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ON SOME SEMILINEAR ELLIPTIC PROBLEMS WITH SINGULAR
POTENTIALS INVOLVING SYMMETRY

Hoang Quoc Toan and Nguyen Thanh Chung

Abstract. This paper deals with the existence and multiplicity of solutions
for a class of semilinear elliptic problems of the form




−∆u =
µ

|x|2u + f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω = Ω1 × Ω2 ⊂ R
N (N � 5) is a bounded domain having cylindrical

symmetry, Ω1 ⊂ R
m is a bounded regular domain and Ω2 is a k−dimensional

ball of radius R, centered in the origin and m + k = N , and m � 2, k � 3,
0 � µ < µ� =

(
N−2

2

)2. The proofs rely essentially on the critical point
theory tools combined with the Hardy inequality.

1. INTRODUCTION AND PREMILINARIES

In this paper, we are concerned with the semilinear elliptic problems with sin-
gular potentials of the form

(1.1)




−∆u =
µ

|x|2u + f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N (N � 3) is a bounded domain containing the origin with smooth

boundary ∂Ω and µ is a parameter. Such problems were intensively studied in many
works, in which the authors were usually interested in the singular critical growth
case (see [2, 9] and [15]) or combining a critical Sobolev-Hardy exponent with a
Hardy-type term (see [11] and [12]). In [13], A. Kristály et al. considered problem
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(1.1) in the case f(x, u) = f(u) is sublinear at infinity. Then they obtained at least
two nontrivial weak solutions using a recent result by G. Bonanno [4]. We also
find that in [7], N. T. Chung studied problem (1.1) under condition that f(x, u)
is a sign-changing Carathéodory function. Using the Minimum principle combined
with the Mountain pass theorem by A. Ambrosetti and P.H. Rabinowitz [1] he gave
some existence and nonexistence results for (1.1).

In the present paper, we shall investigate problem (1.1) in the case when the
domain Ω = Ω1 × Ω2 ⊂ R

N (N � 5), Ω1 ⊂ R
m (m � 2) is a bounded regular

domain and Ω2 is a k−dimensional ball of radius R ( k � 3), centered in the
origin and m + k = N , the parameter µ satisfies the condition 0 � µ < µ� with
µ� =

(
N−2

2

)2 is the best constant in the Hardy inequality, i.e.

(1.2)
∫

Ω

|u|2
|x|2dx � 1

µ�

∫
Ω

|∇u|2dx

for all u ∈ H1
0 (Ω). Our paper is motivated by the interesting results in [5], [6]

and [10], in which the authors studied the effect of the topology of the domain on
the existence of nodal solutions of elliptic problems with critical nonlinearity in a
symmetric domain, but the key in our arguments is a compactness result due to W.
Wang [18] (see Lemma 1.5).

Let H1
0 (Ω) be the usual Sobolev space under the norm ‖u‖ =

(∫
Ω |∇u|2dx

)1
2

and define the subspace H 1
0,s(Ω) by

H1
0,s(Ω) =

{
u ∈ H1

0 (Ω) : u(x1, x2) = u(x1, |x2|), ∀x = (x1, x2) ∈ Ω
}

,

which is a closed subspace H 1
0 (Ω).

First, we consider problem (1.1) in the case when f(x, u) = h(x)|u|q−2u with
h(x) = |x2|l for all x = (x1, x2) ∈ Ω1 ×Ω2, and l is a positive real number. Then
the problem becomes

(1.3)




−∆u =
µ

|x|2u + h(x)|u|q−2u in Ω,

u = 0 on ∂Ω.

Throughout this paper we always assume that the constant q verifies the following
inequalities

(1.4) 2 < q < 2� + τ, 2� =
2N

N − 2
, τ =

2
N − 2

min{2(k − 2)
m

, l}.

This says that the problem considered here contains the subcritical, critical and
supercritical cases. So, the results of our paper are better than those in [5], [6] and
[10]. If µ = 0 then problem (1.3) is a model of Hénon equation in a cylindrically
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symmetric domain. Regarding the Hénon equations, we refer the readers to some
works [3], [16] and [17].

Definition 1.1. We say that a function u ∈ H1
0,s(Ω) is a weak solution of

problem (1.3) if and only if
∫

Ω

∇u · ∇ϕdx−
∫

Ω

µ

|x|2uϕdx −
∫

Ω

h(x)|u|q−2uϕdx = 0

for all ϕ ∈ H1
0,s(Ω).

The first result of ours is given by the following theorem.

Theorem 1.2. Assume that relation (1.4) is satisfied, then problem (1.3) has at
least one nontrivial weak solution, provided that 0 � µ < µ �.

Next, a natural question is to see what happens if the above problem is affected
by a certain perturbation. For this purpose, we shall consider the perturbed problem
for (1.3), in which f(x, u) = h(x)|u|q−2u +g(x), i.e.

(1.5)




−∆u = µ
|x|2u + h(x)|u|q−2u + g(x) in Ω,

u = 0 on ∂Ω,

where g is a function which belongs to the dual space of H 1
0,s(Ω), denoted by

H−1
0,s (Ω).

Definition 1.3. We say that a function u ∈ H1
0,s(Ω) is a weak solution of

problem (1.5) if and only if
∫

Ω

∇u · ∇ϕdx−
∫

Ω

µ

|x|2uϕdx −
∫

Ω

h(x)|u|q−2uϕdx −
∫

Ω

g(x)ϕdx = 0

for all ϕ ∈ H1
0,s(Ω).

We obtain a multiplicity result for problem (1.5) as follows.

Theorem 1.4. Assume that relation (1.4) is satisfied, then for any 0 � µ < µ �,
there exists a constant εµ > 0 depending on µ, such that for any g ∈ H −1

0,s (Ω)
with 0 < ‖g‖−1 < εµ, problem (1.5) has at least two nontrivial weak solutions.
Moreover, we have εµ → 0 as µ → µ�.
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Due to the special geometry of the domain Ω in our problems, in order to prove
the above theorems, we need to recall a recent compactness result by W. Wang [18]
which is stated in the following lemma.

Lemma 1.5. (see [18, Theorem 2.4]). Assume that Ω = Ω1×Ω2 and dim(Ω1) =
m � 2, dim(Ω2) = k � 3, then the embedding

(1.6) H1
0,s(Ω) ↪→ Lq(h, Ω), q ∈ (1, 2� + τ), τ =

2
N − 2

min{2(k − 2)
m

, l}

is compact, where Lq(h, Ω) is the usual Lebesgue’s space with weighted h.

2. PROOF OF MAIN RESULTS

In our arguments, the proof of Theorem 1.4 contains the existence result which
is stated as in Theorem 1.2. So, for the sake of brevity, we will deal with only
problem (1.5) in detail. We first define the functional J : H 1

0,s(Ω) → R by

(2.1) J(u) =
1
2

∫
Ω

[
|∇u|2 − µ

|x|2 |u|
2

]
dx − 1

q

∫
Ω

h(x)|u|qdx −
∫

Ω
g(x)udx,

for all u ∈ H1
0,s(Ω).

By Lemma 1.5, a simple computation implies that the functional J is well-
defined and of C1 class on H1

0,s(Ω) and we have

DJ(u)(ϕ) =
∫

Ω

[
∇u · ∇ϕ− µ

|x|2uϕ

]
dx −

∫
Ω

h(x)|u|q−2uϕdx −
∫

Ω
g(x)ϕdx

for all u, ϕ ∈ H1
0,s(Ω). Thus, weak solutions of problem (1.5) are exactly the critical

points of the functional J . The following lemma shows that the functional J has
the geometry of the Mountain pass theorem [1].

Lemma 2.1.

(i) For any µ ∈ [0, µ�), there exist εµ > 0 (depends on µ), η > 0, and α > 0
such that J(u) � α for all u ∈ H 1

0,s(Ω) with ‖u‖ = η, provided that
0 < ‖g‖−1 < εµ. Moreover, we have εµ → 0 as µ → µ�.

(ii) For η > 0 as in (i), there exists e ∈ H 1
0,s(Ω) such that ‖e‖ > η and J(e) < 0.

Proof. (i) For any ε > 0, using Young’s inequality we deduce that
∣∣∣∣
∫

Ω
g(x)udx

∣∣∣∣ � ‖g‖−1‖u‖ � ε2

2
‖u‖2 +

1
2ε2

‖g‖2
−1,
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for all u ∈ H1
0,s(Ω).

Hence, by Lemma 1.5 and the Hardy inequality (1.2), it follows that for any
ε > 0 and for all u ∈ H1

0,s(Ω) we obtain that

J(u) =
1
2

∫
Ω

[
|∇u|2 − µ

|x|2 |u|
2

]
dx − 1

q

∫
Ω

h(x)|u|qdx−
∫

Ω
g(x)udx

�
(

1
2
− µ

2µ�

)
‖u‖2 − 1

qCq
q
‖u‖q − ε2

2
‖u‖2 − 1

2ε2
‖g‖2

−1

=
(

µ�(1− ε2) − µ

2µ�
− 1

qCq
q
‖u‖q−2

)
‖u‖2 − 1

2ε2
‖g‖2

−1

(2.2)

where Cq is the best constant in the embedding H 1
0,s(Ω) ↪→ Lq(h, Ω) and µ� =(

N−2
2

)2 is the best constant in the Hardy inequality.
For each µ ∈ [0, µ�), by fixing ε ∈

(
0,

√
1 − µ

µ�

)
, we can find η > 0, εµ > 0

and α > 0 such that the conclusion of the lemma holds true. For example, we can
take

η =
(
MqCq

q

) 1
q−2 , εµ = εM

q
2(q−2)

(
qCq

q

) 1
q−2 , α =

1
2
M

q
q−2 (qCq

q )
2

q−2 ,

where
M =

µ�(1 − ε2) − µ

4µ�
> 0.

Now, let µ → µ� =
(

N−2
2

)2 we deduce since ε ∈
(
0,

√
1 − µ

µ�

)
that ε → 0 and

then εµ → 0.
(ii) Let ϕ0 ∈ C∞

0 (Ω) ∩ H1
0,s(Ω) such that

∫
Ω h(x)|ϕ0(x)|qdx > 0. Then for

any t > 0 and for all 0 � µ < µ� we obtain that

J(tϕ0) =
t2

2

∫
Ω
|∇ϕ0|2dx − µ

t2

2

∫
Ω

|ϕ0|2
|x|2 dx − tq

q

∫
Ω

h(x)|ϕ0|qdx − t

∫
Ω

g(x)ϕ0dx

� t2

2

∫
Ω
|∇w0|2dx − tq

q

∫
Ω

h(x)|ϕ0|qdx− t

∫
Ω

g(x)ϕ0dx,

which approaches −∞ as t → +∞ since q > 2. Thus, the lemma holds true.

Lemma 2.2. For any µ ∈ [0, µ�), the functional J satisfies the Palais-Smale
condition in H 1

0,s(Ω).

Proof. Let {un}be a Palais-Smale sequence for the functional J inH1
0,s(Ω), i.e.

(2.3) J(un) → c, DJ(un) → 0 in H−1
0,s (Ω) as n → ∞.
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We shall prove that the sequence {un} is bounded in H 1
0,s(Ω). Indeed, we assume

by contradiction that ‖un‖ → ∞ as n → ∞. Then, using relation (2.3) we deduce
that for n large enough the following inequalities hold

c + 1 + ‖un‖ � J(un) − 1
q
DJ(un)(un)

�
(

1
2
− 1

q

)∫
Ω
|∇un|2dx−

(
µ

2
− µ

q

)∫
Ω

|un|2
|x|2 dx

−
(

1 − 1
q

)∫
Ω

g(x)undx

�
(

1
2
− 1

q

)
.

(
1− µ

µ�

)
‖un‖2 −

(
1 − 1

q

)
‖g‖−1‖un‖.

(2.4)

Dividing the above inequality by ‖un‖ and letting n → ∞ we obtain a contradiction
since q > 2. This implies that the sequence {un} is bounded in H 1

0,s(Ω).
Since H1

0,s(Ω) is reflexive, there exists u ∈ H1
0,s(Ω) such that, passing to a

subsequence, still denoted by {un}, it converges weakly to u in H1
0,s(Ω). Using the

Hardy inequality 1.2 again, we have(
1 − µ

µ�

)
‖un − u‖2 � ‖un − u‖2 − µ

∫
Ω

|un − u|2
|x|2 dx

= DJ(un)(un − u) + DJ(u)(u− un)

+
∫

Ω

h(x)(|un|q−2u − |u|q−2u)(un − u)dx.

(2.5)

By Lemma 1.5 we deduce that the sequence {un} converges strongly to u in
Lq(h, Ω). Combining this with the fact that∫

Ω
h(x)(|un|q−2u − |u|q−2u)(un − u)dx

�
∫

Ω
h(x)(|un|q−1 + |u|q−1)|un − u|dx

=
∫

Ω

(
h

1
q (x)|un|

)q−1
h

1
q (x)|un−u|dx+

∫
Ω

(
h

1
q (x)|u|

)q−1
h

1
q (x)|un−u|dx

� (‖un‖q−1
Lq(h,Ω)

+ ‖u‖q−1
Lq(h,Ω)

)‖un − u‖Lq(h,Ω)

imply that

(2.6) lim
n→∞

∫
Ω

h(x)(|un|q−2u − |u|q−2u)(un − u)dx = 0.

Using relations (2.3), (2.5) and (2.6) we conclude that the sequence {un} converges
strongly to u in H1

0,s(Ω) and hence the functional J satisfies the Palais-Smale
condition in H1

0,s(Ω).
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Proof. [Proof of Theorem 1.4 completed] By Lemmas 2.1 and 2.2, all assump-
tions of the Mountain pass theorem in [1] are satisfied, then we deduce the existence
of u1 ∈ H1

0,s(Ω) as a non-trivial weak solution of (1.5) and J(u1) = c > 0. We
now prove that there exists a second weak solution u2 ∈ H1

0,s(Ω) such that u2 	≡ u1.
For η > 0 is given as in Lemma 2.1, we define the number c by

(2.7) c := inf{J(u) : u ∈ H1
0,s(Ω) with ‖u‖ � η}.

Then we have c < J(0) = 0 since g 	≡ 0. We denote by Bη(0) the closed ball of
radius η centered at the origin in H 1

0,s(Ω), i.e.

Bη(0) := {u ∈ H1
0,s(Ω) : ‖u‖ � η},

it follows that the set Bη(0) is a complete metric space with respect to the distance
dist(u, v) := ‖u− v‖ for all u, v ∈ Bη(0).

On the other hand, with the similar arguments as those used in [14, Theorem
3.2] we conclude that for all µ ∈ [0, µ�), the functional J is weakly lower semi-
continuous in H 1

0,s(Ω) and bounded from below since relation (2.2) holds true.
Let ε be such that 0 < ε < inf∂Bη(0) J − infBη(0) J . Applying Ekeland’s

variational principle [8] for the functional J : B η(0) → R, there exists a function
uε ∈ Bη(0) such that

J(uε) < inf
Bη(0)

J + ε,

J(uε) < J(u) + ε.‖u − uε‖, u 	= uε.

Since
J(uε) � inf

Bη(0)
J + ε � inf

Bη(0)
J + ε < inf

∂Bη(0)
J

it follows that uε ∈ Bη(0).
We now define the functional K : Bη(0) → R by K(u) = J(u) + ε‖u − uε‖.

It is clear that uε is a minimum point of K and thus,

(2.8)
K(uε + tϕ) − K(uε)

t
≥ 0

for t > 0 small enough and ϕ ∈ Bη(0). Relation (2.8) yields that

(2.9)
J(uε + tϕ) − J(uε)

t
+ ε‖ϕ‖ � 0.

It follows from (2.9) by letting t → 0 that DJ(uε)(ϕ) + ε‖ϕ‖ > 0 and we infer
that ‖DJ(uε)‖−1 � ε.
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From above information, we deduce that there exists a sequence {un} ⊂ Bη(0)
such that

(2.10) J(un) → c and DJ(un) → 0 in H−1
0,s (Ω) as n → ∞.

Using Lemma 2.2, we can show that {un} converges strongly to some u2 ∈ H1
0,s(Ω).

Thus, u2 is a weak solution of (1.5) and u2 is non-trivial since J(u2) = c < 0.
Finally, since J(u1) = c > 0 > c = J(u2) we have u2 	≡ u1. Theorem 1.4 is com-
pletely proved.
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