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CENSORING TECHNIQUE APPLIED TO A MAP/G/1 QUEUE WITH
SET-UP TIME AND MULTIPLE VACATIONS

Zhenzhong Zhang and Jinying Tong

Abstract. Infinite state Markov chains with block-structured transition matrix
find extensive applications in many areas, including telecommunications, and
queueing systems, for example. In this paper, we use the censoring technique
to study a MAP/G/1 queue with set-up time and multiple vacations, whose
transition matrix can be transformed to a block-Toeplitz or block-repeating
structured. Hence, we are able to relate the boundary conditions of the system
to a Markov chain of M/G/1 type. This leads to a solution of the boundary
equations, which is crucial for solving the system of differential equations. We
also provide expressions for the distribution of stationary queue length, virtual
waiting time and the busy period, respectively.

1. INTRODUCTION

There exists a large volume of references on Markov chains with repeating
transition blocks, in which the censoring technique has always been used to study
various aspects of Markov chain. For example, see Grassman and Heyman [4],
Latouche and Ramaswami [7], Zhao et al. [18], or Zhao and Liu [19] and the
references therein. References on the censoring technique are also plenty. Among
them are Grassmann and Heyman [4, 5], Latouche [6], Latouche and Ramaswami
[7], Zhao, Li and Braun [18], and Zhao, Li and Alfa [17].

In the following, let us have a review of Censoring.

Definition 1. [16]. Consider a discrete-time irreducible Markov chain {Xn; n=
1, 2, · · ·} with state space S. Let E be a non-empty subset of S. Suppose that the
successive visits of Xn to E take place at time epochs 0<n1 <n2 < · · · . Then the
process {XE

t = Xnt ; t = 1, 2, · · · } is called the censored process with censoring
set E.
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Censored Markov chains are also called the restricted, or embedded Markov
chain. Using the strong Markov property, it can be proved that the censored process
is also a Markov chain, called the censored Markov chain.

In the present paper, we aim to discuss a queueing system with Markovian arrival
process by using censoring technique. Generally, most of the analysis on queue-
ing in the past have been carried out assuming Poisson input. However, in many
applications arrival process need not be Poisson, e.g. in modern communication
systems and Asynchronous Transfer Mode (ATM) networks, arrivals to a statistical
multiplexer are correlated. Then Lucantoni [11] first introduced the Markovian Ar-
rival Process (MAP), which is a representative of correlated arrivals and includes
many familiar input processes such as Markov modulated Poisson process (MMPP),
PH-type renewal process, Poisson process etc.. Readers may refer to Latouche and
Ramaswami [7], Lee and Jeon [8], Li and Li [10], Lucantoni [11, 12], Chapter 5
in Neuts [13], Ramaswami [14] and references therein for a detailed introduction
of the MAPs.

Furthermore, queuing systems with vacations have been studied extensively re-
cent years, because of its important application to many areas including computer-
communications and manufacturing systems. For a detailed survey on queueing
systems with server vacations, one can refer to References [1-3, 6, 9, 15].

The model under consideration here is described by a MAP/G/1 queue with
set-up time and multiple vacations, whose transition matrices can be transformed
to a block-Toeplitz or block-repeating structured. Hence, we are able to establish
a connection between the solution of the boundary equations and the solution of a
Markov chain of M/G/1 type. Moreover, since the solution of the Markov chain
of M/G/1 type can be expressed in terms of the censoring technique and the RG-
factorization, this connection makes the supplementary variable method possible
for solving a type of queueing models from which the boundary equations may be
complicated to be solved.

The rest of this paper is organized as follows. The model description is given in
Section 2. The stationary differential equations of the model and their solutions are
obtained in Section 3. The expressions for the distributions of the stationary queue
length, virtual waiting time and the busy period are derived in Section 4.

2. MODEL DESCRIPTION

In this paper, we consider a single server queue with Markovian arrival of
customers.

The arrival process. We assume that the arrivals of customers are MAPs with
matrix descriptors (C, D) and, where the infinitesimal generator C + D of sizes
m × m, is irreducible and positive recurrent. Let θ be the stationary probability
vector of C + D. Then λ = θDe is the stationary arrival rate of customer, where e
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is a column vector of ones of a suitable size.
The vacations. When the server finishes serving a customer and finds the queue

empty, the server leaves for a vacation of random length V . On return from a
vacation if he finds more than one customer waiting, he takes the customer from the
head of the queue for service and continue to serve in this manner until the queue
is empty. Otherwise, he immediately goes for another vacation. The vacation time
distribution is given by

B0(x) = 1− exp
{
−
∫ x

0
µ0(t) dt

}
,

with mean 1/µ0 ∈ (0, +∞).
The set-up time. We assume that there’s a set-up time of random length U before

the service of the first customer during a busy period. The set-up time distribution
is given by

B1(x) = 1− exp
{
−
∫ x

0
µ1(t) dt

}
,

with mean 1/µ1 ∈ (0, +∞).
The service time. All customers have i.i.d. service time of random length S.

The service time distribution is given by

B2(x) = 1− exp
{
−
∫ x

0
µ2(t) dt

}
,

with mean 1/µ2 ∈ (0, +∞).
The independence. We assume that all the random variables defined above are

independent.
Throughout the rest of the paper, we denote by F (x) = 1 − F (x) the tail of

distribution function F (x). Let V (E), U (E) and S(E) denote the residual vacation
time, residual set-up time and residual service time, respectively.

3. THE DIFFERENTIAL EQUATIONS AND THE SOLUTIONS

In this section, we first introduce several supplementary variables to construct
the differential equations for the model. Then we use the censoring technique to
solve these equations. The solutions to the differential equations will be used to
obtain interesting performance measures of the system in a later section.

Let N (t) be the number of customers in the system at time t , and let J(t) be
the phase of the arrivals of customers at time t. We define the states of the server
as

I(t) =


0, if the server is on vacation with vacation time distribution B0(x),
1, if the system is setting up with set-up time distribution B 1(x),
2, if the server is working with service time distribution B2(x).
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Correspondingly, for t > 0, we define the random variable S(t) as follows:

S(t) =


the elapsed vacation time up to t, if I(t) = 0;
the elapsed set-up time up to t, if I(t) = 1;
the elapsed service time up to t, if I(t) = 2.

Then, {I(t), N (t), J(t), S(t) : t ≥ 0} is a Markov process. The state space of the
process is expressed as

Ω = {(0, k, j, x) : k ≥ 0, 1 ≤ j ≤ m, x ≥ 0}
∪{(1, k, j, x) : k ≥ 0, 1 ≤ j ≤ m, x ≥ 0}
∪{(2, k, j, x) : k ≥ 0, 1 ≤ j ≤ m, x ≥ 0}.

We write:

p0
k,i(t, x)dx = P{I(t) = 0, N (t) = k, J(t) = i, x ≤ S(t) < x + dx},

p1
k,i(t, x)dx = P{I(t) = 1, N (t) = k, J(t) = i, x ≤ S(t) < x + dx},

p2
k,i(t, x)dx = P{I(t) = 2, N (t) = k, J(t) = i, x ≤ S(t) < x + dx};

p0
k,i(x) = lim

t→+∞ p0
k,i(t, x),

p1
k,i(x) = lim

t→+∞ p1
k,i(t, x),

p2
k,i(x) = lim

t→+∞ p2
k,i(t, x);

P 0
k (x) = (p0

k,1(x), · · · , p0
k,m(x)),

P 1
k (x) = (p1

k,1(x), · · · , p1
k,m(x)),

P 2
k (x) = (p2

k,1(x), · · · , p2
k,m(x)).

If the system is stable, then the system of stationary differential equations of the
joint probability density{P 0

0 (x), P 0
k (x), P 1

k (x), P 2
k (x), k ≥ 1} can be written as:

d

dx
P 0

0 (x) = P 0
0 (x)[C − µ0(x)I ],(1)

d

dx
P 0

k (x) = P 0
k (x)[C − µ0(x)I ] + P 0

k−1(x)D, k ≥ 1;(2)

d

dx
P 1

1 (x) = P 1
1 (x)[C − µ1(x)I ],(3)

d

dx
P 1

k (x) = P 1
k (x)[C − µ1(x)I ] + P 1

k−1(x)D, k ≥ 2;(4)



Map/G/1 Queue with Set-up Time and Multiple Vacations 611

d

dx
P 2

1 (x) = P 2
1 (x)[C − µ2(x)I ],(5)

d

dx
P 2

k (x) = P 2
k (x)[C − µ2(x)I ] + P 2

k−1(x)D, k ≥ 2.(6)

The joint probability density {P 0
0 (x), P 0

k (x), P 1
k (x), P 2

k (x), k ≥ 1} should satisfy
the boundary conditions:

P 0
0 (0) =

∫ +∞

0
P 2

1 (x)µ2(x) dx +
∫ +∞

0
P 0

0 (x)µ0(x) dx;(7)

P 1
k (0) =

∫ +∞

0

P 0
k (x)µ0(x) dx, k ≥ 1;(8)

P 2
1 (0) =

∫ +∞

0
P 1

1 (x)µ1(x) dx +
∫ +∞

0
P 2

2 (x)µ2(x) dx;(9)

P 2
k (0) =

∫ +∞

0
P 1

k (x)µ1(x) dx +
∫ +∞

0
P 2

k+1(x)µ2(x) dx, k ≥ 2.(10)

and the normalization condition:

(11)

{ ∞∑
k=0

∫ +∞

0
P 0

k (x) dx+
∞∑

k=1

∫ +∞

0
P 1

k (x) dx +
∞∑

k=1

∫ +∞

0
P 2

k (x) dx

}
e=1.

In the remainder of this section, we solve equations (1)-(11). To solve equations
(1)-(6), we define

Q∗
0(z, x) =

∞∑
k=0

zkP 0
k (x), Q∗

1(z, x) =
∞∑

k=1

zkP 1
k (x), Q∗

2(z, x) =
∞∑

k=1

zkP 2
k (x).

It follows from (1) and (2) that

∂

∂x
Q∗

0(z, x) = Q∗
0(z, x)[C + zD − µ0(x)I ],

which leads to

Q∗
0(z, x) = Q∗

0(z, 0)exp{(C + zD)x −
∫ x

0

µ0(t)dt}

= Q∗
0(z, 0)exp{(C + zD)x}B̄0(x).

(12)

Similarly, it follows from (3)-(6) that

Q∗
1(z, x) = Q∗

1(z, 0)exp{(C + zD)x}B̄1(x),(13)

Q∗
2(z, x) = Q∗

2(z, 0)exp{(C + zD)x}B̄2(x).(14)
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Let us define {P (n, t), n ≥ 0, t ≥ 0} as m × m matrix whose element
(P (n, t))ij is the probability that exactly n positive customers arrive during [0, t)
and the generation process passes from phase i to phase j. These matrices satisfy
the following system of differential equations

d

dt
P (0, t) = P (0, t)C,

d

dt
P (n, t) = P (n, t)C + P (n − 1, t)D, n ≥ 1,

with P (0, 0) = I.
We define

P ∗(z, t) =
∞∑

n=0

znP (n, t), |z| ≤ 1.

Solving the above matrix differential equation, we get

P ∗(z, t) = e(C+zD)t, |z| ≤ 1, t ≥ 0.(15)

Substituting (15) into (12)-(14) respectively, gives

P 0
k (x) =

k∑
j=0

P 0
j (0)P (k − j, x)B̄0(x) = P 0

0 (0)P (k, x)B̄0(x), k ≥ 0;(16)

P 1
k (x) =

k∑
j=1

P 1
j (0)P (k − j, x)B̄1(x), k ≥ 1;(17)

P 2
k (x) =

k∑
j=1

P 2
j (0)P (k − j, x)B̄2(x), k ≥ 1.(18)

Equations (16)- (18) provide a solution for the system of differential equations
(1)-(6). Furthermore, boundary equations (7)-(10) will be used to determine the
vectors P0

k (0) for k ≥ 0, P1
k (0) for k ≥ 1 and P2

k (0) for k ≥ 1.
We define

Ak =
∫ +∞

0

P (k, x) dB̄0(x),

Bk =
∫ +∞

0

P (k, x) dB̄1(x),

Ck =
∫ +∞

0
P (k, x) dB̄2(x).

Then it follows from (7)-(10),(16)-(18) that P = P ·Π, where

P = (P 0
0 (0), P 1

1 (0), P 2
1 (0), P 1

2 (0), P 2
2 (0), · · · ),
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Π =



A0 A1 0 A2 0 · · ·
0 0 B0 0 B1 · · ·
C0 0 C1 0 C2 · · ·

0 0 0 B0 · · ·
C0 0 C1 · · ·

0 0 · · ·
C0 · · ·

. . .


.

In order to transform matrix Π to be a Toeplitz type, let Pk(0) = (P 1
k (0), P 2

k (0)),
k ≥ 1. Then P = P ·Π, where

P =
(
P 0

0 (0), P1(0), P2(0), · · ·) ,

Π =



A0 Ã1 Ã2 Ã3 · · ·
C̃0 H̃1 H̃2 H̃3 · · ·

H̃0 H̃1 H̃2 · · ·
H̃0 H̃1 · · ·

H̃0 · · ·
. . .


with

Ãk =(Ak, 0), k≥1; B−1 = 0; C̃0 =
(

0
C0

)
; H̃k =

(
0 Bk−1

0 Ck

)
, k ≥ 0.

Theorem 1. The matrix Π is irreducible, stochastic and positive recurrent.

Proof. According to the definition of A0, C̃0, Ãk and H̃k, for k ≥ 0, it is easy
to see that Π̄ is irreducible and positive recurrent.

To prove that Π̄ is stochastic, we only need to check that
∞∑

k=0

Ake = e,
∞∑

k=0

Bke =

e,
∞∑

k=0

Cke = e. Clearly, We have

∞∑
k=0

Ake =
∞∑

k=0

∫ +∞

0

P (k, x)B̄0(x)µ0(x) dxe = e,

∞∑
k=0

Bke =
∞∑

k=0

∫ +∞

0
P (k, x)B̄1(x)µ1(x) dxe = e,
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∞∑
k=0

Cke =
∞∑

k=0

∫ +∞

0
P (k, x)B̄2(x)µ2(x) dxe = e.

This completes the proof.
Let X = (x0, x1, x2, x3, · · ·) be the stationary probability vector of the matrix

Π. And let xk = (x1
k, x

2
k) for k ≥ 1, then we have
P = βX = β(x0, x1, x2, x3, · · · ),

where β is determined by (11) as

β =
1

x0L0e +
∞∑

k=1

x1
kL1e +

∞∑
k=1

x2
kL2e

,

with

L0 =
∫ +∞

0
exp{(C + D)x}B̄0(x) dx,

L1 =
∫ +∞

0

exp{(C + D)x}B̄1(x) dx,

L2 =
∫ +∞

0
exp{(C + D)x}B̄2(x) dx.

Now we use the censoring technique and the RG-factorization to solve the equation
X = XΠ for X = (x0, x1, x2, x3, · · ·). For details, readers may refer to Grassmann
and Heyman [4] and Zhao [16].

Note that the matrix Π is M/G/1 type, let

Q =



H̃1 H̃2 H̃3 · · ·
H̃0 H̃1 H̃2 · · ·

H̃0 H̃1 · · ·
H̃0 · · ·

. . .

 , Q̂ =
∞∑

n=0

Qn;

Φ0 = H̃1 + (H̃2, H̃3, · · · )Q̂(H̃T
0 , 0, · · ·)T = I − [Q̂(1, 1)]−1;(19)

G1 = [I − Φ0]−1H̃0 = Q̂(1, 1)H̃0, Gk = 0, k ≥ 2;(20)

G1,0 = Q̂(1, ·)(C̃T
0 , 0, · · ·)T = Q̂(1, 1)H̃0,(21)

Gi,0 = 0, i ≥ 2;(22)

Rj = (H̃j+1, H̃j+2, · · · )Q̂(·, 1) =
∞∑
i=1

H̃i+jG
i−1
1 [I − Φ0]−1, j ≥ 1;(23)

R0,j = (Ãj, Ãj+1, · · · )Q̂(·, 1) =
∞∑
i=0

Ãi+jG
i
1[I − Φ0]−1, j ≥ 1.(24)
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where Q̂(1, 1), Q̂(1, ·) and Q̂(·, 1) denote the (1,1)th block, the first block-row and
the first block-column of Q̂, respectively.

Remark 1. It is obvious from the above expressions that Φ0 = H̃1+
∞∑
i=1

H̃i+1G
i
1.

From Neuts [13], we know that the matrix G1 is the minimal nonnegative solution

to the matrix equation G1 =
∞∑
i=0

H̃iG
i
1, which can be numerically computed. Since

the matrix Φ0 and the R-measure Rj and R0,j for j ≥ 1 can be expressed in
terms of G1, this illustrates that all the matrices Φ 0, Rj and R0,j for j ≥ 1 can be
numerically computed in principle.

Let R∗(z) =
∞∑

k=1

zkRk, R∗
0(z) =

∞∑
k=1

zkR0,k and X∗(z) =
∞∑

k=1

zkxk. Then it

follows from (28) in Grassmann and Heyman [4] that

X∗(z) =
1− x0e

x0R
∗
0(1)[I − R∗(1)]−1e

x0R
∗
0(z)[I − R∗(z)]−1,

or

xk =
1− x0e

x0R∗
0(1)[I − R∗(1)]−1e

x0R0,k ∗
∞∑

n=0

Rn∗
k , k ≥ 1.(25)

We denote by F (x) ∗G(x) the convolution of two functions F (x) and G(x) given
by F (x) ∗G(x) =

∫ x
0 F (x−u) dG(u). We write Fn∗(x) = F (x) ∗F (n−1)∗(x) for

n ≥ 2 and define F 0∗(x) = 1.

Lemma 1. The transition probability matrix Ψ 0 of the censored Markov chain
of Π to level 0 is given by

Ψ0 = A0 +
∞∑
i=0

Ãi+1G
i
1[I −

∞∑
i=1

H̃iG
i−1
1 ]−1C̃0.(26)

Proof. It follows from (20) in Zhao [16] that

Ψ0 = A0 +
∞∑

j=1

R0,j(I − Φ0)Gj,0,

which leads to
Ψ0 = A0 +

( ∞∑
i=0

Ãi+1G
i
1G1,0

)
by using (21),(22) and (24). It follows from (19) of Zhao [16] that
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(I − Φ0)G1,0 = C̃0 +
∞∑

j=1

Rj(I − Φ0)G2,0 = C̃0,

Hence

G1,0 = (I − Φ0)−1C̃0 = [I −
∞∑
i=1

H̃iG
i−1
1 ]−1C̃0.

This completes the proof.
We now summarize the above discussion into the following theorem.

Theorem 2. For the stable system, let π0 be the stationary probability vector
of the censored Markov chain Ψ0 given in (26). Then

P 0
k (x) = P 0

0 (0)P (k, x)B̄0(x), k ≥ 0;(27)

P 1
k (x) =

k∑
j=1

P 1
j (0)P (k − j, x)B̄1(x), k ≥ 1;(28)

P 2
k (x) =

k∑
j=1

P 2
j (0)P (k − j, x)B̄2(x), k ≥ 1.(29)

where
P 0

0 (0) = βx0 =
x0

x0L0e +
∑∞

j=1(x
1
jL1 + x2

jL2)e
,

and
P 1

k (0) = βx1
k, k ≥ 1; P 2

k (0) = βx2
k, k ≥ 1.

where x1
k, x2

k, k ≥ 1 are determined by (25), and

x0 =
π0

1 + π0R∗
0(1)[I − R∗(1)]−1e

,(30)

π0 = π0Ψ0, π0e = 1.

Remark 2. For the MAP/G/1 queue with set-up time and multiple vacations,
performance measures such as the queue length, the virtual waiting time and the busy
period (see the next section) can be numerically computed in a standard manner,
once the vector sequence {xk, k ≥ 0} has been numerically obtained. We illustrate
the steps for computing {xk, k ≥ 0} as follows.

1. Compute the two matrix sequences {Ãk, k ≥ 0}, {H̃k, k ≥ 0} and the two
matrixes A0, C̃0 of the matrix Π.

2. Compute the minimal nonnegative solution G1 to the nonlinear matrix equa-
tion
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G1 =
∞∑

k=0

H̃kG
k
1

using one of the available algorithms in the literature. Readers may refer to
Neuts [13] for details.

3. Compute the R-measure {Rk} and{R0,k} according to (23) and (24), respec-
tively.

4. Compute the censored transition probability matrix Ψ0 according to (26), and
compute the stationary probability vector π0 by solving the system of equations
π0Ψ0 = π and πe = 1.

5. Compute the vector x0 according to (30).
6. Compute the vector xk for k ≥ 1 according to (25).

4. PERFORMANCE MEASURES OF THE MODEL

In this section, we consider three performance measures for the model: the
stationary queue length, the virtual waiting time and the busy period.

4.1. The stationary queue length

We write

Pk = lim
t→∞P{N (t) = k}, k ≥ 0;

P 0
k = lim

t→∞P{N (t) = k, I(t) = 0}, k ≥ 0;

P 1
k = lim

t→∞P{N (t) = k, I(t) = 1}, k ≥ 1;

P 2
k = lim

t→∞P{N (t) = k, I(t) = 2}, k ≥ 1.

Obviously,

P0 = P 0
0 ; Pk = P 0

k + P 1
k + P 2

k , k ≥ 1.

Theorem 3. If the model is stable, then
P0 = βx0M

0
0 e,

Pk = βx0M
0
ke + β

k∑
j=1

x1
jM

1
k−je + β

k∑
j=1

x2
jM

2
k−je, k ≥ 1.

where x1
j , x

2
j are determined by xj , P (k, x) is determined by (15), and
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M0
k =

∫ +∞

0

P (k, x)B0(x) dx, k ≥ 0;

M1
k =

∫ +∞

0

P (k, x)B1(x) dx, k ≥ 1;

M2
k =

∫ +∞

0
P (k, x)B2(x) dx, k ≥ 1.

Proof. It follows from (27) that

P 0
k =

∫ +∞

0
P 0

k (x) dx e = βx0M
0
ke, k ≥ 0;

and from (28) and (29) that

P 1
k =

∫ +∞

0
P 1

k (x) dx e = β

k∑
j=1

x1
jM

1
k−je, k ≥ 1;

P 2
k =

∫ +∞

0
P 2

k (x) dx e = β

k∑
j=1

x2
jM

2
k−je k ≥ 1.

This completes the proof.

4.2. The virtual waiting time

Let ξ(t) denote the virtual waiting time at instant t, which is the time that a cus-
tomer would have to wait for service, provided he had arrived at the instant t.
Obviously, ξ(t), t ≥ 0 is a random process with state set [0,∞). For the sake of
simplicity, we assume that ξ(0) = 0, i.e., the system is empty at the initial instant
0. Let

W (x, t) = P{ξ(t) < x}.
denote the distribution function of the process ξ(t).

By the definition in Section 2, we can deduce that

B(0,E)(x) = P (V (E) ≤ x) = µ0

∫ x

0
B0(x)dx,

B(1,E)(x) = P (U (E) ≤ x) = µ1

∫ x

0
B1(x)dx,

B(2,E)(x) = P (S(E) ≤ x) = µ2

∫ x

0
B2(x)dx.

We write
F0(x) = P{V (E) + U ≤ x},
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and for n ≥ 1,

F 0
n(x) = P{V (E) + U +

n∑
j=1

Si ≤ x},

F 1
n(x) = P{U (E) +

n∑
j=1

Si ≤ x},

F 2
n(x) = P{S(E)

1 +
n∑

j=2

Si ≤ x}.

Lemma 2.
F0(x) = B(0,E)(x) ∗ B1(x),

and for n ≥ 1,

F 0
n(x) = B(0,E)(x) ∗ B1(x) ∗ Bn∗

2 (x),

F 1
n(x) = B(1,E)(x) ∗ Bn∗

2 (x),

F 2
n(x) = B(2,E)(x) ∗ B

(n−1)∗
2 (x).

Proof. We can prove it easily from the mutual independency of U, V, S.

Theorem 4. If the model is stable, then the distribution of the virtual waiting
time is

W (t, x) = P0B
(0,E)(x) ∗ B1(x) +

∞∑
n=1

P 0
nB(0,E)(x) ∗ B1(x) ∗Bn∗

2 (x)

+
∞∑

n=1

P 1
nB(1,E)(x) ∗ Bn∗

2 (x) +
∞∑

n=1

P 2
nB(2,E)(x) ∗ B

(n−1)∗
2 (x).

Proof. A customer finds that the system is in one of the following four states:

1. there are no customers in the system;
2. There are n ≥ 1 customers in the system, and the system is on vacation;
3. There are n ≥ 1 customers in the system, and the system is on set-up;
4. There are n ≥ 1 customers in the system, and the system is on service.

Combining the above four cases, we obtain

W (t, x) = P0F0(x) +
∞∑

n=1

[P 0
nF 0

n (x) + P 1
nF 1

n(x) + P 2
nF 2

n(x)].

Simple manipulations to the above equation complete the proof.
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4.3. The busy period

We now provide an analysis of the busy period for the model. From the de-
scription in section 2, for the random variable V of the vacation time, we have

B0(x) = P{V ≤ x}.
We denote by T be the random variable of the inter-arrival time between two

customers, and T (E) the random variable for the equilibrium excess distributions
with respect to T . It is clear that

A(x) := P{T ≤ x} = θ

∫ x

0
exp{Ct} dt De,

and
A(E)(x) = P{T (E) ≤ x} =

1
θ(−C)−1e

∫ x

0
A(t) dt.

Let Vi be the random variable of the i-th vacation, and V̂ be the random variable
of the number of vacations during the vacation time. Then

P{V̂ = n} = P{
n−1∑
i=1

Vi < T (E) ≤
n∑

i=1

Vi}

=
∫ +∞

0
[B(n−1)∗

0 (t) − Bn∗
0 (t)] dA(E)(t).

Lemma 3. Let V be the random variable of the multiple vacations time, then

EV =
∞∑

n=1

n
1
µ0

∫ +∞

0
[B(n−1)∗

0 (t) − Bn∗
0 (t)] dA(E)(t).

Theorem 5. Let ξ be the random variable of the busy period of the system,
then

Eξ =
(1 − βx0L0e)EV

βx0L0e
.

Proof. According to the renewal theory, we can obtain
∞∑

k=0

p0
k =

EV

Eξ + EV
,

or
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Eξ =
(1−

∞∑
k=0

p0
k)EV

∞∑
k=0

p0
k

=
(1− βx0L0e)EV

βx0L0e
.

This completes the proof.

5. CONCLUSION

In the foregoing analysis, a MAP/G/1 queue with set-up time and multiple
vacations is considered to obtain analytical expressions for various performance
measures of interest. In principle, the performance measures obtained in this paper
can be numerically computed based on the matrix-analytic method.
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