
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 15, No. 2, pp. 711-722, April 2011
This paper is available online at http://www.tjm.nsysu.edu.tw/

PRINCIPAL QUASI-BAERNESS OF MODULES OF GENERALIZED
POWER SERIES

Renyu Zhao and Yujuan Jiao

Abstract. Let R be a ring, M a right R-module and (S,≤) a strictly totally
ordered monoid. It is shown that [[MS,≤]], the module of generalized power
series with coefficients in M and exponents in S, is a p.q.Baer right [[RS,≤]]-
module if and only if the right annihilator of any S-indexed family of cyclic
submodules of M in R is generated by an idempotent of R. Furthermore, we
will show that for a ring R with all left semicentral idempotents are central, the
ring [[RS,≤]] consisting of generalized power series over R is a right p.q.Baer
ring if and only if R is a right p.q.Baer ring and any S-indexed family of
central idempotents of R has a generalized join in I(R), where I(R) is the
set of all idempotents of R.

1. INTRODUCTION

Throughout this paper all rings R are associative with identity and modules are
unital right R-modules. We write M [x], M [[x]],M [x, x−1] and M [x−1, x]] for the
polynomial extension, the power series extension, the Laurent polynomial extension
and the Laurent series extension of a module M , respectively. For a subset X of a
module MR, let rR(X) = {r ∈ R | Xr = 0}.

Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset
(every right ideal) of R is generated by an idempotent. A lot of works on Baer rings
and quasi-Baer rings appears in [3–6, 9]. As a generalization of quasi-Baer rings,
G.F. Birkenmeier, J.Y. Kim and J.K. Park in [7] introduced the concept of principally
quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right
p.q.Baer) if the right annihilator of a principal right ideal of R is generated by an
idempotent. Similarly, left p.q.Baer rings can be defined. A ring is called p.q.Baer
if it is both right and left p.q.Baer. Observe that every biregular ring and every
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quasi-Baer ring is a p.q.Baer ring. For more details and examples of right p.q.Baer
rings, see [7].

It was proved in [6, Theorem 1.8] that a ring R is quasi-Baer if and only if
R[X ] is quasi-Baer if and only if R[[X ]] is quasi-Baer, where X is an arbitrary
nonempty set of not necessarily commuting indeterminates. If R is a reduced ring,
then R is Baer if and only if R[X ] is Baer if and only if R[[X ]] is Baer [6, Corollary
1.10]. If α is an endomorphism and δ an α-derivation of the ring R such that R

is α-rigid, then it is shown in [9, Theorem 11 and Theorem 21] that R is Baer if
and only if the Ore extension R[x; α, δ] is Baer if and only if the skew power series
ring R[[x; α]] is Baer. If R is commutative and (S,≤) is a strictly totally ordered
monoid, then it is shown in [12, Theorem 7] that R is Baer if and only if [[RS,≤]],
the ring of generalized power series with coefficients in R and exponents in S, is
Baer. In [8, Theorem 2.1], the authors showed that R is a right p.q.Baer ring if and
only if R[x] is a right p.q.Baer ring. Also an example was given in [8, Example 2.6]
which shows that there exists a commutative von Neumann regular ring R (hence
p.q.Baer) such that the ring R[[x]] is not p.q.Baer. Let R be a ring such that all left
semicentral idempotents are central. It is shown in [13] that R[[x]] is right p.q.Baer
if and only if R is right p.q.Baer and any countable family of idempotents in R has
a generalized join in I(R).

In [10] Lee-Zhou introduced Baer and quasi-Baer modules as follows: (a) MR is
called Baer if, for any subset X of M , rR(X) = eR where e2 = e ∈ R; (b) MR is
called quasi-Baer if, for any submodule N of M , rR(N ) = eR where e2 = e ∈ R.
Also, the Baerness and quasi-Baerness of the (Laurent) polynomial extension and
the (Laurent) power series extension of rings were extended to modules, see [10],
for more details.

Recently, in [2], the notion of principally quasi-Baer modules was introduced. A
module MR is called principally quasi-Baer (p.q.-Baer for short) if, for any m ∈ M,

rR(mR) = eR where e2 = e ∈ R. It is clear that R is a right p.q.-Baer ring if and
only if RR is a p.q.-Baer module. Some of the results related to this paper can be
recalled as following.

Theorem. [2, Theorem 7]. Let α : R −→ R be an endomorphism of R and
assume that, for m ∈ M and a ∈ R, ma = 0 ⇐⇒ mα(a) = 0. Then the following
hold:

(1) (a) If M [x; α]R[x;α] is a p.q.-Baer module, then MR is a p.q.-Baer module.
The converse holds if in addition MR is α-reduced.

(b) If M [[x; α]]R[[x;α]] is p.q.-Baer, then MR is p.q.-Baer.

(2) Let α ∈ Aut(R).

(a) If M [x, x−1; α]R[x,x−1;α] is a p.q.-Baer module, then MR is a p.q.-Baer
module. The converse holds if in addition MR is α-reduced.
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(b) If M [x−1, x; α]]R[x−1,x;α]] is a p.q.-Baer module, then MR is a p.q.-
Baer module.

where MR is an α-reduced module if, for any m ∈ M and a ∈ R, ma = 0 implies
mR ∩ Ma = 0, and ma = 0 ⇐⇒ mα(a) = 0.

Thus, a natural question of sufficient conditions for modules under which the
skew power series extension and the skew Laurent series extension of a module are
p.q.Baer modules arisen. In this paper, we investigate the necessary and sufficient
conditions under which the skew power series modules M [[x; α]] and the skew
Laurent series modules M [x−1, x; α]] are p.q.Baer modules. In fact, we worked
for a more general module extension which is called skew generalized power series
modules and introduced in Section 2.

2. SKEW GENERALIZED POWER SERIES MODULES

Let (S,≤) be an ordered set. Recalled that (S,≤) is artinian if every strictly
decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every
subset of pairwise order-incomparable elements of S is finite. Let S be a commuta-
tive monoid. Unless stated otherwise, the operation of S shall be denoted additively,
and the neutral element by 0. The following definition is due to [15].

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid
satisfying the condition that, if s, s′, t ∈ S and s < s′, then s + t < s′ + t), R a
ring and λ : S −→ End(R) be a monoid homomorphism. Consider the set A of all
maps f : S −→ R whose support supp(f) = {s ∈ S | f(s) �= 0} is artinian and
narrow. With pointwise addition, A is an abelian additive group. For every s ∈ S
and f, g ∈ A, let Xs(f, g) = {(u, v) ∈ S × S | u + v = s, f(u) �= 0, g(v) �= 0}.
It follows from [17, 4.1] that Xs(f, g) is finite. This fact allows to define the
operation of convolution as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)λ(u)
(
g(v)

)

and (fg)(s) = 0 if Xs(f, g) = ∅. With this operation, and pointwise addition,
A becomes a ring, which is called the ring of skew generalized power series with
coefficients in R and exponents in S, and we denote by [[RS,≤, λ]].

Let M be a right R-module, we let B be the set of all maps φ : S −→ M
such that the set supp(φ) = {s ∈ S | φ(s) �= 0} is artinian and narrow. With
pointwise addition, B is an abelian additive group. For each f ∈ [[RS,≤, λ]] and
each φ ∈ B, by [11, Lemma 1], the set Xs(φ, f) = {(u, v) ∈ S × S | u + v =
s, φ(u) �= 0, f(v) �= 0} is finite. This allows to define the scalar multiplication as
following:

(φf)(s) =
∑

(u,v)∈Xs(φ,f)

φ(u)λ(u)
(
f(v)

)
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and (φf)(s) = 0 if Xs(φ, f) = ∅. With this operation and pointwise addition,
by analogy with the discussion of [15], one can easily to show that B is a right
[[RS,≤, λ]]-module, which is called the module of skew generalized power series
with coefficients in M and exponents in S, and we denote by [[MS,≤, λ]].

Example 2.1.

1. If λ(s) = 1, the identity map of R for every s ∈ S, then [[RS,≤, λ]] =
[[RS,≤]] is the ring of generalized power series in the sense of Ribenboim [17]
and [[MS,≤, λ]] = [[MS,≤]] is the untwisted module of generalized power
series in the sense of [11] or [18]. Thus, the following modules are skew
generalized power series modules: the module M [[x1, x2, . . . , xn]] of formal
power series extension of M with n indeterminates; the module M [x−1, x]]
of Laurent series extension of M . Further example and work on the modules
of generalized power series appear in [11,18].

2. Let α be a ring endomorphism of R. Let S = N ∪ {0} be endowed with
the usual order and define λ : S −→ End(R) via λ(k) = αk for every k ∈
N∪ {0} (where α0 = 1, the identity map of R). Then [[MS,≤, λ]][[RS,≤,λ]] =
M [[x; α]]R[[x;α]], the usual skew power series extension of MR.

3. Let α be a ring automorphism of R. Let S = Z be endowed with the
usual order and define λ : S −→ End(R) via λ(k) = αk for every k ∈
Z (where α0 = 1, the identity map of R). Then [[MS,≤, λ]][[RS,≤,λ]] =
M [x−1, x; α]]R[x−1,x;α]], the usual skew Laurent series extension of MR.

4. Let α be a ring endomorphism of R. Set S = N∪{0} endowed with the trivial
order. Define λ : S −→ End(R) via λ(k) = αk for every k ∈ N∪{0}. Then
[[MS,≤, λ]][[RS,≤,λ]] = M [x; α]R[x;α], the usual skew polynomial extension of
MR.

5. Let G be an abelian group acting on R as a group of automorphisms. Define
λ : G −→ End(R) via λ(g) = g for every g ∈ G. Let ≤ be the trivial order
of G. Then it is easy to see that [[MG,≤, λ]][[RG,≤,λ]] = M ∗GR∗G, the usual
skew group ring extension of MR. If G is an infinite cyclic group generated
by σ where σ acts on R as a ring automorphism, then [[MG,≤, λ]][[RG,≤,λ]]

∼=
M [x−1, x; σ]R[x−1,x;σ], the usual skew Laurent polynomial extension of MR.

Before starting the main results, we explain some notations involved.
To any r ∈ R and any s ∈ S we associated the maps cr ∈ [[RS,≤, λ]] defined

by

cr(x) =
{

r, if x = 0,

0, if x �= 0.



Principal Quasi-Baerness of Modules of Generalized Power Series 715

For any m ∈ M and any s ∈ S, we define ds
m ∈ [[MS,≤, λ]] via

ds
m(x) =

{
m, if x = s,

0, if x �= s.

3. MAIN RESULTS

Let α : R −→ R be a ring endomorphism, according to [1], a module MR is
called α-compatible if, for any m ∈ M and a ∈ R, ma = 0 ⇐⇒ mα(a) = 0.
Similarly, we give the following definition.

Definition 3.1. Given MR and λ : S −→ End(R) as above. We say MR

is λ-compatible, if for any s ∈ S, any m ∈ M and any a ∈ R, ma = 0 ⇐⇒
mλ(s)(a) = 0.

Clearly, if λ(s) = 1, the identity map of R for every s ∈ S, then any module is
λ-compatible. Given a ring endomorphism α : R −→ R, define λ : N ∪ {0} −→
End(R) : λ(k) = αk for every k ∈ N ∪ {0}, then MR is λ-compatible if and only
if M is α-compatible. In particular, RR is α-compatible if and only if (1) α is a
monomorphism, and (2) for any a, b ∈ R, ab = 0 implies that aα(b) = α(a)b = 0.
In this situation, α is called a weakly rigid endomorphism in [14].

For every 0 �= φ ∈ [[MS,≤, λ]] (resp. 0 �= f ∈ [[RS,≤, λ]]), denote by π(φ)
(resp. π(f)) the set of minimal elements of supp(φ) (resp. supp(f)). Then π(φ)
(resp. π(f)) is a nonempty finite set, consisting of pairwise order incomparable
elements. If π(φ) (resp. π(f)) consists only of one element s, we write π(φ) = s
(resp. π(f) = s).

Lemma 3.2. Let (S,≤) be a strictly totally ordered monoid and M R a λ-
compatible p.q.Baer module. If φ ∈ [[M S,≤, λ]] and f ∈ [[RS,≤, λ]] are such that
φ[[RS,≤, λ]]f = 0, then φ(u)Rf(v) = 0 for all u, v ∈ S.

Proof. Let 0 �= φ ∈ [[M S,≤, λ]] and 0 �= f ∈ [[RS,≤, λ]] be such that
φ[[RS,≤, λ]]f = 0. Assume that π(φ) = u0, π(f) = v0. Then for any (u, v) ∈
Xu0+v0(φ, f), u0 ≤ u, v0 ≤ v. If u0 < u, since ≤ is a strict order, u0 + v0 <
u+v0 ≤ u+v = u0 +v0, a contradiction. Thus u = u0. Similarly, v = v0. Hence,
for any r ∈ R,
0 = (φcrf)(u0+v0) =

∑
(u,v)∈Xu0+v0(φ,crf)

φ(u)λ(u)
(
rf(v)

)
= φ(u0)λ(u0)

(
rf(v0)

)
.

Then φ(u0)Rf(v0) = 0 by the λ-compatibility of MR.
Now let w ∈ S with u0 + v0 ≤ w. Assume that for any u ∈ supp(φ) and any

v ∈ supp(f), if u+v < w, then φ(u)Rf(v) = 0. We will show that φ(u)Rf(v) = 0
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for each u ∈ supp(φ) and each v ∈ supp(f) with u + v = w. For convenience, we
write

Xw(φ, f) = {(u, v) | u + v = w, u ∈ supp(φ), v ∈ supp(f)}
= {(ui, vi) | i = 1, 2, . . . , n}

with u1 < u2 < · · · < un (Note that if u1 = u2, then from u1 + v1 = u2 + v2 it
follows that v1 = v2, and thus (u1, v1) = (u2, v2)). Then for any r ∈ R,

(1) 0=(φcrf)(w)=
∑

(u,v)∈Xw(φ,crf)

φ(u)λ(u)
(
rf(v)

)
=

n∑
i=1

φ(ui)λ(ui)
(
rf(vi)

)
.

For each i = 1, 2, . . . , n, since MR is a p.q.Baer module, there exists an e2
ui

=
eui ∈ R such that rR(φ(ui)R) = euiR. Let r′ ∈ R, take r = r′eu1 in (1). Then, by
φ(u1)r′eu1 = 0 and the λ-compatibility of MR, we have φ(u1)λ(u1)

(
r′eu1f(v1)

)
=

0. Thus
n∑

i=2

φ(ui)λ(ui)
(
r′eu1f(vi)

)
= 0.

Note that u1 + vi < ui + vi = w for any i ≥ 2, so by induction hypothesis,
φ(u1)Rf(vi) = 0. Thus f(vi) = eu1f(vi) for each i ≥ 2. Thus

(2)
n∑

i=2

φ(ui)λ(ui)
(
r′f(vi)

)
= 0.

Let p ∈ R and take r′ = peu2 in (2). Then since φ(u2)peu2 = 0, we have
φ(u2)λ(u2)

(
peu2f(v2)

)
= 0. Thus

n∑
i=3

φ(ui)λ(ui)
(
peu2f(vi)

)
=

n∑
i=3

φ(ui)λ(ui)
(
pf(vi)

)
= 0.

Continuing in this manner, we have φ(un)λ(un)
(
qf(vn)

)
= 0, where q is an

arbitrary element of R. Thus φ(un)qf(vn) = 0 since MR is a λ-compatible module.
Hence

φ(un−1)qf(vn−1) = 0, . . . , φ(u2)qf(v2) = 0, φ(u1)qf(v1) = 0.

Therefore, by transfinite induction, we have shown that φ(u)Rf(v) = 0 for any
u, v ∈ S.

Lemma 3.3. Let (S,≤) be a strictly ordered monoid and MR a λ-compatible
module. Then the following conditions are equivalent:
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(1) For any φ ∈ [[MS,≤, λ]] and any f ∈ [[RS,≤, λ]], φ[[RS,≤, λ]]f = 0 implies
φ(u)Rf(v) = 0 for all u, v ∈ S.

(2) For any φ ∈ [[MS,≤, λ]], r[[RS,≤,λ]](φ[[RS,≤, λ]]) = [[rR(X)S,≤, λ]], where
X = {φ(u)R | u ∈ S}.

Proof. (1) =⇒ (2). Assume that f ∈ r [[RS,≤,λ]](φ[[RS,≤, λ]]) with φ ∈
[[MS,≤, λ]]. By (1), φ(u)Rf(v) = 0 for any u, v ∈ S. Thus f(v) ∈ rR(X)
for any v ∈ S. Hence f ∈ [[rR(X)S,≤, λ]]. Conversely, suppose that f ∈
[[rR(X)S,≤, λ]]. Then f(v) ∈ rR(X) for each v ∈ S. Thus φ(u)Rf(v) = 0
for all u, v ∈ S. Then, for any g ∈ [[RS,≤, λ]], by the λ-compatibility of MR,
φ(u)λ(u)

(
g(w)λ(w)(f(v))

)
= 0 for any u, v, w ∈ S. Thus, for any s ∈ S,

(φgf)(s) =
∑

(u,w,v)∈Xs(φ,g,f)

φ(u)λ(u)
(
g(w)λ(w)(f(v))

)
= 0.

This means that f ∈ r[[RS,≤,λ]](φ[[RS,≤, λ]]). Therefore, (2) holds.
(2) =⇒ (1). Suppose that φ ∈ [[MS,≤, λ]] and f ∈ [[RS,≤, λ]] are such that

φ[[RS,≤, λ]]f = 0. Then, by (2), f ∈ [[rR(X)S,≤, λ]], where X = {φ(u)R | u ∈
S}. Thus φ(u)Rf(v) = 0 for every u, v ∈ S.

Lemma 3.4. Let (S,≤) be a strictly ordered monoid and MR a λ-compatible
module. Then for any m ∈ M ,

[[rR(mR)S,≤, λ]] = r[[RS,≤,λ]](d
0
m[[RS,≤, λ]]).

Proof. Let f ∈ r[[RS,≤,λ]](d
0
m[[RS,≤, λ]]). Then for any r ∈ R and any s ∈ S,

0 = (d0
mcrf)(s) =

∑
(u,v)∈Xs(d0

m,crf)

d0
m(u)λ(u)

(
rf(v)

)
= mrf(s),

which implies that f(s) ∈ rR(mR) and so f ∈ [[rR(mR)S,≤, λ]]. Conversely,
suppose that f ∈ [[rR(mR)S,≤, λ]]. Then mRf(v) = 0 for any v ∈ S. Now, for
any g ∈ [[RS,≤, λ]], by the λ-compatibility of MR, mg(u)λ(u)

(
f(v)

)
= 0 for any

u, v ∈ S. Thus, for any s ∈ S,

(d0
mgf)(s) =

∑
(w,u,v)∈Xs(d0

m,g,f)

d0
m(w)λ(w)

(
g(u)λ(u)(f(v))

)

=
∑

(u,v)∈Xs(g,f)

mg(u)λ(u)
(
f(v)

)
= 0.

This implies that f ∈ r [[RS,≤,λ]](d
0
m[[RS,≤, λ]]). Now the result follows.
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In order to prove the main result, we first give the necessity of the module
[[MS,≤, λ]][[RS,≤,λ]] to be a p.q.Baer module.

Proposition 3.5. Let (S,≤) be a strictly ordered monoid and MR a λ-compatible
module. If [[MS,≤, λ]][[RS,≤,λ]] is a p.q.Baer module, then MR is a p.q.Baer module.

Proof. Let m ∈ M . Then, by Lemma 3.4, [[rR(mR)S,≤, λ]] = r[[RS,≤,λ]]

(d0
m[[RS,≤, λ]]). On the other hand, since [[MS,≤, λ]][[RS,≤,λ]] is a p.q.Baer mod-

ule, there exists an f 2 = f ∈ [[RS,≤, λ]] such that r[[RS,≤,λ]](d
0
m[[RS,≤, λ]]) =

f [[RS,≤, λ]]. We will show that rR(mR) = f(0)R with f(0)2 = f(0), which will
imply that MR is a p.q.Baer module. Let b ∈ rR(mR). Then cb ∈ [[rR(mR)S,≤, λ]]
= f [[RS,≤, λ]], and so cb = fcb. Thus b = f(0)b ∈ f(0)R. Hence rR(mR) ⊆
f(0)R. Note that d0

m[[RS,≤, λ]]f = 0, so for any r ∈ R, d0
mcrf = 0. Thus

mRf(0) = 0. Hence f(0) ∈ rR(mR). Therefore, rR(mR) = f(0)R. From
f(0) ∈ rR(mR) it follows that f(0) = f(0)2. Now the result follows.

Let (S,≤) be a strictly ordered monoid and X a non-empty set. We will say
X is S-indexed, if there exists an artinian and narrow subset I of S such that X is
indexed by I .

Theorem 3.6. Let (S,≤) be a strictly totally ordered monoid and MR a λ-
compatible module. Then the following conditions are equivalent:

(1) [[MS,≤, λ]][[RS,≤,λ]] is p.q.Baer.
(2) For any S-indexed set X consisting of cyclic submodules of M R, there exists

an e2 = e ∈ R such that rR(X) = eR.

Proof. (1) =⇒ (2). Let X = {msR | ms ∈ M, s ∈ I} be an S-indexed family
of cyclic submodules of MR. Define φ : S → M via:

φ(s) =
{

ms, s ∈ I,

0, s /∈ I.

Then supp(φ) ⊆ I , and so φ ∈ [[MS,≤, λ]]. Thus, by (1), there exists an f2 = f ∈
[[RS,≤, λ]] such that r[[RS,≤,λ]](φ[[RS,≤, λ]]) = f [[RS,≤, λ]]. On the other hand, by
Proposition 3.5, MR is a p.q.Baer module. Thus, by Lemma 3.2 and Lemma 3.3,
r[[RS,≤,λ]](φ[[RS,≤, λ]]) = [[rR(X)S,≤, λ]]. Hence [[rR(X)S,≤, λ]] = f [[RS,≤, λ]].
Then, by analogy with the proof of Proposition 3.5, we can conclude that rR(X) =
f(0)R with f(0)2 = f(0). Now (2) follows.

(2)=⇒(1). Suppose that φ ∈ [[MS,≤, λ]]. Set X = {φ(s)R | s ∈ supp(φ)}.
Then X is an S-indexed family of cyclic submodules of MR. Thus, by (2), rR(X) =
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eR for some e2 = e ∈ R. Also by (2), M is a p.q.Baer module. Thus, by Lemma
3.2 and Lemma 3.3,

r[[RS,≤,λ]](φ[[RS,≤, λ]]) = [[rR(X)S,≤, λ]] = [[(eR)S,≤, λ]] = ce[[RS,≤, λ]].

Clearly ce is an idempotent of [[RS,≤, λ]]. Hence [[MS,≤, λ]][[RS,≤,λ]] is a p.q.Baer
module.

Corollary 3.7. Let α : R −→ R be an endomorphism of R and MR be an
α-compatible module. Then M [[x; α]]R[[x;α]] is a p.q.Baer module if and only if
the right annihilator of any countable family of cyclic submodules of M R in R is
generated by an idempotent of R.

Corollary 3.8. Let α : R −→ R be an automorphism of R and M R be an
α-compatible module. Then M [x−1, x; α]]R[x−1,x;α]] is a p.q.Baer module if and
only if the right annihilator of any countable family of cyclic submodules of M R

in R is generated by an idempotent of R.

In the rest of this paper, we will work with the special module RR, which will
give more interesting results.

Recall from [7], an idempotent e ∈ R is left (resp. right) semicentral in R if
exe = xe (resp. exe = ex), for all x ∈ R. Equivalently, e2 = e ∈ R is left (resp.
right) semicentral if eR (resp. Re) is an ideal of R. If R is a right p.q.Baer ring
and a ∈ R, then rR(aR) is generated by a left semicentral idempotent since rR(aR)
is an ideal. We use I(R) for the set of all idempotents of R, use C(R) for the
set of all central idempotents of R and use Sl(R) for the set of all left semicentral
idempotents of R.

Let {es | s ∈ I} be an S-indexed subset of I(R). We say {es | s ∈ I} has a
generalized join in I(R), if there exists an e ∈ I(R) such that

(1) esR(1− e) = 0 for all s ∈ I , and
(2) if f ∈ I(R) is such that esR(1 − f) = 0 for all s ∈ I , then eR(1 − f) = 0.

Let (S,≤) be a strictly totally monoid satisfying the condition that 0 ≤ s for
all s ∈ S. In [16], it was shown that if S l(R) ⊆ C(R), then [[RS,≤]] is a right
p.q.Baer ring if and only if R is a right p.q.Baer ring and any S-indexed subset of
I(R) has a generalized join in I(R). Here we have

Corollary 3.9. Let (S,≤) be a strictly totally monoid and R R a λ-compatible
module. Then the following conditions are equivalent:

(1) [[RS,≤, λ]] is a right p.q.Baer ring.
(2) The right annihilator of any S-indexed family of principally right ideals of

R in R is generated by an idempotent of R.
If Sl(R) ⊆ C(R), then the following conditions are equivalent to the condi-
tions above:
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(3) R is a right p.q.Baer ring and for any S-indexed subset {e s | s ∈ I} of I(R),
∩s∈IrR(esR) = eR for some e ∈ I(R).

(4) R is a right p.q.Baer ring and for any S-indexed subset {e s | s ∈ I} of
C(R), ∩s∈IrR(esR) = eR for some e ∈ I(R).

(5) R is a right p.q.Baer ring and any S-indexed subset of C(R) has a general-
ized join in I(R).

(6) R is a right p.q.Baer ring and any S-indexed subset of I(R) has a generalized
join in I(R).

Proof. (1)⇐⇒(2) follows from Theorem 3.6.
(2)=⇒(3). Note that for any a ∈ R, {aR} is S-indexed. Thus (2)=⇒(3) is

obviously.
(3)=⇒(4). It is directly verified.
(4)=⇒(5). Let {es | s ∈ I} be an S-indexed subset of C(R). By (4), there exists

an e ∈ I(R) such that ∩s∈IrR(esR) = eR. We will show that 1−e is a generalized
join of the set {es | s ∈ I}. It is clearly that esR(1 − (1 − e)) = esRe = 0 for
any s ∈ I . Assume that f2 = f ∈ R is such that esR(1 − f) = 0 for any s ∈ I .
Then 1 − f ∈ ∩s∈IrR(esR) = eR. So (1 − f) = e(1 − f). Since e ∈ Sl(R),
(1 − e)R(1− f) = 0. Hence 1 − e is a generalized join of {es | s ∈ I} in I(R).

(5)=⇒(6). Let {es | s ∈ I} be an S-indexed subset of I(R). Since R is a
right p.q.Baer ring, there exist fs ∈ Sl(R) ⊆ C(R) such that rR(esR) = fsR for
all s ∈ I . By (5), {1 − fs | s ∈ I} has a generalized join in I(R), we say e.
Then (1 − fs)R(1 − e) = 0 for any s ∈ I . Thus, for any r ∈ R and any s ∈ I ,
r(1 − e) = fsr(1 − e). Hence esr(1 − e) = esfsr(1 − e) = 0 for any s ∈ I .
This means that esR(1 − e) = 0 for any s ∈ I . Suppose that f ∈ I(R) is such
that esR(1 − f) = 0 for each s ∈ I . Then 1 − f ∈ rR(esR) = fsR, and so
(1 − f) = fs(1 − f). Thus (1 − fs)(1 − f) = 0. Hence (1 − fs)R(1 − f) = 0.
Since e is a generalized join of {1 − fs | s ∈ I}, it follows that eR(1 − f) = 0.
Hence e is a generalized join of {es | s ∈ I}.

(6)=⇒(2). Assume that X = {asR | s ∈ I} is an S-indexed family of principal
right ideals of R. Since R is a right p.q.Baer ring, there exists an es ∈ Sl(R)
such that rR(asR) = esR for each s ∈ I . By (6), {1 − es | s ∈ I} has a
generalized join in I(R), say e. Then (1 − es)R(1 − e) = 0 for any s ∈ I . Thus
asr(1−e) = asesr(1−e) = 0 for any r ∈ R and any s ∈ S. Hence (1−e) ∈ rR(X).
Let p ∈ rR(X). Then, for any s ∈ I , asRp = 0. Thus p ∈ rR(asR) = esR. Hence
p = esp for any s ∈ I . On the other hand, since R is a right p.q.Baer ring, there
exists an f ∈ I(R) such that rR(pR) = fR. Since es is left semicentral, by the
hypothesis, es is central. Thus pr = espr = pres for any r ∈ R, which implies that
1− es ∈ rR(pR) = fR. Thus (1− es) = f(1− es), and so (1− es)R(1− f) = 0.
Since e is a generalized join of {1 − es | s ∈ I}, it follows that eR(1 − f) = 0.
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Hence p = p − pf = p(1 − f) = (1 − f)p = (1 − e)(1 − f)p ∈ (1 − e)R. So
rR(X) ⊆ (1− e)R. Hence rR(X) = (1− e)R.

Corollary 3.10. Let R be a ring with S l(R) ⊆ C(R) and α a weakly rigid
endo- morphism of R. Then R[[x; α]] is a right p.q.Baer ring if and only if R is
a right p.q.Baer ring and any countable subset of C(R) has a generalized join in
I(R).

Corollary 3.11. LetRbe a ring with S l(R)⊆C(R) and α a weakly rigid auto-
morphism of R. ThenR[x−1, x; α]] is a right p.q.Baer ring if and only if R is a right
p.q.Baer ring and any countable subset of C(R) has a generalized join in I(R).

Let α and β be ring endomorphisms (resp. ring automorphisms) of R such
that αβ = βα. Let S = (N ∪ {0}) × (N ∪ {0}) (resp. Z × Z) be endowed the
lexicographic order, or the reverse lexicographic order, or the product order of the
usual order of N∪{0} (resp. Z), and define λ : S −→ End(R) via λ(m, n) = αmβn

for any m, n ∈ N ∪ {0} (resp. m, n ∈ Z). Then [[RS,≤, λ]] = R[[x, y; α, β]] (resp.
R[[x, y, x−1, y−1; α, β]]), in which (axmyn)(bxpyq) = aαmβn(b)xm+pyn+q for
any m, n, p, q ∈ N ∪ {0} (resp. m, n, p, q ∈ Z).

Corollary 3.12. Let R be a ring with S l(R) ⊆ C(R), α and β be weakly rigid
ring endomorphisms (resp. ring automorphisms) of R such that αβ = βα. Then
R[[x, y; α, β]] (resp. R[[x, y, x−1, y−1; α, β]]) is a right p.q.Baer ring if and only
if R is a right p.q.Baer ring and any countable subset of C(R) has a generalized
join in I(R).
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