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UNIQUE RANGE SETS FOR MEROMORPHIC FUNCTIONS
CONSTRUCTED WITHOUT AN INJECTIVITY HYPOTHESIS

Ta Thi Hoai An

Abstract. A set is called a unique range set (counting multiplicities) for a
particular family of functions if the inverse image of the set counting mul-
tiplicities uniquely determines the function in the family. So far, almost all
constructions of unique range sets for meromorphic functions are zero sets of
polynomials which satisfy an injectivity condition introduced by Fujimoto. A
polynomial P (z) satisfies the injectivity condition if P is injective on the zeros
of its derivative. In this paper, we will construct examples of unique range
sets for meromorphic functions without assuming an injectivity condition.

1. INTRODUCTION

Let M∗(C) be the set of non-constant meromorphic functions defined on C and
F be a non-empty subset of M∗(C). For f ∈ F and a set S in the range of f

define

E(f, S) =
⋃
a∈S

{(z, m) ∈ C × Z
+ : f(z) = a with multiplicity m}.

A set S is called a unique range set counting multiplicity for F , if the condition
E(f, S) = E(g, S) for f, g ∈ F implies that f ≡ g.

The first example of a unique range set was given by Gross and Yang [9], who
considered the zero set of the equation z + ez = 0. Note that this set has infinitely
many zeros. Since then, there have been many efforts to study the problem of
constructing unique range sets (for example [1, 5, 10, 12, 13], ...). There are
two main problems related to the study of unique range sets. The first problem is
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determining the minimum cardinality of a unique range set for entire and also for
meromorphic functions. The second problem is characterizing unique range sets.
In fact, examples of unique range sets given by most authors are sets of the form
{z ∈ C | zn + azm + b = 0} under suitable conditions on the constants a and
b and on the positive integers n and m. So far, the smallest unique range set for
meromorphic functions has 11 elements and was given by Frank and Reinders in
[6]. They proved that the set{

z ∈ C | (n − 1)(n− 2)
2

zn + n(n − 2)zn−1 +
(n − 1)n

2
zn−2 + b = 0

}
,

where n ≥ 11 and b �= 0, 1, is a unique range set for meromorphic functions.
Fujimoto [8] extended this result to zero sets of more general polynomials satisfying
an injectivity condition. A polynomial P (z) is said to satisfy the injectivity condition
if P is injective on the zeros of its derivative, i.e., for any zeros ei �= ej of P ′(z),
we have P (ei) �= P (ej) (in [8], Fujimoto referred to this as “condition H”). One
can see that the zero set of the polynomial zn + azn−1 + b = 0 is not a unique
range set for meromorphic functions for any n; see [3]. Therefore, whether or not
the zero set of a polynomial is a unique range set depends not only on the degree
of the polynomial, but also on the form of the polynomial. Note that up to now,
most constructions of unique range sets were zero sets of polynomials satisfying the
injectivity condition made explicit in Fujimoto’s work.

In this paper, we will construct unique range sets for meromorphic functions that
are zero sets of polynomials that do not necessarily satisfy the injectivity condition.
Moreover, for a large class of polynomials we give a necessary and sufficient con-
dition for the zero set of the polynomial to be a unique range set for meromorphic
functions.

We will let

P (z) = anzn +
m∑

i=0

aiz
i, (1 ≤ m < n, ai ∈ C and am �= 0)

be a polynomial of degree n in C[z] without multiple zeros. We will denote the
distinct roots of the derivative P ′(z) by α1, α2, ..., αl and use m1, m2, ..., ml to
denote their respective multiplicities. The number l is called the derivative index of
P (z).

A subset S of C is said to be affine rigid if no non-trivial affine transformation
of C preserves S.

Let

I = {i | ai �= 0}, λ = min{i | i ∈ I}, and J = {i− λ | i ∈ I}.
Our main results are as follows.
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Theorem 1. Let

P (z) = anzn +amzm +am−1z
m−1 +· · ·+a0, (1 ≤ m < n, ai ∈ C and am �= 0)

be a polynomial of degree n with only simple zeros, and let S be its zero set. If
n ≥ max{m + 4, 2l + 7}, then the following statements are equivalent:

(i) S is unique range set for meromorphic functions.
(ii) P is a strong uniqueness polynomial for meromorphic functions.
(iii) S is affine rigid.
(iv) The greatest common divisors of the indices respectively in I and J are

both 1.

Theorem 2. Let P (z) = anzn + amzm + am−1z
m−1 + · · ·+ apz

p + a0 with
n > m > p, with ai ∈ C and with amapa0 �= 0 be a polynomial of degree n with
only simple zeros, and let S be its zero set. Assume that n > 8 + 2m and p ≥ 4.
Then the following statements are equivalent:

(i) S is unique range set for meromorphic functions.
(ii) P is a strong uniqueness polynomial for meromorphic functions.
(iii) S is affine rigid.
(iv) The greatest common divisor of the indices in I is 1.

2. SOME STANDARD NOTATION IN NEVANLINNA’S THEORY

We recall some standard notation in Nevanlinna’s theory.
Let f be a meromorphic function on D(R), the disk of radius 0 < R ≤ ∞

centered at the origin. Denote the number of poles of f on the closed disc D(r),
r < R, by n(f, r) and n1(f, r), counting multiplicity and without multiplicity,
respectively. The counting function N (f, r) and the truncated counting function
N1(f, r) are defined, respectively by

N (f, r) = n(f, 0) log r +
∫ r

0
(n(f, t)− n(f, 0))

dt

t

and
N1(f, r) = n1(f, 0) log r +

∫ r

0

(n1(f, t) − n1(f, 0))
dt

t
.

Here n(f, 0) is the order of any pole of f at z = 0, and n1(f, 0) is 1 if f has a
pole at z = 0 and is 0 otherwise. The Nevanlinna characteristic function T (f, r)
is defined by

T (f, r) = m(f, r) + N (f, r),
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where m(f, r) is the proximity function defined by

m(f, r) =
∫ 2π

0
log+ |f(reiθ)| dθ

2π
.

We will use Nevanlinna’s second main theorem as follows.

Truncated Second Main Theorem. Let a1, a2, ..., aq be a set of distinct com-
plex numbers. Let f be a non-constant meromorphic function on C. Then

(q − 2)T (f, r) ≤
q∑

j=1

N1(
1

f − aj
, r) + O(logT (f, r)),

for r → ∞, except for r in a set of finite Lebesque measure.

3. PROOF OF THEOREM 1

To prove Theorem 1, we need the following lemmas.

Lemma 1. Let P (z) = zn +
∑n

i=n−m an−iz
n−i (1 ≤ m < n, ai ∈ C and

am �= 0) be a polynomial of degree n. Assume that f and g are non-constant
meromorphic functions such that, for some constants c 0 �= 0 and c1,

1
P (f)

=
c0

P (g)
+ c1.

If n ≥ max{m + 4, 7}, then c1 = 0.

Proof. Assume that c1 �= 0. Consider the polynomial

Q(z) = P (z) +
c0

c1
.

Let Q(z) have k distinct zeros e1, . . . , ek with multiplicities n1, . . . , nk respectively,
i.e., Q(z) = (z − e1)n1 . . . (z − ek)nk . We have

P (g)
c1P (f)

= P (g) +
c0

c1
= Q(g) = (g − e1)n1 . . . (g − ek)nk .(1)

Since c1 �= 0, f and g have no common poles. Therefore, if z0 ∈ C is a zero of
g − ei for some 1 ≤ i ≤ k, then z0 is a pole of f . Moreover, from (1) we have
ni ordz0(g− ei) = n ordz0(

1
f ), where the notation ordzf denotes the multiplicity of
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z such that f(z) = 0 for a meromorphic function f , with ordzf negative indicating
a pole at z. This implies

ordz0(g − ei) =
n

ni
ordz0(

1
f

) ≥ n

ni
.(2)

Applying the Second Main Theorem for g and e1, . . . , ek, we have

(k − 2)T (g, r) ≤
k∑

i=1

N1(
1

g − ei
, r) + O(logT (g, r))

≤
k∑

i=1

ni

n
T (g, r) + O(logT (g, r))

≤
∑k

i=1 ni

n
T (g, r)+ O(logT (g, r))

≤ T (g, r)+ O(logT (g, r)),

which implies k − 3 ≤ 0.

Case 1. k = 1.
We have P (z) = (z − e1)n − co

c1
which contradicts the hypothesis that the

coefficient in front of the term zn−1 in P (z) is zero. Therefore k �= 1.

Case 2. k = 2.
We have

P (z) = (z − e1)n1(z − e2)n2 − co

c1

=zn−(n1e1+n2e2)zn−1+
(
n1n2e1e2+

n1(n1 − 1)
2

e2
1+

n2(n2 − 1)
2

e2
2

)
zn−2

+ lower degree terms in z.

Therefore, by the hypothesis that P (z) neither has a term of degree n − 1 nor a
term of degree n − 2, we have

n1e1 + n2e2 = n1n2e1e2 +
n1(n1 − 1)

2
e2
1 +

n2(n2 − 1)
2

e2
2 = 0,

which contradicts e1, e2 �= 0 and n1, n2 are positive. Hence k �= 2.

Case 3. k = 3.
We will state this case as a separate lemma to be used again later.
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Lemma 2. Let Q(z) = (z − e1)n1(z − e2)n2(z − e3)n3 be a polynomial of
degree n where n1n2n3 �= 0 and e1, e2 and e3 are distinct complex numbers. If
there exist non-constant meromorphic functions f and g such that

(g − e1)n1(g − e2)n2(g − e3)n3 = hfn,

for some meromorphic function h which does not vanish on the zero sets of g− e i,
i = 1, 2, 3, then only one of the following holds:

n1 = n2 = n3 =
n

3
; or n1 =

n

2
and n2 = n3 =

n

4
; or

n1 =
n

2
and n2 =

n

3
and n3 =

n

6
.

Proof of Lemma 2. Write n = αiβi and ni = αiγi, where (βi, γi) = 1,

βi > γi ≥ 1, for i = 1, 2, 3.
Assume z0 is a zero of g − ei, for some i = 1, 2, 3. By the hypothesis Q(g) =

hfn we have ordz0(g − ei) = n
ni

ordz0(f) = βi
γi

ordz0(f) ≥ βi.
We will consider the following cases.

(i) All of β1, β2, β3 ≥ 3 and one of them is at least 4; assume that β3 ≥ 4.
In this case, ordz0(g−e3) ≥ β3 ≥ 4, and ordz0(g−ei) ≥ βi ≥ 3 for i = 1, 2.
Hence, applying the Second Main Theorem to the function g and the complex
numbers e1, e2, e3, we have

T (g, r) ≤ (
1
3

+
1
3

+
1
4
)T (g, r)+ O(logT (g, r)),

which is impossible.
(ii) β1 = β2 = β3 = 3.

Since βi > γi we have γi = 1 or 2. Assume that there exists an i, so without
loss of generality i = 1, such that γ1 = 2, then n1 = 2n

3 , which contradicts
the fact that n1 + n2 + n3 = n and n1n2n3 �= 0. Therefore γi = 1 for
i = 1, 2, 3 and hence n1 = n2 = n3 = n

3 .
(iii) There exists at least one i, so without loss of generality i = 1, such that

β1 = 2.
By 2 = β1 > γ1, we have γ1 = 1 and hence n1 = n

2 . Since

n1 + n2 + n3 = n and n2n3 �= 0,

we have β2, β3 ≥ 3.

If β2, β3 ≥ 5 then the Second Main Theorem implies that

T (g, r) ≤ (
1
2

+
1
5

+
1
5
)T (g, r)+ O(logT (g, r)),
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which is impossible.
If there exists i, so without loss of generality i = 2, such that β2 = 4 then
γ2 = 1 or 3. If γ2 = 3 then n2 = 3n

4 which is impossible since we would
then have n1 + n2 + n3 > n1 + n2 = n

2 + 3n
4 > n. Therefore γ2 = 1, which

means n2 = n
4 and hence n3 = n

4 .
If there exists i, so without loss of generality i = 2, such that β2 = 3. Then,
similarly we have γ2 = 1, and hence n2 = n

3 , and hence n3 = n
6 .

We now continue to prove Lemma 1.
When k = 3, by Lemma 2, we only have to consider the three following cases:
The first case is when Q(z) = (z − e1)

n
3 (z − e2)

n
3 (z − e3)

n
3 which implies

P (z) = (z − e1)n1(z − e2)n1(z − e3)n1 − co
c1

. In this case, e1 �= 0, otherwise P (z)
has a term of degree n − 1 or n − 2 in z. On the other hand, since P (z) does not
have a term of degree n − 1, we may assume e1 = 1, e3 = −1 − e2. We have

P (z) = (z − 1)n1(z − e2)n1(z + 1 + e2)n1 − co

c1

=
(
z3 − (e2

2 + e2 + 1)z + e2(e2 + 1)
)n1 − co

c1
.

In multiplying out the n1-th power, the only way to get a term of degree 3n1 − 2
is to multiply the z3 term n1 − 1 times and the z term once. Since there are n1

ways to do this, after multiplying out, the coefficient in front of z3n1−2 is n1 times
the coefficient in front of z inside the product. Therefore, it is −n1(e2

2 + e2 + 1).
Similarly, the only way to get a term of degree 3n1 − 3 is to multiply the z3 term
n1 − 1 times and the constant term once. Again, there are n1 ways to do this, and
so the coefficient in front of z3n1−3 after multiplying out is n1 times the constant
term inside the product, which is n1(e2

2 + e2). Thus, we have

P (z) = z3n1 − n1(e2
2 + e2 + 1)z3n1−2 + n1(e2

2 + e2)z3n1−3+
+ terms of lower degree.

By the hypothesis that P (z) does not have terms of degree n − 2 nor n − 3, we
have

e2
2 + e2 + 1 = e2

2 + e2 = 0,

which is impossible.
The second case is when P (z) = Q(z)− co

c1
= (z−e1)2v(z−e2)v(z−e3)v− co

c1
,

with v = n
4 . Since P (z) does not have a term of degree n − 1 nor n − 2 in z we

have e1 �= 0 and we may assume e1 = 1, e3 = −2 − e2. Hence, we have

P (z) = (z − 1)2v(z − e2)v(z + 2 + e2)v − co

c1

=
(
z4 − (e2

2 + 2e2 + 3)z2 + (2e2
2 + 4e2 + 2)z − e2

2 − 2e2

)v − co

c1
.
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In multiplying out the v-th power, the only way to get a term of degree 4v− 2 is to
multiply the z4 term v−1 times and the z2 term once. Since there are v ways to do
this, after multiplying out, the coefficient in front of z4v−2 is v times the coefficient
in front of z2 inside the product. Similarly, the only way to get a term of degree
4v − 3 is to multiply the z4 term v − 1 times and the z term once. Again, there are
v ways to do this, and so the coefficient in front of z4v−3 after multiplying out is v
times the coefficient in front of z inside the product. Thus, we have

P (z) = z4v − v(e2
2 + 2e2 + 3)z4v−2 + v(2e2

2 + 4e2 + 2)z4v−3+
+ terms of lower degree.

By the hypothesis that P (z) does not have terms of degree n − 2 nor n − 3, we
have

e2
2 + 2e2 + 3 = 2e2

2 + 4e2 + 2 = 0,

which is impossible.
The last case is when Q(z) = (z − e1)

n
2 (z − e2)

n
3 (z − e3)

n
6 . In this case,

we have P (z) = Q(z) − co
c1

= (z − e1)3v(z − e2)2v(z − e3)v − co
c1

, with v = n
6 .

Similar to the above case, we may assume without loss of generality that e1 = 1,
e3 = −3 − 2e2. Then, we have

P (z) =
(
(z − 1)3(z − e2)2(z + 3 + 2e2)

)v − co

c1

=
(
z6 − (3e2

2 + 6e2 + 6)z4 + (2e3
2 + 12e2

2 + 18e2 + 8)z3 + . . .
)v

= z6v − v(3e2
2 + 6e2 + 6)z6v−2 + v(2e3

2 + 12e2
2 + 18e2 + 8)z6v−3

+ terms of lower degree.

Therefore

3e2
2 + 6e2 + 6 = 2e3

2 + 12e2
2 + 18e2 + 8 = 0,

which is impossible.
We conclude that k �= 3.
Therefore c1 = 0, and the proof of the Lemma 1 is complete.
Lemma 3. (Theorem 6.8, [8]). Let S = {a1, a2, . . . , an} be a finite set in C

and P (z) = (z − a1)(z − a2) . . . (z − an). Assume that f and g are non-constant
meromorphic functions such that E(f, S) = E(g, S). If n ≥ 2l+7 then there exist
constants c0 ∈ C

∗ and c1 such that

1
P (f)

=
c0

P (g)
+ c1.
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A polynomial P (z) with coefficients in C is called a uniqueness polynomial
for F if the condition P (f) = P (g) for f, g ∈ F implies that f ≡ g; P is
called a strong uniqueness polynomial if the condition P (f) = cP (g) for f, g ∈ F
and some non-zero constant c implies that c = 1 and f ≡ g. The readers can
find some related results in, for example, [2] and [7] for polynomials satisfying
the injectivity condition and also in [3] for polynomials that need not satisfy the
injectivity condition.

The following lemma is implied directly from [3, Theorem 1], [3, Proposition
3.1] and [3, Proposition 4.1].

Lemma 4. Let

P (z) = anzn +
n∑

i=n−m

an−iz
n−i (0 ≤ m < n, ai ∈ C and an, am �= 0)

be a polynomial of degree n. Let I = {i | ai �= 0}, λ = min{i | i ∈ I} and
J = {i− λ | i ∈ I}. If n ≥ m + 4, then the following statements are equivalent:

(i) P is a strong uniqueness polynomial for meromorphic functions.
(ii) S is affine rigid.
(iii) The greatest common divisor of the indices in I is 1 and the greatest common

divisor of the indices in J is also 1.

Proof of Theorem 1. By Lemma 4, it is enough to prove that (i) is equivalent
to (ii).

Assume that (i) holds, and assume that there are non-constant meromorphic
functions f and g such that P (f) = cP (g) for some non-zero constant c. Let
S = {a1, . . . , an} be the zero set of P (z). For i, 1 ≤ i ≤ n, assume that f(z0) = ai

with multiplicity α then, by P (f) = cP (g), there is j, 1 ≤ j ≤ n such that
g(z0) = aj with multiplicity α. Therefore E(f, S) = E(g, S). By the assumption
S is a unique range set for meromorphic functions, we have f = g. Therefore, P
is a strong uniqueness polynomial for meromorphic functions.
For the converse, assume that there exist non-constant meromorphic functions f and
g such that E(f, S) = E(g, S). Since n ≥ max{m+4, 2l+7} ≥ 2l+7, Lemma 3
implies that there exist constants c0 ∈ C

∗ and c1 such that 1
P (f) = c0

P (g) +c1. On the
other hand, Lemma 1 and the assumption n ≥ max{m+4, 2l+7} ≥ max{m+4, 7}
imply c1=0. Therefore c0P (f) = P (g) which implies f = g because of P is a
strong uniqueness polynomial for meromorphic functions.

4. PROOF OF THEOREM 2

The following lemmas will be needed in the proof of our second theorem.
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Lemma 5. (see [14]). Let gj(x0, . . . , xs) be a homogeneous polynomial of
degree δj for 0 ≤ j ≤ s. Suppose there exists a holomorphic map f : C −→ P

s so
that its image lies in the curve described by

s∑
j=0

x
n−δj

j gj(x0, . . . , xs) = 0, and n > (s + 1)(s− 1) +
s∑

j=0

δj.

Then the polynomials

xn−δ1
1 g1(x0, . . . , xs), . . . , xn−δs

s gs(x0, . . . , xs)

are linearly dependent on the image of f .

Proof. [Proof of Theorem 2]. By Lemma 4, it is enough to prove that (i) is
equivalent to (iv).

If the assertion (i) holds then similarly as in the proof of Theorem 1, the asser-
tion (ii) holds. By Lemma 4, it means (iv) holds.

Now, we will prove that (iv) implies (i). Let S = {a1, . . . , an} be the distinct

zeros set of P (z). Let f =
f1

f2
, g =

l1
l2

be non-constant meromorphic functions

such that Ef(S) = Eg(S), where (f1, f2) and (l1, l2) are pairs of entire functions
without common zeros. Then there exists an entire function h such that

(f1 − a1f2) . . .(f1 − anf2) = eh(l1 − a1l2) . . .(l1 − anl2).

Put g1 = e
l
n l1, g2 = e

l
n l2, and define Φ = (f1, f2, g1, g2). Hence

fn
1 + fn−m

2

n∑
i=n−m

an−if
n−i
1 f i

2 − gn
1 − gn−m

2

n∑
i=n−m

an−ig
n−i
1 gi

2 = 0.(3)

Applying Lemma 5 in the case s = 3, δ0 = δ2 = 0, δ1 = δ3 = m and n > 8 + 2m,
we may assume without loss of generality that there are constants α1, α2, α3, not
all are zero, such that

α1f
n
1 + α2f

n−m
2

n∑
i=n−m

an−if
n−i
1 f i

2 + α3g
n
1 = 0.

We consider the possible cases:

Case 1. α1α2α3 �= 0.
Using again Lemma 5 (with s = 2, δ0 = δ2 = 0, δ1 = m), we obtain

α′
1f

n
1 + α′

2f
n−m
2

n∑
i=n−m

an−if
n−i
1 f i

2 = 0,
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where not all α′
i are zeros. This implies that f is constant.

Case 2. α3 = 0, which implies f must be constant.

Case 3. α1 = 0. Clearly, α2α3 �= 0. Then

α2f
n−m
2

n∑
i=n−m

an−if
n−i
1 f i

2 = −α3g
n
1 .

Dividing the above equation by fn
2 and recalling that f = f1

f2
, we have

fn−m
(
amfm + am−1f

m−1 + · · ·+ a0

)
= −α3

α2

(g1

f2

)n
.

Let e1, . . . , eq be the distinct zeros with multiplicity n1, . . . , nq respectively of

Q(z) = amzm + am−1z
m−1 + · · ·+ a0.

Then

fn−m(f − e1)n1 . . . (f − eq)nq = −α3

α2

(g1

f2

)n
.

By the hypothesis a0 �= 0, we have ei �= 0, and since m > p ≥ 4, we have
q ≥ 2. On the other hand, by the same argument as in the beginning of the proof of
Lemma 1, we have q ≤ 2. Therefore q = 2. By Lemma 2, if q = 2 then one of the
following cases must hold: n − m = n

2 ; n − m = n
3 ; n − m = n

4 ; or n − m = n
6 .

All of these cases contradict the hypothesis n > 2m + 8. Therefore f is constant.

Case 4. α2 = 0. It is clear that α1α3 �= 0. Furthermore,

αf1 = g1,

where αn =
α1

α3
. From (3) we have

(1 − α)anfn
1 + fn−m

2

n∑
i=n−m

an−if
n−i
1 f i

2 − gn−m
2

n∑
i=n−m

an−iα
n−ifn−i

1 gi
2 = 0.

If α �= 1, then using Lemma 5 for δ0 = 0, δ1 = δ2 = m, s = 2 we obtain that
fn
1 and fn−m

2

∑m
i=0 aif

i
1f

m−i
2 are linearly dependent, and hence f is constant. This

is a contradiction. Therefore, α = 1 and

anfn
1 + fn−m

2

n∑
i=n−m

an−if
n−i
1 f i

2 = angn
1 + gn−m

2

n∑
i=n−m

an−ig
n−i
1 gi

2.
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Consider the polynomial

H(z) = a0h
n
1 + aph

n−p
1 + · · ·+ amhn−m

1 + an.

Divide both sides of the above equation by fn
1 = gn

1 to get

H

(
1
f

)
= H

(
1
g

)
.(4)

On the other hand, since the hypothesis that the greatest common divisor of the
indices in I = {i | ai �= 0} is 1, we have that the greatest common divisor of the
indices in K := {n − i | ai �= 0} is also 1. From an �= 0, we have

min{n − i | n − i ∈ K} = 0.

Thus, we can apply Lemma 4 with p ≥ 4 to get that H(z) is a strong uniqueness
polynomial for meromorphic functions. Therefore from (4), we have f = g.
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