]=\left[\left[M^{S, \leq}\right]\right]$ is the untwisted module of generalized power series in the sense of [11] or [18]. Thus, the following modules are skew generalized power series modules: the module $M\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right]$ of formal power series extension of M with n indeterminates; the module $\left.M\left[x^{-1}, x\right]\right]$ of Laurent series extension of M. Further example and work on the modules of generalized power series appear in [11,18].
2. Let α be a ring endomorphism of R. Let $S=\mathbb{N} \cup\{0\}$ be endowed with the usual order and define $\lambda: S \longrightarrow \operatorname{End}(R)$ via $\lambda(k)=\alpha^{k}$ for every $k \in$ $\mathbb{N} \cup\{0\}$ (where $\alpha^{0}=1$, the identity map of R). Then $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}=$ $M[[x ; \alpha]]_{R[[x ; \alpha]]}$, the usual skew power series extension of M_{R}.
3. Let α be a ring automorphism of R. Let $S=\mathbb{Z}$ be endowed with the usual order and define $\lambda: S \longrightarrow \operatorname{End}(R)$ via $\lambda(k)=\alpha^{k}$ for every $k \in$ \mathbb{Z} (where $\alpha^{0}=1$, the identity map of R). Then $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}=$ $\left.M\left[x^{-1}, x ; \alpha\right]\right]_{\left.R\left[x^{-1}, x ; \alpha\right]\right]}$, the usual skew Laurent series extension of M_{R}.
4. Let α be a ring endomorphism of R. Set $S=\mathbb{N} \cup\{0\}$ endowed with the trivial order. Define $\lambda: S \longrightarrow \operatorname{End}(R)$ via $\lambda(k)=\alpha^{k}$ for every $k \in \mathbb{N} \cup\{0\}$. Then $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}=M[x ; \alpha]_{R[x ; \alpha]}$, the usual skew polynomial extension of M_{R}.
5. Let G be an abelian group acting on R as a group of automorphisms. Define $\lambda: G \longrightarrow \operatorname{End}(R)$ via $\lambda(g)=g$ for every $g \in G$. Let \leq be the trivial order of G. Then it is easy to see that $\left[\left[M^{G, \leq}, \lambda\right]\right]_{\left[\left[R^{G, \leq, \lambda]]}\right.\right.}=M * G_{R * G}$, the usual skew group ring extension of M_{R}. If G is an infinite cyclic group generated by σ where σ acts on R as a ring automorphism, then $\left[\left[M^{G, \leq}, \lambda\right]\right]_{\left[\left[R^{G, \leq, \lambda]]}\right.\right.} \cong$ $M\left[x^{-1}, x ; \sigma\right]_{R\left[x^{-1}, x ; \sigma\right]}$, the usual skew Laurent polynomial extension of M_{R}.

Before starting the main results, we explain some notations involved.
To any $r \in R$ and any $s \in S$ we associated the maps $c_{r} \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ defined by

$$
c_{r}(x)= \begin{cases}r, & \text { if } x=0 \\ 0, & \text { if } x \neq 0\end{cases}
$$

For any $m \in M$ and any $s \in S$, we define $d_{m}^{s} \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ via

$$
d_{m}^{s}(x)=\left\{\begin{array}{cc}
m, & \text { if } x=s \\
0, & \text { if } x \neq s
\end{array}\right.
$$

3. Main Results

Let $\alpha: R \longrightarrow R$ be a ring endomorphism, according to [1], a module M_{R} is called α-compatible if, for any $m \in M$ and $a \in R, m a=0 \Longleftrightarrow m \alpha(a)=0$. Similarly, we give the following definition.

Definition 3.1. Given M_{R} and $\lambda: S \longrightarrow \operatorname{End}(R)$ as above. We say M_{R} is λ-compatible, if for any $s \in S$, any $m \in M$ and any $a \in R, m a=0 \Longleftrightarrow$ $m \lambda(s)(a)=0$.

Clearly, if $\lambda(s)=1$, the identity map of R for every $s \in S$, then any module is λ-compatible. Given a ring endomorphism $\alpha: R \longrightarrow R$, define $\lambda: \mathbb{N} \cup\{0\} \longrightarrow$ $\operatorname{End}(R): \lambda(k)=\alpha^{k}$ for every $k \in \mathbb{N} \cup\{0\}$, then M_{R} is λ-compatible if and only if M is α-compatible. In particular, R_{R} is α-compatible if and only if (1) α is a monomorphism, and (2) for any $a, b \in R, a b=0$ implies that $a \alpha(b)=\alpha(a) b=0$. In this situation, α is called a weakly rigid endomorphism in [14].

For every $0 \neq \phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ (resp. $0 \neq f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$), denote by $\pi(\phi)$ (resp. $\pi(f))$ the set of minimal elements of $\operatorname{supp}(\phi)($ resp. $\operatorname{supp}(f))$. Then $\pi(\phi)$ (resp. $\pi(f)$) is a nonempty finite set, consisting of pairwise order incomparable elements. If $\pi(\phi)$ (resp. $\pi(f)$) consists only of one element s, we write $\pi(\phi)=s$ (resp. $\pi(f)=s$).

Lemma 3.2. Let (S, \leq) be a strictly totally ordered monoid and M_{R} a λ compatible p.q.Baer module. If $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ and $f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ are such that $\phi\left[\left[R^{S, \leq}, \lambda\right]\right] f=0$, then $\phi(u) R f(v)=0$ for all $u, v \in S$.

Proof. Let $0 \neq \phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ and $0 \neq f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ be such that $\phi\left[\left[R^{S, \leq}, \lambda\right]\right] f=0$. Assume that $\pi(\phi)=u_{0}, \pi(f)=v_{0}$. Then for any $(u, v) \in$ $X_{u_{0}+v_{0}}(\phi, f), u_{0} \leq u, v_{0} \leq v$. If $u_{0}<u$, since \leq is a strict order, $u_{0}+v_{0}<$ $u+v_{0} \leq u+v=u_{0}+v_{0}$, a contradiction. Thus $u=u_{0}$. Similarly, $v=v_{0}$. Hence, for any $r \in R$,
$0=\left(\phi c_{r} f\right)\left(u_{0}+v_{0}\right)=\sum_{(u, v) \in X_{u_{0}+v_{0}}\left(\phi, c_{r} f\right)} \phi(u) \lambda(u)(r f(v))=\phi\left(u_{0}\right) \lambda\left(u_{0}\right)\left(r f\left(v_{0}\right)\right)$.
Then $\phi\left(u_{0}\right) R f\left(v_{0}\right)=0$ by the λ-compatibility of M_{R}.
Now let $w \in S$ with $u_{0}+v_{0} \leq w$. Assume that for any $u \in \operatorname{supp}(\phi)$ and any $v \in \operatorname{supp}(f)$, if $u+v<w$, then $\phi(u) R f(v)=0$. We will show that $\phi(u) R f(v)=0$
for each $u \in \operatorname{supp}(\phi)$ and each $v \in \operatorname{supp}(f)$ with $u+v=w$. For convenience, we write

$$
\begin{aligned}
X_{w}(\phi, f) & =\{(u, v) \mid u+v=w, u \in \operatorname{supp}(\phi), v \in \operatorname{supp}(f)\} \\
& =\left\{\left(u_{i}, v_{i}\right) \mid i=1,2, \ldots, n\right\}
\end{aligned}
$$

with $u_{1}<u_{2}<\cdots<u_{n}$ (Note that if $u_{1}=u_{2}$, then from $u_{1}+v_{1}=u_{2}+v_{2}$ it follows that $v_{1}=v_{2}$, and thus $\left.\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right)\right)$. Then for any $r \in R$,
(1) $0=\left(\phi c_{r} f\right)(w)=\sum_{(u, v) \in X_{w}\left(\phi, c_{r} f\right)} \phi(u) \lambda(u)(r f(v))=\sum_{i=1}^{n} \phi\left(u_{i}\right) \lambda\left(u_{i}\right)\left(r f\left(v_{i}\right)\right)$.

For each $i=1,2, \ldots, n$, since M_{R} is a p.q.Baer module, there exists an $e_{u_{i}}^{2}=$ $e_{u_{i}} \in R$ such that $r_{R}\left(\phi\left(u_{i}\right) R\right)=e_{u_{i}} R$. Let $r^{\prime} \in R$, take $r=r^{\prime} e_{u_{1}}$ in (1). Then, by $\phi\left(u_{1}\right) r^{\prime} e_{u_{1}}=0$ and the λ-compatibility of M_{R}, we have $\phi\left(u_{1}\right) \lambda\left(u_{1}\right)\left(r^{\prime} e_{u_{1}} f\left(v_{1}\right)\right)=$ 0 . Thus

$$
\sum_{i=2}^{n} \phi\left(u_{i}\right) \lambda\left(u_{i}\right)\left(r^{\prime} e_{u_{1}} f\left(v_{i}\right)\right)=0
$$

Note that $u_{1}+v_{i}<u_{i}+v_{i}=w$ for any $i \geq 2$, so by induction hypothesis, $\phi\left(u_{1}\right) R f\left(v_{i}\right)=0$. Thus $f\left(v_{i}\right)=e_{u_{1}} f\left(v_{i}\right)$ for each $i \geq 2$. Thus

$$
\begin{equation*}
\sum_{i=2}^{n} \phi\left(u_{i}\right) \lambda\left(u_{i}\right)\left(r^{\prime} f\left(v_{i}\right)\right)=0 \tag{2}
\end{equation*}
$$

Let $p \in R$ and take $r^{\prime}=p e_{u_{2}}$ in (2). Then since $\phi\left(u_{2}\right) p e_{u_{2}}=0$, we have $\phi\left(u_{2}\right) \lambda\left(u_{2}\right)\left(p e_{u_{2}} f\left(v_{2}\right)\right)=0$. Thus

$$
\sum_{i=3}^{n} \phi\left(u_{i}\right) \lambda\left(u_{i}\right)\left(p e_{u_{2}} f\left(v_{i}\right)\right)=\sum_{i=3}^{n} \phi\left(u_{i}\right) \lambda\left(u_{i}\right)\left(p f\left(v_{i}\right)\right)=0
$$

Continuing in this manner, we have $\phi\left(u_{n}\right) \lambda\left(u_{n}\right)\left(q f\left(v_{n}\right)\right)=0$, where q is an arbitrary element of R. Thus $\phi\left(u_{n}\right) q f\left(v_{n}\right)=0$ since M_{R} is a λ-compatible module. Hence

$$
\phi\left(u_{n-1}\right) q f\left(v_{n-1}\right)=0, \ldots, \phi\left(u_{2}\right) q f\left(v_{2}\right)=0, \phi\left(u_{1}\right) q f\left(v_{1}\right)=0
$$

Therefore, by transfinite induction, we have shown that $\phi(u) R f(v)=0$ for any $u, v \in S$.

Lemma 3.3. Let (S, \leq) be a strictly ordered monoid and M_{R} a λ-compatible module. Then the following conditions are equivalent:
(1) For any $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ and any $f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$, $\phi\left[\left[R^{S, \leq}, \lambda\right]\right] f=0$ implies $\phi(u) R f(v)=0$ for all $u, v \in S$.
(2) For any $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right], r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)=\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]$, where $X=\{\phi(u) R \mid u \in S\}$.

Proof. (1) \Longrightarrow (2). Assume that $f \in r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)$ with $\phi \in$ $\left[\left[M^{S, \leq}, \lambda\right]\right]$. By (1), $\phi(u) R f(v)=0$ for any $u, v \in S$. Thus $f(v) \in r_{R}(X)$ for any $v \in S$. Hence $f \in\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]$. Conversely, suppose that $f \in$ $\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]$. Then $f(v) \in r_{R}(X)$ for each $v \in S$. Thus $\phi(u) R f(v)=0$ for all $u, v \in S$. Then, for any $g \in\left[\left[R^{S, \leq}, \lambda\right]\right]$, by the λ-compatibility of M_{R}, $\phi(u) \lambda(u)(g(w) \lambda(w)(f(v)))=0$ for any $u, v, w \in S$. Thus, for any $s \in S$,

$$
(\phi g f)(s)=\sum_{(u, w, v) \in X_{s}(\phi, g, f)} \phi(u) \lambda(u)(g(w) \lambda(w)(f(v)))=0 .
$$

This means that $f \in r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)$. Therefore, (2) holds.
$(2) \Longrightarrow(1)$. Suppose that $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$ and $f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ are such that $\phi\left[\left[R^{S, \leq}, \lambda\right]\right] f=0$. Then, by (2), $f \in\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]$, where $X=\{\phi(u) R \mid u \in$ $S\}$. Thus $\phi(u) R f(v)=0$ for every $u, v \in S$.

Lemma 3.4. Let (S, \leq) be a strictly ordered monoid and M_{R} a λ-compatible module. Then for any $m \in M$,

$$
\left[\left[r_{R}(m R)^{S, \leq}, \lambda\right]\right]=r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right]\right)
$$

Proof. Let $f \in r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right]\right)$. Then for any $r \in R$ and any $s \in S$,

$$
0=\left(d_{m}^{0} c_{r} f\right)(s)=\sum_{(u, v) \in X_{s}\left(d_{m}^{0}, c_{r} f\right)} d_{m}^{0}(u) \lambda(u)(r f(v))=m r f(s),
$$

which implies that $f(s) \in r_{R}(m R)$ and so $f \in\left[\left[r_{R}(m R)^{S, \leq}, \lambda\right]\right]$. Conversely, suppose that $f \in\left[\left[r_{R}(m R)^{S, \leq}, \lambda\right]\right]$. Then $m R f(v)=0$ for any $v \in S$. Now, for any $g \in\left[\left[R^{S, \leq}, \lambda\right]\right]$, by the λ-compatibility of $M_{R}, m g(u) \lambda(u)(f(v))=0$ for any $u, v \in S$. Thus, for any $s \in S$,

$$
\begin{aligned}
\left(d_{m}^{0} g f\right)(s) & =\sum_{(w, u, v) \in X_{s}\left(d_{m}^{0}, g, f\right)} d_{m}^{0}(w) \lambda(w)(g(u) \lambda(u)(f(v))) \\
& =\sum_{(u, v) \in X_{s}(g, f)} m g(u) \lambda(u)(f(v))=0 .
\end{aligned}
$$

This implies that $f \in r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right]\right)$. Now the result follows.

In order to prove the main result, we first give the necessity of the module $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}$ to be a p.q.Baer module.

Proposition 3.5. Let (S, \leq) be a strictly ordered monoid and M_{R} a λ-compatible module. If $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}$ is a p.q.Baer module, then M_{R} is a p.q.Baer module.

Proof. Let $m \in M$. Then, by Lemma 3.4, $\left[\left[r_{R}(m R)^{S, \leq}, \lambda\right]\right]=r_{\left[\left[R^{S, \leq}, \lambda\right]\right]}$ $\left(d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right]\right)$. On the other hand, since $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}$ is a p.q.Baer module, there exists an $f^{2}=f \in\left[\left[R^{S, \leq}, \lambda\right]\right]$ such that $r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right]\right)=$ $f\left[\left[R^{S, \leq}, \lambda\right]\right]$. We will show that $r_{R}(m R)=f(0) R$ with $f(0)^{2}=f(0)$, which will imply that M_{R} is a p.q.Baer module. Let $b \in r_{R}(m R)$. Then $c_{b} \in\left[\left[r_{R}(m R)^{S, \leq}, \lambda\right]\right]$ $=f\left[\left[R^{S, \leq}, \lambda\right]\right]$, and so $c_{b}=f c_{b}$. Thus $b=f(0) b \in f(0) R$. Hence $r_{R}(m R) \subseteq$ $f(0) R$. Note that $d_{m}^{0}\left[\left[R^{S, \leq}, \lambda\right]\right] f=0$, so for any $r \in R$, $d_{m}^{0} c_{r} f=0$. Thus $m R f(0)=0$. Hence $f(0) \in r_{R}(m R)$. Therefore, $r_{R}(m R)=f(0) R$. From $f(0) \in r_{R}(m R)$ it follows that $f(0)=f(0)^{2}$. Now the result follows.

Let (S, \leq) be a strictly ordered monoid and X a non-empty set. We will say X is S-indexed, if there exists an artinian and narrow subset I of S such that X is indexed by I.

Theorem 3.6. Let (S, \leq) be a strictly totally ordered monoid and $M_{R} a \lambda$ compatible module. Then the following conditions are equivalent:
(1) $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}$ is p.q.Baer.
(2) For any S-indexed set X consisting of cyclic submodules of M_{R}, there exists an $e^{2}=e \in R$ such that $r_{R}(X)=e R$.

Proof. (1) $\Longrightarrow(2)$. Let $X=\left\{m_{s} R \mid m_{s} \in M, s \in I\right\}$ be an S-indexed family of cyclic submodules of M_{R}. Define $\phi: S \rightarrow M$ via:

$$
\phi(s)=\left\{\begin{array}{cl}
m_{s}, & s \in I \\
0, & s \notin I
\end{array}\right.
$$

Then $\operatorname{supp}(\phi) \subseteq I$, and so $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$. Thus, by (1), there exists an $f^{2}=f \in$ $\left[\left[R^{S, \leq}, \lambda\right]\right]$ such that $r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)=f\left[\left[R^{S, \leq}, \lambda\right]\right]$. On the other hand, by Proposition 3.5, M_{R} is a p.q.Baer module. Thus, by Lemma 3.2 and Lemma 3.3, $r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)=\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]$. Hence $\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]=f\left[\left[R^{S, \leq}, \lambda\right]\right]$. Then, by analogy with the proof of Proposition 3.5, we can conclude that $r_{R}(X)=$ $f(0) R$ with $f(0)^{2}=f(0)$. Now (2) follows.
$(2) \Longrightarrow(1)$. Suppose that $\phi \in\left[\left[M^{S, \leq}, \lambda\right]\right]$. Set $X=\{\phi(s) R \mid s \in \operatorname{supp}(\phi)\}$. Then X is an S-indexed family of cyclic submodules of M_{R}. Thus, by (2), $r_{R}(X)=$
$e R$ for some $e^{2}=e \in R$. Also by (2), M is a p.q.Baer module. Thus, by Lemma 3.2 and Lemma 3.3,

$$
r_{\left[\left[R^{S, \leq, \lambda]]}\right.\right.}\left(\phi\left[\left[R^{S, \leq}, \lambda\right]\right]\right)=\left[\left[r_{R}(X)^{S, \leq}, \lambda\right]\right]=\left[\left[(e R)^{S, \leq}, \lambda\right]\right]=c_{e}\left[\left[R^{S, \leq}, \lambda\right]\right] .
$$

Clearly c_{e} is an idempotent of $\left[\left[R^{S, \leq}, \lambda\right]\right]$. Hence $\left[\left[M^{S, \leq}, \lambda\right]\right]_{\left[\left[R^{S, \leq, \lambda]}\right.\right.}$ is a p.q.Baer module.

Corollary 3.7. Let $\alpha: R \longrightarrow R$ be an endomorphism of R and M_{R} be an α-compatible module. Then $M[[x ; \alpha]]_{R[x ; \alpha]]}$ is a p.q.Baer module if and only if the right annihilator of any countable family of cyclic submodules of M_{R} in R is generated by an idempotent of R.

Corollary 3.8. Let $\alpha: R \longrightarrow R$ be an automorphism of R and M_{R} be an α-compatible module. Then $\left.M\left[x^{-1}, x ; \alpha\right]\right]_{\left.R\left[x^{-1}, x ; \alpha\right]\right]}$ is a p.q.Baer module if and only if the right annihilator of any countable family of cyclic submodules of M_{R} in R is generated by an idempotent of R.

In the rest of this paper, we will work with the special module R_{R}, which will give more interesting results.

Recall from [7], an idempotent $e \in R$ is left (resp. right) semicentral in R if $e x e=x e$ (resp. $e x e=e x$), for all $x \in R$. Equivalently, $e^{2}=e \in R$ is left (resp. right) semicentral if $e R$ (resp. $R e$) is an ideal of R. If R is a right p.q.Baer ring and $a \in R$, then $r_{R}(a R)$ is generated by a left semicentral idempotent since $r_{R}(a R)$ is an ideal. We use $I(R)$ for the set of all idempotents of R, use $C(R)$ for the set of all central idempotents of R and use $\mathcal{S}_{l}(R)$ for the set of all left semicentral idempotents of R.

Let $\left\{e_{s} \mid s \in I\right\}$ be an S-indexed subset of $I(R)$. We say $\left\{e_{s} \mid s \in I\right\}$ has a generalized join in $I(R)$, if there exists an $e \in I(R)$ such that
(1) $e_{s} R(1-e)=0$ for all $s \in I$, and
(2) if $f \in I(R)$ is such that $e_{s} R(1-f)=0$ for all $s \in I$, then $e R(1-f)=0$.

Let (S, \leq) be a strictly totally monoid satisfying the condition that $0 \leq s$ for all $s \in S$. In [16], it was shown that if $\mathcal{S}_{l}(R) \subseteq C(R)$, then $\left[\left[R^{S, \leq]]}\right.\right.$ is a right p.q.Baer ring if and only if R is a right p.q.Baer ring and any S-indexed subset of $I(R)$ has a generalized join in $I(R)$. Here we have

Corollary 3.9. Let (S, \leq) be a strictly totally monoid and R_{R} a λ-compatible module. Then the following conditions are equivalent:
(1) $\left[\left[R^{S, \leq}, \lambda\right]\right]$ is a right p.q.Baer ring.
(2) The right annihilator of any S-indexed family of principally right ideals of R in R is generated by an idempotent of R.
If $\mathcal{S}_{l}(R) \subseteq C(R)$, then the following conditions are equivalent to the conditions above:
(3) R is a right p.q.Baer ring and for any S-indexed subset $\left\{e_{s} \mid s \in I\right\}$ of $I(R)$, $\cap_{s \in I} r_{R}\left(e_{s} R\right)=e R$ for some $e \in I(R)$.
(4) R is a right p.q.Baer ring and for any S-indexed subset $\left\{e_{s} \mid s \in I\right\}$ of $C(R), \cap_{s \in I} r_{R}\left(e_{s} R\right)=e R$ for some $e \in I(R)$.
(5) R is a right p.q.Baer ring and any S-indexed subset of $C(R)$ has a generalized join in $I(R)$.
(6) R is a right p.q.Baer ring and any S-indexed subset of $I(R)$ has a generalized join in $I(R)$.

Proof. (1) $\Longleftrightarrow(2)$ follows from Theorem 3.6.
$(2) \Longrightarrow(3)$. Note that for any $a \in R,\{a R\}$ is S-indexed. Thus $(2) \Longrightarrow(3)$ is obviously.
(3) $\Longrightarrow(4)$. It is directly verified.
(4) $\Longrightarrow(5)$. Let $\left\{e_{s} \mid s \in I\right\}$ be an S-indexed subset of $C(R)$. By (4), there exists an $e \in I(R)$ such that $\cap_{s \in I} r_{R}\left(e_{s} R\right)=e R$. We will show that $1-e$ is a generalized join of the set $\left\{e_{s} \mid s \in I\right\}$. It is clearly that $e_{s} R(1-(1-e))=e_{s} R e=0$ for any $s \in I$. Assume that $f^{2}=f \in R$ is such that $e_{s} R(1-f)=0$ for any $s \in I$. Then $1-f \in \cap_{s \in I} r_{R}\left(e_{s} R\right)=e R$. So $(1-f)=e(1-f)$. Since $e \in \mathcal{S}_{l}(R)$, $(1-e) R(1-f)=0$. Hence $1-e$ is a generalized join of $\left\{e_{s} \mid s \in I\right\}$ in $I(R)$.
(5) $\Longrightarrow(6)$. Let $\left\{e_{s} \mid s \in I\right\}$ be an S-indexed subset of $I(R)$. Since R is a right p.q.Baer ring, there exist $f_{s} \in \mathcal{S}_{l}(R) \subseteq C(R)$ such that $r_{R}\left(e_{s} R\right)=f_{s} R$ for all $s \in I$. By (5), $\left\{1-f_{s} \mid s \in I\right\}$ has a generalized join in $I(R)$, we say e. Then $\left(1-f_{s}\right) R(1-e)=0$ for any $s \in I$. Thus, for any $r \in R$ and any $s \in I$, $r(1-e)=f_{s} r(1-e)$. Hence $e_{s} r(1-e)=e_{s} f_{s} r(1-e)=0$ for any $s \in I$. This means that $e_{s} R(1-e)=0$ for any $s \in I$. Suppose that $f \in I(R)$ is such that $e_{s} R(1-f)=0$ for each $s \in I$. Then $1-f \in r_{R}\left(e_{s} R\right)=f_{s} R$, and so $(1-f)=f_{s}(1-f)$. Thus $\left(1-f_{s}\right)(1-f)=0$. Hence $\left(1-f_{s}\right) R(1-f)=0$. Since e is a generalized join of $\left\{1-f_{s} \mid s \in I\right\}$, it follows that $e R(1-f)=0$. Hence e is a generalized join of $\left\{e_{s} \mid s \in I\right\}$.
(6) $\Longrightarrow(2)$. Assume that $X=\left\{a_{s} R \mid s \in I\right\}$ is an S-indexed family of principal right ideals of R. Since R is a right p.q.Baer ring, there exists an $e_{s} \in \mathcal{S}_{l}(R)$ such that $r_{R}\left(a_{s} R\right)=e_{s} R$ for each $s \in I$. By (6), $\left\{1-e_{s} \mid s \in I\right\}$ has a generalized join in $I(R)$, say e. Then $\left(1-e_{s}\right) R(1-e)=0$ for any $s \in I$. Thus $a_{s} r(1-e)=a_{s} e_{s} r(1-e)=0$ for any $r \in R$ and any $s \in S$. Hence $(1-e) \in r_{R}(X)$. Let $p \in r_{R}(X)$. Then, for any $s \in I, a_{s} R p=0$. Thus $p \in r_{R}\left(a_{s} R\right)=e_{s} R$. Hence $p=e_{s} p$ for any $s \in I$. On the other hand, since R is a right p.q.Baer ring, there exists an $f \in I(R)$ such that $r_{R}(p R)=f R$. Since e_{s} is left semicentral, by the hypothesis, e_{s} is central. Thus $p r=e_{s} p r=p r e_{s}$ for any $r \in R$, which implies that $1-e_{s} \in r_{R}(p R)=f R$. Thus $\left(1-e_{s}\right)=f\left(1-e_{s}\right)$, and so $\left(1-e_{s}\right) R(1-f)=0$. Since e is a generalized join of $\left\{1-e_{s} \mid s \in I\right\}$, it follows that $e R(1-f)=0$.

Hence $p=p-p f=p(1-f)=(1-f) p=(1-e)(1-f) p \in(1-e) R$. So $r_{R}(X) \subseteq(1-e) R$. Hence $r_{R}(X)=(1-e) R$.

Corollary 3.10. Let R be a ring with $\mathcal{S}_{l}(R) \subseteq C(R)$ and α a weakly rigid endo- morphism of R. Then $R[[x ; \alpha]]$ is a right p.q.Baer ring if and only if R is a right p.q.Baer ring and any countable subset of $C(R)$ has a generalized join in $I(R)$.

Corollary 3.11. Let R be a ring with $\mathcal{S}_{l}(R) \subseteq C(R)$ and α a weakly rigid automorphism of R. Then $\left.R\left[x^{-1}, x ; \alpha\right]\right]$ is a right p.q.Baer ring if and only if R is a right p.q.Baer ring and any countable subset of $C(R)$ has a generalized join in $I(R)$.

Let α and β be ring endomorphisms (resp. ring automorphisms) of R such that $\alpha \beta=\beta \alpha$. Let $S=(\mathbb{N} \cup\{0\}) \times(\mathbb{N} \cup\{0\})$ (resp. $\mathbb{Z} \times \mathbb{Z}$) be endowed the lexicographic order, or the reverse lexicographic order, or the product order of the usual order of $\mathbb{N} \cup\{0\}($ resp. $\mathbb{Z})$, and define $\lambda: S \longrightarrow \operatorname{End}(R)$ via $\lambda(m, n)=\alpha^{m} \beta^{n}$ for any $m, n \in \mathbb{N} \cup\{0\}$ (resp. $m, n \in \mathbb{Z}$). Then $\left[\left[R^{S, \leq}, \lambda\right]\right]=R[[x, y ; \alpha, \beta]]$ (resp. $R\left[\left[x, y, x^{-1}, y^{-1} ; \alpha, \beta\right]\right]$), in which $\left(a x^{m} y^{n}\right)\left(b x^{p} y^{q}\right)=a \alpha^{m} \beta^{n}(b) x^{m+p} y^{n+q}$ for any $m, n, p, q \in \mathbb{N} \cup\{0\}$ (resp. $m, n, p, q \in \mathbb{Z}$).

Corollary 3.12. Let R be a ring with $\mathcal{S}_{l}(R) \subseteq C(R), \alpha$ and β be weakly rigid ring endomorphisms (resp. ring automorphisms) of R such that $\alpha \beta=\beta \alpha$. Then $R[[x, y ; \alpha, \beta]]$ (resp. $R\left[\left[x, y, x^{-1}, y^{-1} ; \alpha, \beta\right]\right]$) is a right p.q.Baer ring if and only if R is a right p.q.Baer ring and any countable subset of $C(R)$ has a generalized join in $I(R)$.

Acknowledgments

The authors thank the referee for his/her useful comments and suggestions. This research supported by National Natural Science Foundation of China (10961021) and XBMU-2010-BD-6.

References

1. S. Annin, Couniform dimension over skew polynomial rings, Comm. Algebra, 33 (2005), 1195-1204.
2. M. Başer and A. Harmanci, Reduced and p.q-Baer modules, Taiwanese J. Math., 11 (2007), 267-275.
3. G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math., 97 (1981), 283-292.
4. G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung., 59 (1992), 319-326.
5. G. F. Birkenmeier, J. Y. Kim and J. K. Park, On quasi-Baer rings, Contemp. Math., 259 (2000), 67-92.
6. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159 (2001), 25-42.
7. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29 (2001), 639-660.
8. G. F. Birkenmeier, J. Y. Kim and J. K. Park, On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J., 40 (2000), 247-253.
9. C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151 (2000), 215-226.
10. T. K. Lee and Y. Q. Zhou, Reduced modules, Rings, Modules, Algebras and Abelian Groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
11. Z. K. Liu, A note on Hopfian modules, Comm. Algebra, 28 (2000), 3031-3040.
12. Z. K. Liu, Baer rings of generalized power series, Glasgow Math. J., 44 (2002), 463-469.
13. Z. K. Liu, A note on principally quasi-Baer rings, Comm. Algebra, 30 (2002), 38853890.
14. Z. K. Liu and W. L. Fan, Principal quasi-Baerness of skew power series rings, J. Math. Research \& Exposition, 25 (2005), 197-203.
15. Z. K. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sinica (English Series), 22 (2006), 989-998.
16. Z. K. Liu, Principal quasi-Baerness of generalized power series, Northeastern Math. J., 23 (2007), 283-292.
17. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra, 198 (1997), 327-338.
18. K. Varadarajan, Generalized power series modules, Comm. Algebra, 29 (2001), 12811294.
[^1]
[^0]: Received January 9, 2009, accepted October 2, 2009.
 Communicated by Bernd Ulrich.
 2000 Mathematics Subject Classification: 16W60.
 Key words and phrases: p.q.Baer module, Right p.q.Baer ring, Module of generalized power series, Ring of generalized power series.

[^1]: Renyu Zhao
 College of Economics and Management
 Northwest Normal University
 Lanzhou, Gansu 730070
 P. R. China

 E-mail: zhaory@nwnu.edu.cn

 Yujuan Jiao
 College of Computer Science and Information Engineering
 Northwest University for Nationalities
 Lanzhou, Gansu 730030
 P. R. China

 E-mail: jsjyj@xbmu.edu.cn

