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KURZWEIL-HENSTOCK INTEGRATION ON MANIFOLDS

Varayu Boonpogkrong

Abstract. In this paper, we give an alternative proof that the Kurzweil-
Henstock integral using partition of unity is equivalent to the Lebesgue inte-
gral in the n-dimensional Euclidean space. We also define and discuss the
Kurzweil-Henstock integral on manifolds.

1. INTRODUCTION

The partition of unity plays an important role in the integral on manifolds. In
[2], Kurzweil and Jarnik defined the Kurzweil-Henstock integral using the partition
of unity, called the PUL integral. They proved that the PUL integral is equivalent to
the Lebesgue integral in the n-dimensional Euclidean space. They indicated that the
PUL integral can be used for integration on manifolds without details. The classical
integral on manifolds is defined using change of variables formula. The Kurzweil-
Henstock integral is defined by Riemann sums. It is an integral of Riemann type,
see [4]. In this paper, we shall define and discuss the Kurzweil-Henstock integral
using the partition of unity on manifolds.

2. PUL INTEGRAL IN R
n

In this paper, let E denote a compact interval in R
n and |I | denote the volume

of an interval I ⊆ R
n.

A finite collection {ϕi}mi=1 of continuously differentiable functions defined on
an interval E is said to be a partial partition of unity if ϕ i(ξ) ≥ 0 for each ξ ∈ E

and for each i, and
m∑
i=1

ϕi(ξ) ≤ 1 for all ξ ∈ E . If, in addition,
m∑
i=1

ϕi(ξ) = 1 for

all ξ ∈ E , then {ϕi}mi=1 is said to be a partition of unity.
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Let ϕ be a continuously differentiable function on E . Let δ be a positive function
on E and ξ ∈ E . Then a triple (ξ, I, ϕ) is said to be δ-fine if the support of the
function ϕ is contained in the compact interval I , which is contained in an open
ball with center ξ and radius δ(ξ), i.e., supp ϕ ⊆ I ⊂ Bδ(ξ)(ξ), where supp ϕ is
the closure of the set {x : ϕ(x) �= 0}. Note that ξ may not be contained in supp ϕ.

Let D = {(ξi, Ii, ϕi)}mi=1 be a finite collection of triples. Then D is said to be
a δ-fine partial division of E if {ϕ i}mi=1 is a partial partition of unity and for each
i, (ξi, Ii, ϕi) is δ-fine. In addition, if {ϕi}mi=1 is a partition of unity, then D is said
to be a δ-fine division of E . Note that {Ii}mi=1 may be overlapping.

The existence of δ-fine divisions of E can be proved by the open covering
theorem and the existence of a partition of unity.

Definition 2.1. [2]. Let f : E → R. Then f is said to be PUL integrable to
real number A on E if for every ε > 0, there exists a positive function δ defined
on E such that for every δ-fine division D = {(ξi, Ii, ϕi)}mi=1 of E , we have

|S(f, δ, D)−A| ≤ ε,

where
S(f, δ, D) =

m∑
i=1

f(ξi)
∫
Ii

ϕi

and
∫
Ii

ϕi is the Riemann integral of ϕi on Ii. We denote A by
∫
E
f .

The standard and basic properties of integration hold for the PUL integral. The
proofs are standard, see [4]. We shall not state them here.

The following Henstock Lemma is proved in [2].

Lemma 2.2. ([Henstock’s Lemma]). Let f : E → R be PUL integrable. Then
for every ε > 0, there exists a positive function δ defined on E such that whenever
D = {(ξi, Ii, ϕi)}mi=1 is a δ-fine division of E , we have

m∑
i=1

∣∣∣∣f(ξi)
∫
Ii

ϕi −
∫
Ii

fϕi

∣∣∣∣ ≤ ε.

Let F =
n∏
i=1

[ai, bi] be an interval in R
n and β a positive real number. In this

note, we denote, for convenience, F + β the interval
n∏
i=1

[ai − β, bi + β] and F − β

the interval
n∏
i=1

[ai + β, bi − β].
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Lemma 2.3. Let A be a subset of E and χA be the characteristic function of

A. Then
∫
E
χA = 0 if and only if A is of Lebesgue measure zero.

Proof. If χA is PUL integrable to 0 on E . Then for every ε > 0, there
exists a positive function δ defined on E such that for every δ-fine division D =
{(ξi, Ii, ϕi)}mi=1 of E , we have∣∣∣∣∣

m∑
i=1

χA(ξi)
∫
Ii

ϕi

∣∣∣∣∣ ≤ ε.

Let D′ = {(ηi, Fi)}mi=1 be a δ-fine division on E . Let β be a sufficient small
number such that for i = 1, 2, ..., m, we have Fi + β ⊆ Bδ(ηi)(ηi) and

|Fi + β| − |Fi − β| ≤ ε

2m
.

Let {ϕi}mi=1 be a partition of unity defined on E such that, ϕi = 1 on Fi − β

and zero outside Fi + β.
Hence, the division D′′ = {(ηi, Fi + β, ϕi)}mi=1 forms a δ-fine division of E .

Note that, for i = 1, 2, ...,m, the difference between |Fi| and
∫
Fi+β

ϕi, say ζi, is

not more than ε/2m. Hence,∣∣∣∣∣
m∑
i=1

χA(ηi)|Fi|
∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

χA(ηi)
[∫

Fi+β
ϕi + ζi

]∣∣∣∣∣

≤
m∑
i=1

∣∣∣ ε

2m

∣∣∣ +

∣∣∣∣∣
m∑
i=1

χA(ηi)
∫
Fi+β

ϕi

∣∣∣∣∣ ≤
ε

2
+
ε

2
= ε.

Therefore,
(L)

∫
E

χA =
∫
E

χA = 0.

Hence A is of Lebesgue measure zero.
Conversely, if A is of Lebesgue measure zero. Then χA is Lebesgue integrable

to 0 on E . Thus for every ε > 0, there exists a positive function δ defined on E
such that for every δ-fine division D = {(ηi, Fi)}mi=1 of E , we have∣∣∣∣∣

m∑
i=1

χA(ηi)|Fi|
∣∣∣∣∣ ≤ ε.

Let D′ = {(ξi, Ii, ϕi)}mi=1 be a δ-fine division of E and {Ii}mi=1 a partition of
E . Hence, the division D′′ = {(ξi, Ii)}mi=1 forms a δ-fine division of E . Note that

0 ≤
∫
Ii

ϕi ≤ |Ii|.
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Therefore, ∣∣∣∣∣
m∑
i=1

χA(ξi)
∫
Ii

ϕi

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

χA(ξi)|Ii|
∣∣∣∣∣ ≤ ε.

So,
∫
E
χA = 0.

Using the above Henstock’s Lemma, we can prove the Monotone Convergence
theorem for PUL integrals. The proof is standard, see [4, 5]. By the Monotone
Convergence theorem, we can prove Fatou’s Lemma, Dominated Convergence the-
orem and the following Mean Convergence theorem as in the theory of Lebesgue
integrals.

We shall state the Mean Convergence theorem for PUL integrals without proof.

Theorem 2.4. ([Mean Convergence Theorem]). Let {fn}∞n=1 be a sequence of

PUL integrable functions on E . If fn→f a.e. on E and
∫ b

a
|fn−fm|→0 as n,m

→∞, then f is PUL integrable on E and

lim
n→∞

∫
E
|fn − f | = 0.

3. EQUIVALENCE THEOREM

In this section, we shall give an alternative proof of the following Theorem 3.2.
The proof is natural and shorter. In [2], the theorem is proved by using lower and
upper semi-continuous functions.

Lemma 3.1. Let s be a step function defined on E . Then∫
E
s = (L)

∫
E
s,

where (L) denotes the Lebesgue integral.

Proof. By the additive property of the integral and Lemma 2.3. It is sufficient

to prove the case where s(x) = 1 all x ∈ E , i.e.,
∫
E
s = |E|.

Let D = {(ξi, Ii, ϕi)}mi=1 be a δ-fine division of E . Then
m∑
i=1

s(ξi)
∫
Ii

ϕi =
m∑
i=1

∫
Ii

ϕi =
m∑
i=1

∫
E
ϕi =

∫
E

m∑
i=1

ϕi =
∫
E

1 = |E|.

Therefore
∫
E
s = |E| = (L)

∫
E
s.
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Theorem 3.2. Let f : E → R. Then f is PUL integrable on E if and only if
f is Lebesgue integrable on E .

Proof. If f is Lebesgue integrable on E , then there exists a sequence {si}∞i=1

of step functions such that si → f a.e. on E and (L)
∫
E
|si − f | → 0 as n→ ∞.

Note that (L)
∫
E
|si−sj | =

∫
E
|si−sj |. Thus, by the Mean Convergence Theorem

for PUL integrals, f is PUL integrable on E .
Conversely, if f is PUL integrable onE . Then for each ε > 0, there exists a posi-

tive function δ defined on E such that for every δ-fine divisionD = {(ξi, Ii, ϕi)}ni=1

of E , we have ∣∣∣∣∣
n∑
i=1

f(ξi)
∫
Ii

ϕi −
∫
E
f

∣∣∣∣∣ ≤
ε

2
.

Now, let D′ = {(ηi, Fi)}mi=1 be a δ-fine division on E . Let β be a sufficient
small number such that for i = 1, 2, ..., m, we have Fi + β ⊆ Bδ(ηi)(ηi) and

|Fi + β| − |Fi − β| ≤ ε

2mM
,

where M = max
i=1,...,m

{|f(ξi)|}.

Let {ϕi}mi=1 be a partitions of unity defined on E such that, ϕi = 1 on Fi − β
and zero outside Fi + β.

Hence, the division D′′ = {(ηi, Fi + β, ϕi)}mi=1 forms a δ-fine division of E .

Note that, for i = 1, 2, ...,m, the difference between |Fi| and
∫
Fi+β

ϕi, say ζi, is

not more than ε/2mM .
Therefore,∣∣∣∣∣

m∑
i=1

f(ηi)|Fi|−
∫
E
f

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

f(ηi)
[∫

Fi+β
ϕi+ζi

]
−

∫
E
f

∣∣∣∣∣
≤

m∑
i=1

∣∣∣M ε

2mM

∣∣∣+
∣∣∣∣∣
m∑
i=1

f(ηi)
∫
Fi+β

ϕi−
∫
E
f

∣∣∣∣∣≤
ε

2
+
ε

2
= ε.

So, f is Lebesgue integrable on E .

4. CHANGE OF VARIABLE

Let A be a closed or an open set contained in a compact interval E∗ in R
r. Let

f : A→ R. Suppose fχA is integrable on E∗. Then write∫
E∗
fχA =

∫
A
f.
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The following lemma is well-known, see [1, p211].

Lemma 4.1. Let U be an open subset of a compact interval E ∗ in R
r and

ψ : U → ψ(U) be C1-diffeomorphism, i.e., ψ is one to one and both ψ and ψ −1

are of C1-class. Suppose E ⊆ ψ(U) ⊆ R
n and ϕ : E → R is continuous. Then

(R)
∫
E
ϕ = (R)

∫
ψ−1(E)

(ϕoψ) |detDψ| ,

where (R)
∫
E
ϕ represents the Riemann integral of ϕ on an intervalE and | detDψ|

or |Dψ| represents the euclidean norm of the partial derivative of ψ at x.

Now we shall prove the following change of variable. A proof is also given in
[2] in a different setting.

Theorem 4.2. ([Change of variable]). Let f : E → R be PUL integrable. Let
U be an open subset of a compact interval E ∗ in R

r. Let ψ : U → ψ(U) be
C1-diffeomorphism, and E ⊆ ψ(U) ⊆ R

n. Then (foψ) |detDψ|χψ−1(E) is PUL
integrable on E ∗ and ∫

E
f =

∫
ψ−1(E)

(foψ) |detDψ| .

Proof. Let ε > 0 be given. Then there exists a positive function δ ′ define on
E such that for every δ′-fine division D = {(ξi, Ii, ϕi)}mi=1 of E , we have

∣∣∣∣∣
m∑
i=1

f(ξi)
∫
Ii

ϕi −
∫
E
f

∣∣∣∣∣ ≤
ε

2
.

We may assume that when ξ ∈ ψ(U), Bδ′(ξ)(ξ) ⊂ ψ(U).
Now let δ be a positive function defined on E∗ such that when y ∈ ψ−1(E),

we have

(1) Bδ(y)(y) ⊂ ψ−1

(
B δ′(ψ(y))

2
√
n

(ψ(y))
)

;

when y′ ∈ Bδ(y)(y), we have

(2)
∣∣ ∣∣detDψ(y′)

∣∣ − |detDψ(y)| ∣∣ ≤ ε

2|E∗|(1 + |f(ψ(y))|) .

It can be done since | detDψ| is continuous; and when y ∈ E ∗ \ψ−1(E), we have

(3) Bδ(y)(y) ∩ E∗ ⊂ E∗ \ ψ−1(E).
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Let D′ = {(yj, Ij, σj)}qj=1 be a δ-fine division of E∗. Let D′ = D′
1∪D′

2 where
D′

1 = {(y, I, σ) ∈ D′ : y ∈ ψ−1(E)} and D′
2 = D′ \D′

1. We may assume that
D′

1 = {(yj, Ij, σj)}pj=1 and D′
2 = {(yj, Ij, σj)}qj=p+1. Note, for j = p + 1, ..., q,

supp σj ∩ ψ−1(E) = ∅. Thus for any y ∈ ψ−1(E),
q∑
j=1

σj(y) =
p∑
j=1

σj(y) +
q∑

j=p+1

σj(y) =
p∑
j=1

σj(y).

Let xj = ψ(yj) and ωj = σjoψ
−1 for j = 1, 2, ..., p. Then ωj : ψ(U) → R

n.
Recall E ⊂ ψ(U). For j = 1, 2, ..., p, there exists an interval Jj such that

supp ωjχE ⊂ B δ′(ψ(y))

2
√
n

(ψ(y))∩ E ⊂ Jj ⊂ Bδ′(ψ(y))(ψ(y))∩E.

It is clear that ωjχE is continuously differentiable function onE and
p∑
j=1

ωjχE(x) =

1 for all x ∈ E , i.e., {ωjχE}pj=1 forms a partition of unity on E .
Then {(xj, Jj, ωjχE)}pj=1 is a δ′-fine division of E . Note that supp (ωjoψ) =

supp σj ⊂ Ij . Then, by Lemma 4.1,∫
Jj

ωj =
∫
ψ−1(Jj)

(ωjoψ)| detDψ| =
∫
Ij

σj| detDψ|.
Hence∣∣∣∣∣

q∑
j=1

f(ψ(yj))| detDψ(yj)|χψ−1(E)(yj)
∫
Ij

σj −
p∑
j=1

f(xi)
∫
Jj

ωjχE

∣∣∣∣∣

=

∣∣∣∣∣
p∑
j=1

f(ψ(yj))| detDψ(yj)|
∫
Ij

σj −
p∑
j=1

f(xi)
∫
Jj

ωj

∣∣∣∣∣

=

∣∣∣∣∣
p∑
j=1

f(α(yj))| detDψ(yj)|
∫
Ij

σj −
p∑
j=1

f(α(yj))
∫
ψ−1(Jj )

ωjoψ| detDψ|
∣∣∣∣∣

=

∣∣∣∣∣
p∑
j=1

f(α(yj))| detDψ(yj)|
∫
Ij

σj −
p∑
j=1

f(α(yj))
∫
Ij

σj| detDψ|
∣∣∣∣∣

≤
p∑
j=1

|f(α(yj))|
∣∣∣∣∣
∫
Ij

σj
∣∣| detDψ(yj)| − | detDψ|∣∣

∣∣∣∣∣

≤
p∑
j=1

|f(α(yj))| ε

2|E∗|(1 + |f(α(yj))|)
∫
Ij

σj

≤ ε

2|E∗|
p∑
j=1

∫
Ij

σj ≤ ε

2
.
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Therefore,∣∣∣∣∣∣
q∑
j=1

f(ψ(yj))| detDψ(yj)|χψ−1(E)(yj)
∫
Ij

σj −
∫
E
f

∣∣∣∣∣∣ ≤
ε

2
+
ε

2
= ε.

Thus (foψ) |detDψ|χψ−1(E) is integrable to
∫
E
f .

5. INTEGRAL ON MANIFOLDS

In this section, H
n denotes the upper half space in R

n, which consists of those
(x1, x2, ..., xn) ∈ R

n for which xn ≥ 0.

Definition 5.1. A non-empty subset M of R
n is said to be an r-manifold if for

each p ∈M there exist an open subset V of M containing p, an open subset U of
R
r (or H

r) and a homeomorphism mapping α : U → V (i.e., α is bijection and
both α and α−1 are continuous) and Dα(x) has rank r for each x ∈ U . Such α is
called a chart.

If, in addition, the mapping α : U → V is C1-diffeomorphism, i.e., α is
bijection and both α and α−1 are of C1-class, then M is said to be a differentiable
r-manifold.

Definition 5.2. Let M be a manifold. A finite collection Θ = {αj} of charts,
where αj : Uj → Vj , is said to be an atlas if M =

⋃
j

Vj .

Definition 5.3. M is said to be a compact r-manifold if M is compact.

Definition 5.4. Let M ⊆ R
n be an r-manifold, α : U → V be a chart and

I ⊆ U be an interval in R
r. Let Iα = α(I), which is called a tile. Here Iα can be

viewed as a distorted r-dimensional interval.

Let D = {(xi, Iαsii , ϕi)}mi=1 be a finite collection of point-distorted interval-
function triples. Then D is said to be a division of M if {ϕi}mi=1 is a partition of
unity such that supp ϕi ⊆ I

αsi
i , where αsi is a chart in atlas Θ. Note xi may not

be contained in supp ϕi and Iαsii .
Let δ be a positive function on M and ξ ∈ M . Then a triple (x, Iα, ϕ) is said

to be δ-fine if Iα ⊆ Bδ(x)(x).
A division D = {(xi, Iαsii , ϕi)}mi=1 of M is said to be a δ-fine division of M

if each (xi, I
αsi
i , ϕi) is δ-fine, i.e., supp ϕi ⊆ I

αsi
i ⊂ Bδ(xi)(xi).

Using the open covering theorem and the existence of a partition of unity, we
can prove the following lemma.
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Lemma 5.5. Let M be a compact manifold and δ a positive function defined
on M . Then there is a δ-fine division of M .

Definition 5.6. Let M be a compact differentiable r-manifold and Θ = {αj}
an atlas of M . A function f : M → R is said to be PUL integrable to real number
A on M if for every ε > 0, there exists a positive function δ defined on M such
that for every δ-fine division D = {(xi, Iαsii , ϕi)}mi=1 of M , we have

|S(f, δ, D)− A| ≤ ε,

where
S(f, δ, D) =

m∑
i=1

f(xi)
∫
I
αsi
i

ϕi.

We denote A by
∫
M

f .

Note that in the definition, the integral is defined using an atlas Θ. We will
show that the integral does not depend on the atlas Θ.

Lemma 5.7. [2]. Let D = {(ξi, Iαsii , ϕi)}mi=1 be a partial δ-fine division of M ,

ϕ(x) =
m∑
i=1

ϕi(x) and D1 = {(ηj, J
αsj
j , ψj)}pj=1 be a δ-fine division of M . Then

D ∪D2 is a δ-fine division of M , where D2 = {(ηj, J
αsj
j , (1− ϕ)ψj)}pj=1.

Proof. A proof is given in [2, p121]. Here we write down the proof for easy
reference.

For x ∈M , we have
m∑
i=1

ϕi(x) +
p∑
j=1

(1 − ϕ)ψj(x) = ϕ(x) + 1 − ϕ(x) = 1,

that is, {ϕi}mi=1 ∪ {(1 − ϕ)ψj)}pj=1 is a partition of unity of M .
Obviously, for i = 1, 2, ...,m and j = 1, 2, ..., p, we have

supp ϕi ⊆ I
αsi
i ⊂ Bδ(ξi)(ξi) and supp (1− ϕ)ψj ⊆ supp ψj ⊆ J

αsj
j ⊂ Bδ(ηj)(ηj).

Hence D ∪D2 is a δ-fine division of M .

Theorem 5.8 (Change of variable). Let M be a compact differentiable r-
manifold with atlas Θ. Let f : M → R. Suppose there exists a chart α in Θ such
that α : U → V ⊃ supp f . If f is PUL integrable on M , then (foα)|Dα|χU is
integrable on a compact interval E , where U ⊆ E ⊆ R

n and∫
M
f =

∫
E
(foα)|Dα|χU
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Proof. Let β be a sufficient small number such that U ∗ := α−1(supp f)+β ⊂
U , where α−1(supp f) + β =

{
y ∈ U : min

y′∈ α−1(suppf)
|y − y′| ≤ β

}
.

Let ε > 0 be given. Then there exists a positive function δ′ defined on M such
that for every δ′-fine division D = {(ξi, Pαsii , ϕi)}mi=1 of M , we have

∣∣∣∣∣
m∑
i=1

f(ξi)
∫
P
αsi
i

ϕi −
∫
M

f

∣∣∣∣∣ ≤
ε

2
.

We may assume if ξ ∈ V , then Bδ′(ξ)(ξ) ⊂ V ; and if ξ ∈ supp f , then
Bδ′(ξ)(ξ) ⊂ α(U∗).

Now let δ be a positive function defined on E such that when y ∈ U ∗, we have

(4) Bδ(y)(y) ⊂ α−1
(
Bδ′(α(y))(α(y))

)
;

when y′ ∈ Bδ(y)(y) ∩ U , we have

(5)
∣∣ ∣∣detDα(y′)

∣∣ − |detDα(y)| ∣∣ ≤ ε

2|E|(1 + |f(α(y))|) .

It can be done since | detDα| is continuous; and when y ∈ E \ U ∗, we have

(6) Bδ(y)(y) ∩E ⊂ E \ U∗.

Let D′ = {(yj, Ij, σj)}qj=1 be a δ-fine division of E . Let D′ = D′
1 ∪ D′

2

where D′
1 = {(y, I, σ) ∈ D′ : y ∈ U∗} and D′

2 = D′ \D′
1. We may assume that

D′
1 = {(yj, Ij, σj)}pj=1 and D′

2 = {(yj, Ij, σj)}qj=p+1. Thus for any y ∈ U∗,

p∑
j=1

σj(y) =
p∑
j=1

σj(y) +
q∑

j=p+1

σj(y) =
q∑
j=1

σj(y) = 1.

Note that foα(yj) = 0 for j = p+1, p+2, ..., q, since yi /∈ U∗ ⊃ α−1(supp f).
That is
q∑
j=1

foα(yj)| detDα(yj)|χU(yj)
∫
Ij

σj =
p∑
j=1

foα(yj)| detDα(yj)|χU(yj)
∫
Ij

σj.

Let xj = α(yj) and ωj = σjoα
−1 for j = 1, 2, ..., p. Then ωj : V → R and

continuously differentiable on V . Note that supp ωj ⊂ V . Hence we can extend
ωj to the manifold M by letting ωj(y) = 0 if y ∈M \ V . The extended ωj is still

continuously differentiable. Let Dα = {(xj, Iαj , ωj)}pj=1. Let ω(x) =
p∑
j=1

ωj(x)

for all x ∈M . Note that ω(x) = 1 for all x ∈ α(U∗) and ω(x) = 0 if x ∈M \ V .
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Dα is a partial δ ′-fine division of M . It is not a full δ′-fine division of M .
Let D′′ = {(ξk, Pαskk , κk)}mk=1 be a δ′-fine division of M . By Lemma 5.7, D̄ =
Dα ∪ {(ξk, Pαskk , (1 − ω)κk)}mk=1 forms a full δ′-fine division of M . From the
definition of δ′, we know that for any ξk ∈ supp f ,

f(ξk)
∫
P
αsk
k

(1 − ω)κk = 0,

since 1 − ω is zero on Pαskk . Therefore
m∑
k=1

f(ξk)
∫
P
αsk
k

(1 − ω)κk = 0,

that is,
p∑
j=1

f(xj)
∫
Iαj

ωj+
m∑
k=1

f(ξk)
∫
P
αsk
k

(1−ω)κk=
p∑
j=1

f(xj)
∫
Iαj

ωj+0=
p∑
j=1

f(xj)
∫
Iαj

ωj.

Then, by Lemma 4.1, we have∣∣∣∣∣
p∑
j=1

f(α(yj))| detDα(yj)|
∫
Ij

σj −
p∑
j=1

f(xj)
∫
Iαj

ωj

∣∣∣∣∣

=

∣∣∣∣∣
p∑
j=1

f(α(yj))| detDα(yj)|
∫
Ij

σj −
p∑
j=1

f(α(yj))
∫
Ij

ωjoα| detDα|
∣∣∣∣∣

=

∣∣∣∣∣
p∑
j=1

f(α(yj))| detDα(yj)|
∫
Ij

σj −
p∑
j=1

f(α(yj))
∫
Ij

σj | detDα|
∣∣∣∣∣

≤
p∑
j=1

|f(α(yj))|
∣∣∣∣∣
∫
Ij

σj
∣∣| detDα(yj)| − | detDα|∣∣

∣∣∣∣∣

≤
p∑
j=1

|f(α(yj))| ε

1 + |f(α(yj))|
∫
Ij

σj

≤ ε

2|E|
p∑
j=1

∫
Ij

σj ≤ ε

2
.

Therefore,∣∣∣∣∣∣
q∑
j=1

foα(yj)| detDα(yj)|χU(yj)
∫
Ij

σj −
∫
M

f

∣∣∣∣∣∣ ≤
ε

2
+
ε

2
= ε.
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Hence, (foα)|Dα|χU is integrable to
∫
M
f on E .

Corollary 5.9. Let M be a compact differentiable r-manifold. If Θ and Θ ′ are
two atlas of M , then f is integrable on M associated with atlas Θ if and only if f
is integrable on M associated with atlas Θ ′. Furthermore, the values of these two
integrals are equal.

Proof. Suppose that supp f can be parameterised by one chart in both atlas,
say α ∈ Θ and α′ ∈ Θ′, where α : U → V ⊃ supp f and α′ : U ′ → V ′ ⊃ supp f .
It is clear that supp f ⊂ V ∩ V ′. Let U∗ be an intersection of U and U ′ and E a
compact interval containing U∗. By Theorem 5.8,∫

M,Θ

f =
∫
E

foα|Dα|χU∗.

By Theorem 4.2,
∫
E
foα|Dα|χU∗ =

∫
E
foαo(α−1oα′)|Dα||D(α−1oα′)|χU∗ =

∫
E
foα′|Dα′|χU∗.

Therefore, ∫
M,Θ

f =
∫
M,Θ′

f.

In general supp f may not be parameterised by one chart. We will use the
partition of unity to overcome the difficulty. Let Θ = {αi : Ui → Vi}mi=1 and
Θ′ = {α′

j : U ′
j → V ′

j}pj=1 be two atlas of M . Let Vij = Vi∩V ′
j for all i and j. Let

{ϕij}m,pi,j=1 be a partition of unity on M such that, for all i and j, supp ϕij ⊂ Vij .
Therefore,

∫
M,Θ

f =
m∑
i=1

n∑
j=1

∫
M,Θ

fϕij =
m∑
i=1

n∑
j=1

∫
M,Θ′

fϕij =
∫
M,Θ′

f.

The above corollary shows that the PUL integral does not depend on the param-
eterisation of the manifold.

Remark 5.10. In definitions 2.1 and 5.6, if, in addition, we assume ξi ∈ Ii and
xi ∈ I

αsi
i , respectively, then the integral is called the PU integral. Theorems 4.2

and 5.8 still hold true for the PU integral.
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